
Energy (and Geometrical) Aware Robotics
Robots follow the laws of physics!



Energy or no Energy, that is the question
No relation with energy 

No way to work in all situations during 
interaction 

No robustness 

Environment cannot be “properly 
modeled”! 

Unespected behaviour 

…

Passivity or better:  
Energy Awareness 

Track and Control Energy flows 

Never problems with stability 

Robust 

Can Couple Digital-Continuos World 

Handle Time delays 

….



Geometry or no Geometry, that is the question

No Geometry 

Complicated equations 

Solutions dependent on coordinates 

Non physical nonsense: eigenvalues of 
Inertias, random ortogonality, projections,  
non invariant indeces,… 

Singularity 

Unexpected  instabilities 

..

Geometry 

Simple descrpition 

Coordinate Invariant 

Physical 

No singularity 

Directly see if something is wrong: 
inverses, projections, error 
measurement 

….



Take Home Message

Learn Geometry: Lie Groups 

Respect Physics: Thinks physical (using geometry), not mathematics alone

Sophus Lie

Visser, M., Stramigioli, S., & Heemskerk, C. (2006). Cayley-Hamilton for roboticists. In 
Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on (Vol. 1, pp. 
4187–4192). Beijing: IEEE Robotics and Automation Society. doi:10.1109/IROS.
2006.281911

Arthur Cayley William Hamilton 



What is the Difference ?



What is the Difference ?

Practically no interaction with 
environment 
Stiff 
Precise 
Control a signal

•Interaction IS the goal 
•Compliant Behavior 
•Not Precise 
•Control an interaction, NOT a signal



Different Than Robust Control!

Environment completely unpredictable 

Environment intrinsically non linear and not 
always present 

Goal NOT TO CONTROL A SIGNAL 

System to be controlled can continuously 
change depending on environment 

….



In Interactive Robotics

Disturbances are NOT small and ARE completely 
umpredictable  

Bidirectional interaction ALL the times 

Energy plays a role for stability and safety



About Mechanical Interaction

Interaction: relation of F and x

30. Interaction

Interaction: exchange of energy (P = Fẋ)

Stramigioli, S. (2001). 
Modeling and IPC 
control of interactive 
mechanical systems — 
A coordinate-free 
approach (Vol. 266). 
London: Springer 
London. doi:10.1007/
BFb0110400



By means of control, we can achieve a certain robot dynamics: 

and the environment will have its own behavior:

By means of control, we can achieve a certain robot dynamics:

R(s)

�
F (s)
x(s)

⇥
= 0, R(s) ⇥ R1�2[s]

and the environment will have its own behavior:

RE(s)

�
F (s)
x(s)

⇥
= 0, RE(s) ⇥ R1�2[s]

By means of control, we can achieve a certain robot dynamics:

R(s)

�
F (s)
x(s)

⇥
= 0, R(s) ⇥ R1�2[s]

and the environment will have its own behavior:

RE(s)

�
F (s)
x(s)

⇥
= 0, RE(s) ⇥ R1�2[s]



Position Control
Properly speaking we can talk about position control in the case in which the 
Robot is Isolated which means

x(t) R(s)

F (t) = 0,8t

only dependent  on the robot



Force Control
Properly speaking we can talk about force control in the case in which the 
Robot is “Glued” to a fixed point, which means

R(s)
ẋ(t) = 0,8t

F (t)only dependent  on the robot



All other situations
In ALL other cases, BOTH F(t) and x(t) depend on BOTH the robot and the 
environment 

results in a unique solution for F(t) and x(t)

In ALL other cases BOTH F (s), x(s) depend on BOTH the robot and
the environment: �

R(s)
RE(s)

⇥ �
F (s)
x(s)

⇥
=

�
0
0

⇥

� unique solution for F (t) and x(t)



For an interacting system 

We CANNOT intrinsically control        and/or       INDEPENDENTLY of the 
environment 

We CAN control           intrinsically and INDEPENDENTLY of the environment

Conclusion

F (t)
x(t)

R(s)



Port Based Thinking:  
What is it and why is this useful?



Signals versus Ports

Hp



Signals versus Ports



Conclusions on example
•With Physical Systems, signal modeling is often not suitable 

• Physical Energy governs dynamics 

•Always a bi-directional effect 

•To model/control real OPEN systems signal modeling is NOT the solution 

•This is true also between domains: typical example DC motor gyration   

•Robotics IS interconnection of multi-domain parts, we need something more ! 

•In Haptics and Telemanipulation even more so!!
Port-based 



About Mechanical Interaction

Controlled 
Robot

Environment/
Human

Forces, Velocities

Environment is Non-linear, Unpredictable, greatly varying...



Power Bond

•             belong to vector spaces in duality
•                     represents the instantaneous power 

flowing from A to B
• In general an a-causal description !!

A B

e, f
e(f) = eT f



Examples
flow effort

current voltage

Domain

Electrical

1D mechanical velocity force

Rotational mechanics Ang.vel. torque

rigid 3D mechanics twist wrench

flow    
geometry

<
<

Lie Groups 
Geometry
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Network structure
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ẋ1

ẋ2
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A General Interactive and Controllable Robot 

Control Port

Interaction Port



Control by Interconnection



System composition in general

Control by interconnection



Impedance Control

 

 

F
x

mSystem

mDesired Behavior

Note:  
1. Only position measurement available,  
2. Saturation F

Stramigioli, S. (1996). CREATING 
ARTIFICIAL DAMPING BY 

MEANS OF DAMPING 
INJECTION. In K.Danai (Ed.), 

Proceedings of the ASME 
Dynamic Systems and Control 
Division (Vol. DSC.58, pp. 601–

606). Atlanta, (GE).



Solution using interconnection ideas
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Other Examples

DLR Hand and Dual Arm System

A well known approach in the robotics literature for co-
ordinated control of multiple robots, which also motivated
our chosen control strategy, is the so-called IPC (Intrinsi-
cally Passive Controller) proposed by Stramigioli [22]. This
controller was developed for the control of multi-fingered
articulated hands and has an intuitive physical interpretation
as it consists of several spatial springs which connect the end-
effectors (i.e. finger tips) of a robotic hand with a virtual
object. The controller structure for two-arm manipulation with
Justin was designed similarly. Spatial stiffness components
(and their respective potential functions) were used as building
blocks in the controller design.

Firstly, we use two spatial springs Kr and Kl for the
right and the left arm, which connect the end-effectors to
the virtual equilibrium frames Hr,d and H l,d. If the springs
are implemented as complete 6D-springs (i.e. with full rank
(6×6)-stiffness matrices), then the complete Cartesian motion
of the arms can be influenced already via only these two
springs. Secondly, it is useful if some part of the compliance
behavior is instead defined via an additional coupling spring
Kc between the arms. As an example one might think of an
impedance behavior in which only the rotational stiffness is
implemented by the springs Kr and Kl while the translational
stiffness is implemented via the coupling spring Kc. Clearly,
in such a configuration (as shown in Fig. 7) both the rest
lengths as well as the stiffness values of the individual springs
and the coupling spring should be chosen in a compatible

way such that the springs do not interfere with each other.
With this controller structure one can thus implement different
behaviors, ranging from an independent control of the arms
via Kr and Kl to a pure coupling based on Kc by choosing
suitable stiffness matrixes of the individual spatial springs.

Fig. 7. Two-arm compliance behavior.

As described above, the controller structure basically con-
sists of three spatial springs which connect the desired frames
Hr,d and H l,d, the end-effector frame of the right arm
Hsr(q), and the end-effector frame of the left arm Hsl(q)
by pairs. In the following section an example implementation
for these springs is discussed shortly.

C. Realization of the spatial springs

Consider a spatial spring between two general frames
Hsa = [Rsa,psa] ∈ SE(3) and Hsb = [Rsb,psb] ∈ SE(3),
where Rsa ∈ SO(3) and Rsb ∈ SO(3) denote the rotation

matrices of the frames w.r.t. a static base frame Hs ∈ SE(3).
The vectors psa ∈ R3 and psb ∈ R3 are expressed in Hs and
point from the origin of Hs to the origins of Hsa and Hsb,
respectively. Concerning the orientation of the end-effectors, a
quaternion representation is used (see [23]). The vector part of
the unit quaternion representation from Rab = RT

saRsb shall
be denoted by ϵab(Rab).

The elastic part of the spring is implemented indirectly via
a potential function Vab(Hsa,Hsb) which is composed of a
translational part and a rotational part in the form

Vab(Hsa,Hsb) =
1

2
(psa − psb)

T Kt(psa − psb) +

2ϵT
ab(Rab)Krϵab(Rab) .

Herein Kt ∈ R3×3 and Kr ∈ R3×3 are the symmetric and
positive definite translational and rotational stiffness matrices.

Based on the above definition of the individual potential
functions, the potential for the elastic part of the compliance
behavior can be summarized as

V (Hsd, q) = Vdr(Hr,d,Hsr(q)) + Vdl(H l,d,Hsl(q)) +

Vrl(Hsr(q),Hsl(q)) ,

and can subsequently be incorporated in (4) and (5). More
details on spatial springs can be found, e.g., in [23].

D. First experiments

The compliance control strategy presented above was im-
plemented using the control architecture described in Section
IV and used for manipulation of large objects, see Fig. 8. As a
test case the grasping and manipulating of a simple cylindrical
trash bin was chosen. In the experiments the coupling spring
Kc implemented a translational stiffness acting only in a
horizontal plane. The springs Kl and Kr on the other hand
implemented a translational stiffness according to the vertical
movement of the arms, as well as an orientation stiffness.

Fig. 8. Moving a trash bin by using the Cartesian compliance controller.

For the hands simple joint impedance controllers were used.
That way the grasping was performed basically by the arms.
In future experiments with Justin the impedance controllers
for the arms will be augmented by force controllers for the
fingers in order to keep a predefined grasping force. Also more
sophisticated control strategies like an object impedance [24]
of a combined arm-hand system will be evaluated.



Stramigioli, S. (1999). A novel impedance grasping strategy as a generalized hamiltonian system. In D. 
Aeyels, F. Lamnabhi-Lagarrigue, & A. van der Schaft (Eds.), Stability and Stabilization of Nonlinear 
Systems, (Lecture Notes in Control and Information Sciences 246) (Vol. 246, pp. 293–324). London: 
Springer, London. Retrieved from http://www.springerlink.com/index/YV6077556306V032.pdf

Stramigioli, S., Melchiorri, C., & Andreotti, S. (1999). A passivity-based control scheme for robotic 
grasping and manipulation. In Proceedings of the 38th IEEE Conference on Decision and Control (Cat. 
No.99CH36304) (Vol. 3, pp. 2951–2956). Phoenix: IEEE. doi:10.1109/CDC.1999.831385

http://www.springerlink.com/index/YV6077556306V032.pdf


Remarks

A REALLY Passive Controller coupled with a robot in a power continuous way 
will behave passively with ANY environment 

With Control by interconnection, model uncertainty can decrease 
“performance” but never compromise PASSIVITY and SAFETY 

Possible with physically interpretable controllers and NOT. 

Active behaviour is possible and supervised



IPC-Supervisor Architecture



Proposed Controlled Structure



Claims (Conjectures)
Non Passivity (NP)  
A necessary condition for having stable interaction 
with an unknown environment is that the controlled 
robot should result in a passive behaviour seen from 
the port which interacts with the environment  

Intrinsically Passive Control (IPC)  
A necessary condition for achieving the previous point 
is that, for a physical robot, which is clearly passive, 
the control should be by interconnection and should 
be passive by itself following the IPC paradigm. 



Problem Statements (Conjectures..)
Passivity Control Robot (PCR)  
If a controlled robot is not passive seen from the 
environment port, there is always a (passive) environment 
which can destabilise the interaction  

Not Passive State FeedBack (NPSF)  
For any passive robot, a general control which does not 
specifically address passivity as a port interconnection 
(IPC), there is always an environment which could result in 
an unstable interconnected behaviour as described in PCR  

Characterisation of Stable Active Environment (CSAE)  
Given a Robot controlled passively via interconnection (IPC), 
we can characterise the active environments which 
would result in a stable interconnected behaviour  

Stramigioli, S. (n.d.). Energy-Aware Robotics. In K. Camlibel, J. Agung, J. Scherpen, & R. Pasumarthy 
(Eds.), Mathematical Control Theory I, Nonlinear and Hybrid Control Systems (pp. 37–50). SPRINGER. 
doi:10.1007/978-3-319-20988-3



Theorem: Passivity Control Robot (PCR) 

⌃cr

⌃e

u y

Given a non-passive system       
(controlled robot) with input output pair    
(u, y) (representing the interaction with the 
environment), there exists always a 
passive system       (environment) which 
connected to the       will give rise to an 
unstable behaviour of the interconnection 
of       and   

⌃cr

⌃e

⌃cr

⌃cr⌃e



Intrinsically Passive Control
•We need to develop the interactive robot in a way which we can guarantee to be 

passive to AT LEAST be sure it will be stable with a PASSIVE environment.  

•We can inject energy via the supervisor and if “something goes wrong” cut the 
energy flow and recover passivity 

•We can design a controller equivalent to a 3D multi-body system interconnected 
to the robot to be controlled: the controller will be a set of equivalent 
multibodies, spatial springs…, all using ports and Port Controlled Hamiltonian 
Systems representation! 

•More general structures are also possible and can be analysed with Port-
Hamiltonian Systems Theory



Questions

1.How can we take care of the digital 
implementation? 

2.How can we take care that we alway 
respect the “control by 
interconnection” paradigm?



Answer 1: Sample Passivity

Robot Controller
S/H


ēD

f̄DfD

eD

eD(t) = ēD(k) t � [kT, (k + 1)T ]

�Ein
C =

� (k+1)T

kT
ēT
DfD(s)ds = ēD(k)

� (k+1)T

kT
fD(s)ds

= ēD(k)(q((k + 1)T )� q(kT ))

S. Stramigioli, C. Secchi, A. J. van der Schaft, and C. Fantuzzi, “Sampled Data Systems 
Passivity and Discrete Port-Hamiltonian Systems,” IEEE transactions on robotics, 



This actually works!

Standard PD  IPC PD

30 Hz sample rate



Solving the time delay problem in telemanipulation
their influence is present in the interaction with the devices,
which can be measured. In the next section we will treat a
TDPC algorithm that uses this measured interaction data in
order to determine a required amount of damping.

IV. TIME DOMAIN PASSIVITY CONTROL

A different approach to stabilizing the system of Section II
is presented by monitoring the energy balance of the system
and applying damping only when it required according to
the value of the monitored energy balance. The first of such
approaches was the Passivity Observer/Passivity Controller
(PO/PC) algorithm proposed by Ryu et al. [13].

The energy balance of the system, H , is composed of the
physical energy exchange at the master and slave side, HIm

and HIs, respectively1:

H(k) = HIm(k) + HIs(k) (18)

The physical energy exchange during a sample period can
be computed exactly a posteriori of the sample period for
impedance-type displays as [14]:

�HI(k) =
⇥ k�T

(k�1)�T
FA(k)q̇(t)dt

= FA(k)�q(k) (19)

where FA and q̇ are the force and velocity associated with
the interaction point between the physical world and the
controller in discrete time, e.g. the forces exerted by the control
algorithm. (19) represent the energy which is supplied by the
actuators at that side. so that

H(k) =
k�1�

i=1

�HIm(i) + �HIs(i) (20)

where �HIm(i) and �HIs(i) are computed according to (19).
If (20) becomes negative “virtual” energy is generated

according to the PO/PC algorithm. When that happens a
modulated damper is activated to dissipate the generated
“virtual” energy and restore passivity of the system. This
original implementation requires instantaneous knowledge of
�HIm(k) and �HIs(k). As such it cannot be applied in
a telemanipulation system where a time delay separates the
master and slave system. A time-delayed formulation of the
PO/PC algorithm has been proposed by Ryu et al. [15] and
Artigas et al. [5] applied that algorithm to the Position-Position
controller in the presence of time-delay.

In this paper we will implement the two-layer framework
as proposed by Franken et al. [16], which is a different
TDPC algorithm. The framework consists of two control
layers in a hierarchical structure, the Transparency Layer and
the Passivity Layer, see Fig. 3. First the working of the
Passivity Layer will be discussed. In [16] it was claimed
that any bilateral controller could be implemented in the
Transparency Layer given the implementation of the Passivity
Layer below. However, with a P-P controller implemented in

1Notation used in this paper: The index k is used to indicate instantaneous
values at the sampling instant k and the index k is used to indicate variables
related to an interval between sampling instants k � 1 and k.

EnvironmentMaster
Device

Slave
DeviceUser

Passivity
Layer

Passivity
Layer

Transparency
Layer

Transparency
Layer

�TLs(k� 1)�TLm(k� 1)

�rs(k)�rm(k) qs(k)qm(k)

Measurements
slave

Measurements
master

Fig. 3: Two-layer algorithm for bilateral telemanipulation.
The double connections indicate physical energy exchange.

the Transparency Layer a modification of the algorithm in the
Passivity Layer is required as will also be discussed in this
section.

A. Passivity Layer

This layer enforces passivity of the bilateral telemanipula-
tion system . When necessary the commands originating from
the Transparency Layer are adjusted to maintain passivity. In
the two-layer framework the energy balance of the system (20)
is split into three

H(k) = HM(k) + HC(k) + HS(k) (21)

where HM , HC , and HS represent the energy present at the
master side, the energy in the communication channel, and the
energy at the slave side, respectively.

The energy at the master and slave side is stored in energy
tanks and these tanks can exchange energy through the com-
munication channel. There are three energy flows connected
to each tank:

• Energy exchanged with the physical world, �HIm and
�HIs

• Energy received from the communication channel,
�HSM+(k) and �HMS+(k)

• Energy send into the communication channel, �HMS�(k)
and �HSM�(k)

The energy flow received from the communication channel at
the master side, �HSM+, is the time-delayed energy flow send
into the communication channel at the slave side, �HSM�,
and vice versa. The level of the energy tank at each side is
corrected each sampling instant with respect to these three
energy flows, which means that the change of the energy level
in the master and slave tank, �HM and �HS , respectively is
given as

�HM(k) = �HIm(k) + �HSM+(k)��HMS�(k)
�HS(k) = �HIs(k) + �HMS+(k)��HSM�(k)(22)

and thus

HM(k + 1) = HM(k) + �HM(k)
HS(k + 1) = HS(k) + �HS(k) (23)

The energy exchange between the two tanks is determined
by the implemented Energy Transfer Protocol. In this paper
we will use the Simple Energy Transfer Protocol (SETP) in
which each side transmits each iteration a fraction, �, of its

Franken, M. C. J., Stramigioli, et al. (2009). Bridging the gap between passivity and 
transparency. In Robotics: Science and Systems V, Seattle, USA (p. 36). Robotics Science 
and Systems.



Answer 2: Control Energy Flows
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Very Versitile Energy Efficient Actuator

Torque Servoing 

Stores any negative work applied on load 

Zero dissipation for constant force 

Ideal for periodic motions 

Can REVERSIVELY achieve damping! 
Advantage of damping WITHOUT loss of 
energy

Stramigioli, S., van Oort, G., & Dertien, E. (2008). A concept for a new Energy Efficient actuator. In 2008 IEEE/ASME 
International Conference on Advanced Intelligent Mechatronics (pp. 671–675). China: IEEE. doi:10.1109/AIM.
2008.4601740



UT-IVT

Gain >0 Gain =< 0



Use in Limit Cycle generations
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Answer 2: Control Energy Awareness
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Answer 2: Generalisation

D(x) C:: H(x)
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Projection Problem Example
SpringProjectionQuadcopter
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 ḡ

z

y
 c̄

z

l
y

 

g

z

y
 

c

z

l

Fl

Fr

Fg

c

c

Fig. 2. The Framework and notation used

by [4], [5]. Furthermore, a number of authors
have further investigated a number of interesting
properties of the geometry of 6D elastic coupling,
like [6], [7], [8].

In [9] it has been mathematically proven that
it is possible to model Variable Spatial Springs
which are 6D elastic elements in which the rest
configuration and the RCC can be modified in an
energetically consistent way. An important conclu-
sion of this work was that it is possible to change
the RCC during any loading condition of the spring
and this would result in a zero energy exchange due
to this action. This means that such an operation
is passive and can be used to safely modify the
dynamics of the control system to yield a specific
desired dynamics. This will be used in this work to
achieve proper convergence of sideways regulation
of a quadcopter as simulated and shown in Fig. 1.

The paper is organised as follows; in Sec. II
a simple review of the model of a quadcopter is
presented followed in Sec. III by the introduction
of the concept of RCC. Sec. IV introduces the main
idea of the paper followed by simulations proving
the proper functioning in Sec. V. Finally Sec. VI
will summarise the work and define issues of future
studies along this line.

II. QUADCOPTER MODELLING

For the sake of simplicity, the all presentation
will be done in 2D. All what presented can and will
be extended in future papers by proper 3D modeling
using Lie Groups and coordinate free methods
which are powerful and suitable to describe 3D
behaviour and the RCC concept.

With reference to Fig. 2, we consider a 2D

vehicle which can move in SE(2): translation in
the plane y, z and rotations ✓. The vehicle is of
mass m and rotational inertia j. In the centre of
mass a reference frame is placed which is indicated
by  g and rigidly connected to it. At a distance c
from the origin along y and �y, two propellers can
generate a force Fl and Fr respectively. A second
frame  c rigidly connected to  g is defined at a
hight l in such a way that:

Hg
c =

0

@ I2
0

l
0 0 1

1

A (1)

where Hg
c 2 SE(2) is a 3⇥3 homogeneous matrix.

The frame  ḡ is inertial and rigidly connected
to the fixed environment as it is the case for  c̄

which is such that H c̄
ḡ = Hc

g . The z axis of these
frames is oriented upward and therefore there is a
gravitational force Fg of magnitude mg applied in
the origin of  g and directed along the �z of frame
 ḡ .

The wrench W g
C which can be applied to the

vehicle thanks to the propeller, can be expressed
as:

0

@
⌧
Fy

Fz

1

A
= A

✓
ul

ur

◆
(2)

where

A :=

✓
rl ^ ˆFl rr ^ ˆFr

ˆFl
ˆFr

◆
(3)

and ˆF• indicates the unit 2D vector of F•, |F•| its
length, rl = (�c 0)

T , rr = (c 0)

T the position of
application of the forces ul = |Fl| and ur = |Fr|.
It is easy to see that:

A :=

0

@
�c c
0 0

1 1

1

A (4)

and therefore, as expected, it is not possible by
proper choice of ul and ur to have a Fy 6= 0. On the
other hand, given a desired Fz and ⌧ , the needed
actuations of the propellers ul and ur can be easily

Ψi to Ψ0. This homogeneous matrices turn out to belong
to a matrix Lie group often indicated1 with SE(3):

SE(3) :=
{(

R p
0 1

)
s.t. R ∈ SO(3), p ∈ Rn

}
(1)

where SO(3) indicates the set of orthonormal matrices
with positive determinant, which is also a Lie group.
3.2 Twist and Wrenches
If we consider two frames Ψi and Ψj moving with

respect to each other as a function of time, we can use
a trajectory in SE(3) to describe this motion, namely
Hj

i (t) ∈ SE(3). However, as explained in [15], a much
better description of the instantaneous relative motion of
the two bodies, can be achieved using the followingmatri-
ces which belong to se(3), the Lie algebra corresponding
to the Lie group SE(3):

T j,j
i = Hj

i Ḣi
j and T i,j

i = Ḣi
jH

j
i . (2)

The first twist T j,j
i is a geometrical representation of the

motion of Ψi with respect to Ψj expressed in the frame
Ψj and the second T i,j

i the same motion, but expressed in
frame Ψi. We can represent a twist either as a 4 × 4 ma-
trix of the previous form or as a 6 dimensional numerical
vector. The form of the matrix representation turns out to
be:

T̃ =
(

ω̃ v
0 0

)

where v ∈ R3, ω ∈ R3 and ω̃ ∈ R3×3 is a skew-
symmetric matrix such that ω̃x = ωx, ∀x ∈ R3. It is
then possible to consider as a vector representation of a
twist the following:

T :=
(

ω
v

)
.

From now on we will not make distinctions in the nota-
tion between the vector and matrix representation since it
will be always clear from the context. The change of co-
ordinates of twists can be calculated with the adjoint map
which is function of the relative position of the frames:

T l,j
i = AdHl

k
T k,j

i

where

AdHl
k

:=
(

Rl
k 0

p̃l
kRl

k Rl
k

)
and H l

k :=
(

Rl
k pl

k
0 1

)

Since se(3) is a vector space, we can consider its dual
se∗(3) [15] corresponding to the linear operators on

1It is important to realize that SE(3) is actually the set of positive
isometries within a three dimensional space and not its matrix represen-
tation.
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se(3). This dual vector space corresponds to the space
of wrenches which are the six dimensional generalization
of forces [15]. Wrenches can be represented as a matrix
or as a vector too:

W̃ =
(

f̃ m
0 0

)
and

(
m
f

)
.

Once again, from now on we will not make distinction in
the notation. Purely for energetical reasons, it is easy to
see that the map of wrenches can be represented as fol-
lows:

W k
i = AdT

Hl
k
W l

i .

3.3 Power Ports and Interconnections

A basic concept used in this paper is the concept of
a power port [15]. A power port describes the media by
means of which subsystems can exchange physical en-
ergy. Analytically, a power port can be defined by the
Cartesian product of a vector space V and its dual space
V ∗:

P := V ∗ × V

Therefore, power ports are pairs (e, f) ∈ P . The values
of both e and f (effort and flow variables) change in time
and these values are shared by the two subsystems which
are exchanging power through the considered port. The
power exchanged at a certain time is equal to the intrinsic
dual product:

Power = ⟨e|f⟩.

This dual product is intrinsic in the sense that elements
of V ∗ are linear operators from V to R, and therefore,
to express the operation, we do not need any additional
structure than the vector space structure of V .
In this work, the space V will be often the space of

twists (flows) se(3).
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ḡF



Projection Solution

SpringProjectionQuadcopter

Z

@H

@x

F

v

v̄

F̄
P

y
 ḡ
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by [4], [5]. Furthermore, a number of authors
have further investigated a number of interesting
properties of the geometry of 6D elastic coupling,
like [6], [7], [8].

In [9] it has been mathematically proven that
it is possible to model Variable Spatial Springs
which are 6D elastic elements in which the rest
configuration and the RCC can be modified in an
energetically consistent way. An important conclu-
sion of this work was that it is possible to change
the RCC during any loading condition of the spring
and this would result in a zero energy exchange due
to this action. This means that such an operation
is passive and can be used to safely modify the
dynamics of the control system to yield a specific
desired dynamics. This will be used in this work to
achieve proper convergence of sideways regulation
of a quadcopter as simulated and shown in Fig. 1.

The paper is organised as follows; in Sec. II
a simple review of the model of a quadcopter is
presented followed in Sec. III by the introduction
of the concept of RCC. Sec. IV introduces the main
idea of the paper followed by simulations proving
the proper functioning in Sec. V. Finally Sec. VI
will summarise the work and define issues of future
studies along this line.

II. QUADCOPTER MODELLING

For the sake of simplicity, the all presentation
will be done in 2D. All what presented can and will
be extended in future papers by proper 3D modeling
using Lie Groups and coordinate free methods
which are powerful and suitable to describe 3D
behaviour and the RCC concept.

With reference to Fig. 2, we consider a 2D

vehicle which can move in SE(2): translation in
the plane y, z and rotations ✓. The vehicle is of
mass m and rotational inertia j. In the centre of
mass a reference frame is placed which is indicated
by  g and rigidly connected to it. At a distance c
from the origin along y and �y, two propellers can
generate a force Fl and Fr respectively. A second
frame  c rigidly connected to  g is defined at a
hight l in such a way that:

Hg
c =

0

@ I2
0

l
0 0 1

1

A (1)

where Hg
c 2 SE(2) is a 3⇥3 homogeneous matrix.

The frame  ḡ is inertial and rigidly connected
to the fixed environment as it is the case for  c̄

which is such that H c̄
ḡ = Hc

g . The z axis of these
frames is oriented upward and therefore there is a
gravitational force Fg of magnitude mg applied in
the origin of  g and directed along the �z of frame
 ḡ .

The wrench W g
C which can be applied to the

vehicle thanks to the propeller, can be expressed
as:
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⌧
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where

A :=

✓
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and ˆF• indicates the unit 2D vector of F•, |F•| its
length, rl = (�c 0)

T , rr = (c 0)

T the position of
application of the forces ul = |Fl| and ur = |Fr|.
It is easy to see that:

A :=

0

@
�c c
0 0

1 1

1

A (4)

and therefore, as expected, it is not possible by
proper choice of ul and ur to have a Fy 6= 0. On the
other hand, given a desired Fz and ⌧ , the needed
actuations of the propellers ul and ur can be easily

Ψi to Ψ0. This homogeneous matrices turn out to belong
to a matrix Lie group often indicated1 with SE(3):

SE(3) :=
{(

R p
0 1

)
s.t. R ∈ SO(3), p ∈ Rn

}
(1)

where SO(3) indicates the set of orthonormal matrices
with positive determinant, which is also a Lie group.
3.2 Twist and Wrenches
If we consider two frames Ψi and Ψj moving with

respect to each other as a function of time, we can use
a trajectory in SE(3) to describe this motion, namely
Hj

i (t) ∈ SE(3). However, as explained in [15], a much
better description of the instantaneous relative motion of
the two bodies, can be achieved using the followingmatri-
ces which belong to se(3), the Lie algebra corresponding
to the Lie group SE(3):

T j,j
i = Hj

i Ḣi
j and T i,j

i = Ḣi
jH

j
i . (2)

The first twist T j,j
i is a geometrical representation of the

motion of Ψi with respect to Ψj expressed in the frame
Ψj and the second T i,j

i the same motion, but expressed in
frame Ψi. We can represent a twist either as a 4 × 4 ma-
trix of the previous form or as a 6 dimensional numerical
vector. The form of the matrix representation turns out to
be:

T̃ =
(

ω̃ v
0 0

)

where v ∈ R3, ω ∈ R3 and ω̃ ∈ R3×3 is a skew-
symmetric matrix such that ω̃x = ωx, ∀x ∈ R3. It is
then possible to consider as a vector representation of a
twist the following:

T :=
(

ω
v

)
.

From now on we will not make distinctions in the nota-
tion between the vector and matrix representation since it
will be always clear from the context. The change of co-
ordinates of twists can be calculated with the adjoint map
which is function of the relative position of the frames:

T l,j
i = AdHl

k
T k,j

i

where

AdHl
k

:=
(
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)
and H l

k :=
(

Rl
k pl

k
0 1

)

Since se(3) is a vector space, we can consider its dual
se∗(3) [15] corresponding to the linear operators on

1It is important to realize that SE(3) is actually the set of positive
isometries within a three dimensional space and not its matrix represen-
tation.
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se(3). This dual vector space corresponds to the space
of wrenches which are the six dimensional generalization
of forces [15]. Wrenches can be represented as a matrix
or as a vector too:

W̃ =
(

f̃ m
0 0

)
and

(
m
f

)
.

Once again, from now on we will not make distinction in
the notation. Purely for energetical reasons, it is easy to
see that the map of wrenches can be represented as fol-
lows:

W k
i = AdT

Hl
k
W l

i .

3.3 Power Ports and Interconnections

A basic concept used in this paper is the concept of
a power port [15]. A power port describes the media by
means of which subsystems can exchange physical en-
ergy. Analytically, a power port can be defined by the
Cartesian product of a vector space V and its dual space
V ∗:

P := V ∗ × V

Therefore, power ports are pairs (e, f) ∈ P . The values
of both e and f (effort and flow variables) change in time
and these values are shared by the two subsystems which
are exchanging power through the considered port. The
power exchanged at a certain time is equal to the intrinsic
dual product:

Power = ⟨e|f⟩.

This dual product is intrinsic in the sense that elements
of V ∗ are linear operators from V to R, and therefore,
to express the operation, we do not need any additional
structure than the vector space structure of V .
In this work, the space V will be often the space of

twists (flows) se(3).
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by [4], [5]. Furthermore, a number of authors
have further investigated a number of interesting
properties of the geometry of 6D elastic coupling,
like [6], [7], [8].

In [9] it has been mathematically proven that
it is possible to model Variable Spatial Springs
which are 6D elastic elements in which the rest
configuration and the RCC can be modified in an
energetically consistent way. An important conclu-
sion of this work was that it is possible to change
the RCC during any loading condition of the spring
and this would result in a zero energy exchange due
to this action. This means that such an operation
is passive and can be used to safely modify the
dynamics of the control system to yield a specific
desired dynamics. This will be used in this work to
achieve proper convergence of sideways regulation
of a quadcopter as simulated and shown in Fig. 1.

The paper is organised as follows; in Sec. II
a simple review of the model of a quadcopter is
presented followed in Sec. III by the introduction
of the concept of RCC. Sec. IV introduces the main
idea of the paper followed by simulations proving
the proper functioning in Sec. V. Finally Sec. VI
will summarise the work and define issues of future
studies along this line.

II. QUADCOPTER MODELLING

For the sake of simplicity, the all presentation
will be done in 2D. All what presented can and will
be extended in future papers by proper 3D modeling
using Lie Groups and coordinate free methods
which are powerful and suitable to describe 3D
behaviour and the RCC concept.

With reference to Fig. 2, we consider a 2D

vehicle which can move in SE(2): translation in
the plane y, z and rotations ✓. The vehicle is of
mass m and rotational inertia j. In the centre of
mass a reference frame is placed which is indicated
by  g and rigidly connected to it. At a distance c
from the origin along y and �y, two propellers can
generate a force Fl and Fr respectively. A second
frame  c rigidly connected to  g is defined at a
hight l in such a way that:

Hg
c =

0

@ I2
0
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0 0 1

1

A (1)

where Hg
c 2 SE(2) is a 3⇥3 homogeneous matrix.

The frame  ḡ is inertial and rigidly connected
to the fixed environment as it is the case for  c̄

which is such that H c̄
ḡ = Hc

g . The z axis of these
frames is oriented upward and therefore there is a
gravitational force Fg of magnitude mg applied in
the origin of  g and directed along the �z of frame
 ḡ .

The wrench W g
C which can be applied to the

vehicle thanks to the propeller, can be expressed
as:
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where
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and ˆF• indicates the unit 2D vector of F•, |F•| its
length, rl = (�c 0)

T , rr = (c 0)

T the position of
application of the forces ul = |Fl| and ur = |Fr|.
It is easy to see that:

A :=
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and therefore, as expected, it is not possible by
proper choice of ul and ur to have a Fy 6= 0. On the
other hand, given a desired Fz and ⌧ , the needed
actuations of the propellers ul and ur can be easily

Ψi to Ψ0. This homogeneous matrices turn out to belong
to a matrix Lie group often indicated1 with SE(3):

SE(3) :=
{(

R p
0 1

)
s.t. R ∈ SO(3), p ∈ Rn

}
(1)

where SO(3) indicates the set of orthonormal matrices
with positive determinant, which is also a Lie group.
3.2 Twist and Wrenches
If we consider two frames Ψi and Ψj moving with

respect to each other as a function of time, we can use
a trajectory in SE(3) to describe this motion, namely
Hj

i (t) ∈ SE(3). However, as explained in [15], a much
better description of the instantaneous relative motion of
the two bodies, can be achieved using the followingmatri-
ces which belong to se(3), the Lie algebra corresponding
to the Lie group SE(3):

T j,j
i = Hj

i Ḣi
j and T i,j

i = Ḣi
jH
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i . (2)

The first twist T j,j
i is a geometrical representation of the

motion of Ψi with respect to Ψj expressed in the frame
Ψj and the second T i,j

i the same motion, but expressed in
frame Ψi. We can represent a twist either as a 4 × 4 ma-
trix of the previous form or as a 6 dimensional numerical
vector. The form of the matrix representation turns out to
be:

T̃ =
(

ω̃ v
0 0

)

where v ∈ R3, ω ∈ R3 and ω̃ ∈ R3×3 is a skew-
symmetric matrix such that ω̃x = ωx, ∀x ∈ R3. It is
then possible to consider as a vector representation of a
twist the following:

T :=
(

ω
v

)
.

From now on we will not make distinctions in the nota-
tion between the vector and matrix representation since it
will be always clear from the context. The change of co-
ordinates of twists can be calculated with the adjoint map
which is function of the relative position of the frames:
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where
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Since se(3) is a vector space, we can consider its dual
se∗(3) [15] corresponding to the linear operators on

1It is important to realize that SE(3) is actually the set of positive
isometries within a three dimensional space and not its matrix represen-
tation.
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se(3). This dual vector space corresponds to the space
of wrenches which are the six dimensional generalization
of forces [15]. Wrenches can be represented as a matrix
or as a vector too:

W̃ =
(

f̃ m
0 0

)
and

(
m
f

)
.

Once again, from now on we will not make distinction in
the notation. Purely for energetical reasons, it is easy to
see that the map of wrenches can be represented as fol-
lows:

W k
i = AdT

Hl
k
W l

i .

3.3 Power Ports and Interconnections

A basic concept used in this paper is the concept of
a power port [15]. A power port describes the media by
means of which subsystems can exchange physical en-
ergy. Analytically, a power port can be defined by the
Cartesian product of a vector space V and its dual space
V ∗:

P := V ∗ × V

Therefore, power ports are pairs (e, f) ∈ P . The values
of both e and f (effort and flow variables) change in time
and these values are shared by the two subsystems which
are exchanging power through the considered port. The
power exchanged at a certain time is equal to the intrinsic
dual product:

Power = ⟨e|f⟩.

This dual product is intrinsic in the sense that elements
of V ∗ are linear operators from V to R, and therefore,
to express the operation, we do not need any additional
structure than the vector space structure of V .
In this work, the space V will be often the space of

twists (flows) se(3).
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Reflections
For Robots Mechanically interacting with “the world”, energy paradigm is a must 

It has been formally proven that if we do not do it, we risk to get instability even with 
some passive environment 

A formal proof that non-collocated/state fb control for passivity is not robust is 
being worked on 

The methods have proven to  

be formally sound,  

work properly in practice 

deliver new paradigms in actuation, control, tele manipulations etc.


