
 

 

 

Exercises of the course “Constrained and 
Robust Control”,  

F. Blanchini, P. Colaneri 

 

 
The final test consists in the solution of (at least) one exercise of 
Part A and (at least) one exercize of part B.  



Exercises of the course
“Robust and Constrained Control”:  part A

Exercise 1: rotating arm

Given the rotating arm with equation

θ̈(t) = a sin(θ(t)) + τ(t)

with control torque τ(t) and a uncertain parameter subject to the bounds

0 < α ≤ a ≤ β,

let θ̄ be a constant reference angle. Let x1(t) = θ(t) − θ̄, ẋ1(t) = θ̇(t) = x2(t) and
u(t) = τ(t)− τ̄ , where τ̄ is the equilibrium torque. Then,

0 = a sin(θ̄) + τ̄ .

Write the system in the form

ẋ1(t) = x2(t)

ẋ2(t) =

[
a

sin(θ)− sin(θ̄)

θ − θ̄

]
(θ − θ̄) + u = [w]x1 + u

with uncertain parameter w(t).

1. Find proper bounds for w.

2. Find a Control Lyapunov Function (hint: set w = 0 and find the CLF for the
nominal system).

3. Write a gradient–based control and find the gain γ > 0.

4. Assume that the speed has to be bounded as |x2| ≤ 1. Consider the “auxiliary”
control

x̂2 = −sat[x1]

or something similar such as

x̂2 = − 2

π
atan[x1]

and use backstepping to stabilize the system.

5. Write a simulation code for the closed–loop system.



Exercise 2: the LMI

Consider the uncertain system[
ẋ1(t)
ẋ2(t)

]
=

[
0 a
1 0

] [
x1(t)
x2(t)

]
+

[
0
b

]
u(t),

where parameters a and b are uncertain (and time-varying) subject to the bounds

0 < α ≤ a(t) ≤ β, 0 < γ ≤ b(t) ≤ δ.

1. Write a set of LMIs (Linear Matrix Inequalities) to find a linear state feedback
compensator

u = Kx

along with a quadratic Lyapunov function

Ψ(x) = x>Px

2. Install the free software CVX (http://cvxr.com/cvx/) and write a code
which, given the positive values α, β, γ, δ, provides the linear compensator
and the quadratic Lyapunov function.



Exercise 3: Bertinoro pendulum

Consider the system[
ẋ1(t)
ẋ2(t)

]
=

[
0 1

−1 + w(t) −α

] [
x1(t)
x2(t)

]

with
|w(t)| ≤ ω < 1

and α > 0 “small”. This is an example of a system that is asymptotically stable for
any constant w, but is unstable for time-varying w(t).

1. Find a “destabilizing strategy”, namely a function w(t) (which might be not
continuous) such that the time-varying system has a diverging trajectory.

2. Write a code that simulates the system and depicts the diverging trajectory.

3. Show that such a w(t) can be chosen “switching”, namely, assuming values
only on the extrema w(t) = ±ω.

4. (Optional.) Consider now[
ẋ1(t)
ẋ2(t)

]
=

[
0 1

−1 + w(t) +α

] [
x1(t)
x2(t)

]
,

with α > 0 small. Now the system is unstable for any constant w. Yet, with a
time varying |w(t)| ≤ ω < 1, considered as a control action, you can “stabilize”
it (if α is small enough). Find a suitable control law w(t). Hint: consider the
system in reverse time τ = −t, change the sign to x2 := −x2 and note that
the reverse system . . .



Exercizes of the course “Constrained and robust 
control: part B” 
 
Part B1: Robust Stability 
 
Consider the control system in Fig. 1, where G(s) and R(s) are given such that the system with 
∆(s)=0 is well posed and asymptotically stable.  
 

Exercize 1: Prove that the system is asymptotically stable for any ∞∈∆ Hs)( with 

α≤∆
∞

)(s iff the input sensitivity function has ∞H norm less than 1/α.  
 

Exercise 2: Let 
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∆(s)=0 is well posed and asymptotically stable and compute the ∞H norm of the input 
sensitivity function and relate it to the complex stability radius. Finally, assume that ∆(s)=∆ real 
uncertainty. Compute the real stability radius.  

 

Exercize 3: Let the block )(s∆  describe a polytopic uncertainty, i.e. 
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Write a state space description of the closed loop system as  
 

xAx σ=  
 

with σ a switching signal, σ(τ)={1,2}. Discuss the quadratic stability under arbitrary switching  
of the polytopic system.  
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 Part B2: State-feedback 
 
Consider the system 
 

DuCxz
uBwBAxx

+=
++= 21

 

 
Exercise 4:. Prove that the family of all state feedback laws Kxu = such that the closed-loop 
system is asymptotically stable is given by 
 

1−= WSK  
0>S  

0''' 22 <+++ BWSAWBAS  
 
Prove that the family of all state-feedback laws Kxu = such that the ∞H norm of the closed-loop 
system from w  to z is less than 0>γ  is given by  
 

1−= WSK  
0>S  
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Exercise 5:  Assume that DBAsICsG +−= −

2
1)()( has full column normal rank in the 

extended imaginary axis. Prove that the 2H norm of the closed-loop system from w  to z is 
minimized by  

DCPBK ''2 −−=  
where 0≥P is the stabilizing solution of the ARE 
 

0')''()')('(' 2
1

2 =+++−+ − CCCDPBDDDCPBPAPA  
 
 
Exercise 6:  Assume that DBAsICsG +−= −

2
1)()( has full column normal rank in the 

extended imaginary axis. Prove that the ∞H norm of the closed-loop system from w  to z is less 
that g iff 
there exists 0≥P , stabilizing solution of the ARE 
 

0''1)''()')('(' 1122
1

2 =++++−+ − CCPBPBCDPBDDDCPBPAPA
γ  

In such a case DCPBK ''2 −−=  is the state-feedback law minimizing the γ-entropy of the 
closed-loop system.  
 



 
Part B3: Filtering 
 
Consider the block scheme in Fig.2, where ∞

− ∈+−= LDBAsICsG 1)()( , 

2
1)()( LBAsIMsH ∈−= − . Assume also that )(sG  has full row normal rank in the extended 

imaginary axis. 
 
Exercise 7:  Prove that there exists the canonical spectral factorization of )'()( ωω jGjG − , i.e. a 

square ∞∈ HsGo )(  with ∞
− ∈ HsGo

1)(  such that )'()( ωω jGjG − = )'()( ωω jGjG oo − , for all 
ω.  
and write a state-space description of system )(sGo  via the stabilizing solution 0≥S of the 
Riccati equation 
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Exercise 8:  Prove that the filter =)(sF opt [ ] 1

0
1

0 )())'()(()( −−− sGsGsGsH st  is the optimal 

2H  filter, i.e. ∞∈ HsF opt )( , 2)()()( HsHsGsF opt ∈−  and 
2

)()()( sHsGsF opt − is 

minimized.  
 
Exercise 9:  Prove that a state space description of LLCAsIMsF opt 1)()( −+−−=  where  

we have set 1)')(''( −+−= DDBDSCL  (optimal observer gain).  
 
Exercize 10:  Letting ]'''[ 21 www = , ][ IGG = , ]'0[GH =  with a given 2)( LsG ∈ , the 
problem reduces to the Wiener filtering problem and the above solution can be rewritten as 

1
0 )()( −−= sGIsF opt

  
and prove that the solution of point above satisfies the robustness property 

2)()()( <−
∞

sHsGsF opt  
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