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It is shown that the intrinsic geometry associated with Boium thermodynamics, namely
the contact geometry, provides also a suitable frameworlortter to deal with irreversible
thermodynamical processes. Therefore we introduce a cfsk/namical systems on contact
manifolds, calledconservative contact systemdefined as contact vector fields generated by
some contact Hamiltonian function satisfying a compatibitondition with some Legendre
submanifold of the contact manifold. Considering physisgstems’ modeling, the Legendre
submanifold corresponds to the definition of the thermodyioahproperties of the system and
the contact Hamiltonian function corresponds to the dedinitof some irreversible processes
taking place in the system. Open thermodynamical systenysatsa be modeled by augmenting
the conservative contact systems with some input and owutpigbles (in the sense of automatic
control) and so-called input vector fields and lead to the defmiof port contact systems
Finally complex systems consisting of coupled simple thetynamical or mechanical systems
may be represented by tlvempositionof such port contact systems through algebraic relations
called interconnection structure. Two examples illustréiis composition of contact systems: a
gas under a piston submitted to some external force and théuction of heat between two
media with external thermostat.

Keywords: irreversible thermodynamics, contact structure, Hamiéto systems.

1. Introduction

Hamiltonian systems are defined by two objects: firstly tlggometric structure
(symplectic or pseudo-Poisson bracket and Dirac structwbéch amounts to define
some skew-symmetric tensor fields on the state space, armhdigca generating
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function, called Hamiltonian function. This geometricustiure characterizes funda-
mental properties of physical systems stemming from \anat formulations, the
existence of symmetries or constraints [1, 20, 6, 9, 3], @ tibpological intercon-
nection structure of circuits [25] and mechanisms [23]. Ppbiysical systems, the
Hamiltonian function is given by the total energy of the syst Hamiltonian systems
are well suited for the formulation akversiblephysical systems where the dissipa-
tion is neglected, as it is often the case in mechanics ottreleagnetism [3, 18].
Hamiltonian systems have also been extended to mogeh physical systemse.
systems exchanging energy with their environment, in thatexd of control by
introducing input-output and port Hamiltonian systems 3, 39, 38, 7, 40, 21].

In the case when dissipation is taken into account, Hanm#tosystems have been
extended by considering tensor fields which are no more sgametric, defining
a so-called Leibniz bracket [33, 7]. However, in this ca$es Hamiltonian function
is no more invariant, and the dissipative Hamiltonian syst@oes not represent the
conservation of energy. It may be observed that the Hanmétofunction corresponds
more precisely to the free energy of the system, in the seh#fgeomodynamics, and
that the dissipative Hamiltonian system corresponds toetsodf physical systems in
thermal equilibrium. Thesimultaneousexpression of irreversibility and conservation
of energy is obtained by taking into account the propertiesmatter defined in
terms of its internal energy [5, 8]. The irreversibility aaps in the form of entropy
source terms coupling the energy dissipation in any phiysicaain with entropy
creation. Precisely these entropy creation terms are tl#acdlke which prevent to
cast the entropy balance equation into the Hamiltonian éraa® may be illustrated
on the very elementary example of heat conduction [10].

In order to overcome this contradiction, we shall use anrradtive geometric
structure, the contact structure [3, 20], which may be aasedt with thermodynamic
systems. Indeed, the description of the properties of md¢eds to an enormous
variety of complex constitutive laws, elaborated in thenfea of reversible ther-
modynamics [35]. The geometric structure of thermodynantias been elaborated
in terms of contact geometry, endowing the ThermodynamiasPhSpace (denoted
TPS) with a contact structure [13, 14, 5, 17, 26-28]. Rebérsthermodynamic
transformations have been expressed as contact vectos fggderated by some
function related to state functions associated with therntlbdynamic properties
of the system [31, 29, 30]. Finally, some contact vector §ielksociated with
irreversible thermodynamic transformations for systeresrnequilibrium have been
proposed in [16].

In this paper we shall propose a class of dynamic systemsediefity contact
vector fields that may be seen as the lift of Hamiltonian systeon the TPS
as well as an extension of these systems that allow to coph imieversible
thermodynamic processes. The first aim is to show preciské dxtension of
Hamiltonian systems needed to express simultaneously rtbeersibility associated
with dissipative phenomena and the conservation of enerbg second aim is to
define a class of irreversible open systems which may be iassdcwith systems
arising from irreversible thermodynamics.
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In Section 1 we shall recall the basic concepts of contactmgdy in the
context of reversible thermodynamics. In Section 2, we Ishi#l Hamiltonian
systems, possibly dissipative, onto the TPS and define avciassd contact vector
field. In Section 3 these contact vector fields are genedilipea class of systems
called conservative contact systendefined for isolated as well as open systems.

2. Contact structures for reversible thermodynamics

The first geometric formulation of thermodynamics has beareng by Gibbs
[13, 14] and has then been developed by Carathéodory [Simatem [17], leading
later to formalization by Mrugata and coworkers [26, 27, .31 this section
we shall briefly recall in which sense the contact geometryassociated with
the Thermodynamic Phase Space (TPS) and reversible thgnamics, following
closely [26, 31]. Along this section we shall also recall sofandamental objects
of contact geometry used in this paper, and refer the read¢2Q, 1, 3] for their
detailed presentation.

2.1. Thermodynamic Phase Space and contact structure

The contact structure emerges in relation with the desonipif the thermodynamic
properties of matter. Indeed, these thermodynamic priggedre defined by + 1
extensive variables (such as internal energy, volume, eunob moles of chemical
species, entropy) and by the so-callathdamental equatiordefining the internal
energy as a functionU of the remainingn extensive variablés[13, 14]. The
fundamental equation defines radimensional submanifold oR"*! denoted by\
in the sequel and characterizing the thermodynamic priggedf some system in the
space of extensive variables. However, in practice, thentbdynamic properties are
defined using: additional variables, thintensive variablegsuch as pressure, chemical
potential and temperature) which may be directly relateth wheasurements. The
Thermodynamic Phase Space is the space of first jets &yeand the submanifold
defining the thermodynamic properties is the 1-jet @f As a consequence the
Thermodynamic Phase Space associated with the diffebdmtienanifold A of
extensive variables, may be identified with the manifdkdx 7*N [20]. This
construction actually endows the TPS with a contact stractwhich is briefly
recalled below.

Let now M denote a(2n + 1)-dimensional, connected, differentiable smooth
manifold.

DEFINITION 1 [20]. A contact structureon M is determined by a 1-fornd of
constant clasg2n + 1). The pair (M, 6) is then called acontact manifold and 6
a contact forn?

1A variable is qualified agxtensivewhen it characterizes the thermodynamical state of theesysind its
total value is given by the sum of its constituting parts. s tpaper we shall define the extensive variables
as being the basis variables on which the fundamental enuétidefined.

2For clarity, as we only considerivial contact structure, we do not make a distinction betweenagcont
and strictly contact structures as in [20].
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Consider some differentiable manifoll. Define its associated space of 1-jets of
functions on\/, denoted byZ7 and called in the sequel Thermodynamic Phase Space
associated with\. It may be shown [20] that this space of 1-jets is identifiable
with

T=RxT*N, 1)

and is endowed with a trivial contact structure definedébyAccording to Darboux
theorem [15], the contact form is globally given by

n

0 =dx® — Z pidx’, (2)
i=1

in the canonical coordinate&®, x%, ..., x", p1,..., pn).

ExamMPLE 1. For a simple thermodynamic system, the Thermodynamicsé’ha
Space is defined in the following canonical coordinate%:denotes the energy/,
and the pairs(x’, p;) denote the pairs of conjugated extensive variables (theomnt
xt = S, the volumex? = V, and the number of moler® = N) and intensive
variables (the temperaturg; = 7', minus the pressurg, = —P, and the chemical
potential p3 = 1). In this case, the contact form is the Gibbs form

0 =dU — TdS + PdV — udN. ©)

2.2, Thermodynamic properties and Legendre submanifolds

Actually the thermodynamic properties expressed in the WR$ also be defined
as the submanifold where Gibbs’ form vanishes, that is poinhere the Gibbs
relation is satisfied [17, 3, 26]. This corresponds to thenitedh of a canonical
submanifold of a contact structure, called Legendre sulifoldn(playing an analogous
role as Lagrangian submanifolds for symplectic strucfures

DEFINITION 2 [20]. A Legendre submanifolef a (2n + 1)-dimensional contact
manifold (M, 6) is an n-dimensional integral submanifold ¢ M of 6.

Legendre submanifolds may be defined locally by some gengrdtinctions as
follows.

THEOREM 1 [2]. For a given set of canonical coordinates and any partition
I'UJ of the set of indiceql,...,n} and for any differentiable functiorF (x*, p,)
of n variables,i € I, j € J, the formulae

O g, OF _F

a P ops —aps’ Pr=
define a Legendre submanifold &2'+! denotedLr. Conversely, every Legendre
submanifold inR***1 is defined locally by these formulae, for at least one of the
2" possible choices of the subseét

(4)
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This corresponds to the practical definition of the thernmazaigic properties of
thermodynamic systems where the generating functions alledcthermodynamic
potentials such as the enthalpy or the free energy.

ExamMPLE 2. Consider the properties of an ideal gas which is usualljnee
by the so-called state equation. One way to express its tithmamic properties
in the TPS endowed with the contact form

06 :==dG + SdT — VdP — p;dN' (5)

is to use as coordinates the temperatiirethe pressure® and the number of moles
N. In this case the generating function is the Gibbs free gnérg

G(T,P,N)= gNRT(l —In(T/To)) — NT (so — RIn(P/ Py)), (6)

where R is the ideal gas constant are, Tp, so are some references. The variables
are given byx® = G, x’' = (T, P, N) and p’ = (=S, V, ). The associated Legendre
submanifold is then

x%=G(T,P,N)=U(T, P,N),

0G 5
py=-S(T,P,N) = 3T = Nso+ ENRIn(T/To) — RNIn(P/ Py),

G

: T,P,N oG 5RT TS/N

p3 =T, P, )_8N_2 /N.

Notice that the coordinate’® corresponds to the internal energy expressed in the
independent coordinateérl’, P, N) and that the third equation correspond to the
state equationPV = NRT of an ideal gas.

However, one may choose as well as coordinates of the Legesutsmanifold,
the extensive variables: the entroy the volumeV and the number of moles
N via the Legendre transfornix©, x’, p’) — (x° x, p) given by x° = U, x =
(S,V,N), p=(T,—P,u). In this case the generating function is the internal
energy

UGS v.Ny =G — P29 198 _ 3 N RTyexply (5. V. N)) @)
= ap L ar 2 TOERYIS.

obtained by the Legendre transform &f, and where the second equation of the
previous Legendre submanifold provides

y(S,V,N) = (S — Nso+ RNIN(NRTp) — RNIn(VPo))/(gRN). (8)

The contact form is then given by (3), and the Legendre subfoldndescribing
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the properties of the gas is now expressed by

3
X°=U(S,V,N) = SNRToexply (S, V, NI,

U
p1=T(S,V,N) = —— =Toexgy(S,V, NI,
39S
SU (9)
p2=P(S,V,N) = - = NRToexply (S, V, N)I/ V.,

oUu
p3=u(S,V,N) = N = (5/2R — S/N)Toexpy (S, V, N)]

2.3. Contact vector fields and reversible transformations

Finally we shall recall the expressions of transformatiasfs thermodynamic
systems, which have the main property to leave invariantehdge submanifolds
defining thermodynamic properties. This is representedhin geometric language
by contact transformations. We recall the definition of atipalar class of vector
fields, calledcontact vector fieldswhich preserves the contact structure, as well as
the definition of theJacobi bracketon the space of smooth functions on the TPS
[1, 3, 20]. We then give illustrations of reversible transfiations which have been
treated in detail in [29, 30].

PrRoPOSITION 1 [20]. A vector field X on (M, 6) is a contact vector fieldif
and only if there exists a differentiable real-valued fiumictp on M such that

L(X)0=pb, (10)

where £(X)- denotes the Lie derivative with respect to the vector figldif p =0
then X is called an infinitesimal automorphism of the contact s

Analogously to the case of Hamiltonian vector fields, one n@ggociate a
generating function to any contact vector field. Actuallgreh exists an isomorphism
® between contact vector fields and differentiable functionel, which associates
a contact vector field to a function calledcontact Hamiltonian

PROPOSITION 2. The map
d(X) =i(X)0, (1

where i(X)- denotes the contraction of a form by the vector fietd defines
an isomorphism from the vector space of contact vector fighdshe space of
smooth real functions ooM. The functionf = ®(X) is called contact Hamiltonian
associated with the vector field denoted by

X, =o (), (12)

where ®~1 is the inverse isomorphism.
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The contact vector fieldl ; may be expressed in canonical coordinates in terms
of the generating functiory as follows,

e A af 9 af 9
Xr= — )| — - ———). (13
f (f pk Ok >8x° 9x0 (Z P e ) ;(8)& opr  Opx 8xk> (13)
It is worth notmg that the set of contact vector fields formd.ia subalgebra of
the Lie algebra of vector fields oM [20].

PrRoOPOSITION 3 ([20], p. 20). The isomorphism® defined in Proposition 2
defines on differentiable functions af, the following Lie bracket calledlacobi

bracket
{f. g} =i([Xy, Xc]O. (14)

Its expression in canonical coordinates is given by

N[ df 0g dg of & of & dg \ of
U’“‘é(ﬁa_m_ﬁa_m)Jr(f_Zp )axo (g—zpka—pk)@-

o O =1
(15)

Let us consider an example of such contact vector fields in dbetext of
thermodynamics given by Mrugata [30] and associated wattersible transformations
of thermodynamic systems.

ExampPLE 3 [30]. Consider a thermodynamic system defined by the Lagend
submanifold L, generated, in canonical coordinates, by a thermodynamienpal
O(xi, py), foriel, jedJ, 1UJ =1{1...,n}, as the internal energy/, the
enthalpy H, etc. Examples of invariant transformations, in the sensat tthe
trajectories starting onCq stay on it, are given by the contact vector fields
with contact Hamiltonians such as

3D
f=x0—d>+pj£, f =PV — NRT. (16)
J

In thermodynamics, these correspond to basic reversiblesfiormations. It is inter-
esting to note that in the first case of these reversible fibamstions, the contact
Hamiltonian is entirely defined by the generating functiom gartial Legendre
transform) of the Legendre submanifold defining the therynadghic properties.

An important property of the reversible transformationghiat they leave invariant
the Legendre submanifold associated with its thermodyoalnproperties. This may
be checked by using the following result [31, 30].

THEOREM 2. [31] Let (M, ) be a contact manifold and denote lfya Legendre
submanifold. ThenX, is tangent toL if and only if f is identically zero onL.

Notice that by definition, contact Hamiltonians definingemsible transformations,
such as (16), satisfy the invariance condition of Theoremir2.the sequel this
invariance condition will play a fundamental role in the défon of extensions of
these vector fields.
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3. Lift of Hamiltonian dynamics to the Thermodynamic Phase Space

In this section, as a preliminary step towards the definitidncontact systems
including phenomenological lawswe shall consider the lift of reversible port
Hamiltonian systems as well as of dissipative Hamiltonigetems.

In the first part we shall consider port Hamiltonian syste2, [39, 38] and their
lift to the TPS associated with their state spadé defined in Eq. (1) [11]. In this
way we shall define a first class of contact systems generatethtbrnal contact
Hamiltonian associated with the drift Hamiltonian vectoeldi and byinteraction
contact Hamiltonians associated with input vector fields.the second part, we
shall lift a dissipative Hamiltonian system [7, 33] to somdeaded TPS [12]. This
space is obtained by considering two additional variabtesnely the entropy and
the temperature of some external thermostat. For this atdissystems we shall
define a contact vector field generated by a contact Hamsltonvhich generates
the entropy creation associated with energy dissipation.

3.1. Lift of port-Hamiltonian systems

Let us first recall briefly the definition of a port Hamiltoniaystem [22, 39]
defined on a pseudo-Poisson manifol. Consider ann-dimensional differential
manifold A endowed with a pseudo-Poisson bracket}qen (i.e. Jacobi’s identities are
not necessarily satisfied). Denote hyits associated pseudo-Poisson tensor, and’by
the vector bundle map* : T*N — TN satisfying A(a, B) = (@, A*(B)), Y(a, B) €
T*N x T*N. A port Hamiltonian system{22, 39] is defined by a Hamiltonian
function Ho(x) € C*(N), an input vectoru(t) = (uy, ..., u,) ()T € R™ function of
t, m input vector fieldsgy,..., g, on N, and the equations

% = A*(d, Ho(x)) + 3 u; (1) gi(x),
0 ; (17)

v/ = L(g;)Ho(x),

wherey = (y%,...,y") is called theport outputvariable (orport conjugated outpiit
and L(-) denotes the Lie derivative. Port Hamiltonian systems areensions of
Hamiltonian systems which allow to model reversible phgsisystems which are
openin the sense that they undergo some exchange of energy weithehvironment
[22, 39]. They appear naturally in the modeling of driven heetical systems [40]
or electrical circuits [24, 39]. Interpreting the Hamiltan function Hy as the total
energy of a physical system, it appears that the energy icomerved but satisfies
the following power balance equatign

dHy <N
7=;Miy, (18)

SNotice that we will still denote by\ the state space, although its components are no longerlusual
called extensive variables benergy variables. However, energy (resp. co-energy) variabley pinalogous
fundamental role in the Hamiltonian framework as extengiesp. intensive) variables in thermodynamics.
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where the product of the port-conjugated input and outpuiakkes is the flow of
energy into the system through its boundary.

Despite the fact that port Hamiltonian systems represemérséle physical
systems, one may still have a thermodynamic perspectivehem,tand define some
analogue of the TPS. Indeed, consider as space of extenanables the manifold
RxN 5 (x0 x), and the fundamental equatiaf = Hy(x). The Hamiltonian function
Hy (or, in the same way, its graph) defines some analogue of thentdynamic
properties for a reversible system in the space of extensiviablesR x N > (x°, x).
Using (1), one may associate with the base manifdfd the (2n + 1)-dimensional
TPS

R x T*N 3 x" = 1% x, p), (19)

endowed with the canonical contact form (2). The 1-jet of thection Hy may be
identified with the Legendre submanifold generated Hy(x) of the TPSR x T*N/,

and characterizes an analogue of thermodynamic propddiethe port Hamiltonian
system®. The lift of the port Hamiltonian system (17) on the TESx 7*A may
be defined as the following control contact system. Its coptbn is completely
analogous to the control Hamiltonian systems defined on gtip manifolds
[4, 36]. Consider thenternal contact Hamiltoniah

KO = _A(p’ dXH0)7 (20)
and theinteraction contact Hamiltonians
K;=uj(t).i(g;)(dHo — p). (21)

The lift of the port Hamiltonian system (17) on the Thermoaiyrncal Phase Space
R x T*N is then defined as theontrol contact system

dx’ 1

— =Xk + > X, = X (22)

j=1

Notice firstly that, by construction, the two contact Haoillans (20) and
(21) satisfy the invariance condition of Theorem 2 with exgpto the Legendre
submanifold Ly, generated by the Hamiltoniaf(x). Hence they generate contact
vector fields that leave invariant,, and so does their linear combination(x’, u).
By construction therestriction to the Legendre submanifoldy, of the conservative
system generated by these contact Hamiltonians, projectedhe x-coordinates,
gives the dynamic equation of (17) [P1]Secondly, it is interesting to note that
the Legendre submanifold is generated by the internal Ham#én Hy of the port

4This Legendre submanifold is the analogue for the contadiifold R x T* A of the Lagrangian submanifold
generated byHp(x) in the cotangent bundl&@*N .

5Note that this internal contact Hamiltonidy = L(A*(dy Ho(x)))(p) is precisely the Hamiltonian function
of the lift of the vector fieldA¥(d, Hp(x)) on the cotangent space*\ .

6Moreover its projection on the conjugatedcoordinates is related to its adjoint variational systémd it
has been shown that the invariance condition of the Legesdlenanifoldy, may be related to the power
balance equation (18) [11].
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Hamiltonian system which has thdimension of energyfor models of physical
systems, and thathe contact Hamiltonians have the dimension of pow€&he
internal contact Hamiltonian (20) is defined by the pseudiz$dn tensor, and the
interaction Hamiltonians (21) are defined by the input vedtelds; they may be
interpreted as someirtual power associated with the interconnection structure of
the physical system giving rise to the dynamics [24, 39].

3.2. Lift of Hamiltonian systems with dissipation

We consider now the case of an autonomalissipative Hamiltonian system [7]
and its lift to the TPS.

Set N\ as ann-dimensional differentiable manifold endowed with a pse&bisson
tensor denoted byA, and a symmetric positive 2-contravariant tensor denotgd b
A. The tensorB = A — A endows the manifoldV" with a Leibniz structure [33],

and defines the vector bundle map$ : T*A' — TN satisfying
B(a, B) = (o, Bx(B)), V(a, ) € T"N x T*N. (23)

A dissipative Hamiltonian systeri83] with energy functionHy is then defined by
the differential equation

& = B (dyHo(x)). (24)
The Hamiltonian functionHp is not an invariant of such systems and its time
variation is dH
0
7 = —A(d,Ho(x), dy Ho(x)). (25)

Interpreting the Hamiltonian function as the energy of agitgl system, this is the
power balance equatiomxpressing the loss of energy induced by some dissipative
phenomenon.

In the sequel we shall lift this dissipative Hamiltonian teys to a contact system
in such a way to express simultaneously the first principle ttigrmodynamics
(conservation of the total energy of the system) and the rskgwinciple (positive
entropy creation). Therefore, in the first step, we shall ngefan augmented state
space using a thermodynamic perspective. Indeed, the pbalance equation (24)
may also be interpreted as the conversion of the energydesed by the Hamiltonian
Hp(x)) into some heat flow. This heat flow is accumulated in the formthe
internal energy which, for instance, may be the energy ofestimermostat to which
the system is coupled. This internal energy may be defined by

US) =TS (26)

where Tp € RY is the constant temperature delivered by the thermostat, Saa R

is its state, its entrogy With the system composed of the dissipative Hamiltonian
"This thermostat corresponds to some simple thermodynarsiers with constant temperatufe= g—lT] = To,

with finite entropy but infinite heat capacitance. The totalrgneof the system coupled to the thermostat

becomesHe(x, S) = Ho(x) + Tp S, and its Legendre transform with respect&ds then Ho which may now

be interpreted as thfzee energy of the whole system.
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system coupled with the thermostat, one may associate theespf extensive
variables, an(n + 2)-dimensional manifoldR x Mg > (x°, x, S) with Ve = N x R
denoting the extended base space of the coupled system.olipéed system may be
endowed with some thermodynamic properties defined by thdaimental equation
x% = He(x, S) where He denotes thetotal energy of the coupled system,

He(x, S) := Ho(x) + U(S) = Ho(x) + ToS. (27)
Using (1), one may associate with the base manifdfg the extendedTPS
Te:=R x T*Ne> (x° x, S, p. ps). (28)

where the intensive variableps conjugated toS corresponds to the temperature of
the thermostat. This extended TPS is endowed with the cofdam 6. defined in
canonical coordinates by

Oe = dx° — Z pidx' — psdsS. (29)

i=1
The function He(x, S) defined in (27) generates the Legendre submanifold

dH, d H JdH,

Ly, = {xo = He(x, 8),x,S8,p= 8—xe = a—xo,pg = 8—Se = To}.
This Legendre submanifold is simply the product of the Lelyensubmanifold
generated byHy on the TPSR x T*A of the reversible pseudo-Hamiltonian system
(with A = 0) according to Section 3.1 and the trivial manifdid, 7) = (S, Tp), S €
R} c R? corresponding to the definition of the thermostat.

In the second step we shall define a contact vector field on 8 {28) that
is a lift of the dissipative Hamiltonian system in the follog sense: it expresses
conservation of the total energ§. and the entropy balance equation associated
with the dissipated energy (25). Therefore consider thetambnHamiltonian

(30)

Ke:= —B(p. d, Ho(x)) — %S)A(dxHo(x), d, Ho(x)). (31)

It consists of the sum of two terms. The first term is bilinear the intensive
variablesp and in the differential dHy and depends on the Leibniz tensBr It is
defined in a very similar way as for the contact Hamiltonia@)(2ssociated with
reversible Hamiltonian systems where the pseudo-Poissnsot A is replaced by
the Leibniz tensorB. The second term is deduced from the invariance condition
(Theorem 2), and is defined solely by the symmetric brackeassociated with the
dissipation. It may be noted that this tetimmno more linear in the differentiadl, Ho.
This is a distinguishing feature of irreversible processbe nonlinearity allows to
take into account the entropy creation due to irrevergjbili

By construction, this contact Hamiltonidty vanishes on the Legendre submanifold
Ly, and hence the contact vector field generated Ry leaves it invariant. Its
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restriction to Ly,, projected to the extensive variables, S) is

% = B (d, Ho(x)),
) (32)

S = iA(dng(x), d, Hp(x)) =: o.
T

The first equation is simply the definition of the dissipatiiamiltonian system
(24). The second equation gives the variation of the entrSpgf the thermostat
and corresponds to the entropy balance equation witheing the entropy creation
due to the dissipation. The heat flofgo into the thermostat is precisely the flow
of energy dissipated in the physical domain with state Wdemx € N.

Furthermore the generating functidi, defining thermodynamic properties of the
augmented system is now conserved,

dHg
dt

Hence the contact vector fieldx, expressessimultaneouslythe irreversibility in
terms of entropy creation, and energy conservation.

T
= B(d, Ho(x), di Ho(x)) + ?OA(dxHo(X), d. Ho(x)) = 0. (33)
0

REMARK 1. It is important to note that the previous construction nhey easily
adapted to the case where one assumes some nontrivial thararoic properties
(i.e. not assuming that the system is isothermal and in ibguin with a thermostat)
defined by some other Legendre submanifdldof the extended TPS. The second
nonlinear term of the contact Hamiltonigt. defined in (31) has then to be modified
in order to ensure the invariance conditidte|, = 0 (cf. Theorem 2).

REMARK 2. In [16], pp. 311-317, Grmela presents a comparable agigin of
a contact vector field associated with dissipative Hamidtonsystems. The system
represents a physical system in thermal equilibrium at thiestant temperaturéy.
The dynamics in the extensive variabless N'=R" near the equilibrium is given
by the dissipative Hamiltonian system

)'c:(ToJ—D)%, (34)
0x

where J is a skew-symmetric matrixD a positive definite matrix andp(x) is
a potential function defining the thermodynamic properti@his system is lifted
to the TPSR x T*N = RZ*1 5 (x0 x, p) as a contact vector field with contact
Hamiltonian 1 106 9 56

! t

Ve.p)=+5p Dp — 5D — Top'J o (35)

It may be noted that the contact Hamiltonian satisfies theriamce condition of
Theorem 2 and hence leaves invariant the Legendre subrthrgénerated bye.
However the difference with respect to the constructiort e have proposed above
is that the temperature appears as a constant parametethainthe pair of entropy
and temperature variables do not appear in the definitionhef dtate space. As a
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consequence the entropy balance equation is not expresgbdha potentialy is
not an invariant of the dynamics

9 __99 99 (36)
dt Jdx  Ox

4. Conservative control contact systems

In this section we shall propose a general definition of cdrdgistems representing
both the invariance of the thermodynamic properties of desys(defined by Gibbs
relations) and the fluxes due to thermodynamical nonegiilib conditions. In a
first part we shall consider isolated systems whose dynansicgenerated solely
from some internal nonequilibrium conditions. In a secorattpwe shall extend
these systems to open systems for which part of the dynarsicgenerated by
some nonequilibrium conditions of the system with its esminent. The third part
concludes with the definition of pairs of conjugated vamsblcalled port variables,
enabling the expression of such interactions with the enwrent and related to a
global power balance equation.

4.1. Isolated systems

In this paragraph we shall define a class of systems whichrgkze the lifted
dissipative systems presented in Section 3.2. This clasysiems expresses the two
fundamental features of irreversible thermodynamics: diggamics leaves invariant
thermodynamic properties, and the dynamics is defined byesfioxes generated
by some phenomenological laws associated with the thern@dic nonequilibrium.

DEFINITION 3. A conservative contact systeis defined as a setM, 6, L, Ko),
where (M, 6) is a contact manifold a Legendre submanifold anflp, a contact
Hamiltonian satisfying the invariance condition (i.&, is identically zero onf).
The dynamics is then given by the differential equation= Xg,.

A conservative contact is simply a dynamical system defimed gontact manifold
by a contact vector field which furthermore satisfies the riavece condition of
Theorem 2 with respect to some Legendre submanifold. In seommodeling of
physical systems, the Legendre submanifold defines thentddymamic properties of
a physical system. This might be the state equations of aal gkes presented in an
Eexample 1, or the (free) energy of a reversible Hamiltorsgetem as presented
in Section 3.1. The contact Hamiltonians generating theovefield corresponds to
dynamical phenomena due to nonequilibrium conditions. \Weshseen two examples
of such contact Hamiltonian for reversible Hamiltonianteyss (the nonequilibrium
condition consists in this case in the interdomain coupliepresented by the
Poisson tensor), and dissipative Hamiltonian systems uti®@e 3. However, contact
Hamiltonians may be quite general functions allowing to eapith a great variety
of phenomenological laws, near thermodynamical equiliorior not.

We shall conclude with two simple examples: a gas in a cylindiedergoing
some nonadiabatic transformation, and the heat condutigiween two gases.
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EXAMPLE 4. A gas in a cylinder under a pistorConsider in this example a
gas contained in a cylinder closed by a piston subject toityrggee Fig. 1).

A F

x pot m g

U x5 x¥ x"

0

Fig. 1. A gas in a cylinder under a piston.

The thermodynamic properties of this system may be decomposed into the
properties of the piston in the gravitation field and the prtips of the perfect
gas. The properties of the piston in the gravity field are eefiby the sum of the
potential and kinetic energies:

1 .
Ho = % xk|n2 + mgxpot,

where xP° denotes the height of the piston andf" its kinetic momentum. The

properties of the perfect gas may be defined by its internarggnU (x5, xV, xV)

where x5 denotes the entropy variable) the volume variable and” the number

of moles. The properties of the total system gas and pistendefined in the TPS

Top =R x R 3 (x0 x5, x¥, xV, xP XX po by, pas Ppot Pkin}s (37)

and are given by the potentidl (x') = U (x5, x", xV) 4+ Ho(xP%, xK"). The Legendre
submanifold £ generated byH is given by

au| 4
pSl,C, = ’ra = T9

S |,

au| 4

= - — :—P’

Pyl v |,

AN (38)
leL = 9N L_ M,
ppot‘ﬁz mg £ Fs

xkin a
Pkinlp = — =,

m

where T is the temperatureP the pressureu the chemical potential of the gas,
F the gravity force, andv the velocity of the piston.
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The gas in the cylinder under the piston may undergaoareversible trans
formation when the piston moves. We assume that in this case a non#diaba
transformation due to mechanical fricti®rand that thedissipated mechanical energy
is converted entirely into a heat flow in the gaSonsider the contact Hamiltonian

Kiot = Kmec— (pv + P) Av — (piin — v) AP + (Piin — % Vv, (39)

where v is the friction coefficient defining the mechanical energgsghation, P, v
and T are the functions defined in (38), and

K 0 1 F 40
mec—_(ppot» Dkin) 1 0 A (40)

This contact Hamiltonian is composed of four terms. The finsé is precisely the
contact Hamiltonian associated with the piston moving ie dravity field alone,
that is the contact Hamiltoniaky in (20) of a lifted Hamiltonian system. The last
term is a quadratic term in the velocity associated with the mechanical friction,
analogous to the nonlinear term of the contact Hamiltoniah) (associated with
dissipative Hamiltonian systems. The second and third deane associated with the
coupling between the piston and the gas by relating the fédtteand pressureP
on the piston and the velocity of the piston and the variation of volumg$

BT e

where A denotes the area of the piston.

It is immediately seen that the contact Hamiltonian sassftbe invariance
condition K|, = 0. The dynamics restricted to the Legendre submanifold and
projected on the extensive coordinates is

dx$ ds 0 Ktot 1 ,4

—_— = —=- = —w‘= o,

dxV dv 0 Kot

B — = — = — = A‘U’

de _ dN _ aKtOt _ 0 (42)
dt |, dt  dpn ’

dxP dz _ 9Kt _ y

dt |, dt  ppot ’

dx*n dm 3 Kot

= — = — =—F+AP=—mg + AP,

dt C dt 8pkin

8Notice that another (equivalent) way to model irreverdipiis to introduce theviscosity coefficientf the
gas, providing the same dynamics.
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where z denotes the height, and the irreversible entropy creation associated with
the mechanical friction. The last equation is simply Newttaw applied to the
piston, the fourth is the definition of the velocity. The thiequation indicates that
the system is closed (there is no exchange of matter). Thendeequation indicates
that the motion of the piston induces a variation of the vauof the gas. And
the first one is the entropy balance where irreversible ineadf entropy due to
mechanical friction is transformed into an entropy flow ire thas.

It is interesting to note that this formulation of an irresible transformation
of a gas-cylinder system encompasses the formulation drsible transformation
using a port Hamiltonian system defined on a Dirac structumpgsed in [19] (by
setting v = 0, the entropy variation becomes = 0, hence characterizes reversible
transformations).

The next example concerns a classical example of irreversslgstem: heat
conduction with Fourier's law.

ExaMPLE 5. Heat conduction.Consider two simple thermodynamic systems,
indexed by 1 and 2 (for instance two ideal gases), which mésract only through
a heat flow through a conducting wall. The thermodynamic eriogs of each ideal
gas are described in the composed TPS
T=RxRZ>x" =%/, pjic12j-1.3 (43)
where thex/ denote the coordinates of the extensive variables and of the
conjugated intensive variables of the systémAssume that the thermodynamic

properties of each system are generated by the internabyerié(x/) for i =1,2
and j = 1,...,3 (for an ideal gas given in Example 2). The thermodynamic
properties of the composed system are simply obtained bgidering the Legendre
submanifold £y generated by the potentidl = Uy + Us.

_ The two systems may exchange a heat flgx according to Fourier's law
O = MT1 — T7), where 1 € R denotes Fourier's heat conduction coefficient. The
heat transfer dynamics is described by the conservativéacbrsystem onl with

the internal contact Hamiltonian

Ko(x') = (p11, P12)' R(p11, p12)A*((T1, T2)') = R(p)A(p, T), (44)
where 1 1 U
R(p)=k<———), T, = —(x}), i=12,
P12 P11 ap1;

and A* denotes the vector bundle map associated with the canosigaplectic
Poisson tensorA on R?. Note that this multiplicativeR destroys the Hamiltonian
structure (Poisson or Dirac structure) and allows to taki# iaccount entropy
productionvia nonlinear generating flux laws. By construction, thetaohHamiltonian
Ko satisfies the invariance condition of Theorem 2, and leawesrient the Legendre
submanifold£, that is, it satisfies Gibbs’ relation. Let us now write thetrietion of
the vector fieldX, to the Legendre submanifold. Consider firstly its projection



AN EXTENSION OF HAMILTONIAN SYSTEMS TO THE THERMODYNAMIC PHASE SPEE 191

on the temperature coordinates,, p1,. Using the fact that the systems are isochore

together with the definition of the calorific capacitan€g = g—lT/ one obtains

, —Cyy 'A(TL— T
dKo @) :< vi ATy 2>>' )
L

axly axl,

= (T, ) = (

d t
ar P Cva ' MT1— T)

These two equations are simply the energy balance equatigitten in terms
of the temperature and using the calorimetric relations, dach of the simple
thermodynamical systems 1 and 2. Consider now the projeatio the entropy
coordinates,

M -T)
I
Mh—T2) |’
T
which corresponds to the entropy balance equation writtenefich simple thermo-

dynamic system. It may be seen that this system resemblesnaltbldaan system,
however the multiplicative modulus

4y ) (46)

9Ky 9Ko\'
dt

dp1y’ dp1p

= (51, $2) = — (

L L

1 1
R(, o) =AM — — — 47
(Th, T2) (T2 Tl) (47)
renders the relation between the entropy flaihydr and the temperaturasonlinear
This is again an illustration in which sense the contact fdation allows to
encompass irreversible phenomena in opposite to Hanaltosystems. Finally, we
may consider the projection on the energy coordinete

dR' U T i
=—(R(TL.T) + — — | A , =0, 48
; ( (T1, T») + Py 8x1> ((Tz) (T2>> (48)

which indicates that the potential/, i.e. the internal energy, is conserved on
trajectories on the Legendre submanifold. Furthermords itvorth noting that the
entropy source term, given by

dx°
dt

. ) . 1 1
=S So = — —— >0, 49
o= 5+ 5 Q(TZ Tl)_ (49)

is a positive term which vanishes at the thermodynamic #xgjuim (71 = T5).

4.2. Nonisolated systems

In this section, we shall extend the previously defined comagive contact
systems in order to cope with models gpenthermodynamical systems. Therefore
we shall follow a construction very similar to the definitiai Hamiltonian control
systems [4, 36, 32]. Namely we shall introduce additionahtact Hamiltonians,
called interaction contact Hamiltonianswhich will represent the interactions of the



192 D. EBERARD, B. M. MASCHKE and A. J. VAN DER SCHAFT

system with its environment. First, we shall give the ddfinitof these conservative
control contact systems and illustrate it with simple exb®p Second, we shall
define pairs of conjugated port variables by considering wepadbalance equation.

Let us first extend the definition of conservative contracstams to control
systems as follows.

DEFINITION 4. A conservative control contact systamdefined as a conservative
contact system together with input vector fields, i.e. assie(M, 0, L, U, Ko, ...,
K,,) where (M, 0) is a contact manifoldL a Legendre submanifold{ the input
space, withm + 1 contact Hamiltonians satisfying the invariance conditio

Kj =0, j=0,....m, (50)
and the dynamics is given by the differential equation
I Kol + 3 Kk, () = X w) (51)
dt_ Kox v KJ.)C,M] = X ,U).

The system’s dynamics is composed of two terms. The first teamsists of
the drift dynamicsXg, which defines precisely a conservative contact system with
respect to the Legendre submanifolll in the sense of Definition 3. The second
term is composed by the linear combination mf contact fields generating also
m conservative contact systems with respect to the Legendoenanifold £. All
these vector fields satisfy the invariance condition of Thao 2 with respect to
the Legendre submanifold. Obviously, their linear combinatioX (x’, u) satisfies
as well the invariance condition, and leavé&sinvariant.

In the context of thermodynamic systems, this system may riverpreted as
follows. The Legendre submanifold represents the thermodynamic properties of
the system. The internal contact Hamiltoni&lg represents the law giving the fluxes
in the closed system due to nonequilibrium conditionsthe system (for instance
due to heat conduction or chemical reaction kinetics). IKirthe interaction contact
Hamiltonians K; give the fluxes due to the nonequilibrium of the system with it
environment. The invariance conditions guarantee the domahtal thermodynamic
principle: thermodynamic properties are invariant under dynamics. In other words,
Gibbs’ relations are satisfied along irreversible transfions.

In order to illustrate this definition, let us consider thdldawing examples.

ExaMpPLE 6. Lift of port Hamiltonian system as conservative control temn
system.The lift of a port Hamiltonian system to its TPS is a consaveatontrol
contact system with the internal contact Hamiltonian gil®n(20), and interaction
contact Hamiltonians (21). Notice that the interactiontach Hamiltonians are linear
in the input functionsu;.

The second example consists in Example 5 (heat conductiawebe two
simple thermodynamic systems) which is now assumed toactenith an external
thermostat.
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ExaAMPLE 7. Heat conduction continuedConsider again the example of two
simple thermodynamic systems, indexed by 1 and 2 (for igstawo ideal gases)
which may interact through a heat flow through a conductindl. waut consider
now that one of the systems, indexed by 2, interacts throudgheat flow with
a thermostat with constant temperatufg the heat conduction coefficient will be
denotedie. The interaction with the thermostat at temperat@iteis given by the
interaction contact Hamiltonian

/ I,
Kint(x", Te) = Xe |:(p12 - TZ) + (Te In (p_>>] . (52)
12
Notice that this interaction contact Hamiltonian is affimethe control variableTe.
By construction, it satisfies the invariance condition ofedfem 2. The restriction
of its associated vector field to the Legendre submanifoloiepted on the energy

coordinate is 4,0 JU

X

—| = — =i (Te— , 53
dr |, di e(Te — p12) (53)

which is simply the energy balance equation. The projecionthe temperature

coordinates, using tha fact that the systems are isochateCah = % gives

.. —Cy1 N1 — T») 0
=(.T»)' = il .
c Cyy " MTL— To) Cyy " Ae(T, — T2)

d( )!
dt P11, P12

(54)
which is precisely the dynamics of the isolated system (4&)n@ented with the
second term corresponding to the heat flux from the enviromnm&o the system
2. The projection on the entropy coordinates gives :

W 2) (o) () bwnann)
= =1l=-= + (55)
c dt T, Ti/\1 O T> re(1/To — 1/Te) Te

which are the entropy balance equation (46) of the isolajestesn augmented with
a second term which describes the entropy flow in the systenue?td the heat
flow from the thermostat.

dx%
dt

The third example consists in a gas in a cylinder with movimgirgary, that is a
subpart of Example 4.

ExAmMPLE 8. Gas in a cylinder with moving boundaryhe dynamics of an ideal
gas in a cylinder with a moving boundary (the surface of thgtom) undergoing
some mechanical work, may be defined as a conservative taumgact system.
This system is defined on the TPFKas= R x R® 5 (x0,x/, p;) where x’ denote
the extensive variables angl the conjugated intensive variables. Its thermodynamic
properties are given by the Legendre submanifold alreadiyeatkin (9). As the gas
is considered to be in equilibrium with the control volumée tdrift dynamics is
of course zero. And the external mechanical work providedabyexternal pressure
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P€, and variation of volumef\i3 leads to the interaction contact Hamiltonian

gas (]72 P) f\?i (56)

where by definition the pressure of the gas As= pj|.. The restriction of the
system to the Legendre submanifold followed by a projectmn the extensive
variables gives the dynamics ds

Z_— 0,
dt
av

—fv (57)

dr
dN

dr
4.3. Energy balance equation and port variables

In this paragraph we conclude with some considerations @n définition of
output variables conjugated to the input variables in thessethat they define a
power balance equationindeed, the definition of control Hamiltonian systems and
the time variation of the Hamiltonian function (or some Ledee transformation
with respect to the inputs) lead to the definition of outputsjagated to the inputs,
and include these systems in the class of dissipative sgsfdin 4, 36, 39]. From
a thermodynamic point of view, each pair of conjugated \meis consists of an
intensive variable and the rate of its conjugated extengwiable, such as for instance
the pair entropy flow and temperature, or the pair molar flog anthalpy. Any pair
has the property that it allows to express either continoitydiscontinuity of some
flows, or the equilibrium or nonequilibrium conditions aetboundary of the system.

In order to define such pairs of conjugated variables, let ts$ ¥irite the time
derivative of an arbitrary functiorV € C*(M). A straightforward calculation leads
to the following equality [12],

av <N
PR AP I (58)
j=1
where s? is the internal source termdefined by
Ko
SV_{I(VO9‘/}-"_‘/a 0° (59)
and s/, is the external source term associated with the inpyt
Jj _ ) J
sy ={K;,V}+ V—ax0 . (60)
If, furthermore, there exists a functiop) (x’, u;) such thats], = u; y{,, then (58)
may be written AV m _
=i s, (61)
j=1

and yé is called theV-conjugate output variable
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REMARK 3. If the interaction contact Hamiltonians are linear fimes of the
inputs, that is, there exists a functioki; such thatK;(x’,u;) = K;(x)u;, then
there exists a port-conjugate output variable

. _ oK :
v ={K;, V}+ vﬁ;. (62)

This is the case of the lift of a port Hamiltonian system, ahd gas in a cylinder
with moving piston.

If, on the whole TPS, the equality (61) is satisfied with th#ofesing conditions:
() the function V is bounded from below, (i) the source tersy is smaller or
equal to O; then the control contact system would be dissgand the function
V is then called astorage function41, 38]. In the particular case when the source
term is zero, the system is said to bessless However, through a few examples
we shall see that for thermodynamic systems, the definitibrcamjugate output
variables and the balance equation should be rather caadidm the restriction of
the control conservative contact system to its Legendrananifold.

Let us first consider the lift of a port Hamiltonian system sidered in Section 3.1.

ExAMPLE 9. Port-conjugate variable and power balance equation of aedf
port Hamiltonian systemConsider as a first case the lifted port Hamiltonian system
(20)—(22), and the time derivative of the internal Hamileon Hy. Then the source
term writes

Sty = A(d Ho(x), dy Ho(x)) = 0. (63)

Hence the source termy, is zero on thewhole thermodynamic phase space, and
this amounts to saying that the internal Hamiltonian is aseoved quantity on the
whole thermodynamic phase space. It is remarkable that thigynof the source
term sy, (everywhere on the TRSs equivalent to the invariance condition of the
contact field Koz = 0. The Hp-conjugate output defined by the interaction contact
Hamiltonian K; = (dHo — p, g;) reads

Vi = £(g))Ho. (64)

Notice that they are precisely thgort outputsof a port Hamiltonian system defined
in (17). Hence, the power balance equation (18) is satisfieth Hor the port
Hamiltonian system and its lift to the TPS.

Consider now an example including an irreversible systdm the heat conduction
in Example 5.

ExAamMPLE 10. Heat conduction with thermostat: port-output and power anale
equation. We shall consider Example of the heat conduction between dinple
thermodynamic systems and with a thermostat as treatedeiretamples 5 and 7.
We shall analyze here the variation of a natural candidatection for a power
balance equation: the internal energyof the system. A straightforward calculation
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shows that the source term with respect to the internal gnisrg
T (41 AUT AR P11 T
SU:R(pl)A ) +\— — A 5
13 13 dx dp D12 I (65)
_(aUTaR)A pu\ (T
dx dp p) \2))]

This time, the source term does not vanish on the whole TPS,tbdoes when
restricted to the Legendre submanifolt},, which is the only physically meaningful
dynamics.

Consider now the port-conjugate output with respect to thiernal energyU
of the system

dKint OU —T 1 1
w2 _mesfi (A L)pln
dp12 0x3 P12 Te  p1
This leads us to define the port-conjugate output
1 1
=l |l=——) T, 67
YUtot e (Te p12> 2 (67)
the restriction of which to the Legendre submanifold is mely the entropy flow
_)ve (Te - TZ)

into the environment conjugated to its temperaturg..

e

5. Conclusion

In the first instance we have defined a class of contact systeatied conservative
contact systemsallowing us to describe the dynamics of isolated irrevéesib
thermodynamic systems. They are defined on some contacfalthbly two objects:
a Legendre submanifold of the contact structure, and a cbwtector field. In the
context of physical systems’ modeling, these objects maynbepreted as follows.
The Legendre submanifold describes thermodynamic priegexf some physical
system according to the classical differential-geometammulation of equilibrium
thermodynamics. The contact vector field is associated watime phenomenological
laws induced by some thermodynamical nonequilibrium daoms in the system, and
are generated by contact Hamiltonians being the virtualgoaassociated with these
phenomena. Furthermore this contact Hamiltonian shoulisfgaa compatibility
condition with the Legendre submanifold, actually shouldnigh on it, hereby
ensuring the invariance of the thermodynamic propertienglthe trajectories. The
class of conservative contact systems has been shown tanpass models such as
reversible Hamiltonian systems, and reversible as wellrr@veérsible thermodynamic
transformations.

In the second instance we have completed this class of systerarder to cope
with models ofopen thermodynamic systeniherefore we have defined an interaction
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contact Hamiltonian associated with phenomenologicakladescribing the interaction
of the system with its environment according to some phemamtogical laws
associated with nonequilibrium conditions between theesysand its environment.
We have shown that this class of systems, calt@htrol conservative contact
systems encompasses the class of port Hamiltonian systems as weltoapled
mechanical and thermodynamical systems. Finally, we hafened pairs of power
conjugated variables associated with the energy flow at thendiary of the system
when restricted to the Legendre submanifold.

In our perspective, the definition of the class of conseveaiiontact systems
opens the way for further investigations in two main direet. It remains open
to define some additional characterizations of a class oftacbnHamiltonians
(and related Legendre submanifolds) which agree with theorsg principle of
thermodynamics in the sense that one may deduce an entrggstioor term.
Moreover, the definition of irreversible transformatiorsing contact functions, could
also open the way for the definition of irreversible phenoabegical laws far
from equilibrium and the investigation of global stabiliroperties of irreversible
thermodynamic systems. Another open investigation aenaceras the nonlinear
control of physical systems. Indeed the definition of naedin contact Hamiltonians
opens the way for the definition of power continuous intersmmion structures
generalizing the interconnection of Hamiltonian systemsing Dirac structures
[40, 37]. As a consequence the class of nonlinear controls laged in the
so-called Passivity Based Control - Interconnection ananfiag Assignment [34]
could also be generalized and lead to novel stabilizing rotiats.
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