

AlRobots

Innovative aerial service robots for remote inspections by contact

Start: 1 February 2010

End: 31 January 2013

FP7, THEME ICT-4-2.1, Cognitive Systems and Robotics

Project no. 248669

The consortium

European Commission Dr. Anne Bajart (Project Officer)	EC	* * * * * * *
Alma Mater Studiorum Università di Bologna Prof. Lorenzo Marconi (Coordinator)	UNIBO	
Alstom Inspection Robotics Dr. Ekkehard Zwicker	AIR	-
ETH Zurich Prof. Roland Siegwart	ETHZ	
Università di Napoli Federico II Prof. Bruno Siciliano	UNINA	
Universiteit Twente Prof. Stefano Stramigioli	UT	

The motivation

The project

To develop aerial vehicles able to <u>interact</u> with <u>the human world</u> in order to accomplish typical <u>robotic</u> <u>tasks</u> in air rather than constrained on ground

Aerial service robotics

Breakthrough

To develop advanced automatic control strategies and "human-in-the-loop" strategies which allow an intuitive tele-operation of the vehicle by means of haptic devices

"Flying hand" of the operator

The vision

The goals

To design and construct aerial prototypes and test them on mock-up environments which will reproduce meaningful indoors and outdoors scenarios envisaged by the end-user AIR

- Aerial service robotics best practice and performance measures
- System design and control strategies for aerial robots physically interacting with the human world
- New contribution to human-robot interaction and communication
 - Aerial navigation in loosely structured and densely cluttered environments

Aerial prototypes

Ducted-fan and coaxial rotorcraft: Rotary-wing aerial vehicles with shrouded propellers for safe interaction

For the final prototype a fusion of the concepts might be possible

A typical scenario

Way-points

Takeoff

Unexpected risks!

Landing

Interaction with teleoperation

The numbers

- 8 work-packages, 34 tasks
- 7 milestones
- 25 deliverables
- 12 technical and management risks
- 342 person–months
- 24 Researchers involved
- € 3.614.000 total cost

AlRobots within FP7-6

Human-in-the-loop,
Manipulation/grasping
topics
CHRIS, DEXMART,

Grasp, PHRIENDS

Awareness algorithms and autonomous navigation

Eyeshots, SFly

Technological and design aspects

muFly, μDRONES, Viactors, CTI

<u>Fundamental control</u> research

Geoplex, Hycon, Aware

AlRobots ... grounded people

www.airobots.eu