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ExecuƟve Summary
This document describes the AIRobots simulator development and provides an user manual and installaƟon guide for
future reference. Although the deliverable will contain some remarks to the physics and mathemaƟcal modeling of the
simulated rigid bodies, it is not intended to be an exhausƟve reference for the roboƟc components that are being used.
For this purpose, please refer to the deliverable D4.1. This report will cover mostly the end-user aspects and will provide
an architectural descripƟon to beƩer understand the simulaƟon logic from a soŌware point of view.

The first secƟon describes how the simulaƟon environment is represented with respect to the real world data and
scenarios, and provides details of the Aerodynamics simulaƟon and manipulator integraƟon for the use with the Blender
Game Engine. A brief reference of the programming libraries and interfaces is then given in order to help with the un-
derstanding of the infrastructure that is being used and to ease future integraƟons or updates. Finally, a guide to the
installaƟon process describes the steps needed to accomplish a fully funcƟonal and working environment on new avail-
able computers, and the user manual guide the operator to the several features of the simulator. Due to the evolving
nature of the soŌware provided, this document will be extended and integrated periodically to reflect the further im-
provements in the simulaƟon environment.

Acronyms
UAV: Unmanned Aerial Vehicle
MAV: Micro Aerial Vehicle
IMU: InerƟal Measurement Units
EKF: Extended Kalman Filter
UKF: Unscented Kalman Filter
GPS: Global PosiƟoning System
NED: North-East-Down
LPF: Low Pass Filter
SURF: Speeded Up Robust Features
BRIEF: Binary Robust Independent Elementary Features
PCA: Principal Components Analysis
RTWT: Real-Ɵme Windows Target (Matlab Toolbox)
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1 IntroducƟon
The development of the aerial service robot prototypes includes situaƟons in which using directly the real vehicle would
be risky, unpracƟcal or simply Ɵme-consuming. In these scenarios, which include the training of the operator and the
validaƟon of new low-level and high-level funcƟonaliƟes, an advanced simulaƟon environment has to be taken into ac-
count [7]. To be effecƟve in both the design and validaƟon of the control algorithms, the simulator environment should
appear transparent both to the rest of the control architecture and to the human operator: switching from simulaƟons
to real flight operaƟons should be achieved as seamlessly as possible. This fact implies that, on one side, the simulaƟon
environment should have the same soŌware interface as the real prototype and, on the other, that the dynamical model
of the aerial system and of the environment should match as far as possible the real ones.

The simulaƟon environment has been designed to address a number of relevant scenarios ranging from simple free-
flight operaƟons to the physical interacƟon with a realisƟc 3D reconstrucƟon of the end-user environment.

The most simple kind of experiments that can be carried out with the simulator are given by free-flight operaƟons
with the two prototypes of aerial service robots developed in the project. In this scenario the simulator validates both
the dynamical model of the system and the performances of the low-level control law. Human Interface Devices (HIDs),
such as a simple joysƟck, can be employed to generate the reference signals for the low-level free-flight controllers in
order to pilot the vehicle in a virtual 3D environment in the same way as they can be employed for real flight tests.

The second and more advanced kind of experiments that have to be achieved are given by the validaƟon of the
high-level control and sensor fusion algorithms. In parƟcular, by means of an accurate 3D model representaƟon of the
operaƟonal scenario and the correct implementaƟon of the sensors mounted onboard, the effecƟveness of high-level
vision based algorithms can be validated by considering some of the characterisƟcs of the real environment (e.g. textures,
illuminaƟons, etc). The high-level sensor fusion, together with the high level supervisor, can be employed to test mission
planning, obstacle avoidance and re-planning in the selected virtual world. Finally, telemanipulaƟon algorithms can be
validated by integraƟng also hapƟc devices in the simulaƟon.

Through an accurate modeling of the environment in which the robot has to operate, the simulator can also be used
to validate low-level control algorithms that are able to handle physical interacƟon with the environment. In parƟcular
the simulator is capable to model the manipulator device installed on the vehicle and allows to perform several tests on
posiƟon and force control algorithms for the overall mulƟ-body system, as it has been shown in Deliverable D4.1. All
these features can be achieved by implemenƟng specific force and contact sensors in the simulaƟon environment.

Finally, the simulator can be employed to train the operator in the selected end-user environment. This is achieved
though the integraƟon of all the advanced funcƟonaliƟes discussed above, with parƟcular aƩenƟon to the accuracy and
refinement of the environment in which the aerial service robot is required to flight and though.

In order to be really effecƟve in validaƟng both the low-level and high-level control algorithms, the simulator has been
designed according to a modular structure [5] in which both the dynamical models of the aerial robots and the control
algorithms can be easily integrated as separated modules. This fact allows easily to obtain also soŌware-in-the-loop and
hardware-in-the-loop simulaƟons by replacing the different control modules with the real controllers installed on the
prototypes. Observe that this characterisƟc is of paramount importance in order to actually keep updated the simulaƟon
environment with the latest version of the controllers developed in the project at no addiƟonal development cost. And
also, on the other hand, it permits to keep separate the business logic from the visual and graphics components for future
improvements or upgrades.

1.1 SoŌware Requirements for the Development of the SimulaƟon Environment
Aerial service roboƟcs represents a new field of research for which a complete off-the-shelf tool able to accomplish ad-
vanced simulaƟons is not yet available. However, a number of open-source and commercial soŌware tools addresses the
issue of advanced simulaƟons for different roboƟc plaƞorms, including aerial robots - [18] - mobile robots - [12], [8], [6],
[3], [14], [16], [13], [18], [17], [16] - and roboƟc arms - [15], [10]. The AIRobots simulator takes then into account only the
open-source soŌware and, for the exisƟng projects, at first, to take advantage from the funcƟonaliƟes already available
in some open-source architectures, and then, to join the internaƟonal open-source roboƟc community. Accordingly, in
this part we show the main guidelines that have moƟvated the design of the simulator environment and the choices in
term of the exisƟng open-source tools to be integrated in our project.
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Mandatory requirements

A number of requirements can be detailed in order to implement the basic AIRobots funcƟonaliƟes. With respect to a
standard simulaƟon environment for aerial systems, where essenƟally only free-flight is considered, AIRobots main goals
require to take directly into account the physical interacƟon between the vehicle and the environment. Apart this impor-
tant issue, the simulator should also be able to integrate the advanced control architecture of the real system, including
all the components required for advanced human-machine interacƟon and high-level vision based control algorithms.
All this features should be linked together in an effecƟve soŌware environment.

Physics As stated above, the physics simulaƟon is a crucial part of the simulator, because one of the main task that
must be accomplished is to help in studying the dynamic behavior of the UAV in mulƟple operaƟonal condiƟons, like
when it is freely flying in the air or when physical interacƟon, such as collisions, with the environment is performed.
With this respect, the simulator must be able to calculate three-dimensional collisions and to apply the resulƟng reacƟon
forces to the robot. Moreover, in order to correctly model physical interacƟon, realisƟc fricƟon models and advanced
contact models should also be available. Regarding themanipulator, in order tomodel the device aƩached to the vehicle,
mulƟ-body systems should also be implemented by using different types of joints. Accurate kinemaƟcal and dynamical
models of the manipulator are also required.

To implement and validate the different feedback control strategies, both low-level sensors, such as IMU, and high-
level sensors, such as vision, should be available within the simulaƟon environment.

HapƟc feedback During inspecƟon-by-contact operaƟons, the vehicle should approach the surface to be inspected,
make contact with it and then slide along it, acƟng as a sort of virtual hand for the operator. To get a realisƟc feeling, the
operator will drive the vehicle using a hapƟc device able to provide force feedback. On the physical setup, force sensors
are installed in specific points of the vehicle's body, providing informaƟon about the force and torque applied in that
point. This same kind of informaƟon must be computed inside the simulator and sent to the hapƟc device in order in
order to provide the operator with the same feeling of real operaƟon scenarios.

These feature requires to implement in the simulator environment both a realisƟc compliant contact model of the
environment and the force and contact sensors able to detect the contact forces exchanged during the interacƟon. All
the hapƟc devices used by the operator should also be integrated within the simulaƟon environment.

Video feedback Stereoscopic cameras are installed on the real UAV, whose output is sent both to the operator and
to high-level vision algorithms able to esƟmate the speed and the pose of the vehicle with respect to the environment. In
a simulaƟon environment, speed and distance informaƟon can be obtained from the simulator itself, but video feedback
to the user is required, therefore at least two cameras or a single stereoscopic camera must be installed. InformaƟon
from the virtual cameras must be available in a format which can be easily extracted and sent over the network to the
operator's console. Furthermore, the informaƟon retrieved from the simulated virtual cameras can be used to speed up
the development and tesƟng of the vision algorithms. To validate the vision algorithms, parameters such as focal length,
aperture and resoluƟon of the cameras must be available and it should be possible to reflect the ones of the real setup.

Frame rate In order to simulate the dynamical model of the real vehicle, the simulator must be able to read inputs
and send outputs at a frequency of about 100Hz. The above sample Ɵme is compaƟble with the dynamical properƟes of
the closed -loop aƫtude and posiƟon control subsystems implemented to stabilize the real physical prototype.

Video output can have a lower sample-rate, in fact the onboard physical cameras are able to stream data at approxi-
mately 10-20Hz.

It must then be possible to have at least two different communicaƟon channels, one for the high-speed small packets
which carry control informaƟon and posiƟon / aƫtude informaƟon for feedback, and one for the image data.

Non-mandatory requirements

These requirement relate mainly to the modelling of the UAV and the virtual environment.

4



ICT -- 248669 -- AIRobots Deliverable D4.2

Graphical modelling tool and Open source soŌware The simulator may use three-dimensional models of the UAV
that are imported from the available CAD design. To model the end-user environment, textures obtained from the real
set-up should be integrated in the simulaƟons. This requirement is mandatory if high-level vision-based sensor fusion
has to be tested with the simulator. Open source soŌware can be customized to implement missing features, and given
the peculiar kind of applicaƟon, this is an highly desirable feature.

LimitaƟon of the simulator engine

Another important specificaƟon that had to be defined before examining the available soluƟons was about what has to
be calculated inside and what can be delegated outside. It has previously been highlighted that control logic, given its
development process, is already available in a MATLAB/Simulink model, hence it is best kept outside of the simulator.
The output of the control logic is an array of six values, namely forces and torques along the UAV's axes. This is then the
input to the simulator. Since aerodynamics can be modelled in MATLAB, the values sent to the simulator will actually
correspond to resultant forces and torques generated by the fan and the aerodynamic control surfaces.

In order to close the loop, informaƟon about the posiƟon and pose of the UAV must be fed to the control logic,
and this must be the output of the simulator. Gravity, interacƟons and collisions, everything pertaining to dynamics and
moƟons must be calculated within the simulator.

Thus, the simulaƟon enginemust be able to communicatewith the different components using a networked computer
environment or serial communicaƟon in order to exchangedata in a fast and reliableway. Since thewholemain simulaƟon
loop has to be performed in less than 10ms to aƩain a frequency of 100Hz, the communicaƟon protocol must be kept
simple enough so that it doesn't require Ɵme-consuming parsing and elaboraƟon. Itmust nevertheless be flexible enough
to allow the input of different data, for driving the UAV, controlling appliances, starƟng and stopping the simulaƟon and
so on.

All calculaƟons which are potenƟally Ɵme-consuming must be kept outside of the simulator, so image data must be
acquired by the virtual cameras but need not be manipulated and can be output as raw data.

Choice of the tools

With all the requirements in mind, the search of some open-source base tools to start developing the simulaƟon envi-
ronment ended on the choice of the Blender 3d content creaƟon suite [11], [4], [2]. Blender provides a 3d rendering
framework and a game engine that allows to interact with the 3d scene that is presented to the user. Moreover, the
Blender architecture can be expanded using the python programming language and in this context the MORSE (Modular
OpenRobots SimulaƟon Engine) library [14] has come in aid for our ``roboƟcs'' purposes.

MORSE defines a neat architecture of components, tailored specifically for roboƟcs, providing abstracƟons for robots,
sensors and actuators. It also defines a middleware layer that can be implemented according to the requirements of the
deployment. With this architecture, the same simulaƟon can interact with ROS nodes or use proprietary communicaƟon
protocols without changing the simulaƟon itself, but just by switching middlewares. Different middlewares can be used
simultaneously to communicate with different clients.

2 SimulaƟon Environment
The simulaƟon environment is intended to subsƟtute and emulate the physical parts of the real UAV in the most realisƟc
possible way, while using all the same control algorithms and integraƟng with external systems such as the Trajectory
planner. In parƟcular, the simulaƟon environment must take care of all physics simulaƟon aspects, like rigid body dynam-
ics, collisions, aerodynamics and sensors output. The simulator's components have been implemented part in Simulink
and part in Blender, using the Python language. Simulink and Blender communicate through UDP packets, so communi-
caƟon has to be kept as lean as possible, developing all the integraƟon with the low-level control in Simulink and using
Blender only when 3D physics simulaƟon is involved.
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Figure 1: The 3D model of the UAV in a running simulaƟon.

2.1 Aerial Vehicle
Rigid Body Dynamics

The Game Engine embedded in Blender is used to compute the rigid-body dynamics for the virtual UAV and dynamical
model of the environment. The engine uses the Bullet Physics Library that provides

� Discrete collision detecƟon for rigid-body simulaƟon.

� Support for in-game acƟvaƟon of dynamic constraints.

� Full support for vehicle dynamics, including spring reacƟons, sƟffness, damping, etc.

Thus, the simulated UAV can fly and interact with the virtual environment in a realisƟc way, and the data retrieved
can be exported to the Simulink controller.

A mathemaƟcal model for the rigid-body dynamics can be given by means of the so called Newton-Euler equaƟons:

Mp̈ = Rf b

Jω̇ = −ω × Jω + τ b
(1)

where f b and τ b represent respecƟvely the vector of forces and torques applied to the vehicle expressed in the body
frame,M the vehicle total mass, J the diagonal inerƟa matrix, p = col(x, y, z) the posiƟon of the center of mass, ω the
angular velocity expressed in the body frame andR the rotaƟon matrix relaƟng the body frame with the inerƟal frame.

Aerodynamics

Since Blender cannot naƟvely handle the aerodynamic forces that applies on the control vanes of the UAV, and to expose
an abstract and generic torque/force layer to be used with the different prototypes, the aerodynamic laws that apply to
the individual prototypes are implemented using a Simulink block.

With reference to Fig. 3 and to Deliverable D4.1, the vector of forces f b in the body frame can be computed as

f b(α) :=

 0
0
−T

+

 ∑8
i=1 Li(αi)

T ib +
∑8

i=1 Di(αi)
T ib∑8

i=1 Li(αi)
T jb +

∑8
i=1 Di(αi)

T jb∑8
i=1 Li(αi)

T kb +
∑8

i=1 Di(αi)
T kb

 (2)

while the resultant torque vector is given by

τ b(α) :=
8∑

i=1

ri × Li(αi) +
8∑

i=1

ri × Di(αi) (3)
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Figure 2: Spliƫng the aerial vehicle dynamical model between Simulink and Blender: rigid-body dynamics is imple-
mented in Blender while force/ torque generaƟon mechanisms are implemented in Simulink taking into account for the
aerodynamical model.

(a) (b)

Figure 3: Force generaƟon scheme in the Ducted-Fan MAV: (a) drag forces, (b) liŌ forces.

where, for each i ∈ {1, 2, ...8},

ri :=


1

2
dT sin(γi − π/4)

1

2
dT cos(γi − π/4)

d


denotes the point of applicaƟon of each aerodynamic pair of liŌ and drag forces with respect to the center of gravity of
the system which coincides precisely with the origin of the body fixed reference frame.

Hence, the model (2)-(3) is implemented in a Simulink block as input for the rigid-body dynamics (1) in Blender for
the case of DFMAV.

2.2 Manipulator
Themodelling of the Delta Robot, its joints and other parameters such as fricƟon andmass is too complex for the Blender
Game Environment to produce realisƟc results. In parƟcular, the small mass of the manipulator's parts is too liƩle to be
reproduced in Blender, where each object can't have a mass smaller than 0.010 Kg.
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ReducƟon to end-effector and task space to joints space transformaƟons

These limitaƟon have lead to modelling the manipulator only considering the end effector's task space, instead of mod-
elling the delta robot's joints space. The end-effector can only translate in the task space, and rotate around its local z-axis,
a constraint that is easily implemented in Blender, and a single control force vector applies to the end-effector to make
it translate. Figure 4 shows a schemaƟc model of the delta robot with indicaƟon of the torques and the corresponding
end-effector force.

The control law for the manipulator computes the control acƟon required to govern the joints in order to obtain a
desired posiƟon / force to the end-effector. On the other side, the model implemented in the simulator only considers
the task space of the robot. To this end all the control forces have to be translated from the joint space to the task
space in order to derive the control inputs for the simulator model of the manipulator. Accordingly a Simulink block
implements the inverse kinemaƟcs to esƟmate for the joint coordinates given an end-effector posiƟon and then the
differenƟal kinemaƟcs in order to translate forces from joint to task space and viceversa. Figure 5 shows a high-level
overview of the components used.

Fx

Fy

Fz

τ3

τ1

τ2

Figure 4: Forces at the base joints and forces at the end effector

Graphical modelling To have a more realisƟc look, the CAD-model of the manipulator can be shown between the UAV
model and the end-effector. This manipulator is then represented as an image rather than a real kinemaƟcal model.
From a graphical view point the applied image of the manipulator follows precisely the end effector and base posiƟon to
appear similar to what the real manipulator would be.

2.3 Sensors
The simulaƟon environment subsƟtutes the UAV's sensors in order to give feedback both to the operator and to the low-
level and high-level control laws. Force informaƟon computed during the interacƟon are also transmiƩed to the hapƟc
devices used by the operator. Force sensors have to be implemented by defining a suitable compliant mulƟ-body system
as detailed in the following.
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Figure 5: the Manipulator components in Simulink and Blender and integraƟon with control

InerƟal sensor

InformaƟon regarding the posiƟon of objects, can be easily retrieved in Blender. The MORSE framework provides out-of
the box sensors that will retrieve aƫtude, locaƟon, speed and acceleraƟon informaƟon, thus emulaƟng both the IMU
and OpƟtrack informaƟon. Only aƫtude and locaƟon are sent back to the control law in the OpƟtrack packet so as to
provide the same amount of informaƟon used in free-flight indoor experiments. AddiƟonal speed informaƟon can be
added to simulate IMU gyroscopic informaƟon, validaƟng also the case in which an IMU is available on the vehicle.

Streaming camera output

Two camera sensors, provided byMORSE, are installed on the 3Dmodel of the vehicle. Each sensor provide a conƟnuous
image stream, at a frequency which can be obtained as a fracƟon of the one used to send telemetry informaƟon such
as OpƟtrack and IMU. Namely, aƫtude and locaƟon data are sent at 100Hz, while camera output is streamed at 10Hz
or 20Hz. Cameras can be controlled in depth of field and focal length. Other non-streaming cameras can be used in the
simulaƟon environment providing different perspecƟves for piloƟng and monitoring purposes.

Force sensor

Force in Blendermust bemeasured using virtual spring-dampers, since there is noway to retrieve the informaƟon directly
from the physics engine. Where force informaƟon is needed, a virtual force sensor must be applied to the model, just
as a real force sensor would have to be applied to the real UAV. Force sensors have been developed since they were not
provided by the MORSE framework. The idea is to measure the deformaƟon of a spring with known sƟffness so that the
force applied to it can be easily computed. For mulƟ-dimensional impacts a suitable mulƟ-body structure can be defined
according to the above idea.

2.4 Environment modelling
Blender provides a very complete GUI that allows modelling of complex 3D scenarios. Meshes (3D objects shapes) can
be imported from different standard CAD formats, and realisƟc textures can be applied to the surfaces. Complex objects,
like the UAV with all the sensors and actuators, can be easily shared among different scenes.

Most of the 3D modelling is done using the 3D GUI editor, but it can also be fully programmed in Python, allowing
run-Ɵme modificaƟons of the environment or other parameters during the simulaƟon.

9
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Figure 6: our simulated flight arena

3 SoŌware IntegraƟon
The simulaƟon environment is designed to subsƟtute parts of the real vehicle and its sensors, while maintaining other
soŌware and hardware components (like the low-level control and Human-Machine-Interface), that are exactly the same
that are being used in the real flights. As such, the simulaƟon environment must communicate with these components
in the same way that the real vehicle does. What we describe here are the specificaƟons needed in order to achieve this
goal.

Figure 7: Components used in the simulaƟon

The main integraƟon points are with the low-level control, with the supervisory control and with other possible ROS
nodes. Each component must communicate to the others using preferably UDP datagrams over the network. By the
nature of this schema, it is possible to distribute the computaƟon and the control laws over mulƟple computaƟonal
units, up to achieving a true remote-controlled applicaƟon over the internet.
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3.1 IntegraƟon with low-level control
As the low-level control algorithms relay on Simulink, the same data packets commonly used for the laboratory OpƟtrack
installaƟon are used to export aƫtude and posiƟon values of the virtual UAV. This lead to a 1 to 1 replicaƟon of the
physical tesƟng environment that speeds up the development phase. Torques and forces from the environment and the
control laws are applied to the rigid body and then new values for aƫtude and posiƟon are returned from the simulaƟon
in order to close the control loop.

3.2 IntegraƟon with the supervisory control
The simulator allows the operator to set a number of way-points in order for the high-level control law to compute a
path for the vehicle. The environmental model in this situaƟon should be similar to the one of the end-user applicaƟon
so that the operator is able also to employ the simulator to plan the trajectory for the real inspecƟon. Simulator can also
be used as a benchmark to have a 3D view of real-flight trajectories, so that the operator can evaluate the actual mission
with respect to the one planned before.

3.3 IntegraƟon with ROS
AddiƟonal high-level funcƟonaliƟes can be integrated using an off-the-shelf middleware, and in parƟcular ROS, able to
provide a publish-subscribe communicaƟon paradigm. The integraƟon with ROS happens by defining suitable ROS nodes
having on one side a public ROS interface and, on the other, the ability to communicate over the UDP network with the
simulator interface.

4 Programming reference
According to the architecture of the simulaƟon environment, which comprises both components developed in Blender
and others in Simulink, programming of the simulatormust be carried out parƟally in Blender and parƟally in Simulink. As
a general guideline, everythingwhich has to dowith rigid body dynamics, forcemeasurement and other sensing is done in
Blender, while integraƟon with the low-level control, aerodynamic forces calculaƟons, transformaƟons from joints space
to task space and viceversa is done in Simulink.

The Blender part can be further disƟnguished inMORSE-compliant soŌware components, Blender-naƟve Python code
and Blender-GUI modelling.

The communicaƟon between Blender and Simulink is carried out with UDP packets, according to the protocols de-
scribed in paragraph 4.4

Figure 8 shows the general layout of the different components between Simulink, theMORSE framework and Blender.

Figure 8: Layout of the components in Simulink, MORSE and Blender

The simulaƟon loop of the Aerial vehicle and that of the manipulator are implemented in different components at
each level, and communicate on separate UDP channels and protocols. The Airobots Middleware on the MORSE side is
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a single component but dispatches the informaƟon independently to the appropriate manipulators and actuators.

Aerial Vehicle The aerodynamics calculaƟon performed in Simulink is sento to the Airobots Middleware on the
MORSE-Blender environment that parses the informaƟon and delivers it to Force/ Torque actuator. This is meant to
apply forces and torques to the 3D object, so that the underlying physics engine can simulate the moƟon.

Feedback is obtained through the Aƫtude and LocaƟon sensor, then sent through themiddleware back to the control
law.

Figure 9: The UAV components in detail

Figure 9 shows the components involved in controlling the UAV at each level - Simulink, MORSE and Blender - and
the flow of data.

Manipulator In a similar fashion, the control law of the manipulator is integrated in the Simulink model with blocks
that reduce every interacƟon to simple rigid body dynamics and transform forces and posiƟon in the joints space to forces
and posiƟons in the task space. At the MORSE-Blender side, the same middleware applies forces to the 3D model of the
end-effector by means of a force actuator, and reads informaƟon on the resulƟng force exerted at the end-effector and
its posiƟon through two different sensors.

Figure 9 shows the components involved in controlling the Manipulator at each level - Simulink, MORSE and Blender
- and the data flow.

Figure 10: Manipulator components in detail

4.1 Simulink components
Simulink blocks specific to the simulator are used to set the gain parameters, to integrate the Simulator with the control
law and to calculate the transformaƟon from joints space to task space and viceversa. For mathemaƟcal details regarding
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modeling and control of the manipulator and the aerial vehicle the reader is referred to Deliverable D4.1.

SimulaƟon parameters

In the main GroundStaƟon Simulink model, the parameters needed for the low-level controller can be set using a special
configuraƟon packet that contains several seƫngs. The gain and w c parameters can be used to tune the aƫtude and
posiƟon controller.

Aerial vehicle Simulink integraƟon

Figure 11: PorƟon of the Simulink model with the blocks for wrench calculaƟon.

Wrench calculaƟon The simulator is meant to replace the UAV at the lowest possible soŌware level, therefore the
calculaƟon of the wrench vector - the forces and torques applied to the 3D model - starts from the UVANES allocaƟon -
see among others [1] and Deliverable D4.1 -, as explained in paragraph 2.1.

This calculaƟon can be found in the Aerodynamic F&M block shown in figure 11.

Wrench builder This block builds the packet to send the wrench vector to the Blender simulaƟon. Forces and torques
are mulƟplied by 106 and then truncated as integers to respect protocol specificaƟons. The BuƩons field holds the map
of the buƩons of the joypad, used to control some aspects of the simulaƟon, like way-point release or point-of-view
switching.

See paragraph 4.4 for details on the protocol.
The built message is then sent to a RTWT output block that sends it to Blender via UDP.

Manipulator Simulink integraƟon

Themanipulator control is integrated in the sameway. Since the control lawoperates in the joints space and the simulator
operates in the task space, some blocks perform the necessary transformaƟons of posiƟons, velociƟes and forces.

Given the current posiƟon of the end-effector in the task space, the configuraƟon of the joints is calculated using
inverse kinemaƟcs [9]. The Jacobian operator is calculated and used to transform the linear velocity of the end effector
into the rotaƟonal velociƟes of the joints. ConfiguraƟon and velociƟes are feed into the control law, then the same
Jacobian operator is used to transform the torques at the joints into the force at the end-effector. Figure 13 shows the
porƟon of the Simulink model that implements this integraƟon.

Observe that in Blender basically the end-effector is modeled as a rigid-body with constraints on the admissible
moƟons deriving from the kinemaƟcs of the specific manipulator installed on the vehicle. This means that all forces and
torques exchanged between the aerial vehicle and the manipulator have to be computed in Simulink. In parƟcular, to

13
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Figure 12: The simulated manipulator aƩached to the UAV

handle interacƟon with the environment in a proper way, it is of paramount importance to model the reacƟon forces
applied to the basis of the manipulator, namely to the aerial vehicle (see also Deliverable 4.1 where a complete model
of the system is proposed). This is done by taking into account for the current configuraƟon of the manipulator and the
torque control inputs applied at joints. With these informaƟon at hand the wrench vector (addiƟonal wrench in Figure
13) is computed and applied to the aerial system as a disturbance. This transformaƟon as well as the Jacobian operator
strictly depend on the physical model and parameters of the manipulator to be installed onboard. Thus by separaƟng
their computaƟon from the visualizaƟon and rigid-body dynamics implemented Blender allows to have a simulator which
can be easily expanded to describe different kinds of aerial service robots.

Jacobian calculaƟon This block calculates the Jacobian operator, based on the posiƟon of the base joints and the knowl-
edge of the kinemaƟcal model of the robot.

Direct Jacobian transformaƟon This block computes the control forces at the end effector by means of the knowledge
of the control forces at joints and using the Jacobian operator:

[Fx, Fy, Fz] := (JT )−1 ∗ τ (4)

Inverse KinemaƟcs transformaƟon This block transforms the relaƟve posiƟon between the end-effector and the point
where it is aƩached on the vehicle into joint coordinates for the roboƟcmanipulator. The former derive from the Blender
environment, the laƩer are used to compute all transformaƟons in Simulink.

Inverse differenƟal KinemaƟcs transformaƟon This block transforms the velocity of the end-effector, computed with
respect to the point where the manipulator is actually aƩached, into velociƟes of the joints:

[q̇1, q̇2, q̇3] := J−1 ∗ [ẋ, ẏ, ż] (5)

AddiƟonalWrench This block computes the forces and torques that themoƟon of themanipulator applies to the basis,
namely to the aerial robot, during its free moƟon and also during possible interacƟon with the environment.

Manipulator packet output This block builds the packet to send the force at the end effector to the Blender environ-
ment. Forces are mulƟplied by 106 and then truncated as integers.

See paragraph 4.4 for details on the protocol.
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Figure 13: PorƟon of the Simulinkmodel with the blocks for transformaƟon from joints space to task space and viceversa.

The built message is then sent to a RTWT block that sends it to Blender via UDP. Note that this is a different packet
on a different communicaƟon channel than the one used for the wrench packet.

4.2 MORSE architecture components
EachMORSE component is made of two files: a .blend file in which the Blender object is contained, and a Pythonmodule
that implements the behavior of the component. The .blend file usually contains the mesh, even though some compo-
nents do not feature amesh. In those cases, a Blender empty object is used. ParƟcular values, called ``Game properƟes'',
that can be aƩached to a Blender object in the GUI, must be set in order to make the MORSE library interact correctly
with the simulaƟon engine. A robot base would for example have a "Robot tag" property to tell MORSE that that object
is to be considered as a robot. This connecƟon is realized at runƟme by MORSE init scripts. MORSE components are
divided in categories according to their funcƟon

� Robots: a robot basemust be the parent object of all aƩached sensors and actuators. Many robots can be deployed
in the same scene. Usually a robot base has a mesh that models the physical robot.

� Sensors: provide data about the parent robot or the environment. These include pose sensors, cameras, ac-
celerometers and so forth. The Blender object can be a mesh or an empty object.

� Actuators: affect the simulaƟon by changing speed, applying forces, changing point of view, seƫng properƟes.
Actuators usually have an empty Blender object.

� Modifiers: affect the output of a sensor. A modifier can be used to transform the output of a pose sensor from
Euler angles to Quaternion, or to apply a noise to the measure.

� Middleware: define funcƟons used to communicate with other nodes. Middleware implementaƟons for connect-
ing Blender with YARP or ROS are included in the standard MORSE distribuƟon.

15



ICT -- 248669 -- AIRobots Deliverable D4.2

Components available out-of-the-box

Morse comes with many components, some of which have been used for this version of the simulator. In parƟcular:

� Video camera sensor: the sensor emulates a single video camera by generaƟng a series of RGBA images encoded
as binary char arrays, with 4 bytes per pixel.

� Stereo Camera unit: the combinaƟon of two cameras mounted on an joint bar with constrained moƟon. This is
used to simulate the two cameras mounted on the real UAV for stereo-vision. This component can provide the
stereo informaƟon generated from the two camera images.

� Pose sensor: this reads the rotaƟon of the UAV relaƟve to the World Axes (fixed). The output is in yaw, pitch and
roll values. Also, it gives the posiƟon of the robot relaƟve to the World Axes origin.

Some new components have been developed for AIRobots. The Python code is external to the main Blender file, not
embedded into it. It's mandatory that the source modules are in the same directory as the MORSE files, because the
MORSE framework will look there to find them.

Figure 14 shows an overview of the Python classes, where details aboutmethods and properƟes are omiƩed. Grayed
classes are from the MORSE framework.

Figure 14: General class diagram.

Middleware

One of the main principles followed in designing this simulator, also accordingly with the MORSE framework, is that
components such as actuators and sensors should be unaware of the ways their input is received and their output is
sent. The simulaƟon scenarios, robots and different components can then be reused in several deployment situaƟons.
Ideally, if the communicaƟon infrastructure were modified to use YARP, only the middleware should be subsƟtuted.

In our case, the middleware is slightly dependent on the applicaƟon, because the messages received from MATLAB
can specify both forces and torques applied to the robot by means of the ForceTorque Actuator, and other simulaƟon-
related informaƟon, as changing the point of view or reseƫng the simulaƟon, so that some logic is required to correctly
parse the protocol message.

Themiddleware is connected to specific sensors and actuators bymeans of a component config.py file that is internal
to Blender. This file specifies which middleware funcƟon must be invoked at each simulaƟon loop for each sensor or
actuator.

A rot matrix is declared in the AIRobotsMiddlewareClass to represent the rotaƟon of the Blender's world frame
with respect to the frame expected in the control law. The main difference is that the Z axis points upwards in Blender
and downwards in the control law.

A method is implemented for each communicaƟon channel
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Figure 15: Middleware package classes.

� + read_message(component): reads the ForceTorquePacket and applies it to the corresponding actuator. Also
manages buƩons.

� + post_pose(component): posts the UAV locaƟon and aƫtude in an OpƟtrack packet

� + post_waypoints(): publishes the list of waypoints once every 2 seconds

� + read_manipulator(): reads the force at the end effector and applies it to the actuators

� + post_manipulator(): reads the end-effector posiƟon and the force measured in the environment and posts
them

Robots

The simulaƟon environment specifies two robots: the Aerial Vehicle and the Manipulator. They act independently, with
different sensors and actuators and are linked in the 3D interface with in-Blender constraints.

As MORSE components they are very simple classes, implemenƟng only the default methods required by the frame-
work, as shown in 16.

The AIRobotsClass implements a single addiƟonal method releaseWaypoint() that is used to release a waypoint
in the 3D space.

Actuators

Actuators are themeans throughwhich themiddleware sets properƟes in the 3D environment, such as applying amoƟon
or seƫng a locaƟon. The actuator for the UAV applies forces and torques to the 3D object. The forces vector is rotated
by rot matrix before applying it.

The actuator for the manipulator applies only forces to the end-effector, since it can only translate and not rotate
relaƟve to its base.
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Figure 16: Class diagram of the robots

Figure 17: Class diagram of the actuators

Sensors

Sensors are the components through which the middleware retrieves informaƟon form the 3D model. For the UAV, a
default MORSE pose sensor is used to retrieve the locaƟon and aƫtude of the UAV. For the manipulator a sensor that
retrieves the end-effector posiƟon and the force applied has been built.

Force sensors Bullet, the physics engine that lies at the heart of Blender, does not provide a way to measure the force
applied to an object directly, but it must bemeasured indirectly bymeans of a contact proxy. The end effector is modelled
as two parallel discs, with a very rigid and spring-damper, that with a deformaƟon that is irrelevant for the simulaƟon
purposes allows to measure the applied force. The same force is then transmiƩed to the UAV as a reacƟon force. When
equilibrium is reached, the reacƟon force will equal the manipulator's control force, thus determining the end-effector
posiƟon.

4.3 In-Blender programming
The main components inside the Blender 3D environments are meshes and constraints. Meshes are 3D objects, with
properƟes such as shape, material - color, texture - weight, collision characterisƟcs. Meshes have an origin and a relaƟve
reference frame, and can act as rigid bodies.

The 3D model of the Aerial vehicle is a complex hierarchy of meshes and other object, so that it can be physically
realisƟc as a rigid body, have a simple collision model and be visually detailed. These three purposes are achieved using
three different meshes:

� the main UAV mesh. It's the root of the hierarchy, a simple invisible cube whose origin corresponds to the center
of mass of the UAV and that can be stretched to obtain realisƟc inerƟa simulaƟon. Figure 19 shows the panel to
edit such properƟes. The mass of the UAV is defined here;

18



ICT -- 248669 -- AIRobots Deliverable D4.2

Figure 18: Class diagram of the sensors

� two invisibile octagonal meshes, one alignedwith the top of the UAV legs and another one alignedwith the boƩom
of the UAV legs. These octagons are used as collision boundaries during the simulaƟon. They are very simple in
shape and thus allow the realƟme simulaƟon to compute collisions easily.

� a visible mesh, created imporƟng the CAD model of the real UAV.

Figure 19: Physical properƟes panel for the root object

The 3D model of the manipulator is reduced to the end-effector, modelled as a small disc and constrained to the
UAV's mesh.

Binding components to MORSE

Binding components to the 3D scene is done in the component config.py file that is embedded as a text block in Blender.
This file binds sensors and actuators to specific methods of middlewares, one-to-one:

� the 3D object GPS sensor is bound to the middleware's post pose method

19



ICT -- 248669 -- AIRobots Deliverable D4.2

� the 3D empty object ForceTorqueActuator is bound to the middleware's read message method

� the 3D empty object EndEffectorActuator is bound to the middleware's read manipulator method

� the 3D empty object ManipulatorSensor is bound to the middleware's post manipulator method

4.4 Protocols
The different components can communicate using the well-known AIRobots protocols also used during the IntegraƟon
Weeks.
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Figure 20: The messages implemented for the simulator.

Here it is introduced the new ``Wrench'' data packet, specifically designed to control the simulated UAV.

5 InstallaƟon guide
This chapter will guide you through the configuraƟon and deployment of the simulaƟon environment.

5.1 InstallaƟon overview
In order to use the simulaƟon environment, several components must be installed and deployed on at least two different
machines:

� Blender Host - A Linux machine to run the 3D simulaƟon engine. On this machine you will have to install Blender,
MORSE and the AIRobots python and .blend files.
Note that, due to the requirements of MORSE, it is currently not possible to use the 3D simulator under Windows.
Also note that OpenGL 3D acceleraƟon is required for the 3D simulator. Tests conducted so far have shown that
the soŌware can't run smoothly in a Virtual Machine. WUBI install will work fine. The reference plaƞorm is Ubuntu
64-bit, but other distribuƟons should be fine. In this InstallaƟon Guide, this machine will be called Linux Box.

� Control Host - A Windows XP 32-bit machine or virtual machine. On this machine you will install Matlab and
Simulink, and the AIRobots control algorithms.
Here you will also install other devices, such as the joypad or the hapƟc interface, and the soŌware that produces
the command stream. Since all the communicaƟon between components is carried out through UDP, these tools
can be deployed on a different Windows machine, or if you develop your own device parser, you can use the
plaƞorm you prefer. For simplicity, this installaƟon guide will use a single Windows XP (Virtual) Machine. In this
InstallaƟon Guide, this machine will be called Windows Box.
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Install locaƟons

Several locaƟons referring to directories or hosts are needed to properly configure the soŌware. Hostswill vary depending
on your installaƟons, while it is recommended that for ports and directories you use the values specified here.

Hosts

� $BLENDER_HOST: the IP address of the Linux Box, on which Blender is running.

� $GROUND_STATION_HOST: the IP address of the Windows Box, on which the Simulink Model is running.

Linux Box directories

� $AIROBOTS_HOME: the home directory of the airobots user. Use /home/airobots.

� $BLENDER_HOME: the directory where Blender is installed. Use /usr/local/blender.

� $MORSE_BLENDER: where MORSE can find the Blender executable. Set to /usr/local/blender/blender.

� $MORSE_ROOT: the directory where MORSE is installed. Use /usr/local.

� $OPT_DIR: the directory where the real Blender and MORSE packages are installed, for the purpouse of easily
updaƟng the soŌware. Use /opt.

� MORSE_INSTALL_LIB: the directory where the MORSE libraries will be installed. Due to a problem in the instal-
laƟon with MORSE 0.5 and Python 3.2 it is necessary to set it as /usr/local/lib/python3/dist-packages.
Note that it is python3, and not python3.2.

Windows Box directories

� %AIROBOTS_HOME%: the directory where the AIRobots components are installed. Set to C:\AIRobots.

� %GS_HOME%: the directory where the Simulinkmodel and relatedMatlab files are located. Set to C:\AIRobots\GS

5.2 Install the Linux Box
Install Blender 2.61

The simulator has been tested with version 2.61 on Linux 64bit. Note that, at the Ɵme of wriƟng, the current version
of MORSE does not support newer versions of Blender.

Blender 2.61 Linux 64 bit can be downloaded from here:

http://download.blender.org/release/Blender2.61/blender-2.61-linux-glibc27-x86_64.tar.bz2

For other versions check the Blender website.

To unpack, open a shell in the directory where you saved the downloaded file and execute:

sudo tar -xf blender-2.61-linux-glibc27-x86_64.tar.bz2 -C /opt

Unpacking will create a subdirectory named blender-2.61-linux-glibc27-x86_64
Link this installaƟon directory to the $BLENDER_HOME directory:

sudo ln -sf /opt/blender-2.61-linux-glibc27-x86_64/usr/local/blender

Install MORSE 0.5

NOTE If you check the MORSE website, there is an automated install procedure that uses robopkg. However, we have
found that the most reliable and controllable way to install is by following the manual installaƟon.
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Set installaƟon directory Using your favorite editor, edit $AIROBOTS HOME/.bashrc and add an environment variable
poinƟng to $MORSE ROOT:

export MORSE_ROOT=/usr/local
export MORSE_INSTALL_LIB=/usr/local/lib/python3/dist-packages
export PYTHONPATH=$MORSE_INSTALL_LIB
export MORSE_BLENDER=/usr/local/blender/blender

When you have edited this file, open a new command shell or source .bashrc to make the seƫng effecƟve.

InstallaƟon prerequisites Using the Ubuntu soŌware center, make sure that you have all the following packages in-
stalled:

� g++

� python 3.2 (it's not necessary to remove python2.x)

� python3.2-dev

� cmake

� ccmake

� python-sphinx

� git

Then go to http://www.openrobots.org/morse/doc/0.5/user/installation.html and follow the instruc-
Ɵons for manual installaƟon.

Note that a typical installaƟon problem occurs with python3.2: MORSE will install in /usr/local/lib/python3 in-
stead of /usr/local/lib/python3.2, but if you have correctly setup the variables in your -bashrc it should be fixed.

Test At this point you should be able to test that the MORSE installaƟon works by typing
morse check
If this works, start MORSE by typing
morse
It will show a default scene. Maximize the window, move your cursor over the scene and type P. Try to move around

the scene using the command described on the leŌ of the screen. If this works smoothly, your HW setup should be ok
for the simulator environment.

Install the AIRobots soŌware and simulaƟon file

Download the airobots-py.tgz from the project's website and unpack it in $MORSE_INSTALL_LIB:

sudo tar -xzf airobots-py.tgz -C
$MORSE_INSTALL_LIB

Now you must edit a couple of configuraƟon parameters in the airobots mw.py file.
Open $MORSE_INSTALL_LIB/airobots/middleware/airobots_mw.py, look
for_self.host and_self.client_addr andmodify themaccordingly. _self.hostmust be set to$BLENDER_HOST

and _self.client_addr must be set to $GS_HOST.
Download the airobots.blend file from the projects website and open it with MORSE:
morseexec airobots.blend
Your Linux box should be setup now.
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5.3 Install the Windows Box
Prepare to run Real-Time Windows Target code

This soŌware is installed on the Windows Box.
In order to run theGround StaƟon control code youmust haveMatlab installedwith Simulink and the ``Real-TimeWin-

dows Target toolbox''. More informaƟonon this toolbox canbe foundhere: http://www.mathworks.it/products/rtwt/
When you've succesfully installed Matlab with the Toolbox, you must install the RTWIN kernel by execuƟng this com-

mand in the Matlab command window:
rtwintgt -install
and then press Y at the quesƟon:
You are going to install the Real-Time Windows Target kernel.
Do you want to proceed? [y] :
If you had a previous version of the real-Ɵme kernel, this message should appear:
There is a different version of the Real-Time Windows Target kernel installed.
Do you want to update to the current version? [y] :
You can then verify the correct installaƟon of the kernel by typing:
rtwho
that will print the current version of the kernel.
Be advised that uninstalling Matlab will not uninstall the real-Ɵme kernel. This must be done by typing:
rtwintgt -uninstall
in the system command line or in the Matlab command window.
For further reference, more installaƟon instrucƟon are available at this page:
http://www.mathworks.it/help/toolbox/rtwin/ug/f19807.html.

Install the Ground StaƟon

This soŌware is installed on the Windows Box.
Create the $GS_HOME directory where you'll keep all the Ground StaƟon files and unpack the contents of the airobots-

gs.zip files. You will have some .mdl files and some .m files.
The model will have some I/O Blocks that may need configuraƟon for the computer they're running on. If you have

trouble building the model (ctrl-b) then youmust open each I/O block, configuring and creaƟng the specific ``board'' that
is used.

Remember that to start the Simulink model (aŌer a successful build), you'll have to first connect Simulink to the
``Windows'' target by using the appropriate buƩon in the toolbar and then actually start the model by pressing the
``play'' buƩon on the toolbar.

Install the JoyPad soŌware

Unpack the contents of airobots-joypad.zip in %AIROBOTS_HOME%.
Start %AIROBOTS_HOME%\joypad\bin\debug\joypad.exe. In the drop-down list you should see your joypad de-

vice listed. If not, you might need to install some 3rd-party driver to make it run.

Configure the Joypad controls

Refer to paragraph 6.3 to check your joypad buƩons configuraƟon. Also check that the leŌ and right sƟcks are configured
as analog and not digital.

6 User manual

6.1 StarƟng the environment
Follow these steps to start the simulaƟon environment. The names ``Linux Box'' and ``Windows Box'' and all directory
names refer to the machines where you have installed the soŌware, as explained in the InstallaƟon Guide. For trou-
bleshooƟng, refer to the InstallaƟon Guide.
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Start the 3D Environment

On your Linux Box, at a command prompt type
morse airobots.blend
This should start your scene and all middleware sockets automaƟcally.

Start the Joypad parser

OnyourWindowsBox, connect yourUSB joypaddevice and start%AIROBOTS_HOME%\joypad\bin\debug\joypad.exe.
In the drop-down list select your joypad device. If necessary, select the ``Seƫngs'' menu and assign axes as appropriate.

Type your $GROUND_STATION_HOST address in the ``Send UDP packets to. . . '' field (even 127.0.0.1 will be fine unless
you move the joypadParser to a different Windows machine) and check that ``Port'' is set to 9010. Then click ``Connect''.
The applicaƟon should now begin to transmit data and show a real-Ɵme packet values log in the boƩom-leŌ textbox.

Try to move the joypad's sƟcks and click some buƩons on it, to check the correct operaƟon of the joypad and the
applicaƟon by monitoring the variaƟons of the log values. If you don't see changes while moving the sƟcks or clicking the
buƩons, check your joypad configuraƟon in the Game Devices tool from theWindows Control Panel. Also make sure that
the sƟcks are set as ``Analog'' and not ``Digital'': you should see the numbers in the scrolling window change conƟnuously
from 512 down to 0 and up to 1024 according to how far you move the leŌ or right sƟck.

Please note that for correct operaƟon, you will need a device with at least 4 axis and 10/12 buƩons.

Start the Simulink Environment

On your Windows Box, browse to %AIROBOTS_HOME%\GS and open GroundStaƟon.mdl.
Once it is open, go to themainMatlab window and run initialization.m from the current working directory. This

will configure all the necessary parameters needed to compile the model.
Switch to the Simulink window. If this is the first Ɵme you run the simulaƟon, you may need to re-configure the I/O

blocks in the simulink model to fit your configuraƟon (and your Matlab/Simulink installaƟon). Refer to the next secƟon
( 6.2) to learn how to configure the address of your Blender Host.

Before starƟng the simulaƟon and execuƟng the real-Ɵme model, a full build is necessary by using the keyboard
shortcut ``Ctrl-B'' (or the ``Tools/Real-TimeWorkshop/BuildModel'' command) to generate the code needed by the Real-
Time simulaƟon to run on your machine. When compilaƟon is done, locate the ``Connect to Target'' buƩon and click it.
Then click the adjacent ``Play'' buƩon to start the simulaƟon.

6.2 Parameter configuraƟon
When starƟng the model for the first Ɵme, addiƟonal I/O configuraƟon must be performed to install the correct Simulink
UDP boards into the current simulaƟon environment. Locate the I/O blocks named ``Stream Input'' or ``Stream Output''
and ``Packet Input'' or ``Packet Output''. Double clicking on them should bring up a messagebox staƟng:

This block references board ``Standard devices [...]''
which is not on the installed boards list for this computer.
Do you want to add it to the list?
Confirm by pressing ``YES''. This should install the current board on your computer to enable communicaƟon through

the selected port.
Even if you've used our standard UDP port numbers, it is necessary to enter the ``board setup'' panel by clicking on the

homonymous buƩon. It is important to set the correct remote (IP) address with respect to your current virtual machine
and network configuraƟon. The port numbers should be fine if you've used the default values. If not, it's necessary to
change them accordingly.

When each of these I/O blocks are correctly configured, the model should be ready to be built (Ctrl-B).

Configuring the AIRobots middleware

Hosts are defined in the airobots mw.py that is located in
$MORSE_INSTALL_LIB/airobots/middleware/airobots_mw.py
Check the definiƟons at the top of the class and update the hosts' addresses, as explained in 5.2.
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6.3 Running the simulaƟon
With the low-level controller up and running as explained in 6.1 and the Joypad Parser transmiƫng data as explained in
6.1, move to your Linux Box. In the Blender window, which has appeared upon starƟng MORSE, bring the mouse cursor
over the 3D scene then press P on your Linux Box keyboard. It is necessary that the Blender window has focus and that
the mouse cursor is over the 3D scene to start the simulaƟon.

AlternaƟvely, you can start the 3D environment by typing morseexec airobots.blend but you might get a smaller
screen resoluƟon.

Figure 21: The simulated UAV in contact with a mockup wall

Joypad BuƩons reference

Joypad buƩons are used to control different funcƟons of the UAV and some aspects of the simulaƟon. Themost common
buƩon number mappings are shown in figure 22.

Check the exact mapping of you joypad then refer to table 1.
Be advised that your buƩon numbers may be different and the buƩon schema shown in the table cannot be changed.

Joypad buƩons are expressed using a bitmap that is checked against these values by the low-level controller.

Flying the UAV

The joypad is used to send commands to the UAV, and to perform operaƟons during the flight. At the start of the Blender
Game Engine, the UAV should be on the floor and landed (with its virtual propeller switched off).

Takeoff Toperform takeoffoperaƟon, it's advisable to switch on thepropeller (using buƩon4) first, and then acƟvate
the takeoff command (using both buƩons 6 and 8). The UAV should begin to leave the ground and gain alƟtude unƟl the
buƩons are released. The controller now enters the free-flight mode and the UAV will hover maintaining the current
posiƟon.

Flight During flight, the operator canmove the posiƟon references of the controller by acƟng on the joypad's analog
sƟcks. It's also possible to get in contact with the environment and perform manipulaƟon using the hapƟc device.

Landing To terminate the flight, it's possible to use the landing command by keeping pressed the buƩon 5. This will
cut down the thrust of the UAV to make a soŌ landing. Upon releasing the buƩon, the virtual propeller will stop and the
UAV will enter a ``landed'' or ``off'' state.
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Figure 22: Two common buƩons mapping

Joypad btn combinaƟon BuƩon bitmap code AcƟon
1 1 SWITCH CONTROL TO AUTOMATIC MODE (keep pressed)
2 2 RESET REFERENCES
3 4
4 8 START ENGINE
5 16 LANDING
6 32 GLOBAL RESET

5+6 48 LANDING RESET
7 64 USED AS SIMULATION MODIFIER

7+1 65 SWITCH TO FRONT CAMERA (simulator only)
7+2 66 DROP WAYPOINT (simulator only)
7+3 68 SWITCH TO AMBIENT CAMERA (simulator only)
5+7 80 STOP ENGINE
8 128

6+8 160 TAKE OFF
9 256 IMU RESET
10 512
11 1024
12 2048

Table 1: BuƩons and corresponding simulaƟon commands.

Changing the POV

Using the HAT-POV buƩons of your joypad (usually the digital arrows on the leŌ hand side of the joypad) you can change
the ``Point Of View'' of the simulaƟon, that is to say the camera through which you are looking while running the flight.
If this doesn't work, check that your joyapd buƩons are configured accordingly to 1.

6.4 Releasing waypoints
Fly the UAV to the desired locaƟon, press the ``SimulaƟon modifier'' buƩon (7) and buƩon 2 simultaneously. A pop-up
windowwill appear to allow the ediƟng of some properƟes for the newly created way-point. The simulaƟon will not stop
in the meanƟme, therefore it's recommended that you release way-points only when hovering.
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Figure 23: The manipulator perform acƟons on the mockup wall

Figure 24: Waypoint ediƟng window
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