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Stability of LTI systems 
 
 

 
Asymptotic stability means that  ||x(t)||              0 as t goes to infinity, for all initial 
conditions x(0). Let p(s)=det(sI-A) the characteristic polynomial of A.  
 

1) The system is asymptotically stable if and only if all the n eigenvalues of 
matrix A are in the open left hand plane.   

2) The system is asymptotically stable if and only if the variation of the phase of 
p(j) is n/2, as  varies from 0 to infinity (Michaelov criterion).  

3) The system is asymptotically stable if and only if there exists P=P'>0 
satisfying A'P+PA<0 (Lyapunov Lemma).  

 
 
 

The family of interval polynomials  
 

with independent coefficients in the given intervals is robustly Hurwitz if and only if 
the following four Kharitonov polynomials are Hurwitz.  
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Space L2 (,T) 
 
 
 

This space is defined by all (real valued, matrix) functions of time defined in (,t) and 
zero elsewhere  such that  

Very important in engineering applications are the spaces  
L2 (,0) and L2 (,). Take for instance the last space.  
The norm  is of  

 
 
 

The L2 space 
 

L2 space: The set of (rational) functions G(s) such that  
 

(strictly proper – no poles on the imaginary axis!)  
 
With the inner product of two functions G(s) and F(s):  

 
The space L2 is a pre-Hilbert space. Since it is also complete, it is indeed a Hilbert 
space. The norm, induced by the inner product, of a function  G(s) is  
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The subspaces H2  and H2


  

 
The subspace H2 is constituted by the functions of L2 which are analytic in the right 
half plane.   (strictly proper – stable !) . The subspace H2

 is constituted by the 
functions of L2 which are analytic in the left half plane.  (stricty proper – antistable !) 
 
Note: A rational function in L2 is a strictly proper function without poles on the 
imaginary axis. A rational function in H2 is a strictly proper function without poles in 
the closed right half plane. A rational function in H2

 is a strictly proper function 
without poles in the closed left half plane. The functions in H2 are related to the 
square summable functions of the real variable t in (0,]. The functions in H2

 are 
related to the square summable functions of the real variable t in (-,0]. 
 
A function in L2 can be written in an unique way as the sum of a function in H2 and a 
function in H2

: G(s)=G1(s)+G2(s). Of course, G1(s) and G2(s) are orthogonal, i.e. 
<G1(s),G2(s)>=0, so that  
 

 
System theoretic interpretation  

of the H2 norm 
 
Consider the system  

 
and let G(s) be its transfer function. Also consider the quantity to be evaluated:  

 
where z(i) represents the output of the system forced by an impulse input at the i-th 
component of the input.  
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Computation of the norm 
Lyapunov equations 

 
“Control-type Lyapunov equation” 
 

 

“Filter-type Lyapunov equation” 
 

 

 
Other interpretations 

 
1. Assume now that w is a white noise with identity intensity and consider the 
quantity:  

 
It follows:  
 

 

 

 '''

'''

'''

''')()(')(

0

'

0

'

0 1

'

0 1

'

1 0

)()(

0

1

2

2

CCPtraceCdteBBeCtrace

BPBtraceBdtCeCeBtrace

dtBeBeCeCetrace

dtBeCeCeBetracedttztzJsG

r

ii

ii

tAAt

AttA

m

i

AttA

m

i

AttA
m

i

ii




























































 

















0''  CCAPPA oo

0''  BBAPAP rr

))()('(lim2 tztzEJ
t 



 

2

2

)('

0

)(

0 0

)(')(

0
2

)(''lim

'')'()(lim

')('')'()()(
lim

0

sGdCeBBCetrace

ddCeBwwBECetrace

EdCtAeBwdBwtACeEtrace
t

J

tA
t

tA

t

t t
tAtA

t

tt




















































 













 5

Finally, consider  the quantity 

and let again w(.) be a white noise with identity intensity. It follows:  

Notice that J3=(||G(s)||2)
1/2 since  

 
2. Consider again the space L2(0,) of time signals v(t), i.e. such that   

 
Hence, for G(s)=C(sI-A)-1BH2 we have  
 

 
where S>0 is the unique solution of AS+SA'+BB'=0.  
 
 
This means that (in the SISO case) the H2 norm corresponds to the worst peak 
value of the output when the input is a bounded energy signal.  
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Remark 
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Example 
 
Compute (exploit the definition and the Pythagoras theorem) the L2 norm of  
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What the L norm is? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Given a SISO system with transfer function G(s), the L space is the space of all G(s) 
such that  

)(sup  jG  

 

For this, it is necessary and sufficient that the (rational) function G(s) is proper with 
no poles on the imaginary axis. The space H is composed by proper (rational) 
functions G(s) with all poles with strictly negative real parts. In both cases the norm 
is given by  
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In the multivariable case  
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For the frequency-domain definition we can consider a transfer function without poles on the 
imaginary axis. It is easy to understand that the norm of a function in L can be recast to the norm 
of its stable part given through the so-called inner-outer factorization. As an example,  
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The Hamiltonian matrix 

 
 
 

 
Assume that G(s)=C(sI-A)-1B+D in minimal form, and let  be a positive number. 
Then,  
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Proof: This is equivalent to say that ||D||< and the eigenvalues of the closed-loop system in the figure do not lie 
on the imaginary axis.  But it can be easily verified that the eigenvalues are those of the Hamiltonian matrix  
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Time-domain characterization  

 
 

 
G(s) = D+C(sI-A)-1B 
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A = asymptotically stable  
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There does not exist a direct procedure to compute the infinity norm. However, it is 
easy to establish whether the norm is bounded from above by a given positive 
number .  

 
 
 
 
 
 
 
 
 
 
 
 

The symbol L2 indifferently the space of square integrable or the space of the strictly proper 
rational function without poles on the imaginary axis. If w(.) is a white noise, the infinity norm 
represents the square root of the maximal intensity of the output spectrum. 
 



 10

 

BOUNDED REAL LEMMA 
 

 
 

Let  be a positive number and let A be asymptotically stable.  
 
 
Theorem  
The three following conditions are equivalent each other:  
 
(i) ||G(s)|| <   
 
(ii) ||D||< and there exists the positive semidefinite stabilizing solution of the 

Riccati equation 
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(iii) ||D||< and there exists a positive definite solution of the Riccati inequality 
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Comments 
 
Notice that as  tends to infinity, the Riccati equation becomes a  Lyapunov equation 
that admits a (unique) positive semidefinite solution, thanks to the system stability. 
This is obvious if one notices that the infinity norm of a stable system is finite.  
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Proof of Theorem 

For simplicity, let consider the case where the system is strictly proper, i.e. D=0. The equation and 
the inequality are 
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Also denote: G(s)~=G(-s).  
 
Points (ii)(i) and (iii) (i).  
Assume that there exists a positive semidefinite (definite) solution P of the equation (inequality). 
We can write:   
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Premultiply to the left by B(sI+A)-1 e to the right by (sI-A)-1B, it follows (spectral factorization) 
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so that ||G(s)|| < .  
 
Points (i)(ii) 
Assume that ||G(s)|| <  We now proof that the Hamiltonian matrix  
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does not have eigenvalues on the imaginary axis. Indeed, if, by contradiction j is one such 
eigenvalue, then  
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Hence  Cx = --2C(jI-A)-1BB(jI+A)-1CCx,   so that G(-j)G(j)Cx=0 and Cx=0. Consequently, 
y=0 and x=0, that is a contradiction. Then, since the Hamiltonian matrix does not have imaginary 
eigenvalues, it must have 2n eigenvalues, n of them having negative real parts. The remaining on 
eigenvalues are the complex conjugate of the previous ones. This fact follows from the matrix being 
Hamiltonian, i.e. satisfying JH+HJ=0, where  J=[0 I;-I 0]. Let take the n-dimensional subspace 
generated by the (generalized) eigenvectors associated with the stable eigenvalues and let choice a 
matrix S=[X* Y*]* whose range coincides with such a subspace. For a certain asymptotically stable 
matrix T (restriction of H) it follows HS=ST. We now proof that  X*Y=Y*X. Indeed let define 
V=X*Y-Y*X=S*JS and notice that VT=S*JST=S*JHS=-S*HJS=-T*S*JS=-T*V, so that  
VT+T*V=0. The stability of T yields (by the well known  Lyapunov Lemma) that the unique 
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solution is V=0, i.e. X*Y=Y*X. We now proof that X is invertible. Indeed from  HS=ST it follows 
that AX+-2BBY=XT and –AY-CCX=YT. Premultiplying the first equation by Y* yields 
Y*AX+-2Y*BBY =Y*XT=X*YT. Hence if, by contradiction, vKer(X) then v*Y*BBYx=0 so 
that BYv=0. From the first equation we have  XTv=0 and -AYv=YTv. In conclusion, if vKer(X) 
then TvKer(X). By induction it follows TkvKer(X), and again  
-AYTkv =YTk+1v, k nonnegative. Take the monic polynomial  of minimum degree h(T) such that 
h(T)v=0 (notice that it always exists) and write h(T)=(I-T)m(T). Since T è asymptotically stable, it 
results Re()<0. Obviously q=m(T)v0. Then qKer(X),  Tq=q, -AYq=YTq=Yq. Since A is 
asymptotically stable and  Re()<0, this last equation implies Yq=0, that, together with  Xq=0 
implies q=0, thanks to the n-dimensionality of the range of  S. This is a contradiction. So we have 
proven that X is invertible. Hence, defining P=YX-1 and noticing that P*=P one has AX+-2BBY = 
XT and –AY-CCX=YT so that  –AY-CCX=YX-1(AX+-2BBY) and  AP+CC+PA+-2PBBP=0.  
 

Besides being hermitian, P is also real (and therefore symmetric). Indeed, we can write [Xc* 

Yc*]*N=[X* Y*], where N is a permutation matrix and Xc, Yc are complex matrices which are the 

complex conjugates of  X e Y,  respectively.  Hence, if Pc is the complex conjugate of P, one has   

P=YX-1=YcNN-1Xc
-1=YcXc

-1=Pc.  

Finally, the fact that P is positive semidefinite is again a consequence of the Lyapunov Lemma, 

applied to the Riccati equation.  

 

Points (i)(iii) 
Assume that ||G(s)|| < and define   
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and hence  

Then, from the implication (i)(ii) it follows that there exists the positive semidefinite and 
stabilizing solution of the Riccati equation  
 
AP+ PA+-2PBBP+ CC+I =0, so that P>0 and P solves AP+ PA+-2PBBP+ CC <0.  
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Worst Case 

 
 
The “worst case” interpretation of the H norm is given by the following result:  

 

Theorem  

Let A be Hurwitz,  ||G(s)|| <  and let x0 be the initial state of the system. Then, 

where P is the solution of the BRL Riccati equation.  
 

Proof of Theorem  

 
Consider the function V(x)=xPx and its derivative along the trajectories of the system. Letting  =(2I-DD)-1  we have:   
 

 
where wws = (B’P+D’C)x is the worst disturbance. Recalling that the system is asymptotically stable and taking the 
integral of both hands, the conclusion follows.  

 
Observation: LMI 

Schur Lemma  
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The Small Gain Theorem 

 
 

 
 
 
 
 

 
Theorem  
Assume that G1(s) is stable. Then:  
 
(i)  The interconnected system is stable for each stable G2(s) with ||G2(s)||< if 

||G1(s)||.  
 
(ii) If ||G1(s)||> then there exists a stable G2(s) with  ||G2(s)||< that 

destabilizes the interconnected system.  
 
 
 
Proof of Theorem (in the scalar case the proof easily follows from the Nyquist criterion) 
 
Point (i).  
If ||G2(s)||<and ||G1(s)||, then det[I-G1(s)G2(s)]0, for Re(s)0. This fact, together with the stability of G1(s) and 
G1(s), is equivalent to the stability of the closed-loop system (the simple check is left to the reader).  
 
Point (ii). 
For the proof of this theorem, let consider the case where the number m of column of G1(s) is less than or equal to the 
number p of columns of G2(s). The proof in the converse case is similar. Then, assume that ||G1(s)||=-1(1+)=-1, >0, 
and write the singular value decomposition of G1(j), i.e.  G1(j)=U(jjV~(j) where jSjand S(j) 
is square with dimension m. Moreover, take a stable G2(s) such that G2(j)=V(j)[I 0]U~(j). Notice that 
G2

~(j)G2(j)=2<2 so that ||G2(s)||<. We have:  
 
Since ||G1(s)||=-1, it follows that there exists a frequency b such that limb(G1())=-1. Hence, being S(j)  
diagonal with the singular values of G1(j) on the diagonal, it follows that at least one entry of S(j) goes to zero as  
tends to b.  In conclusion limbdet[I-S(j)]=0, so that the closed-loop system is not stable.  
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H and quadratic stability 

 
 
 
 
 

 ,)( xNLAx   
          
 

                                                              
 
 
 
 
  

The system is said to be quadratically stable if there exists a solution (Lyapunov 

function) to the following inequality, for every  in the set  , 

      

    

Theorem  

The system is quadratically stable if and only if  

||N(sI-A)-1L||<-1.  
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Proof of Theorem  

First observe that the following inequality holds:  
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where P2=X. Hence, if there exists X>0 satisfying  
then A+LN is asymptotically stable for every , |||| , with the same Lyapunov function (quadratic stability). This 

happens if  ||N(sI-A)-1L||<-1. In conclusion, we have proven that the condition ||N(sI-A)-1L||<-1 implies that the 
system is quadratically stable. Vice-versa assume that that the system is quadratically stable. In particular the system is 
robustly stable, i.e. stable for each  in the set ||||. Hence, for each |||| it results  

 

 
Assume by contradiction that ||G(s)|| -1, i.e. there exists b such that   

 
Since max(IG(-)G())=1>0, we have that there exists  s=j that violates (*), a contradiction.  
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Entropy 

 

Consider a stable system G(s) with state space realization (A,B,C,0), and assume that 
||G(s)||<.  

 

The -entropy of the system is defined as  

 

 

Proposition 

 
 

 
Where P and Q are the stabilizing solutions of the Riccati equations  

 
 

 
 
 

Comments 

 
It is easy to check that the -entropy measure is not a norm, but can be considered as 
a generalization of the square of the H2 norm  
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Indeed the -entropy can be written as  

 
 
Graph of f(x2) parametrized in . For large  the function f(x2) gets closer to x2 (red 
line).   

 
 
 
 
 
 
 
 
 
 
 

Comments 
An interpretation for the -entropy for SISO systems is as follows. Consider the 
feedback configuration:  

 
   w    z 
 
 
 
 
 
where w(.) is a white noise and (s) is a random transfer function with (j1) 
independent on (j2) and uniformly distributed on the disk of radius -1 in the 
complex plane.  
 
Hence the expectation value over the random feedback transfer function is  
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Proof of the Proposition 
 
First notice that  f(x2)  x2 so that the conclusion that I(G) ||G(s)||22 follows immediately.  
Now, let  

 
Of course it is ri>1. Then  
 

so that  

which is the conclusion. In order to prove that the entropy can be computed from the stabilizing solution of the Riccati 
equation, recall (Theorem 1) that, since  ||G(s)||<, it is possible to write  
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where P is the stabilizing solution of the Riccati equation (with unknown P). Then, letting (s)=T(s) it follows  
 

 
In view of the Poisson integral formula it follows that  
 
In the expressions above we set M(z-1)=ABz-1+A2Bz-2+…Moreover, O(z-2) denotes terms of powers z-2, z-3 ect.. Finally, 
the formulas det(I+ V)=1+ trace(V)+O(2) and logdet(I+ V)= trace(V)+ O(2) have been used. The proof of the 
proposition with the solution of the Riccati equation with unknown Q follows the same lines and therefore is omitted.  
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 Complex stability radius for norm bounded uncertain systems 
 

 
Aun=A+LN 

 
A= stable (eigenvalues with strictly negative real part) 

 

 
Linear algebra problem: compute  
 

 
Proposition 

The complex stability radius of A+LDN is  

rc(A,L,N)=(1/||N(sI-A)-1L||.  
 
Definition  
An uncertain system is quadratically stable if there exists P>0 (independent of the 
uncertain parameters) such that Aun'P+PAun<0 for all uncertain parameters in the 
uncertainty set.  
 
Proposition 
Let Aun=A+LN and ||||. The system is quadratically stable if and only if 
1/||N(sI-A)-1L||. <-1. 
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Real stability radius 
 
 

A= stable (eigenvalues with strictly negative real part) 
 
 

Linear algebra problem: compute  
 

 
 

 
 
 
Proposition 
 

 
 
 

Taking M=G(s)=C(sI-A)-1B it follows  
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Example 
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Polytopic uncertainty 
 
 
 
 

 
 

Proposition 
The system is quadratically stable if and only if there exists P>0 such that  
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Time-varying 
 
Proposition 
The system is robustly stable if there exists Pi>0, G, V such that  

 
Proof 
From the assumption it follows that  

 
By multiplying by [I Ai'] on the left and by [I Ai'] ' on the right it follows  
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Stability of feedback systems 

 
    d                             

            r          e                                  u                               y 
 

 
 
 

The problem consists in the analysis of the asymptotic stability  (internal stability) of 
closed-loop system from some characteristic transfer functions. This result is useful 
also for the design.  

 
 
Theorem  
The closed loop system is asymptotically stable if and only if the transfer matrix B(s) 
from the input to the output  
 

is stable.  
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Stability of interconnected SISO systems 
 

 

The closed loop system is asymptotically stable if and only if the two transfer 
functions  

 

are stable.  

 

 Notice that if V(s), M(s), are stable, then also the complementary sensitivity 
function and the sensitivity function are stable.  

 

 The stability of the two transfer functions are made to avoid prohibited (unstable) 
cancellations between C(s) and P(s).  

 

 

Example 

Let R(s)=(s-1)/(s+1),  G(s)=1/(s-1) . Then S(s)=(s+1)/(s+2), V(s)=(s-1)/(s+2) e 
M(s)=(s+1)/(s2+s-2) 
 

 

Comments 

The proof of the Theorem above can be carried out pursuing different paths. A simple 
way is as follows. Let assume that R(s) and G(s) are described by means of minimal 
realizations  G(s)=(A,B,C,D), R(s)=(F,G,H,E). It is possible to write a realization of 
the closed-loop system as cl=(Acl,Bcl,Ccl,Dcl). Obviously, if Acl is asymptotically 
stable, then B(s) is stable. Vice-versa, if B(s) is stable, asymptotic stability of Acl 
follows form being cl=(Acl,Bcl,Ccl,Dcl) a minimal realization. This can be seen 
through the well known PBH test.  

In our example, it follows  

 

Hence, Acl is unstable and the closed-loop system is reachable and observable. This 
means that G(s) is unstable as well.  
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Parametrization of stabilizing controllers  

1° case: SISO systems and P(s) stable 
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Theorem  

The family of all controllers C(s) such that the closed-loop system is asymptotically 
stable is:  
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where Q(s) is proper and stable and  Q()G() 1.  
 

 

Proof of Theorem  

 

Let R(s) be a stabilizing controller and define Q(s)=R(s)/(1+R(s)P(s)). Notice that Q(s) is stable since it is the transfer 
function from r to u. Hence C(s) can be written as =Q(s)/(1-G(s)Q(s)), with Q(s) stable and, obviously, the stability of 
both Q(s) and G(s) implies that Q()G()=R()/(1+R()G()) 1.  

 

Vice-versa, assume that Q(s) is stable and Q()G()1. Define R(s)=Q(s)/(1-G(s)Q(s)). It results that  

 

S(s)=1/(1+R(s)G(s))=1-G(s)Q(s),  

R(s)=R(s)/(1+R(s)G(s))=Q(s),  

H(s)=G(s)/(1+R(s)G(s))=G(s)(1-G(s)Q(s))  

 

are stable. This means that the closed-loop system is asymptotically stable.  

R(s)  G(s)  
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Parametrization of stabilizing controllers    

2° case: SISO systems and generic P(s)  

It is always possible to write (coprime factorization) 
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where N(s) and D(s) are stable rational coprime functions, i.e. such that there exist 
two stable rational functions X(s) e Y(s) satisfying (equation of Diofanto, Aryabatta, 
Bezout) 
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Theorem  

The family of all controllers C(s) such that the closed-loop system is well-posed and 
asymptotically stable is:  
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where  Q(s) is proper, stable and such that Q()N()  Y().  

Comments 

The proof of the previous theorem can be carried out following different ways. 
However, it requires a preliminary discussion on the concept of coprime factorization 
and on the stability of factorized interconnected systems.  
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Dc(s)-1 D(s)-1 Nc(s) N(s) 
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Lemma  

Let P(s)=N(s)/D(s) e C(s)=Nc(s)/Dc(s) stable coprime factorizations. Then the closed-
loop system is asymptotically stable if and only if the transfer matrix K(s) from [r 
d] to [z1 z2] is stable.  
 

 

1

)()(

)()(
)(














sDsN

sNsD
sK

c

c

 

 

Proof of Lemma 

Define four stable functions X(s),Y(s),Xc(s),Yc(s) such that  
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To proof the Lemma it is enough to resort to Theorem 1, by noticing that the transfer functions K(s) and B(s)  (from [r 
d] to [e u]) are related as follows:  
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Proof of Theorem 

Assume that Q(s) is stable and Q()N()  Y(). Moreover, define R(s)=(X(s)+D(s)Q(s))/(Y(s)-N(s)Q(s)). It follows 
that  

 1=N(s)X(s)+D(s)Y(s)=N(s)(X(s)+D(s)Q(s))+D(s)(Y(s)-N(s)Q(s))  

so that the functions X(s)+D(s)Q(s) e Y(s)-N(s)Q(s) defining R(s) are coprime (besides being both stable). Hence, the 
three characterist transfer functions are:  

S(s)=1/(1+R(s)G(s))=D(s)(Y(s)-N(s)Q(s)),  

V(s)=R(s)/(1+R(s)G(s))=D(s)(X(s)+D(s)Q(s)),  

D(s)=G(s)/(1+R(s)G(s))=N(s) (Y(s)-N(s)Q(s))  

Since they are all stable, the closed-loop system is asymptotically stable as well.  

Vice-versa, assume that R(s)=Nc(s)/Mc(s) (stable coprime factorization) is such that the closed-loop system is well-
posed and asymptotically stable. Define Q(s)=(Y(s)Nc(s)-X(s)Dc(s))/(D(s)Mc(s)+N(s)Nc(s)).  Since the   closed-loop 
system is asymptotically stable and (Nc,Dc) are coprime, then, in view of the Lemma it follows that  

Q(s) = (Y(s)Nc(s)-X(s)Dc(s))/(D(s)Dc(s)+N(s)Nc(s)) = [0 I]K(s)[Y(s)-X(s)]  

is stable. This leads to  C(s)=(X(s)+D(s)Q(s))/(Y(s)-N(s)Q(s)).  Finally, Q()N()  Y(), as can be easily be verified.  
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Coprime Factorization 

1° case: SISO systems 
 

 

Lemma 1 makes reference to a factorized description of a transfer function. Indeed, it 
is easy to see that it is always possible to write a transfer function as the ratio of two 
stable transfer functions without common divisors (coprime). For example  
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Euclide’s Algorithm  
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Coprime Factorization 

SISO systems 
 

 

 

Lemma 1 makes reference to a factorized description of a transfer function. Indeed, it 
is easy to see that it is always possible to write a transfer function as the ratio of two 
stable transfer functions without common (not unimodular) divisors (coprimeness in 
H). For example  
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Coprime Factorization 

MIMO systems 
 

In the MIMO case, we need to distinguish between right and left factorizations.  

 

Right and left factorization 

 
Given G(s),  find four proper and stable transfer matrices:    
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Choose K and L such that A+BK and A+LC are Hurvitz. Then:  
 

 

 
 

 

Note: (i) the set of all matrices K such that 

A+BK is stable is given by 
1WSK where 

0S and W solve the LMI 
0'''  SABWBWAS . (ii) the set of all 

matrices L such that A+LC is stable is given by 

 1PL where 0P and  solve the LMI 
0'''  PACCPA . 
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Interpretation – state-feedback control 
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 The transfer function from v to z is Nr(s). The transfer function from v to u is Dr(s). 

The design matrix K is such that A+BK is Hurwitz. Further requirements can be 

posed on the norm of the transfer function from the disturbance w to the performance 

variable z.  
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Interpretation – output injection 
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The transfer function from w to f is Nl(s). The transfer function from -y to ŷ  is Dl(s).   
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ŷ  

f  

_  



 34

Double coprime factorization 

Given P(s), find eight proper and stable transfer functions such that:  
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Hermite’s algorithm  

Observer and control law 

 

Construction of a stable double coprime factorization 

Let (A,B,C,D) a stabilizable and detectable realization of G(s) and conventionally 
write G=(A,B,C,D) .  
 

Theorem 

Let K e L two matrices such that A+BK e A+LC are stable. Then there exists a stable 
double coprime factorization, given by:   

Dr=(A+BK,B, K,I),  Nr=(A+BK,B,C+DK,D) 

Yl=(A+BK,L,-C-DK,I),  Xl=(A+BK,L,K,0) 

Dl=(A+ LC,L,C,I),   Nl=(A+LC,B+LD,C,D) 

Yr=(A+LC,B+LD, -K,I),  Xr=(A+LC,L,K,0) 
 

Proof of Theorem  

The existence of stabilizing K e L is ensured by the assumptions of stabilizability and detectability of the system. To 
check that the 8 transfer functions form a stable double coprime factorization notice first that they are all stable and that 
Md e Ms are biproper   systems. Finally one can use matrix calculus to verify the theorem. Alternatively, suitable state 
variables can be introduced. For example, from   
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one obtains y=G(s)u=Nr(s)v, u=Dr(s)v, so that G(s)Dd(s)=Nd(s).  

Similarly,   

observer
yDuC
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BuAxx
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






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
 

implies =Nl(s)u-Dl(s)y=Nl(s)u-Fl(s)G(s)y=0 (stable autonomous dynamic) so that Nl(s)=Dl(s)G(s). Analoguously one 
can proceed for the rest of the proof.  
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Parametrization of stabilizing controllers    

3° case: MIMO systems and generic P(s)  
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Theorem 

The family of all proper transfer matrices R(s) such that the closed-loop system is 
well-posed and asymptotically stable is:  
 

))()()(())()()((

))()()())(()()(()(
1

1

sDsQsXsNsQsY

sQsNsYsQsDsXsR

llrllr

rrLrrs








 

 

where Qr(s) [Ql(s)] is stable and such that Nr()Qr()Yl() [Ql()Nl()Yr()].  
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Lemma 

Let G(s)=Nr(s)Dr(s)-1 and G(s)=Nc(s)Dc(s)-1 stable right coprime factorizations. Then 
the closed-loop system is asymptotically stable if and only if the transfer matrix K(s) 
from  [r d] to [z1 z2] is stable.  
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R(s) G(s)

Dc(s)-1 Dr(s)-1 Nc(s) Nr(s) 
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Proof of Lemma 

It is completely similar to the proof of a previous Lemma (case 2).  
 

Proof of Theorem 

Assume that Q(s) is stable and define  

R(s)=(Xs(s)+Dr(s)Q(s))(YL(s)-Nr(s)Q(s))-1 

It results that  

I=Nl(s)Xl(s)+Dl(s)Yl(s) 

 =Nl(s)(Xl(s)+Dr(s)Q(s))+Dl(s)(Yl(s) –Nr(s)Q(s))  

so that the functions Xl(s)+Dr(s)Q(s) e lL(s)-Nr(s)Q(s) defining  R(s) are right coprime (besides 
being both stable). The four transfer matrices characterizing the closed-loop are:  
 

(1+GR)-1= (Yl-NrQ)Ds  

-(1+GR)-1G= (Yl-NrQ)Nl  

(1+RG)-1R=R(I+PC)-1= (Xl+DrQ)Dl  

(1+RG)-1=I-R(I+PR)-1R= I-(Xl+DrQ)Nl  
 

They are all stable so that the closed-loop system is asymptotically stable.  

Vice-versa, assume that R(s)=Nc(s)Dc(s)-1 (right coprime factorization) is stabilizing. Notice that the 
matrices  
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have stable inverse. Hence,   
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has stable inverse as well. Then,  

Q(s)=(Yr(s)Nc(s)-Xr(s)Dc(s))(Dl(s)Dc(s)+Nl(s)Nc(s))-1  

is well–posed and stable. Premultiplying equation (*) by  

 

[Mr(s) –Xl(s); Nr(s) Yl(s)]  
 

it follows   
 

Nc(s)Mc(s)-1=(Xl(s)+Mr(s)Qr(s))(Yl(s)-Nr(s)Qr(s))-1. 
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Observation 

 

Taking Q(s)=0 we have the so-called central controller 

 

R0(s) =Xl(s)Yl(s)-1 

 

which coincides with the controller designed with the pole assignment technique.  

 

Taking r=d=0 one has:  
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Strong Stabilization  

 
 

 

 

 

 

 
The problem is that of finding, if possible, a stable controller which stabilizes the 
closed-loop system.  

 

Example 
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is not stabilizable with a stable controller. Why?  
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is stabilizable with a stable controller. Why?   

 
Stabilizazion of many plants  

Two-step stabilization 

 

C(s) P(s) 
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Interpolation 
 

 

Let consider a SISO control system with P(s)=N(s)/M(s) e C(s)=Nc(s)/Mc(s) (stable 
coprime stabilization). Then the closed-loop system is asymptotically stable if and 
only if U(s)=N(s)Nc(s)+M(s)Mc(s) is an unity (stable with stable inverse).  

 

Since we want that C(s) be stable, we can choice Nc(s)=C(s) and Dc(s)=1. Then,  
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Of course, we must require that C(s) be stable. This fact depends on the role of the 
right zeros of P(s). Indeed, if N(b)=0, with Re(b)0 (b can be infinity), then the 
interpolation condition must hold true:  
 

)()( bMbU   

 

Consider the first example and take M(s)=(s-2)(s+2)/(s+1)2, N(s)=(s-1)/(s+1)2. Then, 
it must be: U(1)=-0.75, U()=1. Obviously this is impossible.  

Consider the second example and take M(s)=(s-1)/(s+2) e N(s)=(s-2)/(s+2)2. It must 
be U(1)=0.25, U()=1, which is indeed possible.  

 

 

Parity interlacing property (PIP) 

Theorem 
 

 P(s) è strongly stabilizable if and only if the number of poles of P(s) between any 
pair of real right zeros of P(s) (including infinity) is an even number.  

 

 We have seen that the PIP is equivalent to the existence of the existence of a unity 
which interpolates the right zeros of P(s). Hence, if the PIP holds, the problem 
boils down to the computation of this interpolant.  

 

 In the MIMO case, Theorem 6 holds unchanged. However it is worth pointing out 
that the poles must be counted accordingly with their Mc Millan degree and the 
zeros to be considered are the so-called blocking zeros.  
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Optimal Linear Quadratic Control (LQ) 

versus Full-Information H2 control 

Assume that  

 

and notice that these conditions are equivalent to  

 
Find (if any) u() minimizing J 
 
Let C11 a factorization of W=C11C11 and define  

 
Then, it is easy to verify that  

Moreover, the free motion of the state can be considered as a state motion caused by 
an impulsive input. Hence, with w(t)=imp(t), let  

  
The (LQ) problem with stability is that of finding a controller  

 
fed by x and w and yielding u that minimizes the H2 norm of the transfer function 
from w to z.   
LQS problem 
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Full information 

 
 
                             w                                     z  
                             u                                      x 
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Problem: Find the minimun value of ||Tzw||2 attainable by an admissible controller. 
Find an admissible controller minimizing ||Tzw||2. Find a set of all controllers 
generating all ||Tzw||2<. 

 
Assumptions 
(A,B2) stabilizable 
D12D12>0 
(Ac,C1c) detectable  
  

 
Ac = A-B2(D12D12)

-1 D12C1   stable invariant zeros of (A,B2,C1,D12) 
C1c = (I-D12 (D12D12)

-1 D12)C1 

    R

P 
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Solution of the Full Information Problem 

 
 
Theorem  
There exists an admissible controller FI minimizing ||Tzw||2 . It is given by  
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where P is the positive semidefinite and stabilizing solution of the Riccati equation 
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The minimum norm is:  

 
1

2221211121
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The set is given by  
 

                                                             x 
 
 
                    u                                       w 
 
 
where Q(s) is a stable strictly proper system, satisfying  
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2
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Proof of  Theorem  
 
The assumptions guarantee the existence of the stabilizing solution to the Riccati equation P. Let v=u-F2x so that 
u=F2x+v, where v is a new input. Hence,  z(s)=Pc(s)B1w(s)+U(s)v,  where U(s)=Pc(s)B2+D12. It follows   that  
Tzw(s)=Pc(s)B1+U(s)Tvw(s). The problem is recast as to find a controller minimizing the norm from w to z of the 
following system  

 
 
    w     v 
 
    u     x 
             w 
 
 
 
 
where Pv is given by:  
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Notice that Tzw(s) is strictly proper iff Tvw(s) is such. Exploiting the  Riccati equality it is simple to verify that 
U(s)~U(s)=D12D12  and that U(s)~Pc(s) is antistable. Hence, ||Tzw(s)||

 2

2=||Pc(s)B1||
2

2 + ||Tvw(s)||
2

2. Hence the optimal 

control is v=0, i.e. u=F2x.  
Finally, take a controller K(s) such that ||Tzw(s)||

2

2 < 2. From this controller and the system it is possible to form the 

transfer function Q(s)=Tvw(s). Of course, it is ||Q(s)||
2

2 < 2-2. It is enough to show that the controller yielding 

u(s)=F2x(s)+v(s)=F2x(s)+Q(s)w(s) generates the same transfer function Tzw(s). This computation is left to the reader.  
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Pv 
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ACTUATOR DISTURBANCE 

 

 

The optimal H2 state-feedback controller is  
 

 

Proposition 

The optimal H2 control law ensures an H norm of the closed loop system (from w to 
z) lower than 2||D||.  
 
 
 
 
Proof. Consider the equation of the Bounded Real Lemma for the closed-loop system, i.e.  

Now take Q=P/and consider both equations in P. It follows:  
 

This condition is verified by choosing 1 and the minimum  such that R0, i.e. the minimum  such that  

-2 
The term -2 is maximized by =0.5, for which -2=0.25, so that the minimum  is  
 
 

DuCxz

uwBAxx


 )(

22

1
22

'''0

)''()'(,

DFDFCCPAPA

CDPBDDFxFu


 

0)()'(')()'( 22
2

22   DFCDFCQQBBBFAQQBFA 

  211111 )1()'(,0'')'(')1(    IDDRPPBRBCDDDDIC

0)(')( 22222   DDDI 

)(2 D 



 45

 
Disturbance Feedforward 

 

 
Same assumptions as FI+stability of A-B1C2 

  
C2=0  direct compensation 

 C20  indirect compensation 
 
 
                           A-B1C2   B1      B2              y         u 
 
       R(s) =              0         0         I 
                               I          0        0 
                              -C2           I         0 
 
         KDF 
 

The proof of the DF theorem consist in verifying that the transfer function from w to z achieved by 
the FI regulator for the system A,B1,B2,C1, D12 is the same as the transfer function from w to z 
obtained by using the regulator KDF shown in the figure.  
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 Output Estimation 

 
 
                             w                                     z  
                             u                                         y 
                                                                   
                                                                
 
 
 

                  w                      y       u = - estimate of C1x 
           z=error 

 
                                                          
 
Assumptions 
(A,C2) detectable 
D21D21> 0     Af = A-B1 D21(D21D21)-1 C2 

B1f = B1(I-D21 (D21D21)-1D21) 
(Af,B1f) stabilizable  
(A-B2C1) stable 
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Solution of the  
Output Estimation problem 

 

 
Theorem 
There exists an admissible controller (filter) minimizing ||Tzw||2. It is given by  
 
where  

 

 -1212121222 DD)D'( BPCL   
 
and P is the positive semidefinite and stabilizing solution of the Riccati equation 

 

stableCLADDDBPCAA

BBBDPCDDDBPCPAAP

ff 22
1

21212112

111212
1

21212112

)')(''(

0')'()')(''('








 

 
The optimal norm is  

 

)()()(),'()( 2121
1

2211

2

2
1

2

2
DLBCLAsIsPPCCtracesPCT ffzw    

 
The set of all controllers generating all ||Tzw||2 <  is given by 

 
        u   y 
             Aff -B2C1   L2      -B2 

M(s)=     

              C1            0          I 
              C2             I          0                                                       
 
Where Q(s) is proper, stable and such that ||Q(s)||22 < C1Pf(s)||22 

 
Proof of Theorem  
It is enough to observe that the “transpose system” has the same structure as the system defining the DF problem. Hence 
the solution is the “transpose” solution of the DF problem. It is worth noticing that the H2 solution does not depend on 
the particular linear combination of the state that one wants to estimate.  
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Kalman filtering 

 
Given the system 
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where [z1 z2] are zero mean white Gaussian noises with intensity  
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find an estimate of the linear combination Sx of the state such as to minimize  
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the problem is recast to find a controller that minimizes the H2 norm from w to z.  
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Remark on Wiener filtering (frequency domain) 
 

 
Given G(s) strictly proper and stable, find F(s) stable such that the H2 norm of the 
transfer function from w=[w1 w2] to e is minimized.  
  
The transfer function from w to e is:  FGFGTew   and hence  
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where Go is stable with stable inverse such that Go Go
~ =I+GG~. Moreover  

~1
0

~1
0

~1~   ooo GIIGGGGGG   
Applying the Pythagorean theorem, the optimal filter is given by 
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Comments 

1) Letting G(s)=C(sI-A)-1B, with A Hurwitz, and P the stabilizing solution of 
AP+PA-PBBP+CC=0 it follows that G0(s)=I+C(sI-A)-1PC so that Go(s)-1=I-
C(sI-A+PCC)-1PC and Fott(s)= C(sI-A+PCC)-1PC, which corresponds to the 
optimal Kalman filter and optimal output estimator.  

2) It results that  
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0
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since ||G0
-1||1 it follows that ||Tew||2.  
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The partial information problem  
(LQG) 

 
                             w                                     z  
                             u                                         y 
                                                                   
                                                                
 

 
Assumptions: FI + DF.  

 
Theorem 
There exists an admissible controller minimizing ||Tzw||2. It is given by  

 
The optimal norm is  

 
2
0

2

22

2

21

2

21

2

22

2

2
)()()()(  sPFBsPsPCLsPT fcfczw  

 
The set of all controllers generating all ||Tzw||2 <  is given by 

 
        u   y 
             A +B2F2+L2C2  L2   -B2 

S(s)=     

              -F2            0          I 
              C2              I          0                                                       
 
where Q(s) is proper, stable and such that ||Q(s)||22 < 
Proof  
Separation principle: The problem is reformulated as an Output Estimation problem for the estimate of -F2 x.  
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Important topics to discuss 
 
 
 Robustness of the LQ regulator (FI) 
 
 Robustness of the Kalman filter (OE) 
 
 Loss of robustness of the LQG regulator (Partial Information) 
 
 LTR technique 
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The H 

design problem 
 
 
 

       du                                                dc 
 

              c0                  y                u        up                                                  c
 

   
 

 
 
 
 
 
 
 

                dr 
 

Find G(s) in such a way to guarantee:  
 
 Stability 
 Satisfactory performances 
 
Design in nominal conditions 
Uncertainties description 
Design under uncertaint conditions 
 

R(s) G(s) 
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Nominal Design 

 
 
G(s) = Gn(s) 
 
The performances are expressed in terms of requirements on some transfer functions 

 
 
                                            du                                     dc 
            c0           y               u        up                                  c 
 
 
 
 
                dr 
Characteristic functions: 
 
 Sensitivity  Sn(s)=(I+Gn(s)R(s))-1  

dc  c, c0y, -dry 
 

 Complementary sensitivity 
Fn(s)=Gn(s)R(s)(I+Gn(s)R(s))-1 
c0c, -drc 
 

 Control sensitivity 
Vn(s)=R(s)(I+Gn(s)R(s))-1 
c0up, -drup, -dcup 

 
  
 

R(s) G(s) 
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Shaping Functions  
 
In the SISO case, the requirement to have a “small” transfer function (s) can be 
well expressed by saying that the absolute value |(j)|, for each frequency , 
must be smaller than a given function () (generally depending on the 
frequency):  
 
Analogously, in the MIMO case, one can write  

 
This can be done by choosing a matrix transfer function W(s), stable with stable 
inverse (“shaping” function) , such that  

A general requirement is that the sensitivity function is small at low frequency 
(tracking) whereas the complementary sensitivity function is small at high 
frequiency (feedback disturbances attenuation). Mixed sensitivity:  

 

 
 

Description of the uncertainties 
The nominal transfer function Gn(s) of the process G(s) belongs to a set G which 
can be parametrized through a transfer function (s) included in the set  
 
For instance,  

 
 G = {G(s) | G(s) = Gn(s)+(s)} 

 G = {G(s) | G(s) = Gn(s)(I+(s))} 

 G = {G(s) | G(s) = (I+(s))Gn(s)} 

 G = {G(s) | G(s) = (I-(s))-1Gn(s)} 

 G = {G(s) | G(s) = (I-Gn(s)(s))-1Gn(s)} 
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Examples 
 
 
 G = {G(s) | G(s) = Gn(s)+(s)} 
 

Uncertaint unstable zeros 
 

 G = {G(s) | G(s) = Gn(s)(I+(s))} 
 

Unmodelled high frequency poles or unstable zeros 

  
 G = {G(s) | G(s) = (I-(s))-1Gn(s)} 
 

Unmodelled unstable poles 

 
 
 G = {G(s) | G(s) = (I-Gn(s)(s))-1Gn(s)} 
 

Uncertain unstable poles 
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Design in nominal conditions 

Example of mixed performances 
 

       z1 
 
                                            du                                     dc 
       w = c0          y                u        up                                c          z2 
 
 
 
 
                dr 
 
     w                                  z   

 
    u                                        y 
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Computations in state-space.  

 
Let du=dc=dr=0 and Gn(s) be described by 
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Let W1(s) be described by 
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Then system P(s) is described by 
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Design under uncertain condition: Robust stability and nominal performances 

 
       z2 
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Design under uncertain condition 
Robust stability and robust performances 

 
       z2 

 
       z1 
 
                            dc=w 
                                                                dc 
              c0          y                     u                                 c  
 
 
 
                dr 
 
1) Robust sensitivity performance 

 
2) Robust stability 

 
Result: (take W5=1) 
1) and 2) are both achieved if the controller is such that  
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The proof of the result follows from the following  

 
 

Lemma 

Let X(s) and Y(s) in L and  a generic L function such that ||Y||<1. If  

 

 

Then  

 

 

Proof of the Lemma 
The first point directly follows from the assumption. The second point is trivial if X=0. Hence, assume X0 so that   
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The Standard Problem 

 
                       w                                  z   

 
                       u                                        y 

 
 

 

 
All the situations studied so far can be recast in the so-called standard problem: Find 
K(s) in such a way that:  

 
 The closed-loop system is asymptotically stable 
 

 


),,( swzT  

 
 
Existence of a feasible R(s) and parametrization of all controllers such that the 
closed-loop norm between w and z be less than .  

    R 

P 
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Full information 
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Assumptions 
(A,B2) stabilizable 
D12D12>0 
(Ac,C1c) detectable  
  

 
Ac = A-B2(D12D12)

-1 D12C1 
C1c = (I-D12 (D12D12)

-1 D12)C1 

    R 

     P



 63

 
Solution of the Full Information Problem 

 
 
Theorem 
There exists a controller FI, feasible and such that ||T(z,w,s)|| <  if and only if there 
exists a positive semidefinite and stabilizing solution of the Riccati equation 
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  )C'D'(D'D 1122
-1

1212  PBF  
 
Q(s) is a stable system, proper and satisfying ||Q(s)|| < .  


Comments 
 
 
 Asthe central controller (Q(s)=0) coincides with the H2 optimal controller  
 
 The parametrized family directly includes the only static controller u=Fx.  
 
 The proof of the previous result, in its general fashion, would require too much 

time. Indeed, the necessary part requires a digression on the Hankel-Toeplitz 
operator. If we drop off the result on the parametrization and limit ourselves to the 
static state-feedback problem, i.e. u=Kx, the following simple result holds:  

 

 F 

 Q(s)

--2B1P
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Theorem 
There exists a stabilizing control law u=Kx such that the norm  of the system 
(A+B2K,B1,C1+D12K) is less than  if and only if there exists a positive definite 
solution of the inequality:  

 

 
 
Observation: LMI 

 

 

 
        Schur Lemma       

X=2P-1 
 

 
 
Ac = A-B2(D12D12)

-1 D12C1 
C1c = (I-D12 (D12D12)

-1 D12)C1 
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Proof of Theorem  
Assume that there exists K such that A+B2K is stable and the norm of the system (A+B2K,B1,C1+D12K) is less than . 
Then, from the we know that there exists a positive definite solution of the inequality 
 

0)()'(

')()'(
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11
2

22
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    (*) 

 
Now, defining  

 

  )C'D'(D'D 1122
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1212  PBF  

 
the Riccati inequality can be equivalently rewritten as  

 

 
so concluding the proof. Vice-versa, assume that there exists a positive definite solution of the inequality. Then, 
inequality (*) is satisfied with K=F, so that with such a K, the norm of the closed-loop transfer function is less than  
(BRL).  
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Parametrization of all algebraic 
“state-feedback” controllers  

 

Define:   

Theorem 

The set of all controllers u=Kx such that the H norm of the closed-loop system is 
less than  is given by:  

 

Proof of Theorem 7  
We prove the theorem in the simple case in which C1D12=0 and D12D12=I. The LMI is equivalent to 
If there exists W satisfying such an inequality, it follows that the inequality  

 

is satisfied with K=W2W1
-1 and P=�2W1

-1. The result follows from the BRL. Vice-versa, assume that there exists P>0 

satisfying  this last inequality. The conclusion directly follows by letting W1=2P-1 e and W2=W1K.  
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Example 

 
 

uxz

uwxx









































1

0

00

01

)(
1

0

11

10


 










0

00
Arobustness  

 
inf = 0.75,   = 0.76 
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Mixed Problem H2/H 
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The problem consists in finding u=Kx in such a way that  

 
 


),,,(:),,,(min

2
KswzTKswTK  

 
 For instance, take the case z=. The problem makes sense since a blind 

minimization of the H infinity norm may bring to a serious deterioration of the 
H2 (mean squares) performances.  

 
 Obviously, the problem is non trivial only if the value of  is included in the 

interval (inf 2), where ing is the infimun achievable H norm for T(z,w,s,K) as a 
function of K, whereas  2 is the H norm of T(z,w,s,KOTT) where KOTT is the 
optimal unconstrained H2 controller.  

 
 This problem has been tackled in different ways, but an analytic solution is not 

available yet. In the literature, many sub-optimal solutions can be found (Nash-
game approach, convex optimization, inverse problem, …) 
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Post-Optimization procedure 
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  simplifying assumptions LM=0, MM=I 

 

Let Ksub a controller such that ||T(z,w,s,Ksub)||<. For [0 2], define the matrices  

 

A=A+(1-)2B2Ksub 

B2 =(2 -2)1/2B2 

C =L+(1-)MKsub 

 
and the standard Riccati equation  

)(0''' 22 RICCCPBBPAPPA       
 
Notice that if (A,L) is detectable and (A,B2) stabilizable, such an equation always 
admits the stabilizing solution (positive semidefinite) P for each [0 2]. For each 
[0 2] we can write the family of controllers 
 

 
)(')1( 2 conPBKK sub   
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Post-Opt Algorithm  
 

Theorem 
 

Each controller K of the family (-con) is a stabilizing controller and is such that  
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KswT
d

d

KswTKswT

 

 
Interpretation: For =0, the controller is K0=Ksub. Hence, ||T(z,w,s,K0)||<. For =1, 
the controller is K1=KOTT, so it coincides with the optimal unconstrained H2 
controller, hence  ||T(z,w,s,K1)||  . One varies  till the value  which is closest to 
=1 and such that ||T(z,w,s,K1 )||=. The reason of the equality is in the fact (as it is 
possible to proof starting from the necessary conditions) that the optimal mixed 
controller Kottmix satisfies  ||T(z,w,s,Kottmix )||=.  
  
||T(z,w,s,K)||2    ||T(z,w,s,K)|| 

 
                                              
 
 
          1                    * 1                                 
 
Proof of Theorem  
First notice that the equation (-RIC) canm be rewritten as:  
 

)(0'')()'( 22 RICLLKKKBAPPKBA    

so that   
||T(,w,s,K)||2 =(Trace(B1PB1))

1/2 

The fact that the norm ||T(,w,s,K)||2 is symmetric with respect to =1 follows directly (-RIC) by inspection. Taking 
the derivative with respect to  one obtains  

0')1(2'   FXXF  

where X is the derivate of P  with respect to  and   
F=A-B2B2P,  =Ksub+PB2 

Matrix F is stable since P is the stabilizing solution of (-RIC). Hence, for the Lyapunov Lemma the conclusion 
follows. 
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Example 
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inf = 0.75,  2 = 0.8415, =0.8 
 
Ksub=Kcen=[-0.6019   -0.7676] 

 
 
 
 
 
 
 
 
 
*=0.56,  K*=[-0.4981   -0.5424] 

 
Performances with respect to  
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Disturbance Feedforward 

 

  

    Same assumptions as FI+stability of A-B1C2 

  
C2=0  direct compensation 

 C20  indirect compensation 

 
 

 
                           A-B1C2   B1      B2              y         u 
 
       R(s) =              0         0         I 
                               I          0        0 
                              -C2           I         0 
 
         KDF 
 

The proof of the DF theorem consist in verifying that the transfer function from w to z achieved by 
the FI regulator for the system A,B1,B2,C1, D12 is the same as the transfer function from w to z 
obtained by using the regulator KDF shown in the figure.  
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 Output Estimation 
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                             u                                         y 
                                                                   
                                                                
 
 
 

                   w                      y   u=- estimate of C1x     
           z=error 

 

       
Assumptions 
(A,C2) detectable 
D21D21> 0     Af = A-B1 D21(D21D21)-1 C2 

B1f = B1(I-D21 (D21D21)-1D21) 
(Af,B1f) stabilizable  

(A-B2C1) stable 
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Solution of the  

Output Estimation problem 

 
 
Theorem  
There exists a feasible controllor (Filter) such that ||T(z,w,s)|| <  if and only if there 
exists the stabilizing positive semidefinite solution of the Riccati equation 

 

        u   y 
             Aff        L  -B2  -2C1                                                               
M(s)=     

              C1        0           I                                 --- 
              C2f        If          0                                                       
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Q(s) is a proper stable system satisfying ||Q(s)|| < .  
 
Proof of Theorem 
It is enough to observe that the “transpose system”  

 
Has the same structure as the system defining the DF problem. Hence the solution is the “transpose” solution of the DF 
problem. It is worth noticing that the solution depends on the particular linear combination of the state that one wants to 
estimate.  
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Example 
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Let consider six filters:  
Filter K1: Kalman filter.  The noises are assumed to be white uncorrelated gaussian 
noises with identity intensities, namely W1=1, W2=1.  
Filter K2: Kalman filter. The noises are assumed to be white uncorrelated gaussian 
noises with W1=1, W2=0.5.  
Filter K3: Kalman filter. The noises are assumed to be white uncorrelated gaussian 
noises with W1=0.5, W2=1. 
Filters H1,H2,H3: H filters with =1.1, =1.01, =1.005 (notice that with =1 the 
stabilizing solution of the Riccati equation does not exist).   
  
Other techniques of Robust filtering are possible 
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Partial Information 
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Assumptions: FI + DF.  

 
Theorem 
There exists a feasible such that ||T(z,w,s)|| <  if and only if  
 
 There exists the stabilizing positive semidefinite solution of  
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 There exists the stabilizing positive semidefinite solution of  
 

0'
'

)'()')(''(' 112
11

1212
1

21212112   BB
CC

BDCDDDBCAA
  

 2)(max  Pii  
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Structure of the regulator 

 
 
   u      y 

 
 
 
 
 
 
 
 
 
 
   Afin          B1fin              B2fin         
 
 S(s) = F    0    (D21D21)-1/2 
 
   C2fin       (D21D21)-1/2        0 
 
 
 
Afin = AB2(D12D12)

-1D12C1B2(D12D12)
-1B2P-2B1B1P+ 

   + (I-2P)-1L(C2+-2D21B1P)  
B1fin = (I-2P)-1L 
B2fin = (I-2P)-1(B2+-2C1D12)(D12D12)

-1/2 
C2fin = (D21D21)-1(C2+-2D21B1P) 

 

   S 

  Q 
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Comments 
 
It is easy to check that the central controller (Q(s)=0) is described by:   
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Where Z=(I-2P)-1This closely resembles the structure of the optimal H2 
controller.  Notice, however, that the well-known separation principle does not hold 
for the presence of the worst disturbance w*=-2B1P.  

 
Proof of Theorem (sketch) 
Define the variables r e q as: 
w = r + -2B1Px 
q = u Fx 
In this way, the system becomes 
 

This system has the same structure as the one of the OE problem. Hence, the solution can be obtained from the solution 
of the OE problem, by recognizing that the solution t of the relevant Riccati equation is related to the solutions P e  
above in the following way:  
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