Exercises of the course “Constrained and
Robust Control”,

F. Blanchini, P. Colaneri

The final test consists in the solution of (at least) one exercise of
Part A and (at least) one exercize of part B.



Exercises of the course
“Robust and Constrained Control”: part A

Exercise 1: rotating arm
Given the rotating arm with equation
0(t) = asin(0(t)) + 7(t)
with control torque 7(¢) and a uncertain parameter subject to the bounds
O<a<a<p,

let @ be a constant reference angle. Let x1(t) = 0(t) — 0, i1(t) = 6(t) = x5(t) and
u(t) = 7(t) — 7, where T is the equilibrium torque. Then,

0 = asin(f) + 7.
Write the system in the form
T1(t) = xa(t) )
i) — la sin(9) - Si“(‘))] (6 —6) +u=[wer +u

with uncertain parameter w(t).

1. Find proper bounds for w.

2. Find a Control Lyapunov Function (hint: set w = 0 and find the CLF for the
nominal system).

3. Write a gradient—based control and find the gain v > 0.

4. Assume that the speed has to be bounded as |z5| < 1. Consider the “auxiliary”
control
JAIQ = —sat[ml]

or something similar such as

A

To = ——atan[z]
m

and use backstepping to stabilize the system.

5. Write a simulation code for the closed-loop system.



Exercise 2: the LMI

Consider the uncertain system

R EEEg

where parameters a and b are uncertain (and time-varying) subject to the bounds
O<a<a(t)<p, 0<y<b(t) <4

1. Write a set of LMIs (Linear Matrix Inequalities) to find a linear state feedback
compensator
u=Kzx

along with a quadratic Lyapunov function

U(z) =2 Px

2. Install the free software CVX (http://cvxr.com/cvx/) and write a code
which, given the positive values «, 3, v, 0, provides the linear compensator
and the quadratic Lyapunov function.



Exercise 3: Bertinoro pendulum

Consider the system
) R e )

w(t) <w<1

with

and a > 0 “small”. This is an example of a system that is asymptotically stable for
any constant w, but is unstable for time-varying w(t).

1. Find a “destabilizing strategy”, namely a function w(¢) (which might be not
continuous) such that the time-varying system has a diverging trajectory.

2. Write a code that simulates the system and depicts the diverging trajectory.

3. Show that such a w(t) can be chosen “switching”, namely, assuming values
only on the extrema w(t) = +w.

4. (Optional.) Consider now

() | 0 1 x1(t)

o(t) | | —l4w(t) +a || x2(t) |’
with o > 0 small. Now the system is unstable for any constant w. Yet, with a
time varying |w(#)| < w < 1, considered as a control action, you can “stabilize”
it (if a is small enough). Find a suitable control law w(¢). Hint: consider the

system in reverse time 7 = —t, change the sign to x5 := —x5 and note that
the reverse system ...



Exercizes of the course “Constrained and robust
control: part B”

Part B1: Robust Stability

Consider the control system in Fig. 1, where G(s) and R(s) are given such that the system with
A(s)=0 is well posed and asymptotically stable.

Exercize 1: Prove that the system is asymptotically stable for any A(S) e H_ with

||A(S)||w < « iff the input sensitivity function has Hoo norm less than 1/a.

Exercise 2: Let G(s) = , R(s) = F 1} Verify that the closed-loop system with
25 S S
os+1

A(s)=0 is well posed and asymptotically stable and compute the H__ norm of the input

sensitivity function and relate it to the complex stability radius. Finally, assume that A(s)=A real
uncertainty. Compute the real stability radius.
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Exercize 3: Let the block A(s) describe a polytopic uncertainty, i.e. A(t) € { 0 SHO 5}}

Write a state space description of the closed loop system as
X=A_X

with o a switching signal, o(t)={1,2}. Discuss the quadratic stability under arbitrary switching
of the polytopic system.
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Fig.1



Part B2: State-feedback

Consider the system

X = Ax+B,w+B,u
z=Cx+Du

Exercise 4:. Prove that the family of all state feedback laws U = KX such that the closed-loop
system is asymptotically stable is given by

K=WS™

S>0

AS +B,W +SA'+W'B,'<0

Prove that the family of all state-feedback laws U = KX such that the H_ norm of the closed-loop

system from W to Z is less than 7 > O is given by

K=ws™*
S>0
AS +BW +SA+W'B," SC'+W'D’ 0
<
CS+DW — 2

Exercise 5: Assume that G(S) = C(sl — A) ™ B, + D has full column normal rank in the
extended imaginary axis. Prove that the H, norm of the closed-loop system from W to Z is

minimized by
K=-B,'P-C'D
where P > Qs the stabilizing solution of the ARE

A'P+PA—-(PB,+C'D)(D'D)*(B,'P+D'C)+C'C =0

Exercise 6: Assume that G(S) = C(sl — A)™* B, + D has full column normal rank in the
extended imaginary axis. Prove that the H_ norm of the closed-loop system from W to Z is less

that g iff
there exists P > 0, stabilizing solution of the ARE

A'P+PA—(PB, +C'D)(D'D)™*(B,'P+D'C) +i2P8151'P +C'C=0
y

Insuch acase K =-B,'P —C'D is the state-feedback law minimizing the y-entropy of the

closed-loop system.



Part B3: Filtering

Consider the block scheme in Fig.2, where G(s)=C(sl —A)"B+Del_,
H(s)=M(sl —A)'BelL,.Assume also that G(S) has full row normal rank in the extended
imaginary axis.

Exercise 7: Prove that there exists the canonical spectral factorization of G(j®)G(—j®)',i.e.a
square G, (s) e H, with G_(s)™ e H, such that G(j®)G(-jw)' =G, (jo)G,(-]jw)", forall
.

and write a state-space description of system G, (S) via the stabilizing solution S > 0 of the
Riccati equation

AS + SA—(SC'+BD')(DD") }(DB'+CS) + BB'= 0
Exercise 8: Prove that the filter F°*(s) = [H (8)G(S)(G,(-s))™ ]st G, (S) ™" is the optimal

H, filter,ie. F™(s)e H,, F™ (s)G(s)~H(s) € H, and [F* (s)G(s) - H(s)|, is
minimized.

Exercise 9: Prove that a state space description of F° (s)=—M (sl — A+ LC)™L where
we have set L =—(SC'+BD")(DD")™" (optimal observer gain).

Exercize 10: Letting w=[w,'w,'], G =[G 1], H =[G 0] withagiven G (s) € L,, the
problem reduces to the Wiener filtering problem and the above solution can be rewritten as
FP(s)=1-Gy(s)"

and prove that the solution of point above satisfies the robustness property

[F (5)G(s) - H(s)| <2
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