Stability of LTI systems
X(t) = Ax(t)

Asymptotic stability means that |[X(1)|| s> 0 as t goes to infinity, for all initial
conditions X(0). Let p(s)=det(sI-A) the characteristic polynomial of A.

1) The system is asymptotically stable if and only if all the n eigenvalues of
matrix A are in the open left hand plane.

2) The system is asymptotically stable if and only if the variation of the phase of
P(jw) is Nwt/2, as w varies from 0 to infinity (Michaelov criterion).

3) The system is asymptotically stable if and only if there exists P=P™>0
satisfying A'P+PA<0 (Lyapunov Lemma).

The family of interval polynomials

p(s) = i[ai_ﬂ ai+]5i

with independent coefficients in the given intervals is robustly Hurwitz if and only if
the following four Kharitonov polynomials are Hurwitz.
p,(s)=a, +a, s+a, s’ +a, s’ +a, s* +--
- + +a2 -3 -4
p,(s)=a, +a,s+a, s"+a; s +a, S +---
p;(s)=a, +a, s+a, s’+a,’ s’ +a,’s* +--

p,(s)=a, +a's+a, s’ +a, s’ +a,’s* +--

Adjoin system
X = Ax + Bu A=-AA-C'U
y =Cx+ Du . y=B'A+D'U

G(s)=C(sl —A)'B+D G(-s)'= B'(=sl — A')"'C'+D!



Space L, (t,T)

This space is defined by all (real valued, matrix) functions of time defined in (t,t) and
zero elsewhere such that

j trace [v(t)'v(t)]dew < oo

Very important in engineering applications are the spaces
L, (=,0) and L, (0,0). Take for instance the last space.
The norm is of

vel,(0,0) v, = [Ttrace[v(t)'v(t)]dt]

The L, space

L, space: The set of (rational) functions G(s) such that

2i Itrace [G(-jw)G(jo)de <«
/A

(strictly proper — no poles on the imaginary axis!)

With the inner product of two functions G(s) and F(s):

o0

<G(s), F(s)) = i j trace [G(- jo) F(jw)jdw

—o0

The space L, is a pre-Hilbert space. Since it is also complete, it is indeed a Hilbert
space. The norm, induced by the inner product, of a function G(s) is

1/2

o0

[ces), = i _[ trace [G(- jo)'G(jo)dw

—00



The subspaces H, and HzL

The subspace H, is constituted by the functions of L, which are analytic in the right
half plane. (strictly proper — stable !) . The subspace H," is constituted by the
functions of L, which are analytic in the left half plane. (stricty proper — antistable !)

Note: A rational function in L, is a strictly proper function without poles on the
imaginary axis. A rational function in H, is a strictly proper function without poles in
the closed right half plane. A rational function in H," is a strictly proper function
without poles in the closed left half plane. The functions in H, are related to the
square summable functions of the real variable t in (0,00]. The functions in H," are
related to the square summable functions of the real variable t in (-00,0].

A function in L, can be written in an unique way as the sum of a function in H, and a
function in H,": G(s)=G(s)+G(s). Of course, Gy(s) and Gy(s) are orthogonal, i.e.
<G/(s),Gy(s)>=0, so that

le); =Jee); <66,

System theoretic interpretation
of the H, norm

Consider the system

X(t) = Ax(t) + Bw(t)
Z(t) =Cx(t)
X(0)=0

and let G(s) be its transfer function. Also consider the quantity to be evaluated:

0

m
J, =ij(‘)'(t)z(‘)(t)dt
i

0
where z? represents the output of the system forced by an impulse input at the i-th
component of the input.

i=1

|

‘J1 :i‘([z(i)v(t)z(i)(t)dtzz_lﬂ- J.iZ(i)(_ja))'Z(i)(ja))da):

m

1% . . 17 . .
- j > e'G(~jw)G(jwedw = L traceG(— jw)'G( jw)] =[G(s)

2
2

—o =1



Computation of the norm
Lyapunov equations

“Control-type Lyapunov equation”

AP, +P,A+C'C =0

“Filter-type Lyapunov equation”

PA+P.A+BB'=0

m % Q. m
le)f =, = ij(i)'(t)z(i)(t)dt - IZtrace e, BrePteice ae it -
i=1 g o i=l1

o m
:jtrace eA'tC'CeAtZ Be,e,'B' |dt
0 i=1

o0

=trace B'JeA'tC'CeAtdtB =trace [B'POB]
0
0

= trace CJ.eAt BB'e”'dt C'| =trace [cp.C]
0

Other interpretations

1. Assume now that w is a white noise with identity intensity and consider the
quantity:

J, =1lim E(Z'(H)z(D))

t—>w©

It follows:

J, = lim trace[EﬁCeA(t_T)Bw(r)d zjw(a)'B'eA'(t‘U)c'daﬂE -
t—oo ‘ 0

= |im trace

t—ow

t
[ce* " BE[w(r)w(o)[B'e*C'drd (7} =
0

=]im trace

t—w

!
!

Ce* " BBeA"C'd T} =)



Finally, consider the quantity
1 T
J =lim— E.([z (t)z(t)dt
and let again w(.) be a white noise with identity intensity. It follows:
t
E(z'(t)z(t)) =trace[CP(t)C'] P(t)= j e’ BB'e”dr
0

Notice that J3=(||G(s)||,)""* since

;
P(t) = AP(t) + P(t)A+BB', AY +YA+BB'=0, Y = anl [P()dr
0

T—o0

2. Consider again the space L,(0,0) of time signals V(t), i.e. such that

Tv(t)’v(t)dt <00

Hence, for G(s)=C(sI-A) 'BeH, we have

SUpPy. Y(t)' y(t) — HC'SCH

supueLz(O,oo) 0
j u(t)'u(t)dt

0

where S>0 is the unique solution of AS+SA'+BB'=0.

This means that (in the SISO case) the H, norm corresponds to the worst peak
value of the output when the input is a bounded energy signal.



Remark
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Example

Compute (exploit the definition and the Pythagoras theorem) the L, norm of

o2

G(s) = Sl—l S+2 il

s+10 s’—s+5




What the L, norm is?

Bode Diagrams
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Given a SISO system with transfer function G(s), the L,, space is the space of all G(s)
such that

supw‘G(ja))‘ <00

For this, it is necessary and sufficient that the (rational) function G(s) is proper with
no poles on the imaginary axis. The space H, 1s composed by proper (rational)
functions G(s) with all poles with strictly negative real parts. In both cases the norm
1s given by

|G(s)|, =sup,[G(jo)

In the multivariable case

[G(s)], =sup,[G(io)

where HQH =0(Q) = \/ A (2% Q) = \/ e (Q202¥)
If G(s) is rational stable proper (H_)
[G(S)], = SUPgys)z0 [G(S)| = sup,, [G(j)

For the frequency-domain definition we can consider a transfer function without poles on the
imaginary axis. It is easy to understand that the norm of a function in L., can be recast to the norm
of its stable part given through the so-called inner-outer factorization. As an example,

| S+5 |
(s +2)(s+3)|

| S+5 s—2|
(s—2)(s+3) 5 +2|

| S+5 |
(s—-2)(s+3)|

0 (>} 0



The Hamiltonian matrix

y7'G(s)

\ 4

A

7 G(-s)

Assume that G(s)=C(sI-A)'B+D in minimal form, and let y be a positive number.
Then,

Theorem

{det(l ~G(-jw)'G(jw)) #0, ® €[0,0)
GO <7 IG(joo)| < 7

Proof: This is equivalent to say that ||D||<y and the eigenvalues of the closed-loop system in the figure do not lie
on the imaginary axis. But it can be easily verified that the eigenvalues are those of the Hamiltonian matrix

L _|A+B(G’I-D'D)'D'C B(»’| - D'D)"'B'
—C'(l1-y°DD"Y'C - A-C'D(y’| - D'D)"'B'



Time-domain characterization

G(s) = D+C(sI-A)'B
X = AX + Bw

Zz=Cx+ Dw
A = asymptotically stable

g
G(S)||, = SUPwer, 7
OO = e

There does not exist a direct procedure to compute the infinity norm. However, it is
easy to establish whether the norm is bounded from above by a given positive
number Y.

The symbol L, indifferently the space of square integrable or the space of the strictly proper
rational function without poles on the imaginary axis. If w(.) is a white noise, the infinity norm
represents the square root of the maximal intensity of the output spectrum.



BOUNDED REAL LEMMA

Let y be a positive number and let A be asymptotically stable.

Theorem
The three following conditions are equivalent each other:

@ NGE)l-<y

(i) ||D||<y and there exists the positive semidefinite stabilizing solution of the
Riccati equation

A'P + PA+(PB+C'D)(y* -D'D)'(B'P+DC")+C'C =0

A+B(*1 -D'D)'(B'P+DC') stable

(111) |ID||<y and there exists a positive definite solution of the Riccati inequality

A'P+PA+(PB+C'D)(»’1 -D'D)'(B'P+DC')+C'C <0

Comments
Notice that as y tends to infinity, the Riccati equation becomes a Lyapunov equation

that admits a (unique) positive semidefinite solution, thanks to the system stability.
This is obvious if one notices that the infinity norm of a stable system is finite.

10



Proof of Theorem

For simplicity, let consider the case where the system is strictly proper, i.e. D=0. The equation and
the inequality are

PBB'P

2

A'P+PA+

+C'C =(<)0

Also denote: G(s) =G(-s)'.

Points (i1)—(i) and (iii) —(i).
Assume that there exists a positive semidefinite (definite) solution P of the equation (inequality).
We can write:

PBB'P

2

(sl + AP —P(sl — A)+

+C'C =(x)0

Premultiply to the left by B'(sI+A’)" ¢ to the right by (sI-A)'B, it follows (spectral factorization)

G (s)G(s) =71 =T (8)T(s)
T(s)=A-y"'B'PGSI -A)'B

so that [|G(S)[|» <.

Points (i)—(ii)
Assume that ||G(s)||» < 7. We now proof that the Hamiltonian matrix

-2 '
y_| A r7BB
-C'C -A

does not have eigenvalues on the imaginary axis. Indeed, if, by contradiction jo is one such
eigenvalue, then

(jo—A)Xx—y~ BB'y=0
(jo+A)y+C'Cx=0

Hence Cx = -y C(jol-A)'BB'(jol+A)'C'Cx, so that G(-jo)'G(jow)Cx=0 and Cx=0. Consequently,
y=0 and x=0, that is a contradiction. Then, since the Hamiltonian matrix does not have imaginary
eigenvalues, it must have 2n eigenvalues, n of them having negative real parts. The remaining on
eigenvalues are the complex conjugate of the previous ones. This fact follows from the matrix being
Hamiltonian, i.e. satisfying JH+H'J=0, where J=[0 I;-I 0]. Let take the n-dimensional subspace
generated by the (generalized) eigenvectors associated with the stable eigenvalues and let choice a
matrix S=[X* Y*]* whose range coincides with such a subspace. For a certain asymptotically stable
matrix T (restriction of H) it follows HS=ST. We now proof that X*Y=Y*X. Indeed let define
V=X*Y-Y*X=S*JS and notice that VT=S*JST=S*JHS=-S*H'JS=-T*S*JS=-T*V, so that
VT+T*V=0. The stability of T yields (by the well known Lyapunov Lemma) that the unique

11



solution is V=0, i.e. X*Y=Y*X. We now proof that X is invertible. Indeed from HS=ST it follows
that AX+y?BB'Y=XT and —A'Y-C'CX=YT. Premultiplying the first equation by Y* yields
Y*AX+y?Y*BB'Y =Y*XT=X*YT. Hence if, by contradiction, veKer(X) then v¥*Y*BB'Yx=0 so
that B"Yv=0. From the first equation we have XTv=0 and -A"Yv=YTv. In conclusion, if veKer(X)
then TveKer(X). By induction it follows T*veKer(X), and again

AYTR =YTly, k nonnegative. Take the monic polynomial of minimum degree h(T) such that
h(T)v=0 (notice that it always exists) and write h(T)=(AI-T)m(T). Since T ¢ asymptotically stable, it
results Re(A)<0. Obviously g=m(T)v#0. Then qeKer(X), Tq=Aq, -A'Yq=YTq=AYq. Since A is
asymptotically stable and Re(A)<O0, this last equation implies Yq=0, that, together with Xq=0
implies q=0, thanks to the n-dimensionality of the range of S. This is a contradiction. So we have
proven that X is invertible. Hence, defining P=YX' and noticing that P*=P one has AX+y°BB'Y =
XT and ~A'Y-C'CX=YT so that —A'Y-C'CX=YX'(AX+y°BB'Y) and A'P+C'C+PA+y*PBB'P=0.

Besides being hermitian, P is also real (and therefore symmetric). Indeed, we can write [X*
Y *1*N=[X* Y*], where N is a permutation matrix and X, Y. are complex matrices which are the

complex conjugates of X e Y, respectively. Hence, if Pc is the complex conjugate of P, one has
P=YX'=Y.NN'X.'=Y X.'=P..

Finally, the fact that P is positive semidefinite is again a consequence of the Lyapunov Lemma,

applied to the Riccati equation.

Points (i)—>(iii)
Assume that ||G(s)||» < y and define

<O}

_ C L
G(s):L/;J(sl—A) B, 0<g<m

Then,
G (5)G(S) =G (5)G(s)+&F (S)F(s), F(s)=(sl—A)"'B

and hence
B <leel. +dAFeI <

Then, from the implication (i)—(ii) it follows that there exists the positive semidefinite and
stabilizing solution of the Riccati equation

A'P+ PA+y?PBB'P+ C'C+¢l =0, so that P>0 and P solves A’P+ PA+yPBB'P+ C'C <O.

12



Worst Case

The “worst case” interpretation of the H,, norm is given by the following result:

Theorem

Let A be Hurwitz, ||G(s)||. <7 and let x, be the initial state of the system. Then,

2l -7 Iwd, =P,

SupWe L,

where P is the solution of the BRL Riccati equation.

Proof of Theorem
Consider the function V(x)=x'Px and its derivative along the trajectories of the system. Letting A=(y’I-D'D)" we have:

V = X'(A'P + PA+ PBw+ B'PB)X = —X'C'Cx — X'(PB + C'D)A(B'P + D'C)X = —2'z
+W(D'C+B'P)x+x'(C'D+PB)w+wD'Dx-x'(PB+C'D)A(B'P+D'C)x =
=—2'7+ ' Ww—(W-W, ) A (W-w,,)

where W, = A(B’P+D’C)x is the worst disturbance. Recalling that the system is asymptotically stable and taking the
integral of both hands, the conclusion follows.

Observation: LMI
Schur Lemma
P>0

A'P+PA+(PB+C'D)(y*l -D'D)'(B'P+DC')+C'C <0

~AP-PA-C'C PB+C'D
BP+D'C  #1-D'D

13



The Small Gain Theorem

y

Gi(s)

Ga(s)

A

Theorem
Assume that Gy(s) is stable. Then:

(1)  The interconnected system is stable for each stable G,(s) with ||Gy(s)||..<ou if
IG1(8)]lo<ox™".

(i) If ||Gi(s)|..>a" then there exists a stable G,(s) with ||Ga(s)|l.<o that
destabilizes the interconnected system.

Proof of Theorem (in the scalar case the proof easily follows from the Nyquist criterion)

Point (i).
If [|Ga(s)||.<ct and ||G;(s)|l..<c.", then det[I-G(s)G»(s)]0, for Re(s)>0. This fact, together with the stability of G,(s) and
G(s), is equivalent to the stability of the closed-loop system (the simple check is left to the reader).

Point (ii).

For the proof of this theorem, let consider the case where the number m of column of G (s) is less than or equal to the
number p of columns of Gy(s). The proof in the converse case is similar. Then, assume that ||G;(s)|l.=c'(1+&)=p™", £>0,
and write the singular value decomposition of G;(jo), i.e. G(jo)=U(jo)Z(jo)V (jo) where Z(jo)=[S(jo)' 0]' and S(jo)
is square with dimension m. Moreover, take a stable G,(s) such that G,(jo)=pV(jw)[I 0]JU (jw). Notice that
G, (jw)Ga(jo)=p*<o’® so that [|Ga(s)||..<c.. We have:

Since ||G;(s)|l.=p”', it follows that there exists a frequency b such that lim,_,o(G(®))=p"'. Hence, being S(jo)
diagonal with the singular values of G;(j®) on the diagonal, it follows that at least one entry of pS(j®) goes to zero as ®
tends to b. In conclusion lim,_,,det[I-pS(j®)]=0, so that the closed-loop system is not stable.

o  [s(jw) 0 _ .
det]l -G (jo)G(jo)]=det| I - pU(je) =" © U (jo)

3 I . . . |S(jw) 0] _ .
=det| (U(Jo)U " (Jo)— pU(jo) 0 OU (Jo)

_ det P _pz(jw) ?ﬂzdet[l —pS(jo]

14



H,, and quadratic stability

Xx=(A+LAN)X, |A|<a

A
X = Ax+Lw |
7 = NX
W o=  AX ALN |

The system is said to be quadratically stable if there exists a solution (Lyapunov

function) to the following inequality, for every A in the set HAH <a.

(A+LAN) P +P(A+LAN)<0

Theorem
The system is quadratically stable if and only if

INGI-A) 'L||.<a .

Time-varying, complex

15



Proof of Theorem
First observe that the following inequality holds:

(A+LAN)'P +P(A+LAN) =
A'P + PA+ N'A'AN + PLL'P — (N'A'-PL)(AN — L'P)

<AP+PA+PLL'P+N'Na’ =a’(A'X + XA+XLLX +N'N)
a

where Pa’=X. Hence, if there exists X>0 satisfying
then A+LAN is asymptotically stable for every A, ||A|| <o, with the same Lyapunov function (quadratic stability). This
XLL' X
AX+XA+———+N'N<O0
a

happens if |[[N(sI-A)"'L|l.<o". In conclusion, we have proven that the condition |[N(sI-A)'L|l.<o' implies that the
system is quadratically stable. Vice-versa assume that that the system is quadratically stable. In particular the system is
robustly stable, i.e. stable for each A in the set ||A]|[<o.. Hence, for each ||A||<a it results

(*) det[l —A'G(-s)'G(s)A]#0, Re(s)=0

Assume by contradiction that ||G(s)|| .>a", i.e. there exists b such that

A (1 —aG(-jb)G(jb)a)<0

max

Since Apay(I— aG(-0)'G(0)a)=1>0, we have that there exists s=jm that violates (*), a contradiction.

16



Entropy

Consider a stable system G(s) with state space realization (A,B,C,0), and assume that
1G(8)|oc<y-

The y-entropy of the system is defined as

2

I(G):—y—zmlndet |- SCI0)GUe) 1y,
g 2z y

Proposition

_les),

2
5

o) <1,0)< [#}\\G@

| (G) =trace [B'PB]=trace [CQC']

Where P and Q are the stabilizing solutions of the Riccati equations

A'P+PA+7PBBP+C'C =0
AQ+QA'+ 7 2QC'CQ+ BB’ =0

Comments

It is easy to check that the y-entropy measure is not a norm, but can be considered as
a generalization of the square of the H, norm

+00 m

e =5 [Yoietim]do

=l
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Indeed the y-entropy can be written as

+0 m

| (G)——jZf(a [G(jw)) do

_op =l
2

(") == In (1-2)
Ve

Graph of f(x°) parametrized in y>1. For large y the function f(x*) gets closer to x° (red
line).

Comments
An interpretation for the y-entropy for SISO systems is as follows. Consider the

feedback configuration:

\W%

A

A(s)

where w(.) is a white noise and A(s) is a random transfer function with A(jw,)

independent on A(jo,) and uniformly distributed on the disk of radius y' in the
complex plane.

Hence the expectation value over the random feedback transfer function is

) [
(Hl G(S)A(S) J ' ©) N




Proof of the Proposition

First notice that f(x?) > x* so that the conclusion that 1(G) >||G(s)|I, follows immediately.
Now, let

2

ﬂ:L:L’ _:7/—
< ool " oGy

Of course it is ;>f>1. Then
fi B
1 1 1 p 1
I-—— | 2|1-— — > Infl-—|>—=In|1-—
( riJ ( ﬂj ( ri] i ( ﬂj

! (G)_—ji yzln[l——de< ﬂln(l——jzﬂ J.Zm:dea)

_oi=1

so that

_oli=1 i

which is the conclusion. In order to prove that the entropy can be computed from the stabilizing solution of the Riccati
equation, recall (Theorem 1) that, since ||G(s)|.<y, it is possible to write

G (s)G(s) =71 =T (S)T(s)
T(s)=A -y 'B'P(sI - A)’

where P is the stabilizing solution of the Riccati equation (with unknown P). Then, letting yQ(s)=T(s) it follows

2 +o 2+ 2
| (G)———J.log det [Q(— jo) Q(Jw)]dw—hm——jlog det [Q(— jo) Q(ja))]|( ‘Z‘ 7 dw
- jow
a
= hm—— Ilog |det Q(ja))|—2da)
@ i)

| (G)—hm y*zlogdet (2)| = lim—° zlogdet (I -y B'P(zl - A)° B\

/4

= lim- y’zlog (1——trace[B'P(B+ M(z™))]
Z—0 Z

det (I —7—B'P(B +M (z‘l))‘ = lim— 7’z log
Z Z—0

-2

—hm 7’zlog (1—7—trace[B PB]+0(z7?%)) —hm 4 z(— trace[B PB]+0(z7%))

= trace [B'PB]
In view of the Poisson integral formula it follows that
In the expressions above we set M(z')=ABz'+A?Bz*+...Moreover, O(z) denotes terms of powers z 72, z~ ect.. Finally,

the formulas det(I+ & V)=1+ ¢ trace(V)+O(e?) and logdet(I+ & V)=¢ trace(V)+ O(&?) have been used. The proof of the
proposition with the solution of the Riccati equation with unknown Q follows the same lines and therefore is omitted.

19



Complex stability radius for norm bounded uncertain systems

Aup=A+LAN

A= stable (eigenvalues with strictly negative real part)

r.(A,B,C)=inf{|A|: AeC™" and A+ BAC is unstable|
—infinf{[A]: A e C™" and det(sl — A— BAC)=0}

sejo

—inf inf{[A]: A € C™ and det(l - AC(sl - A)'B)=0}

sejw

Linear algebra problem: compute

1

w1, (M) =[inf{lA|: A e C™ and det(1 —AM ) =0}

Proposition

The complex stability radius of A+LDN is

ro(A,L,N)=(1/|[N(SI-A) 'L |o.

Definition

An uncertain system is quadratically stable if there exists P>0 (independent of the
uncertain parameters) such that A,,'P+PA,,<0 for all uncertain parameters in the
uncertainty set.

Proposition
Let A, ;=A+LAN and ||A||[<a. The system is quadratically stable if and only if
V|IN(GsI-A) L]0 <o

20



Real stability radius

A= stable (eigenvalues with strictly negative real part)

Linear algebra problem: compute

r.(A,B,C) =inf{|A|: A e R™ and A+ BAC is unstable|
— inf inf{]A: A € R™ and det(sl - A~ BAC)=0}

sejo

— inf inf{JA[: A € R™ and det(l - AC(sl - A)'B)=0}

sejo
1, (M) =[inf{|A]: A e R™ and det(1 —AM ) =0]]"
Proposition

) Re M —yImM
1 (M)=inf ol |
7e(0.1] y - ImM Re M

Taking M=G(s)=C(sI-A)'B it follows

ReG(jw) —7ImG(]
((ABC) =sup inf || SoCU®)  —rImG(e)
o 7011 y " ImG(jw) ReG(jw)
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Example

|

0.2190 0.9347

0.0470 0.3835

0.6789 0.5194
0.6793 0.8310

0.0346 0.5297 0.0077 0.0668

0.0535 0.6711

-20
13
-38
—-11

-30
17
-60
—14.5

20
-12

40
9

79
-41
167

1335

|

0.3834 0.4175

-0.4996 0.1214
0.1214  0.4996

{

A worst
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Polytopic uncertainty

Proposition
The system is quadratically stable if and only if there exists P>0 such that

A'P+PA <0, Vi

Proof

M
A'P+PA <0, Vi implies [z A'o; jP + P(z Ao, J < 0 for all o; in the simplex. Viceversa, if there
]
M
exist P>0 such that [z A'c, J + P(z Ao, J < 0 for all 6; in the simplex, then in particular

i=1
A'P+PA <0, Vi.
Time-varying

Proposition
The system is robustly stable if there exists P>0, G, V such that

{A'G+G'Ai P+A'V -G

<0 Vi
P+V'A-G -V -V'

Proof
From the assumption it follows that

By multiplying by [I A;'] on the left and by [I A{'] ' on the right it follows

[Eave [ e (e o)<

constant
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Stability of feedback systems

v

—

The problem consists in the analysis of the asymptotic stability (internal stability) of
closed-loop system from some characteristic transfer functions. This result is useful
also for the design.

Theorem
The closed loop system is asymptotically stable if and only if the transfer matrix B(s)
from the input to the output

BN

1s stable.

Bs)=| (FOOREY"  ~(1+G(R(E) 'G(s)
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Stability of interconnected SISO systems

The closed loop system is asymptotically stable if and only if the two transfer
functions

M(s) = GE)

V(s)=—20) =
1+ R(5)G(s)

1+ R(5)G(s)’

are stable.

e Notice that if V(s), M(s), are stable, then also the complementary sensitivity
function and the sensitivity function are stable.

e The stability of the two transfer functions are made to avoid prohibited (unstable)
cancellations between C(s) and P(s).

Example

Let R(s)=(s-1)/(s+1), G(s)=1/(s-1) . Then S(s)=(s+1)/(s+2), V(s)=(s-1)/(s+2) e
M(s)=(s+1)/(s*+s-2)

Comments

The proof of the Theorem above can be carried out pursuing different paths. A simple
way is as follows. Let assume that R(s) and G(s) are described by means of minimal
realizations G(s)=(A,B,C,D), R(s)=(F,G,H,E). It is possible to write a realization of
the closed-loop system as Z.=(A¢,Bc,Ce,De). Obviously, if A is asymptotically
stable, then B(s) is stable. Vice-versa, if B(s) is stable, asymptotic stability of A
follows form being X.=(A.,B,Cc,De) @ minimal realization. This can be seen
through the well known PBH test.

In our example, it follows

I O L B I e B I
A:'_{—l —1} “L 0}’ “{—1 —2}’ “L 1}

Hence, A is unstable and the closed-loop system is reachable and observable. This
means that G(s) is unstable as well.

s+1 —(s+1) 1
so=| 357 O e

—_— 0 s+1)(s—-1 25
S+2 S+2 ( X )



Parametrization of stabilizing controllers
1° case: SISO systems and P(s) stable

d
r e u

R(s) 4>O—> G(s)

v

Theorem

The family of all controllers C(s) such that the closed-loop system is asymptotically
stable is:

R - QO
1-G(5)Q(s)

where Q(s) is proper and stable and Q(o0)G(o0) #1.

Proof of Theorem

Let R(s) be a stabilizing controller and define Q(s)=R(s)/(1+R(s)P(s)). Notice that Q(s) is stable since it is the transfer
function from r to u. Hence C(s) can be written as =Q(s)/(1-G(s)Q(s)), with Q(s) stable and, obviously, the stability of
both Q(s) and G(s) implies that Q(o0)G(c0)=R(0)/(1+R(0)G(0)) #1.

Vice-versa, assume that Q(s) is stable and Q(e0)G(0)=1. Define R(s)=Q(s)/(1-G(s)Q(s)). It results that
S()=1/(1+R(8)G(s))=1-G(s)Q(s),
R(s)=R(s)/(14R(s)G(5))=Q(s),

H(s)=G(s)/(1+R(3)G(s))=G(s)(1-G()Q(s))

are stable. This means that the closed-loop system is asymptotically stable.
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Parametrization of stabilizing controllers
2° case: SISO systems and generic P(s)

It is always possible to write (coprime factorization)

_N@©)

P(s) = D(s)

where N(s) and D(s) are stable rational coprime functions, i.e. such that there exist
two stable rational functions X(s) e Y(s) satisfying (equation of Diofanto, Aryabatta,
Bezout)

N ()X (s)+ D(s)Y(s) =1

Theorem

The family of all controllers C(s) such that the closed-loop system is well-posed and
asymptotically stable is:

_ X(9)+D(s)Q(s)
Y(8)=N(s)Q(s)

R(s)

where Q(s) is proper, stable and such that Q(c0)N(w) # Y(o0).
Comments

The proof of the previous theorem can be carried out following different ways.
However, it requires a preliminary discussion on the concept of coprime factorization
and on the stability of factorized interconnected systems.

0 D(s)! Ne(s) Lo D(s)' | N(s) T
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Lemma

Let P(s)=N(s)/D(s) e C(s)=N.(s)/D.(s) stable coprime factorizations. Then the closed-
loop system is asymptotically stable if and only if the transfer matrix K(s) from [r’
d']' to [z’ z,']’ 1s stable.

[(s)

D.¢s) N
- NC(S) D(S)

K(s):{

Proof of Lemma

Define four stable functions X(s),Y(s),Xc(s),Y(s) such that

X (s)N(s) +Y(s)D(s) =1
X (SN () +Y(s)D,(s) =1

To proof the Lemma it is enough to resort to Theorem 1, by noticing that the transfer functions K(s) and B(s) (from [r’
d']' to [¢’' u']") are related as follows:

[Y® X©. . [0 X sor=l! 0L 0 Nk
K(S){—X(s) Y(s)}G(S) [—x o} ®) {0 I}{N o |

c
Proof of Theorem

Assume that Q(s) is stable and Q()N(w0) # Y (). Moreover, define R(s)=(X(s)+D(s)Q(s))/(Y(s)-N(s)Q(s)). It follows
that

1=N($)X(s)+D(s) Y (5)=N(s)(X(s)+D(s)Q(s))+D(s)(Y ()-N(s)Q(s))

so that the functions X(s)+D(s)Q(s) e Y(s)-N(s)Q(s) defining R(s) are coprime (besides being both stable). Hence, the
three characterist transfer functions are:

S(s)=1/(1+R(s)G(8))=D(s)(Y(s)-N(s)Q(5)),
V($)=R(8)/(1+R()G(s))=D(s)(X(s)+D(s)Q(s)),

D(s)=G(s)/(1+R(s)G(s))=N(s) (Y(s)-N(s)Q(s))

Since they are all stable, the closed-loop system is asymptotically stable as well.

Vice-versa, assume that R(s)=N.(s)/M,(s) (stable coprime factorization) is such that the closed-loop system is well-
posed and asymptotically stable. Define Q(s)=(Y(s)N¢(s)-X(s)D.(s))/(D(s)M(s)+N(s)N¢(s)). Since the closed-loop
system is asymptotically stable and (N,D.) are coprime, then, in view of the Lemma it follows that

Q(s) = (Y(s)N(s)-X(s)Dc(s))/(D(s)De(8)+N(s)N(s)) = [0 TTK($)[ Y (s)-X(s)']'
is stable. This leads to C(s)=(X(s)+D(s)Q(s))/(Y(s)-N(s)Q(s)). Finally, Q(0)N(w0) # Y(0), as can be easily be verified.
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Coprime Factorization

1° case: SISO systems

Lemma 1 makes reference to a factorized description of a transfer function. Indeed, it
is easy to see that it is always possible to write a transfer function as the ratio of two
stable transfer functions without common divisors (coprime). For example

S+1 .

c)= (s—1)(s+10)(s—2) NEDE)

with
B 1 _(s=D(s-2)

N(S)_(s+10)(s+1)’ D)= (s +1)2
It results

N(s)X(s)+ D(s)X(s) =1
with

X(5)= H6=5) y o _(5+15)

(s+1) (s+10)
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Coprime Factorization
SISO systems

Lemma 1 makes reference to a factorized description of a transfer function. Indeed, it
1s easy to see that it is always possible to write a transfer function as the ratio of two
stable transfer functions without common (not unimodular) divisors (coprimeness in
H.,,). For example

B S+1 B 4
6E)= (s—1)(s+10)(s—2) NEDE)
with
B 1 _(s=1)(s-2)
N(S)_(s+10)(s+1)’ D(s)= (s+1)°
It results
N(s)X(s)+ D(s)Y (s) =1
with
_4(l6s-5) _(s+15)
X()= (s+1) Y®)= (s +10)
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Coprime Factorization
MIMO systems

In the MIMO case, we need to distinguish between right and left factorizations.

Right and left factorization

Given G(S), find four proper and stable transfer matrices:

G(S) = Nr (S)Dr (S)_l = DI (S)_l NI (S)

N,(s), D,(s) right coprime X, (S)N.(S)+Y,(s)D,(s)=1I
N,(s), D,(s) left coprime N,(s)X,(s)+D,(s)Y,(s) =

G(s)=C(sl —A)'B+D

Choose K and L such that A+BK and A+LC are Hurvitz. Then:

N,(s)=D+(C +DK)(sl - A—BK)"'B
D.(s)=1+K(sl —A—BK)'B
N,(s)=D+C(sl —A—LC)"(B+LD)
D,(s)=1+C(sl —A—LC)"'L

Note: (i) the set of all matrices K such that

A+BK is stable is given by K =WS™ where
S >0and w solve the LMI
AS + BW +W'B'+SA'< 0 . (ii) the set of all
matrices L such that A+LC is stable is given by

L=P 'Qwhere P>0and Q solve the LMI
AP+C'Q+QC + PA<O.
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Interpretation — state-feedback control

X = Ax+Bu+ Bw

z=Cx+Du
y=KX+Vv
> D
\" u
—0—)@—0 > (sl-A)'B |—> > C
A

(sl —A)"'B,

e z

A
A

The transfer function from v to z is N(S). The transfer function from Vv to U is D(S).
The design matrix K is such that A+BK is Hurwitz. Further requirements can be
posed on the norm of the transfer function from the disturbance w to the performance

variable z.
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Interpretation — output injection

X = Ax+ Bw+ B,u .
y =Cx+ Dw+ D,u X = AL+ B,u + L(CR+ D,u-Y)
z=C,X y

A

C,(sl-A)'B z .
)m *—>
> C,(sl-A)"B, i —’[

w
—e—1» C(sl-A)'B+D
y
u
— e s Csl-A)'B,+D,, ———>( )—g—»
f Y
— s1-A)"'B, () l-A)'L <—o—€>
\ 4 )7
C > C, - >
S{ . <l)

The transfer function from w to f is Ni(s). The transfer function from -y to y is Di(s).



Double coprime factorization

Given P(s), find eight proper and stable transfer functions such that:
(i) P(s)=N,(s)D,(s)" =D_(s)'N_(s)

. Yr(s) Xr(s) Dr(s) _XI(S)
W N D[N Y6

Construction of a stable double coprime factorization

Let (A,B,C,D) a stabilizable and detectable realization of G(s) and conventionally
write G=(A,B,C,D) .

Theorem

Let K e L two matrices such that A+BK e A+LC are stable. Then there exists a stable
double coprime factorization, given by:

D,=(A+BK,B, K,I), N,=(A+BK,B,C+DK,D)
Y=(A+BK,| ,-C-DK,]), X=(A+BK,! ,K,0)
D=(A+1.C, ,C,D), N=(A+/ C,B+/.D,C,D)
Y=(A+.C,B+ D, -K,I), X=(A+.C,| ,K,0)

Proof of Theorem

The existence of stabilizing K e L is ensured by the assumptions of stabilizability and detectability of the system. To
check that the 8 transfer functions form a stable double coprime factorization notice first that they are all stable and that
My e M; are biproper systems. Finally one can use matrix calculus to verify the theorem. Alternatively, suitable state
variables can be introduced. For example, from

X = AX+ Bu = (A+ BK)x+ Bv

y =Cx+ Du =(C + DK)x+ Dv

u=Fx+v control law

one obtains y=G(s)u=N,(s)v, u=D,(s)v, so that G(s)D4(s)=Ny(s).

Similarly,
X=Ax+Bu

y =Cx+ Du
0=A0+Bu+Ly
{ n=CO+Du-y

observer

implies N=N(s)u-Dy(s)y=N(s)u-F;(s)G(s)y=0 (stable autonomous dynamic) so that Ni(s)=D;(s)G(s). Analoguously one
can proceed for the rest of the proof.
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Parametrization of stabilizing controllers

3° case: MIMO systems and generic P(s)
(i) P(s)=N,(s)D,(s)" =D,(s) " N,(s)

iy [ YO XO|0© -X©]_,
SN DEJNG %)

—|R(s) —O—1G(E) [——

Theorem

The family of all proper transfer matrices R(s) such that the closed-loop system is
well-posed and asymptotically stable is:

R(S) = (X,(8) + D, (8)Q ()Y, (5) = N, (5)Q,(5))
= (Y:(8) = Q (N, (5)) " (X,(8) + Q,(5)D (5))

where Q,(s) [Qi(s)] is stable and such that N, (00)Q,(o0)#Y(e0) [Qi(0)Nj(0)#£Y (0)].

\ 4

A

QU Dy(s)" | | Ne(s) ,Ql Di(s)" | .| Ni(s)

Lemma

Let G(s)=N(s)D(s)" and G(s)=N(s)D(s)" stable right coprime factorizations. Then
the closed-loop system is asymptotically stable if and only if the transfer matrix K(s)
from [r' d']' to [z, z,'] is stable.

D.¢s) N, (9]
- Nc(s) Dr (S)

K(S){
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Proof of Lemma

It is completely similar to the proof of a previous Lemma (case 2).

Proof of Theorem

Assume that Q(s) is stable and define
R($)=(X(s)+D($)QEN(YL(S)-Ni($)Q(s))”

It results that

[=Ni(s)Xi(s)+Di(s) Yi(s)
=Ni(s)(Xi()+Dr(8)Q(8))+Di(s)(Yi(s) -N(s)Q(s))

so that the functions X(s)+Dy(s)Q(s) e 1.(s)-Ni(s)Q(s) defining R(s) are right coprime (besides
being both stable). The four transfer matrices characterizing the closed-loop are:

(1+GR)'= (Y-N,Q)D;

-(1+GR)'G= (Y-N.Q)N,
(1+RG)'R=R(I+PC)'= (X+D,Q)D,
(1+RG)'=I-R(I+PR) 'R= I-(X+D,Q)N;

They are all stable so that the closed-loop system is asymptotically stable.

Vice-versa, assume that R(s)=N¢(s)Dc(s)™ (right coprime factorization) is stabilizing. Notice that the
matrices

{ Y (8) X, (S)}

Dr(s) _Nc(s)
=N, (s) Di(s)

N,(s) D.(s)
have stable inverse. Hence,

{ Y. (8) Xd(S)HDr(S) - NC(S)}

I =Y. (9N (9)X,(5)Dc(s)
—-N,(s) D(s) |[N,(s) D,(s) *

0 N, (SN (5)+ D, (M (s)

has stable inverse as well. Then,

Q(8)=(Y+($)Ne(8)-X(8)De(8))(Di($)De(8)+Ni($)Ne(s))
is well-posed and stable. Premultiplying equation (*) by

[Mi(s) =Xi(s); Ni(s) Yi(s)]

it follows

Ne($)Me(s) ' =(Xi()M(8)Qr(s))(Y1(8)-N(5)Q(s)) "
36



Observation
Taking Q(s)=0 we have the so-called central controller
Ry(s) =X(s)Y(s)"
which coincides with the controller designed with the pole assignment technique.

Taking r=d=0 one has:

E=AE+Bu+L(CE+Du-y)
u=F¢

Lemma

R(S) =R, (5)+Y,(5)" Q()|(1 =Y, ()" N, (5)Q(s)] 'Y, ()™

Q

<
)l

A
0

A

d




Strong Stabilization

|

_’Cf__’ cw) [ ° P(s)

The problem is that of finding, if possible, a stable controller which stabilizes the
closed-loop system.

v

Example

s—1

P(s)= (5—-2)(5+2)

is not stabilizable with a stable controller. Why?
s—2

e )

is stabilizable with a stable controller. Why?

Stabilizazion of many plants
Two-step stabilization
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Interpolation

Let consider a SISO control system with P(s)=N(s)/M(s) e C(s)=N.(s)/M.(s) (stable
coprime stabilization). Then the closed-loop system is asymptotically stable if and
only if U(s)=N(s)N.(s)+*M(s)M,(s) is an unity (stable with stable inverse).

Since we want that C(s) be stable, we can choice N (s)=C(s) and D.(s)=1. Then,

_U()-M@)

C(s) NGS)

Of course, we must require that C(s) be stable. This fact depends on the role of the
right zeros of P(s). Indeed, if N(b)=0, with Re(b)>0 (b can be infinity), then the
interpolation condition must hold true:

U (b) = M (b)

Consider the first example and take M(s)=(s-2)(s+2)/(s+1)% N(s)=(s-1)/(s+1)*. Then,
it must be: U(1)=-0.75, U(o0)=1. Obviously this is impossible.

Consider the second example and take M(s)=(s-1)/(s+2) e N(s)=(s-2)/(s+2)". It must
be U(1)=0.25, U()=1, which is indeed possible.

Parity interlacing property (PIP)

Theorem

e P(s) ¢ strongly stabilizable if and only if the number of poles of P(s) between any
pair of real right zeros of P(s) (including infinity) is an even number.

e We have seen that the PIP is equivalent to the existence of the existence of a unity
which interpolates the right zeros of P(s). Hence, if the PIP holds, the problem
boils down to the computation of this interpolant.

e In the MIMO case, Theorem 6 holds unchanged. However it is worth pointing out
that the poles must be counted accordingly with their Mc Millan degree and the
zeros to be considered are the so-called blocking zeros.
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Optimal Linear Quadratic Control (LQ)

versus Full-Information H, control

X=AX+BU, X(0)=%, J=[(XQx+20"Sx+u'Ru)dt
0
Assume that

S
R>0, H= Q >0
S'" R

and notice that these conditions are equivalent to

R>0, W=Q-SR'S'>0

Find (if any) u(-) minimizing J

Let C,; a factorization of W=C,,'C,, and define

C — Cll D — O
1 R—l/st ’ 12 I

1/2
u=R"U, z=Cx+D,u

Then, it is easy to verify that
o0 _ _ _ o0 2
J= I(X'QX-I— 2U'Sx + U'RU)dt = jz'zdt =|z|,
0 0
Moreover, the free motion of the state can be considered as a state motion caused by
an impulsive input. Hence, with w(t)=imp(t), let

X=AX+B,u+Bw
z=Cx+D,u
X(0)=0

The (LQ) problem with stability is that of finding a controller
E=F&+Gx+G,w
u=HSé+Ex+E,w

fed by x and w and yielding u that minimizes the H, norm of the transfer function

from w to z.
LQS problem
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Full information

P
u 3 X
W
R |

X=Ax+Bw+B,u
z=Cx+D,u

o

Problem: Find the minimun value of ||T,,||; attainable by an admissible controller.
Find an admissible controller minimizing ||T,|l,. Find a set of all controllers
generating all || T, |[><y.

Assumptions
(A,B,) stabilizable
D12'D12>0

(A.,Cy.) detectable

1
Ac= A_BZ(D12ID12) [1)12,C1 stable invariant zeros of (A,B2,C1,D12)
Cic=({-D12 (D12'Dy2)” Di")Cy
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Solution of the Full Information Problem

Theorem
There exists an admissible controller FI minimizing ||T,|; . It is given by

' -1 ' '
F, = _(DIZ Dlz) (B,'P+D,,'C)
where P is the positive semidefinite and stabilizing solution of the Riccati equation

AP+PA-(PB +C'D,)(D,' Dlz)_l(Bz' P+D,'C)+C/'C =0
A.=A-B,(D,' Dlz')_1 (B,'P+D,'C)=A+B,F, stable

The minimum norm 1is:

HTszE :aza a:HF%BIHZ =\/trace(Bl'P3), Pc(s) :(Cl + Dlez)(SI —A- Bze)_l

The set is given by
F, |«

S Q(S) «

where Q(s) is a stable strictly proper system, satisfying

R, <7*-a
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Proof of Theorem

The assumptions guarantee the existence of the stabilizing solution to the Riccati equation P. Let v=u-F,x so that
u=F,x+v, where v is a new input. Hence, z(s)=P.(s)B;w(s)+U(s)v, where U(s)=P.(s)B,+D1,. It follows that
T,w(8)=P(s)B11tU(s)T,y(s). The problem is recast as to find a controller minimizing the norm from w to z of the
following system

\%% Vv
. 1 Py =
u R V X

—
2 A

where P, is given by:

X=Ax+Bw+B,u
v=—-Fx+u

X

y:
w

Notice that T,,(s) is strictly proper iff T,(s) is such. Exploiting the Riccati equality it is simple to verify that
U(s) U(s)=Dy,’'Dy, and that U(s) P(s) is antistable. Hence, ||T,u(s)|| *=||Pc(s)B|| > + | Tw(s)|| >. Hence the optimal
2 2 2

control is v=0, i.e. u=F,X.
Finally, take a controller K(s) such that ||T,(s)|| > < v*. From this controller and the system it is possible to form the
2

transfer function Q(s)=T.w(s). Of course, it is ||Q(s)|| * < y*-a’. It is enough to show that the controller yielding
2

u(s)=F»x(s)+v(s)=Fx(s)+Q(s)w(s) generates the same transfer function T,,(s). This computation is left to the reader.
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ACTUATOR DISTURBANCE

X=AX+B(w+uU)
z=Cx+ Du

The optimal H, state-feedback controller is

u=Fx F,=—(D'D)"(B'P+D'C)
0=AP+PA+C'C-F,D'DF,

Proposition

The optimal H, control law ensures an H,, norm of the closed loop system (from w to
z) lower than 2||D||.

Proof. Consider the equation of the Bounded Real Lemma for the closed-loop system, i.e.
(A+BF,)Q+Q(A+BF,)+yQBB'Q+(C +DF,)'(C+DF,)<0
Now take Q=P/a. and consider both equations in P. It follows:
(1-a™)C'(1-D(D'D) ' D'C+PBRB'P <0, R=(D'D)'(I-a)+la"'y"
This condition is verified by choosing a<1 and the minimum y such that R<0, i.e. the minimum vy such that

(a-a*)l-y?D'D2a-a’-y>c°(D)=0
a-a’
The term oo’ is maximized by a=0.5, for which a-0=0.25, so that the minimum Y is

y =25(D)
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Disturbance Feedforward

X=Ax+Bw+B,u
z=C/,x+D,u
y=C,Xx+w

Same assumptions as Fl+stability of A-B,C,

C,=0 — direct compensation
C,#0 — indirect compensation

B A-B1C2 B1 Bg_ Yy u
» R
R(s) = 0 |0 1 o RO
I 0 0
- -G I 0 _| Kri(s) |«
Kpr

The proof of the DF theorem consist in verifying that the transfer function from w to z achieved by

the FI regulator for the system A,B1,B,,C;, D15 is the same as the transfer function from w to z
obtained by using the regulator Kpr shown in the figure.
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Output Estimation

A 4

z
P y

A

R(s)

X = Ax+ B,w+ (B,u)

R(s) u = - estimate of C;x

A 4

Z=€error

z=CXx+u
y=C,x+D,w
W
J| Pu(s)
o P21(8)
Assumptions
(A,C,) detectable
D21D2> 0

(Ag,Byy) stabilizable
(A-B,C,) stable

A= A-B, Dzl'(Dlezl')_1 G,
Bi=B(I-Dy)’ (D2;D2,") ' Dy))
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Solution of the
Output Estimation problem

Theorem
There exists an admissible controller (filter) minimizing ||T,y|2. It is given by

where
f: Af+ Bzu + Lz(ng_ Y)
U= _Clé:

Lz = —(PC2 + BzD'21 )(Dlezl)-l

and P is the positive semidefinite and stabilizing solution of the Riccati equation

AP+PA-(PG+BD,)(D, ;") (C,P+D,B")+BB'=0
A, =A-(PG4BD,)D,D,)) =A+LC, stable

The optimal norm is

CP,9)], =traceCPG). P, (9=(s1-A-LC,)(B+L,D,)

2
Ir.J =]

The set of all controllers generating all ||T,y||, <7 is given by

_ _ u Yy
Ag-B,Cy | L, -B, DI M N
=
C 0 | N |
| C, I 0 Q

Where Q(s) is proper, stable and such that ||Q(s)||* < y*—||CiP(s)|*2

Proof of Theorem

It is enough to observe that the “transpose system” has the same structure as the system defining the DF problem. Hence
the solution is the “transpose” solution of the DF problem. It is worth noticing that the H, solution does not depend on
the particular linear combination of the state that one wants to estimate.

A=A1+C'\c+C,'v
u=B'A+D,'v
$=B,'1+g¢
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Kalman filtering

Given the system
X=AX+g¢, +B,u

V=CX+g2

where [Z'| Z';]" are zero mean white Gaussian noises with intensity

_ W, W,
W = ' , W,>0
W' W,

find an estimate of the linear combination Sx of the state such as to minimize

3 = lim E [(SX(t) = u(t)) (SX(t) — u(t))]

[ e

Letting

C,=-S, C,=W,,"'C, D,,=[0 1],
BllBll'z\Nll _W12W22_1W12'» B1 = [Bn W12W22_1/2]

-1/2
y=W, "2y, z=Cpxru, | 7= B Wl Ty
S) 0 sz

the problem is recast to find a controller that minimizes the H, norm from w to z.
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Remark on Wiener filtering (frequency domain)

— 1 G(s)

) 4

Fs) ——(O—

Given G(s) strictly proper and stable, find F(s) stable such that the H, norm of the
transfer function from w=[w,’ w,']’ to e is minimized.

The transfer function from w to e is: T,, =[FG-G F] and hence

Tl =F(GG +1)F" -FGG™ -GG F~ +GG™ =
=(FG, -GG G, )G, F" -G, GG )+G(1 -G G, G, 'G)G"
where G, 1s stable with stable inverse such that G, G, =I+GG". Moreover
GGG, " =G,-G, " =G, -1+1-G, "
Applying the Pythagorean theorem, the optimal filter is given by

FU(s)=1-G,(s)"

Comments

1) Letting G(s)=C(sI-A)'B, with A Hurwitz, and P the stabilizing solution of
AP+PA’-PBB'P+C'C=0 it follows that Go(s)=I+C(sI-A)'PC’ so that G(s)"'=I-
C(sI-A+PCC')'PC’ and F*"(s)= C(sI-A+PC'C)'PC’, which corresponds to the
optimal Kalman filter and optimal output estimator.

2) It results that
T, T, =F"GG™ +)F" —F"GG -GG F™ +GG™ =21-G,” -G, 'and

since |Gy [ <1 it follows that || Tey|<2.
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The partial information problem

(LQG)
u . y
R(s)
X=AXx+Bw+B,u
z=Cx+D,u
y=C,x+D,w

Assumptions: FI + DF.

Theorem
There exists an admissible controller minimizing ||T,|[2. It is given by

é: AS + Bzu + Lz(czé:_ y)
U=-Fg¢

The optimal norm is
T =lROLL +cR ol <[ReBL {FR | =%

The set of all controllers generating all ||T,y|[, <7 1s given by

_ _ u y
A+B2F2+L2C2 L2 —B2 ]

S(s)= E 4—‘
-Fz O I Q I

LG, I 0 §

. 2 2 2
where Q(s) is proper, stable and such that ||Q(s)||"2 <YYo
Proof
Separation principle: The problem is reformulated as an Output Estimation problem for the estimate of -F2 x.



Important topics to discuss

Robustness of the LQ regulator (FI)
Robustness of the Kalman filter (OE)
Loss of robustness of the LQG regulator (Partial Information)

LTR technique
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The H,
design problem

G(s)

Find G(s) in such a way to guarantee:

e Stability
o Satisfactory performances

Design in nominal conditions
Uncertainties description
Design under uncertaint conditions
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Nominal Design

G(s) = Gu(s)

The performances are expressed in terms of requirements on some transfer functions

G(s)

Characteristic functions:

e Sensitivity Su(s)=(I+Gn(s)R(s))"
d. —> ¢, ">y, -doy

e Complementary sensitivity
Fi(8)=Gu(s)R(S)(ITGu(S)R(S))
co—>c, -d,—c

e Control sensitivity
Vi(s)=R(s)(I+G(s)R(s))"
c’—u,, -d—uy, -d.—u,
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Shaping Functions

In the SISO case, the requirement to have a “small” transfer function ¢s) can be
well expressed by saying that the absolute value |jw)|, for each frequency o,
must be smaller than a given function A ®) (generally depending on the
frequency):

Analogously, in the MIMO case, one can write

0 Y
el e, v,

This can be done by choosing a matrix transfer function W(s), stable with stable
inverse (“shaping” function) , such that

Vo oW '(jo)|=600)«WE)es), <1

A general requirement is that the sensitivity function is small at low frequency
(tracking) whereas the complementary sensitivity function is small at high
frequiency (feedback disturbances attenuation). Mixed sensitivity:

Description of the uncertainties
The nominal transfer function G,(s) of the process G(s) belongs to a set G which
can be parametrized through a transfer function A(s) included in the set

W 1(8)S, (S)
W 2 (S)T, (S)

For instance,

=a©) [A® e .., [AG), <a |

o G ={G(s)|G(s) = Gu(s)TA(s)}

e G =1{G(5)|G(s) = Gu(8)I+A(s))}

e G ={G(s)|G(s) = (I+A(s)Gu(s)}

¢ G ={G(s)| Gs) = (I-A(5)) 'Gu(5)}

o G ={G(3)| G(s) = (I-Gu()A(5)) 'Gu(5)}
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Examples

o G ={G(s) | G(s) = Gu(8)TA(s)}
Uncertaint unstable zeros
s—2 g

G(s) = +
(s+2)(s+1) (s+2)(s+1)
e G = {G(s) | G(s) = Gu(s)(I+A(s))}

Unmodelled high frequency poles or unstable zeros

G(s) = — (1— s ] G(s) = —. (1_ 2 J
(s+1) (1+ &) (s+1) (1+59)

¢ G ={G(5)|G(s) = (I-A(5))'Gu(5)}

Unmodelled unstable poles

G(S):(l_ 10 j 1
(1+s)) (s+10)

o G ={G(3)| G(s) = (I-Gu()A(5)) 'Gu(5)}

Uncertain unstable poles

1Y 1
G(s):(l—s_lg) o=
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Design in nominal conditions
Example of mixed performances

Gn(s) () W, b

d;
\%Y% Z
e —»
u > P y
R <
W1 _W1Gn
P=| 0 WG,
I -G
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Computations in state-space.

Let d,=d.=d,=0 and G,(s) be described by

X = Ax+ Bu
c =Cx

Let W (s) be described by

E=AE+By
z,=C/¢

and W(s) be described by

n=~An+B.c
z,=Cyn

Then system P(s) is described by

X A0 ofx] [o B
El=[-BC A 0 |&|+|B, [w+|0lu
7 BC 0 Alfn| |0 0
Z, 0 C, o7x] [o 0
Z,|=l 0 0 C,|&|+|0w+|O0Ou
y] [-C 0 o0]n| |! 0
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Design under uncertain condition: Robust stability and nominal performances

\%%
D ———
u »

A 4

Gul®) |y

A
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Design under uncertain condition
Robust stability and robust performances

“1f Ws
W, W,y
5 1 ldCZW
Gu(s) —(O——
C

1) Robust sensitivity performance

W ($)8(s)], =W, ()8, (51 -

v|A(s)| <1

2) Robust stability

‘M4(S)Vn(5)W5(S)HOO <1

Result: (take Ws=1)
1) and 2) are both achieved if the controller is such that

W 1(8)S,(s)
W sV, (S)

‘<1
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The proof of the result follows from the following

Lemma

Let X(s) and Y(s) in L, and ¥ a generic L, function such that ||Y,|[<1. If

sup, {[X (jo)|+ Y (jo)[} <1

Then

supwHX(ja))H<1
sup, ¥ (i)t - ¥ (j)X (jo] <1

Proof of the Lemma
The first point directly follows from the assumption. The second point is trivial if X=0. Hence, assume X0 so that

Hv( jo)l —¥(jo)X(jo)|”

<¥(jo)t - ¥(j@)X (j)]

_ Y (jo)] . Y (i)
G (1= P(j@)X (j@))  1-0,, (¥(jo)X(jo)
MO . IvGe)
10 (Y(§0)0,, (X (@) 1-0,, (X (jo)
cao]
=[x (i)
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The Standard Problem

\W% Z
— P
> y
R <

All the situations studied so far can be recast in the so-called standard problem: Find
K(s) in such a way that:

e The closed-loop system is asymptotically stable

. T@ws)|, <7y

Existence of a feasible R(s) and parametrization of all controllers such that the
closed-loop norm between w and z be less than .
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Full information

W Z
S —= >
T
A%
R b
X = Ax+Bw+ B,u
z=Cx+D,u
X
y =
w
Assumptions
(A,B,) stabilizable
D12'D1>0
(A.,Cy.) detectable

A.= A-By(D1,’'Dyy)" D,'C
Cie=(I-Dy, (D12'D12)_1 D,")C,
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Solution of the Full Information Problem

Theorem
There exists a controller FI, feasible and such that || T(z,w,s)||.. < y if and only if there
exists a positive semidefinite and stabilizing solution of the Riccati equation

AP-+PA-(PB +C'D,)(D,'D,)"(BP+D,C)+ P P+GC, =0

}/2

A—Bm;q;rl(sgP+q;q>+%p stable

Foo< 7

A

L e Qe A"

F, = _(Dlz'Dlz)_l(Bzv P+D,'C)

o0

Q(s) 1s a stable system, proper and satisfying [|Q(s)|.. <.
Comments

* As (y—x) the central controller (Q(s)=0) coincides with the H, optimal controller

e The parametrized family directly includes the only static controller u=Fx.

e The proof of the previous result, in its general fashion, would require too much
time. Indeed, the necessary part requires a digression on the Hankel-Toeplitz

operator. If we drop off the result on the parametrization and limit ourselves to the
static state-feedback problem, i.e. u=Kx, the following simple result holds:
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Theorem

There exists a stabilizing control law u=Kx such that the norm of the system
(A+B,K,B|,C;+D;K) is less than y if and only if there exists a positive definite

solution of the inequality:

A'P+PA-(PB, +C'D,)D,,'D,)'(B,'P+D,'C))
BIBI'

2

/4

+P P+C,'C, <0

Observation: LMI

P>0
A'P + PA—-(PB, +C'D12)(D12'D12)‘1(BZ'P +D,,'C)
+PBI—|§’1P+C1'C1 <0
Y
Schur Lemma
X= yP"
X>0
- XA'-AX - BlB1'+?/ZBsz' XCIC' >0
C.X y’l

A.= A-By(D1;’'Dyy)”! Il)lz'cl
Cic=(I-Dy2 (D12’Dy2)” D1")Cy
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Proof of Theorem
Assume that there exists K such that A+B,K is stable and the norm of the system (A+B,K,B;,C;+D1,K) is less than y.
Then, from the we know that there exists a positive definite solution of the inequality

(A+B,K)P+P(A+ BZK)+7/72PBIBI'P + *)
+(C, + D,K)'(C, + D,,K) <0
Now, defining
F= _(Dlz'Dlz)-l(Bz'P +D,,'C)

the Riccati inequality can be equivalently rewritten as

A'P+PA-(PB,+C'D,)D,'D,)"(B,'P+D,'C,) +
P—B;El P+C/'C,+(K-F)(K-F)<0

so concluding the proof. Vice-versa, assume that there exists a positive definite solution of the inequality. Then,

inequality (*) is satisfied with K=F, so that with such a K, the norm of the closed-loop transfer function is less than y
(BRL).
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Parametrization of all algebraic
“state-feedback” controllers

AR:[A Bz]

CR = [C1 Dlz]
W = [Wl Wz]
Define:
Theorem

The set of all controllers u=Kx such that the H,, norm of the closed-loop system is
less than v is given by:

K=W,"W,
W, >0
~ AW -WA,'-BB,' WC,'
Cw' 7 70

Proof of Theorem 7
We prove the theorem in the simple case in which C;'D;,=0 and D,'D;,=I. The LMI is equivalent to
If there exists W satisfying such an inequality, it follows that the inequality

P(A+B,K)+(A+B,K)YP+72PBB,'P+C,'C, +KK'<0

K=W,'W,"
W, >0
AW, +W, A'+B,B,'+W,B,'+BW, '+ "W,C,'CW, + y W,W,'< 0

is satisfied with K=W,'W, " and P=1>W,". The result follows from the BRL. Vice-versa, assume that there exists P>0

satisfying this last inequality. The conclusion directly follows by letting W,=y*P"' ¢ and W,=W K.
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|

0 0
Q0

robustness AA= {

}(W+ u)

0

1

u

01

f

Yine = 0.75, y=0.76

2.5

[T(Z1,W) |
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Mixed Problem H,/H,,

X = Ax+B,w+ B,u
z=C,x+D,u
& =Lx+Mu

The problem consists in finding u=Kx in such a way that
min, [T (£,w,s, K)[, :|[T(z,w, s, K)|_ <7

e For instance, take the case z=f. The problem makes sense since a blind
minimization of the H,, infinity norm may bring to a serious deterioration of the
H, (mean squares) performances.

e Obviously, the problem is non trivial only if the value of y is included in the
interval (Yins V2), Where vin, 1s the infimun achievable H,, norm for T(z,w,s,K) as a
function of K, whereas vy, is the H,, norm of T(z,w,s,Korr) where Korr is the
optimal unconstrained H, controller.

e This problem has been tackled in different ways, but an analytic solution is not

available yet. In the literature, many sub-optimal solutions can be found (Nash-
game approach, convex optimization, inverse problem, ...)

68



Post-Optimization procedure

X=Ax+B,w+B,u

z=Cx+D,u simplifying assumptions L'M=0, M'M=I
&=Lx+Mu

Let Kb a controller such that || T(z,w,s,Kp)||c<y. For a.e[0 2], define the matrices

Aa:A+(1'a)ZBZKsub
B, =2 - A)"?B,
Ca :L+(1' a)MKsub

and the standard Riccati equation

A'P+PA -PB,_B,'P,+C'C, =0 (a—-RIC)

Notice that if (A,L) is detectable and (A,B,) stabilizable, such an equation always
admits the stabilizing solution (positive semidefinite) P, for each a.e[0 2]. For each

a€[0 2] we can write the family of controllers

K,=(1-a)K,, —aB,'P,  (a—con)
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Post-Opt Algorithm

Theorem

Each controller K, of the family (a-con) is a stabilizing controller and is such that

T gow.s, K, =[T (€ w.s. K, ),

(1 —a)dd—aHT (&.w,s,K,)[,<0

Interpretation: For a=0, the controller is K¢=Kg,,. Hence, ||T(z,w,s,Ky)||.<y. For a=1,
the controller is K;=Kqgrr, so it coincides with the optimal unconstrained H,
controller, hence ||T(z,w,s,K)||>y. One varies a till the value a* which is closest to
o=1 and such that ||T(z,w,s,K; )||-=y. The reason of the equality is in the fact (as it is
possible to proof starting from the necessary conditions) that the optimal mixed
controller Kmix satisfies ||T(z,w,s,Kotmix )||=Y-

||T(Z,W,S,KQ)||2 ||T(Z,W,S,Ka)||w
A A

LNl

/o

1 o a* 1 o

v

v

Proof of Theorem
First notice that the equation (a-RIC) canm be rewritten as:

(A+BK,)P,+P,(A+B,K,)+K_ 'K +L'L=0 (a—-RIC)
so that
IT(E,w,s,Ko)|l» =(Trace(B,'P,B;))"?

The fact that the norm ||T(§,w,s,K,)||> is symmetric with respect to a=1 follows directly (a-RIC) by inspection. Taking
the derivative with respect to o one obtains

' ' —
F'X,+X,F,—2(-a)A,'A, =0
where X, is the derivate of P, with respect to o and
FOL:AOL_BZOLBz(I(POD Aa:Ksub+PaB2

Matrix F, is stable since P, is the stabilizing solution of (a-RIC). Hence, for the Lyapunov Lemma the conclusion
follows.
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}(w+ u)

1

Vi = 0.75, 2= 0.8415, v=0.8
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Disturbance Feedforward

X=Ax+B,w+B,u
z=C,x+D,,u
y=C,Xx+w
Same assumptions as Fl+stability of A-B,C,

C,=0 — direct compensation
C,#0 — indirect compensation

B A-B1C2 B1 B2_ y u
»] R
R(s) = 0 |0 1 - RO
I 0 0
- -G I 0 _ Kpi(s)
Kbpr

The proof of the DF theorem consist in verifying that the transfer function from w to z achieved by
the FI regulator for the system A,B1,B,,C1, D12 is the same as the transfer function from w to z
obtained by using the regulator Kpr shown in the figure.
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Output Estimation

u s y
R <
X = AX+B,w+ (B,u) u=—§A
z=CXx+u
y=C,x+D,w
W » u=- estimate of C;x
Pyi(s) > R(s) Z=error
—l P2i(s)
g
Assumptions
(A,C,) detectable
Dy1Dy1™> 0 As=A-B; D,/'(DyDy)" C;

Bi¢=B(I-Dy/ (D21D2,") ' Dy))
(Ag,Byy) stabilizable

(A-B,C)) stable
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Solution of the
Output Estimation problem

Theorem
There exists a feasible controllor (Filter) such that || T(z,w,s)||.. < y if and only if there
exists the stabilizing positive semidefinite solution of the Riccati equation

! ' 1 "\ — C 'C '
AIT + ITA' — (TIC,'+B, D,,")(D,,D,,") " (C,IT + Dlel)+H#H+ B,B,'=0

L. C'C
A—(TIC,'+B,D,,"Y(D,,D,,")'C,II ‘721 stable

_ - u y
Ag | Lo -Byy™TICY| <, [
M(s)= [ ]
Ci | 0 I
o
o sz If 0 .

A; = A-TIC,'(D,D,,')'C, - B,C,

C,; =(D,D,,)'C,

I, =(D,D,")"

L, =—(I1C,"+B,D,,")(D,D,,")"

Q(s) is a proper stable system satisfying ||Q(s)||.. <.

Proof of Theorem
It is enough to observe that the “transpose system”

A=A1+C'\c+C,'v
u=B'A+D,'v
$=B,'A+¢

Has the same structure as the system defining the DF problem. Hence the solution is the “transpose” solution of the DF
problem. It is worth noticing that the solution depends on the particular linear combination of the state that one wants to

estimate.
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Example

0 o]
X = X+ |w,

-1 -1+Q 1 damping & =(1-€2)/2
y=[ 0}x+w,

Let consider six filters:

Filter K1: Kalman filter. The noises are assumed to be white uncorrelated gaussian
noises with identity intensities, namely W;=1, W=1.

Filter K2: Kalman filter. The noises are assumed to be white uncorrelated gaussian
noises with W;=1, W»,=0.5.

Filter K3: Kalman filter. The noises are assumed to be white uncorrelated gaussian
noises with W;=0.5, W,=1.

Filters HI,H2,H3: H,, filters with y=1.1, y=1.01, y=1.005 (notice that with y=1 the
stabilizing solution of the Riccati equation does not exist).

Other techniques of Robust filtering are possible

Norm H, Norm H.,,

I I I I I I I
| | | | | | |
| | | | | | |
Bl — — - T
I | | | | | | |
i\ | | | | | | |
[\ | | | | | | |
SF—-af\" T """ T - aT T T
[\ | | | | | | |
\\ | | | | | I I
Al NN
W | | | |
1\ | | | | |
I & I I I I
3L - - AW L T _|
RN | | | |
[ | | |
| | | |
2——77\77¥ > 1= ==+ I
| ™~ L |
| T !
‘ =

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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Partial Information

\W Z
w1 Py

A 4

X=Ax+Bw+B,u
z=Cx+D,u
y=C,x+D,w

Assumptions: FI + DF.

Theorem
There exists a feasible such that ||T(z,w,s)||» <7 if and only if

e There exists the stabilizing positive semidefinite solution of

AP+PA-(PB +C,'D,)D, %)*(B;P+DI;Q)+P% P+C'C, =0

e There exists the stabilizing positive semidefinite solution of

ALT+TIAHTIC, +B D21')(D21D21')71 (CIT+ D2lBl')+H%H+ BB'=0
v

o max A4(PI)<y’
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Structure of the regulator

u, S J y
" Q
Aﬁn Blﬁn BZﬁn
SOO(S) = Foo 0 (D21D21’)-1/2

Cofin (D21D21’)_1/2 0

Agin = A-By(D12'D1y) 'D12Ci—By(D12'Din) 'By'P+y7B By P+
+ (I-yI1P) 'L(Co+y’D2i B, 'P)

Bin = —(I=y*ITP) 'L,

Basin = (I=y “TIP) ' (By+y°TIC,'Dy5)(Dy12' D)

Cafin = —(D21D2,") (Cr+y D, B, 'P)
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Comments

It is easy to check that the central controller (Q(s)=0) is described by:

E=AE+BU+Z L (C,E—y+D,w¥)+Bw*
u=FJ_,

Where Z.=(I—y“IIP)'This closely resembles the structure of the optimal H,
controller. Notice, however, that the well-known separation principle does not hold
for the presence of the worst disturbance w*=yB,'PE.

Proof of Theorem (sketch)
Define the variables r e  as:
w=r+7°B,'Px

g=u-F.x

In this way, the system becomes

X=(A+yBB,'P)x+Br+Bu

g=-F_x+u
y=(C, +y°D,,B,")x+D,,w

This system has the same structure as the one of the OE problem. Hence, the solution can be obtained from the solution

of the OFE problem, by recognizing that the solution IT; of the relevant Riccati equation is related to the solutions P e I1
above in the following way:

I1, =T1(1 — y*PIT)™"
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