Energy (and Geometrical) Aware Robotics

Robots follow the laws of physics!

Energy or no Energy, that is the question

No relation with energy

- No way to work in all situations during interaction
- No robustness
- Environment cannot be "properly" modeled"!
- Unespected behaviour

2020

- Passivity or better: **Energy Awareness**
 - Track and Control Energy flows
 - Never problems with stability
 - Robust

- Can Couple Digital-Continuos World
- Handle Time delays

Geometry or no Geometry, that is the question

No Geometry

- Complicated equations
- Solutions dependent on coordinates
- Non physical nonsense: eigenvalues of Inertias, random ortogonality, projections, non invariant indeces,...
- Singularity
- Unexpected instabilities

Geometry

- Simple description
- Coordinate Invariant
- Physical

- No singularity
- Directly see if something is wrong: inverses, projections, error measurement

What 1 Carned

Take Home Message

Learn Geometry: Lie Groups

Respect Physics: Thinks **physical** (using geometry), not mathematics alone

Visser, M., Stramigioli, S., & Heemskerk, C. (2006). Cayley-Hamilton for roboticists. In Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on (Vol. 1, pp. 4187–4192). Beijing: IEEE Robotics and Automation Society. doi:10.1109/IROS. 2006.281911

Arthur Cayley

What is the Difference ?

What is the Difference?

Practically no interaction with environment ■ Stiff Precise Control a signal

 Interaction IS the goal Compliant Behavior •Not Precise Control an interaction, NOT a signal

Different Than Robust Control!

- Environment completely unpredictable
- Environment intrinsically non linear and not always present
- Goal NOT TO CONTROL A SIGNAL
- System to be controlled can continuously change depending on environment

 \square

In Interactive Robotics

umpredictable

Disturbances are NOT small and ARE completely

Bidirectional interaction ALL the times Energy plays a role for stability and safety

About Mechanical Interaction

Interaction: relation of F and x

Stramigioli, S. (2001). Modeling and IPC control of interactive mechanical systems -A coordinate-free approach (Vol. 266). London: Springer London. doi:10.1007/ BFb0110400

By means of control, we can achieve a certain robot dynamics:

 $R(s)\begin{pmatrix}F(s)\\x(s)\end{pmatrix} = 0, \qquad R(s) \in \mathbb{R}^{1 \times 2}[s]$

and the environment will have its own behavior:

 $R_E(s) \begin{pmatrix} F(s) \\ x(s) \end{pmatrix} = 0, \qquad R_E(s) \in \mathbb{R}^{1 \times 2}[s]$

Position Control

Properly speaking we can talk about Robot is Isolated which means

Properly speaking we can talk about position control in the case in which the

 $F(t) = 0, \forall t$

x(t) only dependent on the robot $\,R(s)$

Force Control

Properly speaking we can talk about force control in the case in which the Robot is "Glued" to a fixed point, which means

 $\dot{x}(t) = 0, \forall t$

F(t) only dependent on the robot R(s)

All other situations

In ALL other cases, BOTH F(t) and x(t) depend on BOTH the robot and the environment

results in a unique solution for F(t) and x(t)

Conclusion

For an interacting system

• We **CANNOT** intrinsically control F(t) and/or x(t) **INDEPENDENTLY** of the environment

• We CAN control R(s) intrinsically and INDEPENDENTLY of the environment

T(t) and for r(t) INDEPENDENTLY of the

Signals versus Ports

AND

Conclusions on example

•With Physical Systems, **signal** modeling is often not suitable • Physical Energy governs dynamics •Always a bi-directional effect •To model/control real OPEN systems signal modeling is NOT the solution This is true also between domains: typical example DC motor gyration Robotics IS interconnection of multi-domain parts, we need something more ! In Haptics and Telemanipulation even more so!! **Port-based**

About Mechanical Interaction

Controlled Robot

Environment is Non-linear, Unpredictable, greatly varying...

Environment/ Human

Forces, Velocities

Power Bond

• e, f belong to vector spaces in duality • $e(f) = e^T f$ represents the instantaneous power flowing from A to B In general an a-causal description !!

Examples

AND

Domain	flow	effort	flow geometry	
Electrical	current	voltage	R	
1D mechanical	velocity	force	\Re	
Rotational mechanics	Ang.vel.	torque	so(3)	Lie Grou
rigid 3D mechanics	twist	wrench	se(3)	Geomet
				VERSITY OF TWENT

UNIVERSITE OF IVVENTE.

Interconnection 1

Interconnection 2

Network structure

Same elements and Energy function but **Different Network**!

A General Interactive and Controllable Robot

Control Port

Interaction Port

System composition in general

AND

Impedance Control

System

Desired Behavior

Note: I. Only position measurement available, 2. Saturation F

X

Stramigioli, S. (1996). CREATING ARTIFICIAL DAMPING BY MEANS OF DAMPING INJECTION. In K.Danai (Ed.), Proceedings of the ASME Dynamic Systems and Control Division (Vol. DSC.58, pp. 601– 606). Atlanta, (GE).

Solution using interconnection ideas

Other Examples

DLR Hand and Dual Arm System

H

Stramigioli, S. (1999). A novel impedance grasping strategy as a generalized hamiltonian system. In D. Aeyels, F. Lamnabhi-Lagarrigue, & A. van der Schaft (Eds.), Stability and Stabilization of Nonlinear Systems, (Lecture Notes in Control and Information Sciences 246) (Vol. 246, pp. 293–324). London: Springer, London. Retrieved from http://www.springerlink.com/index/YV6077556306V032.pdf

Stramigioli, S., Melchiorri, C., & Andreotti, S. (1999). A passivity-based control scheme for robotic grasping and manipulation. In Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304) (Vol. 3, pp. 2951–2956). Phoenix: IEEE. doi:10.1109/CDC.1999.831385

Remarks

- will behave passively with ANY environment
- With Control by interconnection, model uncertainty can decrease "performance" but never compromise PASSIVITY and SAFETY
- Possible with physically interpretable controllers and NOT.
- Active behaviour is possible and supervised

A REALLY Passive Controller coupled with a robot in a power continuous way

Proposed Controlled Structure

Precompensated Robot

Claims (Conjectures)

Non Passivity (NP) A necessary condition for having stable interaction with an unknown environment is that the controlled robot should result in a passive behaviour seen from the port which interacts with the environment

Intrinsically Passive Control (IPC) A necessary condition for achieving the previous point is that, for a physical robot, which is clearly passive, the control should be by interconnection and should be passive by itself following the IPC paradigm.

Problem Statements (Conjectures..)

Passivity Control Robot (PCR) If a controlled robot is not passive seen from the environment port, there is always a (passive) environment which can destabilise the interaction

Not Passive State FeedBack (NPSF) For any passive robot, a general control which does not specifically address passivity as a port interconnection (IPC), there is always an environment which could result in an unstable interconnected behaviour as described in PCR

Characterisation of Stable Active Environment (CSAE) Given a Robot controlled passively via interconnection (IPC), we can characterise the active environments which would result in a stable interconnected behaviour

Stramigioli, S. (n.d.). Energy-Aware Robotics. In K. Camlibel, J. Agung, J. Scherpen, & R. Pasumarthy (Eds.), Mathematical Control Theory I, Nonlinear and Hybrid Control Systems (pp. 37–50). SPRINGER. doi:10.1007/978-3-319-20988-3

Theorem: Passivity Control Robot (PCR)

Given a non-passive system Σ_{cr} (controlled robot) with input output pair (u, y) (representing the interaction with the environment), **there exists always** a **passive system** Σ_e (environment) which connected to the Σ_{cr} will give rise to an unstable behaviour of the interconnection of Σ_e and Σ_{cr}

Intrinsically Passive Control

•We need to develop the interactive robot in a way which we can guarantee to be passive to AT LEAST be sure it will be stable with a PASSIVE environment.

•We can inject energy via the supervisor and if "something goes wrong" cut the energy flow and recover passivity

•We can design a controller equivalent to a 3D multi-body system interconnected to the robot to be controlled: the controller will be a set of equivalent multibodies, spatial springs..., all using ports and Port Controlled Hamiltonian Systems representation!

 More general structures are also possible and can be analysed with Port-Hamiltonian Systems Theory

Questions

1.How can we take care of the digital implementation?

2.How can we take care that we alway respect the "control by interconnection" paradigm?

Answer 1: Sample Passivity

S. Stramigioli, C. Secchi, A. J. van der Schaft, and C. Fantuzzi, "Sampled Data Systems Passivity and Discrete Port-Hamiltonian Systems," IEEE transactions on robotics,

 $= \overline{e}_D(k)(q((k+1)T) - q(kT))$

This actually works!

Standard PD

30 Hz sample rate

Solving the time delay problem in telemanipulation

Franken, M. C. J., Stramigioli, et al. (2009). Bridging the gap between passivity and transparency. In Robotics: Science and Systems V, Seattle, USA (p. 36). Robotics Science and Systems.

Answer 2: Control Energy Flows

Very Versitile Energy Efficient Actuator

- Torque Servoing
- Stores any negative work applied on load
- Zero dissipation for constant force
- Ideal for periodic motions
- Can REVERSIVELY achieve damping! Advantage of damping WITHOUT loss of energy

Stramigioli, S., van Oort, G., & Dertien, E. (2008). A concept for a new Energy Efficient actuator. In 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (pp. 671–675). China: IEEE. doi:10.1109/AIM. 2008.4601740

2E2 actuar

3

UT-IVT

Gain >0

Use in Limit Cycle g 7 M7 v.d. Pol $\ddot{x} + (x^2 - 1)\dot{x} + x = 0$

Stramigioli, S., & van Dijk, M. (2008). Energy Conservative Limit Cycle Oscillations. In Proceedings of the 17th World Congress, The International Federation of Automatic Control (pp. 15666–15671). Seoul, Korea: IFAC. doi:10.3182/20080706-5-KR-1001.2560

Senerations

$$F - c$$

$$\begin{bmatrix} \dot{q} \\ \dot{p} \\ \dot{r} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & -n \\ 0 & n & 0 \end{bmatrix} \begin{bmatrix} q \\ p \\ r \end{bmatrix}.$$

$$H(x) = \frac{1}{2}x^{T} \cdot x = \frac{1}{2}q^{2} + \frac{1}{2}p^{2} + \frac{1}{2}r^{2}.$$

Answer 2: Control Energy Awareness

Environment

Phisical / World Interaction

Robot

Answer 2: Generalisation

$$u := \begin{pmatrix} u_1 & \dots & u_n \end{pmatrix}$$

$$y := \begin{pmatrix} y_1 & \dots & y_n \end{pmatrix}$$

$$\begin{pmatrix} u_1 \\ \vdots \\ u_n \\ \dot{x} \end{pmatrix} = D \begin{pmatrix} y_1 \\ \vdots \\ y_n \\ \frac{\partial H}{\partial x} \end{pmatrix}_{\#}$$
 with

It can be shown that

 $x > 0 \Rightarrow \forall u \quad \exists D \quad \text{s.t. # holds}$

Damping would be automatically handled

$$D = -D^T$$
$$H(x) = \frac{x^2}{2}$$

Projection Problem Example

 $ar{F}$

Quadcopter

Projection Solution

Projection Solution

Control

Reflections

- some passive environment
- A formal proof that non-collocated/state fb control for passivity is not robust is being worked on
- The methods have proven to
 - be formally sound,
 - work properly in practice
 - A deliver new paradigms in actuation, control, tele manipulations etc.

For Robots Mechanically interacting with "the world", energy paradigm is a must It has been formally proven that if we do not do it, we risk to get instability even with

