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c Hamiltonian systems (IPHS) are adapted to irreversible thermodynamic systems.
c IPHS express the first and second principle as a structural property.
c IPHS define control contact systems on the complete Thermodynamic Phase Space.
c The balance equations of a CSTR are expressed as IPHS and as control contact system.
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a b s t r a c t

In this paper we suggest a class of quasi-port-Hamiltonian systems called Irreversible port-Hamiltonian
Systems, that expresses simultaneously the first and second principle of thermodynamics as a structural
property. These quasi-port-Hamiltonian systems are defined with respect to a structure matrix and a
modulating function which depends on the thermodynamic relation between state and co-state variables
of the system. This modulating function itself is the product of some positive function g and the Poisson
bracket of the entropy and the energy function. This construction guarantees that the Hamiltonian func-
tion is a conserved quantity and simultaneously that the entropy function satisfies a balance equation
containing an irreversible entropy creation term. In the second part of the paper, we suggest a lift of the
Irreversible Port-Hamiltonian Systems to control contact systems defined on the Thermodynamic Phase
Space which is canonically endowed with a contact structure associated with Gibbs’ relation. For this class
of systems we have suggested a lift which avoids any singularity of the contact Hamiltonian function
and defines a control contact system on the complete Thermodynamic Phase Space, in contrast to the
previously suggested lifts of such systems. Finally we derive the formulation of the balance equations of a
CSTRmodel as an Irreversible Port-Hamiltonian Systemand give two alternative lifts of the CSTRmodel to a
control contact system defined on the complete Thermodynamic Phase Space.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The use of physical invariants such as the total energy, momen-
tum or mass, has lead to a huge variety of efficient methods for
the modelling, simulation and control of physical systems. These
invariants structure the dynamical models of physical systems.
For mechanical systems, arising from variational formulations,
Lagrangian and Hamiltonian systems are derived (Arnold, 1989)
and have been extended to control systems representing open
physical systems called controlled Hamiltonian or Lagrangian

systems or input–output Hamiltonian systems (Brockett, 1977;
van der Schaft, 1986), (Marsden, 1992, Chapter 7). For the Hamilto-
nian systems, the Hamiltonian function is a dynamical invariant
(other invariants may arise from its symmetries) and is often equal
to the (free) energy of the mechanical system. The other funda-
mental invariant of these systems is its geometric structure, the
symplectic structurewhich is defined by a canonical skew-symmetric
tensor on the co-state variables of the system and defined in
practice, by some skew-symmetric matrix, called structure matrix.
For physical systems, it represents the canonical reversible coupling
between two physical domains (e.g. the elastic and the kinetic
energy exchange in a perfect oscillator).

These Hamiltonian formulations may be extended to electrical
systems and networks by considering Hamiltonian systems defined
with respect to a generalization of symplectic structure, i.e., Poisson
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structures (Arnold, 1989) which may be associated with the topology
of the system such as graphs of electrical circuits or the kinematic
relations of a mechanism for instance (Maschke et al., 1995; van
der Schaft and Maschke, 2009) and whose extension to open or
controlled physical systems is called port-Hamiltonian Systems
(Maschke and van der Schaft, 1992; van der Schaft and Maschke,
1995; Duindam et al., 2009).

However when irreversible phenomena have to be described
then this Hamiltonian frame is not adapted anymore. The Hamil-
tonian systems have to be completed with an additional term
representing the dissipation leading to a system composed of
the sum of a Hamiltonian and a gradient system (van der Schaft,
2004) which is defined by a Riemannian metric which is defined
in practice by some symmetric positive matrix. For electro-
mechanical systems which are assumed to be in isothermal
conditions and for which it is not necessary to represent the
thermal domain, these systems are dissipative Hamiltonian systems
with a well defined geometric structure generalizing the Poisson
structure (Ortega and Planas-Bielsa, 2004).

When, as it is the case in chemical engineering, furthermore the
energy (or equivalently the entropy) balance equation have to be
included in the model, then the preceding models cannot be used
anymore. And a variety of models have been suggested; their main
characteristics is to represent all balance equations of the models,
including the total energy and entropy balance equations. Two
main classes of systems have been suggested, quasi-gradient systems
(Favache and Dochain, 2010; Favache et al., 2011) and quasi-
Hamiltonian systems (Grmela and Öttinger, 1997; Öttinger and
Grmela, 1997; Mushik et al., 2000; Hoang et al., 2011, 2012; Ramirez
et al., 2009; Johnsen et al., 2008), the latter being the subject of
this paper.

In the first part of the paper, we shall elaborate on the definition
of these quasi-Hamiltonian systems. Indeed in order to represent
simultaneously the total energy and entropy balance, a simple
example of heat transfer phenomena will be used to show that
these formulations are not dissipative Hamiltonian as the matrices
defining the symmetric and skew-symmetric tensors are functions
of the co-state variables which destroys the linearity associated
with tensors (Eberard et al., 2007).1 But we shall characterize this
nonlinearity of the structure matrices in a more precise way, as a
function depending on the co-state variables. We suggest a quasi-
Hamiltonian system called Irreversible Port-Hamiltonian System
(IPHS) defined with respect to a skew-symmetric structure matrix
composed of the product of a constant skew-symmetric matrix with
this modulating function and give a physical interpretation.

In the second part of the paper, we use an alternative formula-
tion based on an intrinsic geometric structure associated with Gibbs’
relations, characterized as the set of tangent planes and defined as
contact structure (Hermann, 1973, 1974; Arnold, 1989). This geo-
metric structure is intrinsic to the Thermodynamic Phase Space
(TPS) composed of all extensive and intensive variables of a
thermodynamic system in the same way as the symplectic structure
is intrinsic to the configuration-momentum space of a mechanical
system and is actually closely related to it. Following earlier work
on the formulation of reversible (Mruga"a, 1993) and irreversible
transformations (Grmela and Öttinger, 1997; Grmela, 2001)
for closed and its extensions to open thermodynamic systems
(Eberard et al., 2005, 2007; Favache et al., 2009, 2010), we shall
express the Irreversible Port-Hamiltonian Systems as control contact
systems on the complete Thermodynamic Phase Space.

In the third part, we consider a Continuous Stirred Tank
Reactor (CSTR) model and firstly remind different dissipative

Hamiltonian formulations of the balance equations, showing
precisely the dependence of the structure matrices on the co-
state variables. Secondly we derive the formulation of the CSTR as
an Irreversible Port-Hamiltonian System and give physical inter-
pretation of the Poisson structure matrix in terms of the stoichio-
metry of the reaction and the modulating function and in its
relation with the irreversible entropy creation. Finally the lift
of this system to the complete Thermodynamic Phase Space is
performed and an alternative is discussed.

2. Port-Hamiltonian formulation of open thermodynamic
systems

2.1. Reminder on port-Hamiltonian systems

Port-Hamiltonian systems (PHS) (Maschke and van der Schaft,
1992) have been widely used in modelling and passivity-based
control (PBC) of mechanical and electro-mechanical system
(Duindam et al., 2009; Ortega et al., 2008). On the state spaceRn 3 x,
a PHS is defined by the following state equation:

_x ¼ JðxÞ
@U
@x

ðxÞþgðxÞuðtÞ ð1Þ

where U : Rn-R is the Hamiltonian function, JðxÞARn %Rn is a
state-dependent skew-symmetric matrix, gðxÞARm %Rn is the input
matrix and uðtÞARm is a time dependent input. If it satisfies some
integrability conditions, the Jacobi identities (Libermann and Marle,
1987), the skew-symmetric matrix J(x) is the definition in coordinates
of a Poisson bracket, that is a map from the pairs of C1ðRnÞ functions Z
and G to a C1ðRnÞ function denoted by fZ,GgJ and defined as

fZ,GgJ ¼
@Z
@x

>

ðxÞJðxÞ
@G
@x

ðxÞ ð2Þ

From (2), it is seen that the structure matrix JðxÞ also defines a
2-contravariant tensor on the co-states. As a consequence, the
variation of any function Z along the PHS dynamics (1) may be
expressed in term of the Poisson bracket:

_Z ¼ fZ,UgJþ
Xm

i ¼ 1

LgiZðxÞuiðtÞ

where LgiZ denotes the Lie derivative of Z with respect to the vector
fields defined by the columns giðxÞ of the input matrix gðxÞ
and is expressed in coordinates as LgiZðxÞ ¼ ð@Z=@xÞTgiðxÞ. By the
skew-symmetry of the matrix JðxÞ (and its Poisson bracket), the
Hamiltonian function obeys the following balance equation:

_U ¼
Xm

i ¼ 1

LgiUðxÞuiðtÞ

which implies that it is conserved when the input is identically
0 and also leads to the definition of outputs conjugated to the
inputs: yi ¼ LgiZðxÞ. For (isothermal) electro-mechanical systems, the
Hamiltonian function is often chosen to be the total (free) energy.

The port-Hamiltonian system (1) is an extension of Hamilto-
nian systems with an input term defined by input vector fields
gi which are not necessarily Hamiltonian (Maschke and van der
Schaft, 1992; van der Schaft and Maschke, 1995) and hence also
an extension of control Hamiltonian systems (Brockett, 1977;
van der Schaft, 1989). Notice that when the structure matrix is
constant then the Jacobi identities are satisfied. This case encom-
passes the structure of standard Hamiltonian systems with
external forces where J¼ ½ 0m

'Im
Im
0m
( (0m denoting the square null

matrix and Im the identity matrix of dimension m). In general the
structure matrices JðxÞ and gðxÞ are defined by the topology of the
system, that is the interconnection relations in the system such as
Kirchhoff’s laws of circuits (Maschke et al., 1995), the kinematic

1 Note that this is also the case with the quasi-gradient formulations in
Favache and Dochain (2010) and Favache et al. (2011).
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and static relations of a mechanical system (Maschke and van der
Schaft, 1997), mass flow circuits and chemical reaction kinetics in
mass balance systems (Ortega et al., 2000; Sbarbaro and Ortega,
2007; Bao and Lee, 2007; Dörfler et al., 2009), stoichiometric
coefficients in chemical reaction networks (Oster and Perelson,
1974; Otero-Muras et al., 2008) or general interconnection rela-
tions on complexes (van der Schaft and Maschke, 2009). The
properties of Poisson brackets such as its skew-symmetry or
existence of an integrable kernel correspond to the existence of
conservation laws or balance equations for open systems and are
the base of the derivation of passivity-based control laws using
these invariants (Ortega et al., 2002, 2008; Duindam et al., 2009).

2.2. Formulation of the second principle

For thermodynamically consistent models of physical systems
expressing some irreversible phenomena, i.e., transformations
that involves irreversible entropy creation and the explicit for-
mulation of the associated energy or entropy balance equation, it
is not sufficient to express the conservation of energy but it is also
necessary to express the irreversible entropy creation associated
with the irreversible transformation as a system theoretic property.

Consider the Hamiltonian system defining the drift vector field
of the port-Hamiltonian system (1). We have seen that, by skew-
symmetry of the Poisson bracket, the total energy of the drift
system satisfies the conservation law dU=dt¼ fU,UgJ ¼ 0. Now, in
order to express the second principle, there should be a second
entropy-like C1ðRnÞ function S, which expresses the irreversible
entropy creation by the balance equation

dS
dt

¼ fS,UgJ ¼
@S
@x

>

JðxÞ
@U
@x

¼ sðxÞZ0

with a strict inequality when @U=@xa0. That implies that the
structure matrix J should depend on the gradients of both the
Hamiltonian and the entropy functions. For a simple thermody-
namic system however, the internal energy may be chosen as
the Hamiltonian function and the entropy may be chosen as a
coordinate. As a consequence the structure matrix is expressed as
a function of the gradient of the Hamiltonian function Jðx,@U=@xÞ
(Eberard et al., 2007). However if the skew-symmetry of the
structure matrix J is an explicit function of the gradient @U=@x, the
drift dynamic Jðx,@U=@xÞ@U=@x is a nonlinear function in the
gradient ð@U=@xÞðxÞ. In this sense the symplectic structure of the
PHS, given by the Poisson tensor associated with the structure
matrix J(x), is destroyed. This is the reason why for models of
physical systems expressing simultaneously the energy conserva-
tion and the irreversible entropy creation, as it occurs in chemical
engineering for instance, the Hamiltonian formulation has been
questioned.

It is interesting to note that in other formulations when the
Hamiltonian is chosen to be the total entropy of the system (Favache
et al., 2010), or the availability function (Hoang et al., 2011) or in the
GENERIC formulation (Jongschaap and Öttinger, 2004), the structure
matrices also depend explicitly on the gradient of the generating
functions.

2.3. Irreversible PHS

In this section we shall define an extension of port-Hamiltonian
systems defined with respect to a skew-symmetric structure matrix
which on the one hand side represents the topology of the system
but on the other hand side allows to express both the first and
second principles of thermodynamics. The means to achieve the
latter property is to derive the structure matrix as a function of the
gradients of two functions, being for physical systems the energy
and the entropy functions.

2.3.1. Definition
We define hereafter a quasi-Hamiltonian system, called Irrever-

sible Port-Hamiltonian System, generated by some Hamiltonian
function U, with respect to a skew-symmetric structure matrix
depending on its gradient as well as on the gradient of some
additional function, a generalized entropy function denoted by S,
as follows.

Definition 1. An Irreversible Port-Hamiltonian System (IPHS) is
defined by the dynamic equation

_x ¼ R x,
@U
@x

,
@S
@x

! "
J
@U
@x

ðxÞþW x,
@U
@x

! "
þg x,

@U
@x

! "
u ð3Þ

where

1. the state variable is xðtÞARn, the input variable is uðtÞARm,
2. the Hamiltonian function UAC1ðRnÞ and the entropy function

SAC1ðRnÞ,
3. the structure matrix JARn %Rn is a constant skew-symmetric

matrix, structure matrix of the Poisson bracket f , gJ ,
4. R¼ Rðx,@U=@x,@S=@xÞ is the product of a positive definite func-

tion g and the Poisson bracket of S and U:

R x,
@U
@x

,
@S
@x

! "
¼ g x,

@U
@x

! "
fS,UgJ ð4Þ

with gðx,@U=@xÞAC1ðRn %RnÞ-R, a nonlinear positive func-
tion of the states and co-states of the system,

5. the vector field Wðx,@U=@xÞ and the input matrix gðx,@U=@xÞ
are smooth functions and define the input map, affine in the
control u.

2.3.2. Discussion
Let us comment Definition 1 of Irreversible port-Hamiltonian

Systems in the context of the dynamic models of physical systems,
especially systems of mass and energy or entropy balance equations
appearing for instance in models of CSTR.

Let us discuss firstly its drift dynamics defined by the vector
field:

f x,
@U
@x

,
@S
@x

! "
¼ R x,

@U
@x

,
@S
@x

! "
J
@U
@x

ðxÞ ð5Þ

corresponding to the model of the closed physical system. Notice
that the system is an extension of Hamiltonian systems in the
sense discussed in Section 2.2. Indeed its structure matrix is

J ¼ R x,
@U
@x

,
@S
@x

! "
J ð6Þ

which is the product of the skew-symmetric real matrix with a
function depending on the gradients of both functions U and S.
From the skew-symmetry of J , it follows that the Hamiltonian
function U is a conserved quantity of the drift dynamics. Further-
more its gradient is also the generating force of this dynamics.

An obvious candidate for the Hamiltonian function U is of
course the total energy of the system which is a conserved
quantity. Let us notice that, in this frame it is excluded to choose
as Hamiltonian UðxÞ other thermodynamic potentials which are not
conserved, like the entropy (Favache et al., 2010; Hoang et al.,
2011; Grmela and Öttinger, 1997) or the availability function for
closed-loop reference systems (Hoang et al., 2011). In all these
latter formulations the structure matrix looses its skew-symmetry
and is defined as the sum of a skew-symmetric and a symmetric
matrix. We refer to Section 4 for a detailed discussion of the
implication of the different choices in the case of models of CSTR.

Let us discuss now more in detail the skew-symmetric structure
matrix J defined in (6) as the product of a constant skew-symmetric
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matrix J with the function R depending on the gradients of the two
functions U and S. As the skew-symmetric structure matrix J is
constant, it satisfies the Jacobi identities and the vector field J@U=@x is
a Hamiltonian vector field while the autonomous dynamics
Rðx,@U=@x,@S=@xÞJ@U=@x defines a quasi-Hamiltonian vector field in
the sense of Section 2.2. The choice of J as a constant skew-symmetric
matrix might appear as a restrictive choice which, however, might be
justified by the aim of representing with this matrix not only the
symplectic Poisson brackets in canonical coordinates, as they arise in
standard Hamiltonian systems (Libermann and Marle, 1987), but also
those Poisson brackets stemming from network representations of
physical systems, representing Kirchoff’s laws of electrical circuits or
the kinematic and static relations mechanisms (Maschke et al., 1992,
1995; Maschke and van der Schaft, 1997) or general interconnection
relations on complexes (van der Schaft and Maschke, 2009). For
chemical reaction networks or models of CSTRs, the topology of
systems is defined by the stoichiometry of the reactions and plays an
essential role in the definition of the structure matrices of the (quasi-
)Hamiltonian representations (Couenne et al., 2008b; Otero-Muras
et al., 2008; Hoang et al., 2011; van der Schaft and Maschke, 2010)
and will be detailed in Section 4 for models of CSTR.

The actual structure matrix J is modulated by the function R
defined in (4) which depends on the differentials of both the
Hamiltonian function UðxÞ and the entropy function SðxÞ and has
been defined in such a way that the variation of the entropy of the
drift dynamics (5) is positive

dS
dt

¼ R
@S
@x

>

J
@U
@x

¼ g x,
@U
@x

! "
fS,Ug2J ¼ sintZ0

using the assumption that gðx,@U=@xÞ is a positive definite func-
tion. For thermodynamic systems this inequality expresses
the second law of thermodynamics; the entropy balance of an
isolated thermodynamic system is always greater than or equal to
zero and equal to the internal entropy production. Furthermore
if the generating function (the Hamiltonian) is chosen as the
internal energy, then the entropy is a state variable with gradient
@S=@x being a vector whose elements are either 1 or 0 (Jongschaap
and Öttinger, 2004; Favache et al., 2010). Since the Poisson
bracket is defined with respect to the constant matrix J, the
bracket fS,UgJ is a linear combination of the co-energy variables
(coefficients of @U=@x) and actually may be interpreted as the
thermodynamic driving force (see Section 4).

For the complete control system (3), the interaction with the
environment is modelled through the vector fields gu and W. The
vector field gu is the usual input vector field, where g is the input
map and u(t) is the controlled, or time dependent input of the
system. The vector field W on the other hand models the uncon-
trolled interactions. These interactions may be given by state
dependent inputs and outputs like mass flows in chemical reactors
where the system undergoes isochore and isobaric transformations.
There are two balance equations associated with the control system
(3). The first one is associated with the Hamiltonian function UðxÞ

dU
dt

¼
@U
@x

>

ðWþguÞ ð7Þ

which expresses for physical systems that the variation of energy is
solely due to its supply by its environment. The second balance
equation is associated with the entropy function SðxÞ

dS
dt

¼ R
@S
@x

>

J
@U
@x

þ
@S
@x

>

ðWþguÞ ð8Þ

which is now composed of the term of irreversible entropy creation of
the internal dynamics of the system and the entropy flow due to
the interaction with its environment. Despite that we are restricting
our work to a specific class of systems, this class is wide enough to
encompass several thermodynamic processes of practical importance,

notably chemical reactions and heat exchange processes (Ramirez,
2012) as will be illustrated with the following example.

2.4. Example: the heat exchanger

Consider two simple thermodynamic systems, indexed by 1 and 2
(for instance two ideal gases), which may interact only through a
conducting wall. The dynamic of this system is given by the
following equation:

_S1
_S2

" #

¼ l
T2ðS2Þ
T1ðS1Þ

'1
T1ðS1Þ
T2ðS2Þ

'1

2

4

3

5þle
0

TeðtÞ
T2ðS2Þ

'1

" #

ð9Þ

where S1 and S2 (resp. T1 and T2) are the entropies (resp. the
temperatures) of subsystem 1 and 2, Te(t) is the time dependent
(controlled) temperature of the environment andl40 (resp. le40)
denotes Fourier’s heat conduction coefficient of the heat conducting
wall between the two compartments (resp. between compartment 2
and the environment). Assuming that the two compartments con-
tain a pure ideal gas and that they undergo no deformation, and are
closed, the temperatures may be modelled as exponential functions
of the entropies (Couenne et al., 2006) TðSiÞ ¼ T0 expðSi=ciÞ, where T0
and ci are constants. This system may be written as

_x1
_x2

" #
¼ l

1
@U
@x2

'
1
@U
@x1

0

BB@

1

CCA
0 '1

1 0

# $ @U
@x1
@U
@x2

2

4

3

5þle
0

1
@U
@x2

' 1
u

2

4

3

5u

where x¼ ½S1,S2(, Uðx1,x2Þ ¼U1ðx1ÞþU2ðx2Þ is the internal energy of
the overall system, sum of the internal energies of each subsystem,
u(t) the controlled input that corresponds to the external tempera-
ture Te(t) with @U=@xi ¼ TiðxiÞ. Rewrite this systems as an IPHS (3) by

_x ¼ Rðx,TÞJTðxÞþWþgðTÞuðtÞ ð10Þ

with

Rðx,TðxÞÞ ¼ l 1
T2

'
1
T1

! "
ð11Þ

J¼ ½01
'1
0 ( (where, for the sake of keeping a physical interpretation we

denote @U=@x¼ TðxÞ ¼ ½T1ðx1Þ,T2ðx2Þ(T) and with input map defined
by W ¼'le½01( and g ¼ ðle=T2Þ½01(. Let us verify that the system (10)
fulfils Definition 1. The total entropy of the system is given by
the sum of the entropies of each compartments SðxÞ ¼ x1þx2.
The Poisson bracket fS,UgJ is then simply the difference of tempera-
tures between the compartments

fS,UgJ ¼
@S
@x

>

J
@U
@x

¼
1

1

# $> 0 '1

1 0

# $ T1

T2

" #

¼ T1'T2

It may be noted immediately that the bracket is indeed the driving
force of the heat conduction. Then one may identify the expression
of the modulating function (11) with (4) and obtain

g¼ l
T1T2

Since the heat conduction coefficient satisfy l40, as well as the
temperatures T140 and T240, then the condition g40 is also
satisfied. The input map WþgðTÞu defines entropy flows generated
by the interaction of subsystem 2 and the external heat source and
depends on the heat conduction coefficient le between them.

3. Formulation in the thermodynamic phase space

As has been shown in Section 2.2, the standard Hamiltonian
formulation is not suited for expressing both the first princi-
ple (conservation of the total energy) and the second principle
(irreversible entropy creation). However there exists an alternative
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geometric structure to Poisson brackets, namely the contact
structure, which appears in an intrinsic way, attached to the
geometric formulation of the equilibrium properties of thermo-
dynamic systems by Gibbs (1873, 1928). The geometric represen-
tation of Equilibrium Thermodynamics as sets of tangent planes in
the Thermodynamic Phase Space (TPS) constituted of the nþ1
extensive and n intensive variables of the system has been
formulated in differential-geometric terms as so-called contact
structures (Hermann, 1973; Arnold, 1989; Mruga"a, 1978). Rever-
sible transformations have been formulated as contact vector fields
(Mruga"a, 2000) that have been generalized to irreversible trans-
formations of open thermodynamic systems (Eberard, 2006;
Eberard et al., 2007).

In this section we shall first briefly recall the definition of the
control systems defined on such contact structures, called con-
servative contact systems according to Eberard et al. (2007). It is
mainly devoted to the lift of the IPHS (3) to the TPS similarly as it
has been suggested in the previous work (Eberard et al., 2007;
Favache et al., 2010). The specific structure of IPHS is used
to suggest an alternative to the previously defined lifts (Eberard
et al., 2007; Favache et al., 2010) in order to ensure some
additional regularity properties and may be seen as the continua-
tion and a partial answer to the problem of choice of some
suitable lifts among all admissible ones (Favache et al., 2009).

3.1. Conservative controlled contact systems

The main definitions and properties of the control contact
systems used in this paper are briefly recalled in the sequel; for a
detailed presentation of control contact systems the reader is
referred to Eberard et al. (2007), Favache (2009), Favache et al.
(2009, 2010) and Eberard (2006).

Contact systems are defined on a (2nþ1)-dimensional state
space with nANn which for simplicity we identify with the
real vector space T ¼R2nþ1. This state space is endowed with a
contact form y which, in a set of canonical coordinates ðx0,x,pÞAR%
Rn %Rn, is given by

y¼ dx0'
Xn

i ¼ 1

pidxi

where d denotes the differential operator. The space T is then
called a contact manifold. Associated with the contact form there is
a set of distinguished submanifolds, called Legendre submanifolds,
denoted by L, which are defined by the Pfaffian equation: y¼ 0.

Definition 2 (Libermann and Marle, 1987). A Legendre submanifold
of a ð2nþ1Þ-dimensional contact manifold ðT ,yÞ is an n-dimen-
sional integral submanifold L) T of y.

It has been shown in Arnold (1989) that Legendre submani-
folds may be described locally by using generating functions.
For instance by choosing some real smooth function UðxÞ the
submanifold

LU ¼ x0 ¼UðxÞ,x¼ x,p¼
@U
@x

ðxÞ
% &

ð12Þ

defines indeed a Legendre submanifold.
The relation with Equilibrium Thermodynamics may be illu-

strated as follows. Consider a mixture of ðn'2Þ species with the
extensive variables U, Ni, V, and S, respectively the internal
energy, the number of moles of the ith chemical specie, the
volume and the entropy, and the intensive variables mi, P and T,
respectively the chemical potential of the ith chemical specie, the
pressure and the temperature of the mixture. Then the Pfaffian

equation y¼ 0 is nothing else than the statement of Gibbs’
relation

dU ¼
Xn'2

i ¼ 1

midNi'P dVþT dS

with the identification x0 ¼U, x¼ ðN1, . . . ,Nn'2,V ,SÞ and p¼ ðm1, . . . ,
mn'2,ð'PÞ,TÞ.

Contact vector fields on a contact manifold are the analogue of
Hamiltonian vector fields defined with respect to a symplectic
form (Libermann and Marle, 1987). They are uniquely defined by
a smooth function called contact Hamiltonian. If the contact
Hamiltonian function is denoted by K then in a set of canonical
coordinates the associated contact vector field XK is expressed by

XK ¼
K

0

0

2

64

3

75þ
0 0 'p>

0 0 'In
p In 0

2

64

3

75

@K
@x0
@K
@x
@K
@p

2

664

3

775, ð13Þ

where In denotes the identity matrix of order n. An important
property of contact vector fields is whether they leave some
Legendre submanifold invariant (defining for instance the equili-
brium properties of a system) and may be checked using the
following proposition.

Proposition 3 (Mrugala et al., 1991). Let L be a Legendre submani-
fold. Then XK is tangent to L if and only if K vanishes on L, i.e.,
L) K'1ð0Þ.

These vector fields allow to define dynamical systems for
thermodynamic processes (Mruga"a, 2000) that are the analogue
of Hamiltonian systems for mechanical systems. Controlled contact
systems have been introduced in Eberard et al. (2005) and used for
modelling and analysis of simple and complex open thermody-
namic systems (Eberard et al., 2007). They are defined by

dx
dt

¼ XK0
þ
Xm

i ¼ 1

XKi
c

ð14Þ

where K0ðx0,x,pÞAC1ðT Þ-R is the internal contact Hamiltonian that
models the internal behaviour of the system, Ki

cðx0,x,p,uiÞAC1ðT %
RÞ-R are the interaction (or control) contact Hamiltonians that
models the ports of the system and where XKi

0
and XKc are contact

vector fields with respect to the contact form y.
A conservative controlled contact system is defined with respect

to a Legendre submanifold in such a way that it leaves this
Legendre submanifold invariant (the thermodynamic properties
invariant).

Definition 4 (Eberard et al., 2007). A conservative control contact
system is defined as a control contact system (14) with the
contact Hamiltonians satisfying the invariance condition

K09L ¼ 0, Ki
c9L ¼ 0

where *9L denotes the restriction to L.

3.2. Lift of control systems to the TPS

Models of open irreversible thermodynamic systems are in
general expressed in terms of n balance equations which are
expressed as the time variation of the n independent extensive
variables or any equivalent set of independent dynamic equations
in terms of some of the conjugated intensive variables. It may be
of interest to use more than only n variables to express the
dynamical behaviour of the system and possibly express in terms
of dynamic equations of all ð2nþ1Þ extensive and intensive
variables of the thermodynamic system. This corresponds to lift
the n independent balance equations to the complete TPS and
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may be performed in a systematic way as follows. Let us consider
the control system

_x ¼ f x,
@U
@x

! "
þg x,

@U
@x

! "
u ð15Þ

Following Eberard et al. (2007) and Favache et al. (2009, 2010),
this system may be lifted to a control contact system on the
TPS by defining the internal contact Hamiltonian function and the
control contact functions

K0 ¼
@U
@x

'p

! ">

f x,
@U
@x

! "
, Ki

c ¼
@U
@x

'p

! ">

gi x,
@U
@x

! "
ð16Þ

if the vector fields defining the control system (15) are all C1 on
the TPS.

It may be noticed that on the Legendre submanifoldLU generated
by U (defined by (12)), the vector ð@U=@x'pÞ vanishes, hence also
these contact Hamiltonian functions vanish and hence the contact
vector field leaves invariant the Legendre submanifold where the
contact Hamiltonian is zero. Using the expression in local coordinates
of the contact vector field (13) one verifies that on the restriction
to LU the x coordinate satisfies _x9LU

¼ f ðx,@U=@xÞþgðx,@U=@xÞu. The
dynamics on the remaining coordinates x0 and p express equivalent
expressions and the reader is referred to Eberard et al. (2007) and
Favache et al. (2010) for further details.

However, as it has been shown in Favache et al. (2009), there
are infinite different possibilities to perform the lift of a dynami-
cal system, each one defined by different contact Hamiltonian
functions. One possibility is to define the contact Hamiltonian as

K0 ¼
@U
@x

'p

! ">

f ðx,pÞ, Ki
c ¼

@U
@x

'p

! ">

giðx,pÞ ð17Þ

One may show that again the restriction to the Legendre sub-
manifold LU yields the original control system (15) although the
contact control systems are different outside the Legendre sub-
manifold. In this case the intensive variables have been ‘‘para-
metrized’’ by the p coordinates and this might be very useful in
order to derive control laws for these contact systems (Ramirez
et al., 2011c; Ramirez, 2012). However it appears that the contact
Hamiltonian defined in (17) may not be defined on the whole TPS:
there might appear singularities often associated to the energy
balance equation. This is precisely the case in the original works
of Eberard et al. (2007) and Favache et al. (2009, 2010). The lifted
contact system is then only well-defined on open submanifolds of
the TPS which contain the Legendre submanifold LU . This is now
discussed more in detail on the example of the heat exchanger
presented in Section 2.4.

3.3. Lift of the model of heat exchanger on the TPS

Recall the model of the heat exchanger (9) which may be
expressed as the IPHS (10) with the modulating function being
Rðx,TðxÞÞ ¼ gðx,TðxÞÞfS,UgJ with gðx,TðxÞÞ ¼ l=T1ðxÞT2ðxÞ, fS,UgJ ¼
T1ðxÞ'T2ðxÞ where we denote @U=@x¼ TðxÞ ¼ ½T1ðx1Þ,T2ðx2Þ(T for
the sake of simplicity of notations. Notice that the temperature
function is greater than zero for all x which implies that Rðx,TðxÞÞ
is well defined for all x. The input map is defined by W ¼'le½01(
and g ¼ ðle=T2Þ½01(. The thermodynamic properties of the system are
defined by the Legendre submanifold LU generated by the total
internal energy U ¼U1þU2,

LU :

x0 ¼U

x¼ ½S1,S2(>

p¼
@U
@S1

,
@U
@S2

# $>
¼ ½T1,T2(>

8
>>><

>>>:

9
>>>=

>>>;
ð18Þ

As mentioned before, lifting this system to the TPS may be done in
infinite ways. In the previous work (Eberard et al., 2007) this lift
has been performed by using the contact Hamiltonians (17) with the
following parametrization of R and g:

RðpÞ ¼ l
1
p2

'
1
p1

! "
¼ l

p1'p2
p1p2

! "
, gðpÞ ¼

le
p2

0

1

# $
ð19Þ

It is immediate that R(p) and g(p) in (19) are undefined when p1 ¼ 0
or p2 ¼ 0. Hence, the lift using the previously defined parametrization
is not defined on the whole TPS but only on an open subset which
includes the Legendre submanifoldLU: restricted to this submanifold
the dynamics in the entropy variables x of the contact control system
coincides with the control system (10) (Eberard et al., 2007).

This issue can be overcome by regularizing the contact
Hamiltonian functions. Notice that g¼ l=T1T2 admits a singular-
ity at T1 ¼ 0 or T2 ¼ 0 but fS,UgJ ¼ T1'T2 is a smooth function
of the temperatures. The vector field W ¼'le½01( is well-defined
but g ¼ ðle=T2Þ½01( admits a singularity as a function of the
temperature at T2 ¼ 0. The lift may then be defined alternatively
by using the contact Hamiltonians (17) with the following
parametrization of R and g:

Rðx,pÞ ¼
l

T1 xð ÞT2ðxÞ

! "
ðp1'p2Þ, gðxÞ ¼

le
T2ðxÞ

0

1

# $

Now the contact Hamiltonian functions (17) are defined on the
complete TPS as the temperatures are strictly positive functions.
This parametrization of R and g generates a different contact
vector field than the one defined by (19), but as previously
discussed, it is possible to verify using Eq. (13) that on the
restriction to LU the dynamics in the entropy variables x coincides
with the control system (10).

3.4. Regular lift of IPHS to the TPS

We have seen on the example of the heat exchanger that the
IPHS (3) may very well be a well-defined control system but
the modulating function R admits some singularity, due to the
positivity of some intensive variables such as the temperature. In
this section we shall suggest an alternative to the lift defined by
the contact Hamiltonians (16) which is defined on the complete
Thermodynamic Phase Space.

Proposition 5. The conservative contact system generated by the
internal contact Hamiltonian function

K0 ¼'p>g x,
@U
@x

! "
@S
@x

>

Jp

 !
J
@U
@x

þ
@U
@x

'p

! ">

W x,
@U
@x

! "
ð20Þ

and control Hamiltonian functions

Ki
c ¼

@U
@x

'p

! ">

gi x,
@U
@x

! "
ð21Þ

is a lift of the IPHS of Definition 1 leaving invariant the Legendre
submanifold LU and defined on the complete Thermodynamic Phase
Space.

Indeed as the functions S(x) and U(x) are assumed to be C1 real
functions on the space Rn, the contact Hamiltonian functions are
all C1 real functions on the TPS R2nþ1. Furthermore the contact
Hamiltonian functions (20) and (21) vanish on the Legendre
submanifold LU generated by U(x). Hence they define a conser-
vative control contact system with respect to the Legendre
submanifold LU .

According to (13) and noticing that none of the contact
Hamiltonians depend on x0, the internal contact Hamiltonian
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function (20) generates the contact vector field

XK0
¼

gðxÞð@S@x
>
JpÞðp>J @U@xÞþ

@U
@x ðxÞ

>W ðxÞ

gðxÞJ½ð@U@x
>
JpÞ @S@x þð@S@x

>
JpÞ @U@x (þW ðxÞ

½'ðp>J @U@x ðxÞÞ
@
@x ½gðxÞð@S@x

>
JpÞ(

þ * * * þgðxÞð@S@x
>
JpÞ @2U@x2 ðxÞJp

þ * * * þð@U@xðxÞ'pÞ> @W
@x ðxÞþ @2U

@x2 ðxÞW ðxÞ(

2

6666666664

3

7777777775

where we denote the function gðx,@U=@xÞ ¼ gðxÞ and the vector
field Wðx,@U=@xÞ ¼W ðxÞ for the sake of notational simplicity. The
control contact Hamiltonian functions (21) generate the following
contact vector field:

XKi
c
¼

@U
@x ðxÞ

>gðxÞ
gðxÞ

@2U
@x2 ðxÞgðxÞ

2

664

3

775:

When restricting these conservative contact vector fields to the
Legendre submanifold LU (where p¼ ð@U=@xÞðxÞ), one notice
immediately that the control contact vector field XKi

c
keeps its

expression but the restriction of the drift contact vector field XK0

may be expressed as

XK0
9LU

¼

@U
@x ðxÞ

>W ðxÞ

gðxÞJð@S@x
>
JpÞ @U@x þW ðxÞ

gðxÞð@S@x
>
JpÞ @2U@x2 ðxÞJpþ

@2U
@x2 ðxÞW ðxÞ

2

6664

3

7775

As both contact Hamiltonians vanish on the Legendre submani-
fold LU , the latter is invariant and the lifted IPHS restricted to it,
ðd=dtÞð½x0,x,p(>Þ9LU

¼ XK0
þ
Pm

i ¼ 1 XKi
c
9LU

, may be written as

dx0
dt

''''
LU

¼
dU
dt

¼
@U
@x

>

ðxÞW x,
@U
@x

! "
þ
@U
@x

>

ðxÞgu

dx
dt

''''
LU

¼ R x,
@U
@x

,
@S
@x

! "
J
@U
@x

ðxÞþW x,
@U
@x

! "
þgu

dp
dt

''''
LU

¼
@2U
@x2

R x,
@U
@x

,
@S
@x

! "
J
@U
@x

ðxÞþW x,
@U
@x

! "
þgu

! "
ð22Þ

and may be interpreted as follows. On the second line, one
recovers indeed the IPHS (3) hence the lifted conservative control
system defined by Proposition 5 indeed embeds the balance
equations defining the IPHS. The first line expresses the energy
balance equation (7). Finally the third line gives the equivalent
expression of the IPHS in the intensive variables.

Let us now compare this lift with the canonical lift defined by
the internal and control contact Hamiltonian functions (16) for
the IPHS of Definition 1. In order to keep the notation brief we
shall denote

RðxÞ ¼ R x,
@U
@x

,
@S
@x

! "
¼ gðxÞ @S

@x

>

J
@U
@x

 !

According to (16) the IPHS is lifted to the conservative contact
control systems defined by the internal contact Hamiltonian
function

K0ðx0,x,pÞ ¼ 'p>RðxÞJ
@U
@x

ðxÞþ
@U
@x

'p

! ">

W x,
@U
@x

! "
ð23Þ

and control contact Hamiltonian function

Ki
cðx0,x,pÞ ¼

@U
@x

'p

! ">

g x,
@U
@x

! "
ð24Þ

Note that the contact Hamiltonians are smooth and well defined
in the whole TPS and generate the following conservative contact

vector field:

X
K0 þ

Pm

i ¼ 1
X
Kic
ui
¼

@U
@x ðxÞ

>½Wðx, @U@xÞþgðx, @U@xÞ(

RðxÞJ @U@x ðxÞþWðx, @U@xÞþgðx, @U@xÞ

½' @R
@x ðxÞp

>J @U@x ðxÞþRðxÞ @2U@x2 ðxÞJp

þ * * * þð@U@x 'pÞ> @
@x gðx,

@U
@xÞþ

@2U
@x2 ðxÞgðx,

@U
@xÞ(

2

666664

3

777775

When restricted to the Legendre submanifold LU (where
p¼ ð@U=@xÞðxÞ), this vector field generates again the system (22)
which is again the IPHS expressed on the Legendre submanifold.
Notice that the contact vector fields are different outside the
Legendre submanifold. Finally let us remark that while the lift of
Proposition 5 leads to a conservative control contact system
defined on the whole TPS there might be other possible regular-
izing functions of gðx,pÞ, as a partially parametrized function
~gðx,@U=@x,pÞ, leading to other possible lifts among all possible
ones (Favache et al., 2009). This might be very desirable for the
aim of control design (Ramirez et al., 2011a,b) and actually will be
illustrated in the next section.

4. On the Hamiltonian formulation of the CSTR

In this section we present the IPHS representation of a
continuous stirred tank reactor (CSTR) model (assuming constant
volume and pressure in the reactor) and considering that a single
reaction with arbitrary stoichiometry takes place.

In a first paragraph we remind three different quasi-
Hamiltonian formulations of the mass and energy or entropy
balance equations describing the CSTR with Hamiltonian functions
being either the entropy, the internal energy or the enthalpy. We
show that the structure matrices suffer the same drawbacks than
in the example of heat transfer in Section 2.4, namely that the
structure matrices depend on the gradient of the Hamiltonian and
hence do not define a true Hamiltonian system.

In the second paragraph we suggest an IPHS formulation of the
CSTR dynamics according Definition 1 for which the Hamiltonian
is the internal energy, the constant skew-symmetric matrix is
constant and defined by the stoichiometric coefficients uniquely
(Proposition 6).

In the third paragraph, this IPHS representation is lifted to the
associated Thermodynamic Phase Space in two ways, the first one
defined according to Proposition 5 and the second one being
an alternative using the specific definition of the modulating
function.

4.1. Reminder on alternative formulations of the CSTR dynamics

We recall briefly the notation and the balance equations
describing the dynamic of the CSTR.

4.1.1. The mass balance equations
Assume a chemical reaction in a CSTR with the following

reversible reaction scheme:

n1A1þ * * * þnlAl"nlþ1Alþ1þ * * * þnmAm, m4 lZ1:

The time variation of the species in the reactor is given by (Aris,
1989)

_ni ¼ Fei'FsiþriV , i¼ 1, . . . ,m ð25Þ

where ni is the number of moles of the species i (and n the vector
n¼ ðn1, . . . ,nmÞ>), Fei and Fsi are respectively the inlet and outlet
molar flows (and Fe the vector Fe ¼ ðFe1, . . . ,FemÞ>), ri ¼ nir where
rðn,TÞ is the reaction rate which is the difference of the forward
reaction rate rf and the backward reaction rate rb: r¼ ðrf'rbÞ and
depends on the temperature and on the reactant mole number, n i
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is the signed stoichiometric coefficient: ni ¼'ni if it appears on
the left hand side of the reaction scheme, ni ¼ ni in the other case.
Following the usual assumptions (Aris, 1989; Favache and
Dochain, 2009), V the volume in the reactor is assumed to be
constant as well as the pressure. We shall assume a reaction in
gas phase, but the developments may be applied identically to a
reactor with a reaction in liquid phase. The assumptions of
constant volume and pressure impose a constraint over the total
outlet flow Fsðn,T ,FeÞ as discussed in Couenne et al. (2006, 2008b),
making the outlet flows Fsi ¼ yiFs state dependent with yi ¼ ni=Pm

j ¼ 1 ni being the molar fraction of the species i.

4.1.2. The energy and entropy balance equations
The classical construction of the state space of the ideal

mixture in the CSTR is based on Gibbs’ relation. Assuming
constant volume and pressure of the mixture in the reactor,
Gibbs’ relation reduces to

dU ¼
Xm

i ¼ 1

@U
@ni

dniþ
@U
@S

dS ð26Þ

where U denotes the internal energy, S the entropy and the
conjugated intensive variables are the chemical potential @U=@ni ¼ mi

and the temperature @U=@S¼ T . Gibbs’ relation can also be written in
the so-called entropy formulation

dS¼
Xm

i ¼ 1

@S
@ni

dniþ
@S
@U

dU ð27Þ

where @S=@ni ¼'mi=T and @S=@U ¼ 1=T are the intensive thermo-
dynamic variables conjugated to ni and the internal energy U. Under
the previous assumptions the internal energy of the CSTR is given by

U ¼
Xm

i ¼ 1

ni½cpiðT'T0Þþu0i( ð28Þ

where cpi, u0i, T0 are respectively the heat capacity at constant
pressure, reference molar energy and reference temperature. Assum-
ing constant volume and pressure the reference molar enthalpy
h0i ¼ u0i (Sandler, 2006), and the balance equation of the internal
energy is (Couenne et al., 2006; Favache and Dochain, 2009)

_U ¼ _H ¼
Xm

i ¼ 1

ðFeihei'FsihsiÞþQ ð29Þ

where Q ¼ lðTe'TÞ is the heat flux from the jacket with l the heat
conduction coefficient, Te the temperature of the jacket, H the total
enthalpy of the reactor and hei,hsi respectively the inlet and outlet
specific molar enthalpies, which are related with the chemical
potentials and the specific molar entropies si by (Couenne et al.,
2006)

mi ¼ hi'Tsi

The entropy function of the CSTR is given by

S¼ Cp ln
T
T0

! "
'Rg

Xm

i ¼ 1

ni ln
ni

N

( )h i
þ
Xm

i ¼ 1

ðnis0iÞ ð30Þ

where Cp ¼
Pm

i ¼ 1 nicpi, T0, N, s0i and Rg are respectively total heat
capacity at constant pressure, reference temperature, total number of
moles, reference molar entropy and the ideal gas constant. Hence,
the entropy balance equation may be deduced from this expression
or from Gibbs’ relation and is given by

_S ¼
Xm

i ¼ 1

ðFeisei'FssiÞþ
Q
Te

þs ð31Þ

where s is the irreversible entropy creation due to mass transfer,
heat transfer and chemical reactions:

s¼
Xm

i ¼ 1

Fei
T

ðhei'Tsei'miÞþ
Q
T
'

Q
Te

'
Xm

i ¼ 1

mini
r
T

4.1.3. Alternative formulations of the CSTR dynamics
In this paragraph we shall recall some alternative formulations

for the dynamic of the CSTR as a quasi-port-Hamiltonian system
in the form

_x ¼Y x,
@H
@x

! "
@H
@x

ðxÞþg
@H
@x

! "
u ð32Þ

where HðxÞ is the generating function (a thermodynamic poten-
tial), Yðx,@H=@xÞ is a matrix which is a function of the state
variables and the gradient of the generating function, and g(x) is
the input map. In the general case, the manipulated input in the
CSTR is the heat flux from the jacket Q ¼ lðTe'TÞ, where Te is the
temperature of the jacket while the input flows of matter are
supposed to be constant. The choice of the generating function
H and the matrix Y for the CSTR model has been the matter
of several papers on its port-Hamiltonian formulations (Sira-
Ramı́rez and Angulo-Nunez, 1997; Hangos et al., 2001; Otero-
Muras et al., 2008; Ramirez et al., 2009; Hoang et al., 2011) and it
may be noted that, admitting non-positive symmetric matrices
may lead also to pseudo-Riemannian (Smale, 1972) (also called
Brayton–Moser’s) formulation Favache and Dochain (2010). In
the following we will present some quasi-port-Hamiltonian
representations that use as generating function a thermodynamic
potential: the entropy, the internal energy and the enthalpy
functions whose gradient is equal to the generating forces of
the thermodynamic process. We refer in particular to Ramirez
et al. (2010), Favache et al. (2011), and Hoang et al. (2011) where
different variations of this representations may be found.

Let us in a first instance consider the following state vector of
extensive variables x1 ¼ ½n1, . . . ,nm,U(> ¼ ½n>,U(> where the energy
balance equation (29) appears as one of the state equations and
the entropy function Sðn,UÞ is used as generating function. Its
gradient is then @S=@x1 ¼ ½ð'm1=TÞ, . . . ,ð'mm=TÞ,1=T(

>. Define the
two following skew-symmetric, respectively symmetric structure
matrices:

J f ¼

0 0 0 f n1
^ ^ ^ ^
0 0 0 f nm

'f n1 . . . 'f nm 0

2

66664

3

77775
, M¼

0 0 0 0

^ ^ ^ ^
0 0 0 0

0 . . . 0 1

2

6664

3

7775 ð33Þ

with f ni ¼ Fei'Fsiðn,TÞþVnirðn,TÞ. Then define the function

Z1 n,
l
T
,
1
T

! "
¼ T

Xm

i ¼ 1

Feisei'Fsisi'
mi

T
nirðn,TÞV

( )
ð34Þ

where the inverse of the temperatures 1=T and l=T are co-state
variables (components of the gradient of the entropy function);
they are functions of the states ½n>,U(>, derived using Gibbs’
relation (27). The inlet flow Fe as well as the specific entropy sei at
the inlet are assumed to be constant. The mass balance equation
(25) and the energy balance equation (29) of the CSTR may then
be formulated as the control system (32) with generating function
H¼ S, structure matrix

Y1 x1,
@S
@x1

! "
¼

1
T

J f ðx1,TÞþZ1 x1,
@S
@x1

! "
M

! "

and input vector g ¼ ð1=TÞg0 with g0 ¼ ½0, . . . ,0,1(> of dimension
mþ1.

Secondly let us consider the following state vector of extensive
variables x2 ¼ ½n1, . . . ,nm,S(> ¼ ½n>,S(>, where the entropy balance
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equation (31) appears as one of the state equations and the
internal energy U n,Sð Þ is used as generating function. Its gradient
is then @U=@x2 ¼ ½m1, . . . ,mm,T(

>. Define the function

Z2ðn,S,TÞ ¼
1
T

Xm

i ¼ 1

ðFeihei'FsihsiÞ

where now the temperature T and the specific enthalpy hi are
considered as functions of the state ½n>,S(> and are derived using
Gibbs’ relation (26). The mass balance equations (25) and the energy
balance equation (31) of the CSTR may then be formulated as the
control system (32) with generating functionH¼U, structure matrix

Y2 x2,
@U
@x2

! "
¼ TðJ f ðx2,TÞþZ2ðx2,TÞMÞ ð35Þ

and input vector g0 ¼ ½0, . . . ,0,1(> of dimension mþ1.
It is possible to obtain a third formulation by considering the

state vector x3 ¼ ½n1, . . . ,nm,T(> ¼ ½n>,T(>. In this case the energy
balance equation (29) is expressed as a state equation of the
temperature and the generating function is the total enthalpy H,
the Legendre transformation with respect to the entropy of the
internal energy U. The total enthalpy is given by

H¼
Xm

i ¼ 1

nihiðTÞ ð36Þ

under the assumption of constant volume and pressure. Denoting
CpðnÞ ¼ @H=@T and cpi ¼ @hi=@T, hence CpðnÞ ¼

Pm
i ¼ 1 nicpi, its gra-

dient is

@H
@x

¼ ½h1ðTÞ, . . . ,hmðTÞ,CpðnÞ(>

The energy balance equation (29) may then be written in terms of
the temperature as follows:

Cp
dT
dt

¼
Xm

i ¼ 1

FeicpiðT'T0Þ'
Xm

i ¼ 1

hiriVþQ ð37Þ

Define the function

Z3ðn,T,hÞ ¼
1
Cp

Xm

i ¼ 1

ðFeihei'FsihiÞ

where now the specific enthalpy hiðTÞ and the outlet flows Fsi are
considered as functions of the state ½n>,T(>. The mass balance
equation (25) and the energy balance equation (29) of the CSTR
may now be formulated as the control system (32) with generat-
ing function H¼H, structure matrix

Y3 x3,
@H
@x23

! "
¼
1
Cp

ðJ f ðx3ÞþZ3ðx3,hÞMÞ

and input vector g ¼ ð1=CpÞg0 with g0 ¼ ½0, . . . ,0,1(> of dimension
mþ1.

As a conclusion, let us notice that although the three formula-
tions seem to have a structured form in terms of system (32),
this structure does actually not reveal the conservation of energy
and irreversible entropy creation. Indeed the structure matrices
were constructed ad hoc from the chosen expressions of the
energy or entropy balance equations and not clearly related to the
topology of the system defined by the stoichiometry of the
reaction (Oster and Perelson, 1974). One may observe that the
second and third formulations have both a conserved quantity
(the internal energy and the enthalpy) as generating function but
both admit a symmetric part ZM in the structure matrix Y! Only
the first formulation with the entropy as generating function
justifies the symmetric part of the structure matrix. Additionally
from the definition of the structure matrices, it appears immedi-
ately that they are all actually defined in terms of the co-state
variables, the gradient of the generating functions and hence the

quasi-port-Hamiltonian formulation suffers the same criticism as
developed in Section 2.2.

4.2. IPHS formulation of the CTSR

In this subsection we shall express the dynamics of the CSTR as
an IPHS according to Definition 1. The structure matrix will not be
constructed ad hoc as in the preceding subsection but strictly
represent the stoichiometry of the reaction, the actual topology
of the chemical reaction networks. The generating function is
chosen to be the energy, a conserved quantity. Finally the
expression of the second principle is introduced by the modulat-
ing function, depending explicitly on the entropy function. Finally
we shall consider as input variables: the heat flow from the jacket
Q and the inlet and output molar flows of each specie, Fei and Fsi
respectively.

Proposition 6. The dynamical equation of the CSTR may be
expressed as the IPHS (3)

_x ¼ R x,@U=@x,
@S
@x

! "
J
@U
@x

ðxÞþWðx,FeÞþg
Q
T
n ð38Þ

with state vector x¼ ½n1, . . . ,nm,S(>, the internal energy U(x) as
Hamiltonian function, the constant skew-symmetric structure matrix

J¼

0 . . . 0 n1
0 . . . 0 ^
0 . . . 0 nm

'n1 . . . 'nm 0

2

66664

3

77775

whose elements are the stoichiometric coefficients of the chemical
reaction, and modulating function (4) defined by the product of the
positive function

g¼ rV
TA

with the bracket fS,UgJ ¼'
Pm

i ¼ 1 n imi ¼A, equal to the chemical
affinity of the reaction, the driving force of the chemical reaction.
The port of the IPHS is given by WþgQ and is composed of the
extended input and output flow vector and the thermal interaction
vector defined respectively as

W ¼

Fe1'Fs2
^

Fem'Fsm
o

2

6664

3

7775, g ¼

0

^
0

1

2

6664

3

7775
Q
T

ð39Þ

with o¼ ð1=TÞ
Pm

i ¼ 1ðFeisei'FsisiÞ.

Proof. Let us analyse (38) in the sense of Definition 1. As
previously mentioned J is constant and skew-symmetric, more-
over, it represents the chemical reaction network. It is interesting
that the bracket fS,UgJ is exactly the thermodynamic driving force
of the chemical reaction. Indeed

fS,UgJ ¼

0

^
0

1

2

6664

3

7775

> 0 . . . 0 n1
0 . . . 0 ^
0 . . . 0 nm

'n1 . . . 'nm 0

2

66664

3

77775

m1

^
mm

T

2

6664

3

7775¼'
Xm

i ¼ 1

n imi ¼A

Here A is the chemical affinity (Kondepudi and Prigogine, 1998)
that corresponds to the thermodynamic driving force of the
chemical reaction. From the expression of the previous bracket,
we have that

R¼ g x,
@U
@x

,
@S
@x

! "
fS,UgJ ¼ g x,

@U
@x

! "
A
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and considering the mass and entropy balance equations, we are
led to define the modulating function as

g¼ rV
TA ð40Þ

It remains to show that the function g is a well defined positive
definite function. Indeed, from De Donder’s fundamental equa-
tion (Prigogine and Defay, 1954)

sr ¼
rV
T
AZ0 ð41Þ

with sr the entropy creation due to the chemical reaction andsr40
ifAa0. Hence forAa0, one has g¼ sr=A2 which relates indeed the
function g to the irreversible entropy production due to the chemical
reaction process and makes it a positive function. Remains to show
that the function g is well-defined when A¼ r ¼ 0 (the only possible
singularity since T40). Therefore recall that the affinity may be
decomposed into a forward affinity and a reverse affinity (Oster and
Perelson, 1974; Couenne et al., 2006, 2008a)

A¼Af'Ar ð42Þ

with

Af ¼
Xl

i ¼ 1

nimi and Ar ¼'
Xm

i ¼ lþ1

nimi ð43Þ

and the reaction rate may be expressed in terms of the forward and
reverse affinities as

rðAf ,Ar ,TÞ ¼ kf ðTÞeAf =RgT'krðTÞeAr=RgT ð44Þ

where kf(T) and kr(T) are positive functions depending solely on the
temperature and Rg denotes the constant of perfect gas. Using these
relations it is possible to rewrite g in terms of the forward and reverse
affinities

g¼ V
T

kf e
Af =RgT'kreAr=RgT

Af'Ar
ð45Þ

To verify that g is well defined we study its limit when A¼ 0, i.e.,
when Af ¼Ar . We may study this limit applying l’Hôpital’s rule

lim
Af-Ar

V
T

kf e
Af =RgT'kreAr=RgT

Af'Ar
¼

V

RgT
2
kf e

Af =RgT ¼
V

RgT
2
kre

Ar=RgT ð46Þ

which is well defined since Rg ,T40.

To complete the analysis of (38) it just remains to check that

the vectors W and ð1=TÞgQ correspond to input/output ports. The

elements of the vector W are composed of the inlet and outlet

flows of matter. For the coordinates modelling mass balance

they are just the ratio of mass exchange with the environment.

Similarly, the element corresponding to the last coordinate repre-

sents the ratio of entropy exchange due to mass transfer with the

environment. Hence, W is the input/output port related with mass

transfer of the IPHS. If the CSTR is connected with another CSTR (as

for reactors in series) the connection is performed through this

port. The vector ð1=TÞgQ has only the element corresponding to the

entropy balance different from zero. This element models the

interaction of the reactor with the cooling jacket and represents

the entropy flow due to the temperature difference between the

reactor and the jacket. Hence the vector ð1=TÞgQ is the input/

output port related with the thermal interaction not due to mass

transfer. &

4.3. Lift of the IPHS

In this section we shall suggest some lift of the IPHS associated
with the CSTR model and defined in Proposition 6 to the TPS

according to Section 3.4 and show that for the particular case of
the CSTR we may suggest some alternative lifts. The thermo-
dynamic properties of the mixture in the reactor (with assump-
tion of constant volume and pressure) may be defined by the
Legendre submanifold of the TPS R2nþ1 3 ðx0,x,pÞ, generated by
the internal energy function Uðn,SÞ

LU :

x0 ¼Uðn,SÞ
x¼ ½n,S(>

p¼ ½lðn,SÞ, Tðn,SÞ(>

8
><

>:
ð47Þ

A regular lift to a conservative contact control system may be
defined according to the procedure discussed in Section 3 but an
alternative lift is also defined in the following proposition.

Proposition 7. A well defined lift of the IPHS formulation of the
CSTR as conservative contact control system with respect to the
Legendre submanifold LU defined in (47) is generated by the contact
Hamiltonian

K ¼'p>Re x,
@U
@x

,
@S
@x

,p

! "
J
@U
@x

ðxÞþ
@U
@x

'p

! ">

W x,
@U
@x

,p

! "

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
K0

þ
@U
@x

'p

! ">

g
Q
T|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Kc

ð48Þ

with Re defined either by

Re x,
@U
@x

,
@S
@x

,p

! "
¼

rðAf ðpÞ,ArðpÞ,TÞV
TðxÞAðpÞ

AðpÞ ð49Þ

or by

Re x,
@U
@x

,
@S
@x

,p

! "
¼

rðAf ðlÞ,ArðlÞ,TÞV

TðxÞA @U
@x

! " AðpÞ ð50Þ

and the vector field

W x,
@U
@x

! "
¼

Fe1'Fs2 x, @U@x
+ ,

^
Fem'Fsm x, @U@x

+ ,

o x, @U@x
+ ,

2

66664

3

77775

where oðx,@U=@xÞ ¼ ð1=TÞ
Pm

i ¼ 1ðFeisei'Fsiðx,@U=@xÞsiðx,@U=@xÞ.

Notice firstly that when the function Re is defined as in (50) then
the lift is precisely the one given in Proposition 5. Secondly, when
the function Re is defined as in (49) it is also well-defined on the
whole TPS. Indeed from the definition of the forward and reverse
affinities in (43), these function are linear functions of the intensive
variables and may be extended to linear functions of the co-state
p on the TPS: Af ðpÞ ¼

Pl
i ¼ 1 nipmi

and ArðpÞ ¼'
Pm

i ¼ lþ1 nipmi
. And

adapting the proof of the definition of the function g in Proposition
6, it is shown that the function rðAf ðpÞ,ArðpÞ,TÞV=TðxÞAðpÞ is well
defined on the whole TPS.

Finally note that while the Hamiltonian of the IPHS representa-
tion of the CSTR, the internal energy, has the dimension of energy,
the contact Hamiltonian has the dimension of power. Hence K
defines a kind of virtual power as it has already been addressed in
Eberard et al. (2007). Thanks to the underlying Irreversible port-
Hamiltonian Structure of the lift we may easily identify three
different power products in (48): two in K0 and one in Kc, that
represent respectively the power contribution due to the chemical
reaction, the inlet and outlet flows and the heat transfer through
the jacket. The first term in K0 represents the power contribution of
the chemical reaction and is related with the pseudo-Poisson
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bracket of the IPHS. The second term in K0:

Xm

i ¼ 1

ðmi'piÞ Fei'Fsi x,
@U
@x

! "! "

is the power generated by the mass exchange between the reactor
and its environment; and finally the term

ðT'pSÞ
Xm

i ¼ 1

Feisei'Fsiðx,pÞsi x,
@U
@x

! "! "
þ

Q
T

 !

represents the power generated by the energy exchange.

5. Conclusion

In the first part of the paper, we have suggested a class of quasi-
Hamiltonian system, called Irreversible Port-Hamiltonian System
which is adapted to the representation of (open) irreversible thermo-
dynamic processes. In a very similar manner as for GENERIC (Mushik
et al., 2000; Grmela, 2002), they are defined by two functions:
one generating function, the Hamiltonian function, whose gradient
defines the generating forces of the irreversible processes and one
entropy function. Furthermore they are defined with respect to a
structure matrix composed of the product of a constant skew-
symmetric structure matrix J (corresponding to a Poisson bracket
f,gJ) with a modulating function R which depend as well of the state
as the co-state variables. This modulating function itself is the
product of some positive function g and the Poisson bracket fS,UgJ
of the entropy and the energy function. This construction guarantees
that the Hamiltonian function is a conserved quantity and simulta-
neously that the entropy function satisfies a balance equation
containing an irreversible entropy creation term which furthermore
vanishes when the gradient of the Hamiltonian (the vector of
generating forces) is zero.

In this way the necessary dependence on the co-state variables
of any quasi-Hamiltonian representation of irreversible thermo-
dynamic processes has been formulated precisely in terms of
this modulating function depending on the state and co-state of
the system. In the case of a 2-compartment heat exchanger and a
CSTR, these system found a striking physical interpretation. The
Hamiltonian being chosen to be the internal energy, the entropy
function equal to the total entropy of the system, the constant
skew-symmetric matrix is uniquely defined by the stoichiometric
coefficients of the reaction in the CSTR and the topology of the
heat flows. Furthermore the bracket between the entropy and
the energy function is precisely equal to the driving forces of the
irreversible phenomena.

In the second part of the paper, we have lifted the Irreversible
Port-Hamiltonian Systems to the Thermodynamic Phase Space
which is canonically endowed with a contact structure associated
with Gibbs’ relation. For this class of systems we have suggested
a lift which avoids any singularity of the contact Hamiltonian
function and defines a control contact system on the complete
Thermodynamic Phase Space, in contrast to the previously sug-
gested lifts of such systems. Depending on the expression of the
positive function g in terms of the co-state variables, different lifts
may be suggested which has been illustrated on the case of the
CSTR dynamics.

In the third part, we firstly reminded different quasi-Hamiltonian
formulations of the balance equations of a CSTR model, illustrating
precisely the dependence of the structure matrices on the co-state
variables. Secondly we have derived the formulation of the CSTR
as an Irreversible Port-Hamiltonian System and given the physical
interpretation of the Poisson structure matrix in terms of the
stoichiometry of the reaction, and have related the positive function
g with the irreversible entropy creation. Finally two alternative lifts

of the CSTR model to a control contact system defined on the
complete Thermodynamic Phase Space have been given.

Future work will aim at characterizing the dynamic properties
of the Irreversible Port-Hamiltonian Systems, in terms of stability
and stabilization and the adaptation of the IDA-PBC stabilization
methods (Ortega et al., 2002; Duindam et al., 2009) to this class of
systems and their application to the control of the CSTR. Another
interesting direction concerns the control of contact systems
obtained by lifting the Irreversible Port-Hamiltonian Systems to
the complete Thermodynamic Phase Space. First results on the
feedback control and stabilization of control contact systems
(Ramirez et al., 2011a,c; Ramirez, 2012) may be applied to this
class of control contact systems. An important matter is the
choice of the lift among all possible ones, which is adapted to
ease the solutions of the PDE associated with the stabilization
problem.
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