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It is shown that the intrinsic geometry associated with equilibrium thermodynamics, namely
the contact geometry, provides also a suitable framework inorder to deal with irreversible
thermodynamical processes. Therefore we introduce a classof dynamical systems on contact
manifolds, calledconservative contact systems, defined as contact vector fields generated by
some contact Hamiltonian function satisfying a compatibility condition with some Legendre
submanifold of the contact manifold. Considering physicalsystems’ modeling, the Legendre
submanifold corresponds to the definition of the thermodynamical properties of the system and
the contact Hamiltonian function corresponds to the definition of some irreversible processes
taking place in the system. Open thermodynamical systems may also be modeled by augmenting
the conservative contact systems with some input and outputvariables (in the sense of automatic
control) and so-called input vector fields and lead to the definition of port contact systems.
Finally complex systems consisting of coupled simple thermodynamical or mechanical systems
may be represented by thecompositionof such port contact systems through algebraic relations
called interconnection structure. Two examples illustrate this composition of contact systems: a
gas under a piston submitted to some external force and the conduction of heat between two
media with external thermostat.

Keywords: irreversible thermodynamics, contact structure, Hamiltonian systems.

1. Introduction

Hamiltonian systems are defined by two objects: firstly theirgeometric structure
(symplectic or pseudo-Poisson bracket and Dirac structure) which amounts to define
some skew-symmetric tensor fields on the state space, and secondly a generating
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function, called Hamiltonian function. This geometric structure characterizes funda-
mental properties of physical systems stemming from variational formulations, the
existence of symmetries or constraints [1, 20, 6, 9, 3], or the topological intercon-
nection structure of circuits [25] and mechanisms [23]. Forphysical systems, the
Hamiltonian function is given by the total energy of the system. Hamiltonian systems
are well suited for the formulation ofreversiblephysical systems where the dissipa-
tion is neglected, as it is often the case in mechanics or electromagnetism [3, 18].
Hamiltonian systems have also been extended to modelopen physical systems, i.e.
systems exchanging energy with their environment, in the context of control by
introducing input-output and port Hamiltonian systems [4,36, 39, 38, 7, 40, 21].

In the case when dissipation is taken into account, Hamiltonian systems have been
extended by considering tensor fields which are no more skew-symmetric, defining
a so-called Leibniz bracket [33, 7]. However, in this case, the Hamiltonian function
is no more invariant, and the dissipative Hamiltonian system does not represent the
conservation of energy. It may be observed that the Hamiltonian function corresponds
more precisely to the free energy of the system, in the sense of thermodynamics, and
that the dissipative Hamiltonian system corresponds to models of physical systems in
thermal equilibrium. Thesimultaneousexpression of irreversibility and conservation
of energy is obtained by taking into account the properties of matter defined in
terms of its internal energy [5, 8]. The irreversibility appears in the form of entropy
source terms coupling the energy dissipation in any physical domain with entropy
creation. Precisely these entropy creation terms are the obstacle which prevent to
cast the entropy balance equation into the Hamiltonian frame as may be illustrated
on the very elementary example of heat conduction [10].

In order to overcome this contradiction, we shall use an alternative geometric
structure, the contact structure [3, 20], which may be associated with thermodynamic
systems. Indeed, the description of the properties of matter leads to an enormous
variety of complex constitutive laws, elaborated in the frame of reversible ther-
modynamics [35]. The geometric structure of thermodynamics has been elaborated
in terms of contact geometry, endowing the Thermodynamic Phase Space (denoted
TPS) with a contact structure [13, 14, 5, 17, 26–28]. Reversible thermodynamic
transformations have been expressed as contact vector fields generated by some
function related to state functions associated with the thermodynamic properties
of the system [31, 29, 30]. Finally, some contact vector fields associated with
irreversible thermodynamic transformations for systems near equilibrium have been
proposed in [16].

In this paper we shall propose a class of dynamic systems defined by contact
vector fields that may be seen as the lift of Hamiltonian systems on the TPS
as well as an extension of these systems that allow to cope with irreversible
thermodynamic processes. The first aim is to show precisely the extension of
Hamiltonian systems needed to express simultaneously the irreversibility associated
with dissipative phenomena and the conservation of energy.The second aim is to
define a class of irreversible open systems which may be associated with systems
arising from irreversible thermodynamics.
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In Section 1 we shall recall the basic concepts of contact geometry in the
context of reversible thermodynamics. In Section 2, we shall lift Hamiltonian
systems, possibly dissipative, onto the TPS and define an associated contact vector
field. In Section 3 these contact vector fields are generalized to a class of systems
called conservative contact systemsdefined for isolated as well as open systems.

2. Contact structures for reversible thermodynamics
The first geometric formulation of thermodynamics has been given by Gibbs

[13, 14] and has then been developed by Carathéodory [5], Hermann [17], leading
later to formalization by Mrugała and coworkers [26, 27, 31]. In this section
we shall briefly recall in which sense the contact geometry isassociated with
the Thermodynamic Phase Space (TPS) and reversible thermodynamics, following
closely [26, 31]. Along this section we shall also recall some fundamental objects
of contact geometry used in this paper, and refer the reader to [20, 1, 3] for their
detailed presentation.

2.1. Thermodynamic Phase Space and contact structure

The contact structure emerges in relation with the description of the thermodynamic
properties of matter. Indeed, these thermodynamic properties are defined byn + 1
extensive variables (such as internal energy, volume, number of moles of chemical
species, entropy) and by the so-calledfundamental equationdefining the internal
energy as a functionU of the remainingn extensive variables1 [13, 14]. The
fundamental equation defines an-dimensional submanifold ofRn+1 denoted byN
in the sequel and characterizing the thermodynamic properties of some system in the
space of extensive variables. However, in practice, the thermodynamic properties are
defined usingn additional variables, theintensive variables(such as pressure, chemical
potential and temperature) which may be directly related with measurements. The
Thermodynamic Phase Space is the space of first jets overN , and the submanifold
defining the thermodynamic properties is the 1-jet ofU . As a consequence the
Thermodynamic Phase Space associated with the differentiable manifold N of
extensive variables, may be identified with the manifoldR × T ∗N [20]. This
construction actually endows the TPS with a contact structure which is briefly
recalled below.

Let now M denote a (2n + 1)-dimensional, connected, differentiable smooth
manifold.

DEFINITION 1 [20]. A contact structureon M is determined by a 1-formθ of
constant class(2n + 1). The pair (M, θ) is then called acontact manifold, and θ
a contact form.2

1A variable is qualified asextensivewhen it characterizes the thermodynamical state of the system and its
total value is given by the sum of its constituting parts. In this paper we shall define the extensive variables
as being the basis variables on which the fundamental equation is defined.

2For clarity, as we only considertrivial contact structure, we do not make a distinction between contact
and strictly contact structures as in [20].
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Consider some differentiable manifoldN . Define its associated space of 1-jets of
functions onN , denoted byT and called in the sequel Thermodynamic Phase Space
associated withN . It may be shown [20] that this space of 1-jets is identifiable
with

T ∼= R × T ∗N , (1)

and is endowed with a trivial contact structure defined byθ . According to Darboux
theorem [15], the contact form is globally given by

θ = dx0 −

n
∑

i=1

pidxi, (2)

in the canonical coordinates(x0, x1, . . . , xn, p1, . . . , pn).

EXAMPLE 1. For a simple thermodynamic system, the Thermodynamic Phase
Space is defined in the following canonical coordinates:x0 denotes the energyU ,
and the pairs(xi, pi) denote the pairs of conjugated extensive variables (the entropy
x1 = S, the volume x2 = V , and the number of molex3 = N ) and intensive
variables (the temperaturep1 = T , minus the pressurep2 = −P , and the chemical
potential p3 = µ). In this case, the contact form is the Gibbs form

θ = dU − T dS + PdV − µdN. (3)

2.2. Thermodynamic properties and Legendre submanifolds

Actually the thermodynamic properties expressed in the TPSmay also be defined
as the submanifold where Gibbs’ form vanishes, that is points where the Gibbs
relation is satisfied [17, 3, 26]. This corresponds to the definition of a canonical
submanifold of a contact structure, called Legendre submanifold (playing an analogous
role as Lagrangian submanifolds for symplectic structures).

DEFINITION 2 [20]. A Legendre submanifoldof a (2n + 1)-dimensional contact
manifold (M, θ) is an n-dimensional integral submanifoldL ⊂ M of θ .

Legendre submanifolds may be defined locally by some generating functions as
follows.

THEOREM 1 [2]. For a given set of canonical coordinates and any partition
I ∪ J of the set of indices{1, . . . , n} and for any differentiable functionF(xi, pJ )
of n variables, i ∈ I, j ∈ J , the formulae

x0 = F − pJ

∂F

∂pJ

, xJ = −
∂F

∂pJ

, pI =
∂F

∂xI
(4)

define a Legendre submanifold ofR
2n+1 denotedLF . Conversely, every Legendre

submanifold inR
2n+1 is defined locally by these formulae, for at least one of the

2n possible choices of the subsetI .
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This corresponds to the practical definition of the thermodynamic properties of
thermodynamic systems where the generating functions are called thermodynamic
potentials, such as the enthalpy or the free energy.

EXAMPLE 2. Consider the properties of an ideal gas which is usually defined
by the so-called state equation. One way to express its thermodynamic properties
in the TPS endowed with the contact form

θG := dG + SdT − V dP − µidN i (5)

is to use as coordinates the temperatureT , the pressureP and the number of moles
N . In this case the generating function is the Gibbs free energy G:

G(T , P, N) =
5

2
NRT (1 − ln(T /T0)) − NT (s0 − Rln(P/P0)), (6)

where R is the ideal gas constant andP0, T0, s0 are some references. The variables
are given byx ′0 = G, x ′ = (T , P, N) and p′ = (−S, V, µ). The associated Legendre
submanifold is then











































x ′0 = G(T , P, N) = U ′(T , P, N),

p′
1 = -S(T , P, N) =

∂G

∂T
= Ns0 +

5

2
NRln(T /T0) − RN ln(P/P0),

p′
2 = V (T , P, N) =

∂G

∂P
= NRT/P,

p′
3 = µ(T , P, N) =

∂G

∂N
=

5

2
RT − T S/N.

Notice that the coordinatex ′0 corresponds to the internal energy expressed in the
independent coordinates(T , P, N) and that the third equation correspond to the
state equationPV = NRT of an ideal gas.

However, one may choose as well as coordinates of the Legendre submanifold,
the extensive variables: the entropyS, the volume V and the number of moles
N via the Legendre transform(x ′0, x ′, p′) 7→ (x0, x, p) given by x0 = U, x =

(S, V, N), p = (T , −P, µ). In this case the generating function is the internal
energy

U(S, V, N) = G − P
∂G

∂P
− T

∂G

∂T
=

3

2
NRT0 exp[γ (S, V, N)] (7)

obtained by the Legendre transform ofG, and where the second equation of the
previous Legendre submanifold provides

γ (S, V, N) =
(

S − Ns0 + RN ln(NRT0) − RN ln(V P0)
)

/

(

3

2
RN

)

. (8)

The contact form is then given by (3), and the Legendre submanifold describing
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the properties of the gas is now expressed by














































x0 = U(S, V, N) =
3

2
NRT0 exp[γ (S, V, N)],

p1 = T (S, V, N) =
∂U

∂S
= T0 exp[γ (S, V, N)],

p2 = P(S, V, N) =
∂U

∂V
= NRT0 exp[γ (S, V, N)]/V,

p3 = µ(S, V, N) =
∂U

∂N
= (5/2R − S/N)T0 exp[γ (S, V, N)]

(9)

2.3. Contact vector fields and reversible transformations

Finally we shall recall the expressions of transformationsof thermodynamic
systems, which have the main property to leave invariant Legendre submanifolds
defining thermodynamic properties. This is represented in the geometric language
by contact transformations. We recall the definition of a particular class of vector
fields, calledcontact vector fields, which preserves the contact structure, as well as
the definition of theJacobi bracketon the space of smooth functions on the TPS
[1, 3, 20]. We then give illustrations of reversible transformations which have been
treated in detail in [29, 30].

PROPOSITION 1 [20]. A vector fieldX on (M, θ) is a contact vector fieldif
and only if there exists a differentiable real-valued function ρ on M such that

L(X) θ = ρ θ, (10)

whereL(X)· denotes the Lie derivative with respect to the vector fieldX. If ρ = 0
then X is called an infinitesimal automorphism of the contact structure.

Analogously to the case of Hamiltonian vector fields, one mayassociate a
generating function to any contact vector field. Actually there exists an isomorphism
8 between contact vector fields and differentiable function on M, which associates
a contact vector fieldX to a function calledcontact Hamiltonian.

PROPOSITION 2. The map

8(X) = i(X)θ, (11)

where i(X)· denotes the contraction of a form by the vector fieldX, defines
an isomorphism from the vector space of contact vector fieldsin the space of
smooth real functions onM. The functionf = 8(X) is called contact Hamiltonian
associated with the vector fieldX denoted by

Xf = 8−1(f ), (12)

where 8−1 is the inverse isomorphism.
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The contact vector fieldXf may be expressed in canonical coordinates in terms
of the generating functionf as follows,

Xf =

(

f −

n
∑

k=1

pk

∂f

∂pk

)

∂

∂x0
+

∂f

∂x0

( n
∑

k=1

pk

∂

∂pk

)

+

n
∑

k=1

(

∂f

∂xk

∂

∂pk

−
∂f

∂pk

∂

∂xk

)

. (13)

It is worth noting that the set of contact vector fields forms aLie subalgebra of
the Lie algebra of vector fields onM [20].

PROPOSITION 3 ([20], p. 20). The isomorphism8 defined in Proposition 2
defines on differentiable functions onM, the following Lie bracket calledJacobi
bracket:

{f, g} = i([Xf , Xg])θ. (14)

Its expression in canonical coordinates is given by

{f, g} =

n
∑

k=1

(

∂f

∂xk

∂g

∂pk

−
∂g

∂xk

∂f

∂pk

)

+

(

f −

n
∑

k=1

pk

∂f

∂pk

)

∂g

∂x0
−

(

g −

n
∑

k=1

pk

∂g

∂pk

)

∂f

∂x0
.

(15)
Let us consider an example of such contact vector fields in thecontext of

thermodynamics given by Mrugała [30] and associated withreversible transformations
of thermodynamic systems.

EXAMPLE 3 [30]. Consider a thermodynamic system defined by the Legendre
submanifoldL8 generated, in canonical coordinates, by a thermodynamic potential
8(xi, pj ), for i ∈ I, j ∈ J, I ∪ J = {1, . . . , n}, as the internal energyU , the
enthalpy H , etc. Examples of invariant transformations, in the sense that the
trajectories starting onL8 stay on it, are given by the contact vector fieldsXf

with contact Hamiltonians such as

f = x0 − 8 + pj

∂8

∂pj

, f = PV − NRT. (16)

In thermodynamics, these correspond to basic reversible transformations. It is inter-
esting to note that in the first case of these reversible transformations, the contact
Hamiltonian is entirely defined by the generating function (a partial Legendre
transform) of the Legendre submanifold defining the thermodynamic properties.

An important property of the reversible transformations isthat they leave invariant
the Legendre submanifold associated with its thermodynamical properties. This may
be checked by using the following result [31, 30].

THEOREM 2. [31] Let (M, θ) be a contact manifold and denote byL a Legendre
submanifold. ThenXf is tangent toL if and only if f is identically zero onL.

Notice that by definition, contact Hamiltonians defining reversible transformations,
such as (16), satisfy the invariance condition of Theorem 2.In the sequel this
invariance condition will play a fundamental role in the definition of extensions of
these vector fields.
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3. Lift of Hamiltonian dynamics to the Thermodynamic Phase Space
In this section, as a preliminary step towards the definitionof contact systems

including phenomenological laws, we shall consider the lift of reversible port
Hamiltonian systems as well as of dissipative Hamiltonian systems.

In the first part we shall consider port Hamiltonian systems [22, 39, 38] and their
lift to the TPS associated with their state spaceN 3 defined in Eq. (1) [11]. In this
way we shall define a first class of contact systems generated by internal contact
Hamiltonian associated with the drift Hamiltonian vector field, and by interaction
contact Hamiltonians associated with input vector fields. In the second part, we
shall lift a dissipative Hamiltonian system [7, 33] to some extended TPS [12]. This
space is obtained by considering two additional variables,namely the entropy and
the temperature of some external thermostat. For this classof systems we shall
define a contact vector field generated by a contact Hamiltonian which generates
the entropy creation associated with energy dissipation.

3.1. Lift of port-Hamiltonian systems

Let us first recall briefly the definition of a port Hamiltoniansystem [22, 39]
defined on a pseudo-Poisson manifoldN . Consider ann-dimensional differential
manifoldN endowed with a pseudo-Poisson bracket{., .}gen (i.e. Jacobi’s identities are
not necessarily satisfied). Denote by3 its associated pseudo-Poisson tensor, and by3#

the vector bundle map3# : T ∗N → TN satisfying3(α, β) = 〈α, 3#(β)〉, ∀(α, β) ∈

T ∗N × T ∗N . A port Hamiltonian system[22, 39] is defined by a Hamiltonian
function H0(x) ∈ C∞(N ), an input vectoru(t) = (u1, . . . , um)(t)T ∈ R

m function of
t , m input vector fieldsg1, . . . , gm on N , and the equations











ẋ = 3#(dxH0(x)) +

m
∑

i=1

ui(t) gi(x),

yj = L(gj )H0(x),

(17)

wherey = (y1, . . . , ym) is called theport outputvariable (orport conjugated output),
and L(·) denotes the Lie derivative. Port Hamiltonian systems are extensions of
Hamiltonian systems which allow to model reversible physical systems which are
open in the sense that they undergo some exchange of energy with their environment
[22, 39]. They appear naturally in the modeling of driven mechanical systems [40]
or electrical circuits [24, 39]. Interpreting the Hamiltonian function H0 as the total
energy of a physical system, it appears that the energy is notconserved but satisfies
the following power balance equation,

dH0

dt
=

m
∑

i=1

ui y
i, (18)

3Notice that we will still denote byN the state space, although its components are no longer usually
called extensive variables butenergy variables. However, energy (resp. co-energy) variables play analogous
fundamental role in the Hamiltonian framework as extensive(resp. intensive) variables in thermodynamics.
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where the product of the port-conjugated input and output variables is the flow of
energy into the system through its boundary.

Despite the fact that port Hamiltonian systems represent reversible physical
systems, one may still have a thermodynamic perspective on them, and define some
analogue of the TPS. Indeed, consider as space of extensive variables the manifold
R×N ∋ (x0, x), and the fundamental equationx0 = H0(x). The Hamiltonian function
H0 (or, in the same way, its graph) defines some analogue of the thermodynamic
properties for a reversible system in the space of extensivevariablesR×N ∋ (x0, x).
Using (1), one may associate with the base manifoldN , the (2n + 1)-dimensional
TPS

R × T ∗N ∋ x ′ = (x0, x, p), (19)

endowed with the canonical contact form (2). The 1-jet of thefunction H0 may be
identified with the Legendre submanifold generated byH0(x) of the TPSR×T ∗N ,
and characterizes an analogue of thermodynamic propertiesfor the port Hamiltonian
system4. The lift of the port Hamiltonian system (17) on the TPSR × T ∗N may
be defined as the following control contact system. Its construction is completely
analogous to the control Hamiltonian systems defined on symplectic manifolds
[4, 36]. Consider theinternal contact Hamiltonian5

K0 = −3(p, dxH0), (20)

and the interaction contact Hamiltonians

Kj = uj (t).i(gj )(dxH0 − p). (21)

The lift of the port Hamiltonian system (17) on the Thermodynamical Phase Space
R × T ∗N is then defined as thecontrol contact system

dx ′

dt
= XK0 +

m
∑

j=1

XKj
=: X(x ′, u). (22)

Notice firstly that, by construction, the two contact Hamiltonians (20) and
(21) satisfy the invariance condition of Theorem 2 with respect to the Legendre
submanifoldLH0 generated by the HamiltonianH0(x). Hence they generate contact
vector fields that leave invariantLH0, and so does their linear combinationX(x ′, u).
By construction therestriction to the Legendre submanifoldLH0 of the conservative
system generated by these contact Hamiltonians, projectedon the x-coordinates,
gives the dynamic equation of (17) [11]6. Secondly, it is interesting to note that
the Legendre submanifold is generated by the internal Hamiltonian H0 of the port

4This Legendre submanifold is the analogue for the contact manifold R×T ∗N of the Lagrangian submanifold
generated byH0(x) in the cotangent bundleT ∗N .

5Note that this internal contact HamiltonianK0 = L(3#(dxH0(x)))(p) is precisely the Hamiltonian function
of the lift of the vector field3#(dxH0(x)) on the cotangent spaceT ∗N .

6Moreover its projection on the conjugatedp-coordinates is related to its adjoint variational system.And it
has been shown that the invariance condition of the LegendresubmanifoldLH0 may be related to the power
balance equation (18) [11].
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Hamiltonian system which has thedimension of energyfor models of physical
systems, and thatthe contact Hamiltonians have the dimension of power. The
internal contact Hamiltonian (20) is defined by the pseudo-Poisson tensor, and the
interaction Hamiltonians (21) are defined by the input vector fields; they may be
interpreted as somevirtual power associated with the interconnection structure of
the physical system giving rise to the dynamics [24, 39].

3.2. Lift of Hamiltonian systems with dissipation

We consider now the case of an autonomousdissipativeHamiltonian system [7]
and its lift to the TPS.

SetN as ann-dimensional differentiable manifold endowed with a pseudo-Poisson
tensor denoted by3, and a symmetric positive 2-contravariant tensor denoted by
1. The tensorB = 3 − 1 endows the manifoldN with a Leibniz structure [33],
and defines the vector bundle mapsB

♯

R : T ∗N → TN satisfying

B(α, β) = 〈α, B
♯

R(β)〉, ∀ (α, β) ∈ T ∗N × T ∗N . (23)

A dissipative Hamiltonian system[33] with energy functionH0 is then defined by
the differential equation

ẋ = B
♯

R(dxH0(x)). (24)

The Hamiltonian functionH0 is not an invariant of such systems and its time
variation is

dH0

dt
= −1(dxH0(x), dxH0(x)). (25)

Interpreting the Hamiltonian function as the energy of a physical system, this is the
power balance equationexpressing the loss of energy induced by some dissipative
phenomenon.

In the sequel we shall lift this dissipative Hamiltonian system to a contact system
in such a way to express simultaneously the first principle ofthermodynamics
(conservation of the total energy of the system) and the second principle (positive
entropy creation). Therefore, in the first step, we shall define an augmented state
space using a thermodynamic perspective. Indeed, the powerbalance equation (24)
may also be interpreted as the conversion of the energy (expressed by the Hamiltonian
H0(x)) into some heat flow. This heat flow is accumulated in the form of the
internal energy which, for instance, may be the energy of some thermostat to which
the system is coupled. This internal energy may be defined by

U(S) = T0 S (26)

where T0 ∈ R
∗
+ is the constant temperature delivered by the thermostat, and S ∈ R

is its state, its entropy7. With the system composed of the dissipative Hamiltonian

7This thermostat corresponds to some simple thermodynamic system with constant temperatureT = ∂U
∂T

= T0,
with finite entropy but infinite heat capacitance. The total energy of the system coupled to the thermostat
becomesHe(x, S) = H0(x) + T0 S, and its Legendre transform with respect toS is thenH0 which may now
be interpreted as thefree energy of the whole system.
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system coupled with the thermostat, one may associate the space of extensive
variables, an(n + 2)-dimensional manifoldR × Ne ∋ (x0, x, S) with Ne = N × R

denoting the extended base space of the coupled system. The coupled system may be
endowed with some thermodynamic properties defined by the fundamental equation
x0 = He(x, S) where He denotes thetotal energy of the coupled system,

He(x, S) := H0(x) + U(S) = H0(x) + T0S. (27)

Using (1), one may associate with the base manifoldNe, the extendedTPS

Te := R × T ∗Ne ∋ (x0, x, S, p, pS), (28)

where the intensive variablepS conjugated toS corresponds to the temperature of
the thermostat. This extended TPS is endowed with the contact form θe defined in
canonical coordinates by

θe := dx0 −

n
∑

i=1

pi dxi − pSdS. (29)

The function He(x, S) defined in (27) generates the Legendre submanifold

LHe =

{

x0 = He(x, S), x, S, p =
∂He

∂x
=

∂H0

∂x
, pS =

∂He

∂S
= T0

}

. (30)

This Legendre submanifold is simply the product of the Legendre submanifold
generated byH0 on the TPSR×T ∗N of the reversible pseudo-Hamiltonian system
(with 1 = 0) according to Section 3.1 and the trivial manifold{(S, T ) = (S, T0), S ∈

R} ⊂ R
2 corresponding to the definition of the thermostat.

In the second step we shall define a contact vector field on the TPS (28) that
is a lift of the dissipative Hamiltonian system in the following sense: it expresses
conservation of the total energyHe and the entropy balance equation associated
with the dissipated energy (25). Therefore consider the contact Hamiltonian

Ke := −B(p, dxH0(x)) −
pS

T0
1(dxH0(x), dxH0(x)). (31)

It consists of the sum of two terms. The first term is bilinear in the intensive
variablesp and in the differential dxH0 and depends on the Leibniz tensorB. It is
defined in a very similar way as for the contact Hamiltonian (20) associated with
reversible Hamiltonian systems where the pseudo-Poisson tensor 3 is replaced by
the Leibniz tensorB. The second term is deduced from the invariance condition
(Theorem 2), and is defined solely by the symmetric bracket1 associated with the
dissipation. It may be noted that this termis no more linear in the differentialdxH0.
This is a distinguishing feature of irreversible processes: the nonlinearity allows to
take into account the entropy creation due to irreversibility.

By construction, this contact HamiltonianKe vanishes on the Legendre submanifold
LHe and hence the contact vector field generated byKe leaves it invariant. Its
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restriction toLHe, projected to the extensive variables(x, S) is










ẋ = B
♯

R(dxH0(x)),

Ṡ =
1

T0
1(dxH0(x), dxH0(x)) =: σ.

(32)

The first equation is simply the definition of the dissipativeHamiltonian system
(24). The second equation gives the variation of the entropyS of the thermostat
and corresponds to the entropy balance equation withσ being the entropy creation
due to the dissipation. The heat flowT0 σ into the thermostat is precisely the flow
of energy dissipated in the physical domain with state variables x ∈ N .

Furthermore the generating functionHe defining thermodynamic properties of the
augmented system is now conserved,

dHe

dt
= B(dxH0(x), dxH0(x)) +

T0

T0
1(dxH0(x), dxH0(x)) = 0. (33)

Hence the contact vector fieldXKe expressessimultaneouslythe irreversibility in
terms of entropy creation, and energy conservation.

REMARK 1. It is important to note that the previous construction maybe easily
adapted to the case where one assumes some nontrivial thermodynamic properties
(i.e. not assuming that the system is isothermal and in equilibrium with a thermostat)
defined by some other Legendre submanifoldL of the extended TPS. The second
nonlinear term of the contact HamiltonianKe defined in (31) has then to be modified
in order to ensure the invariance conditionKe|L = 0 (cf. Theorem 2).

REMARK 2. In [16], pp. 311–317, Grmela presents a comparable construction of
a contact vector field associated with dissipative Hamiltonian systems. The system
represents a physical system in thermal equilibrium at the constant temperatureT0.
The dynamics in the extensive variablesx ∈ N = R

n near the equilibrium is given
by the dissipative Hamiltonian system

ẋ = (T0 J − D)
∂φ

∂x
, (34)

where J is a skew-symmetric matrix,D a positive definite matrix andφ(x) is
a potential function defining the thermodynamic properties. This system is lifted
to the TPSR × T ∗N ∼= R

2n+1 ∋ (x0, x, p) as a contact vector field with contact
Hamiltonian

9(x, p) = +
1

2
pt D p −

1

2

∂φ

∂x
D

∂φ

∂x
− T0 ptJ

∂φ

∂x
. (35)

It may be noted that the contact Hamiltonian satisfies the invariance condition of
Theorem 2 and hence leaves invariant the Legendre submanifold generated byφ.
However the difference with respect to the construction that we have proposed above
is that the temperature appears as a constant parameter, andthat the pair of entropy
and temperature variables do not appear in the definition of the state space. As a
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consequence the entropy balance equation is not expressed and the potentialφ is
not an invariant of the dynamics

dφ

dt
= −

∂φ

∂x
D

∂φ

∂x
. (36)

4. Conservative control contact systems
In this section we shall propose a general definition of contact systems representing

both the invariance of the thermodynamic properties of a system (defined by Gibbs
relations) and the fluxes due to thermodynamical nonequilibrium conditions. In a
first part we shall consider isolated systems whose dynamicsis generated solely
from some internal nonequilibrium conditions. In a second part, we shall extend
these systems to open systems for which part of the dynamics is generated by
some nonequilibrium conditions of the system with its environment. The third part
concludes with the definition of pairs of conjugated variables, called port variables,
enabling the expression of such interactions with the environment and related to a
global power balance equation.

4.1. Isolated systems

In this paragraph we shall define a class of systems which generalize the lifted
dissipative systems presented in Section 3.2. This class ofsystems expresses the two
fundamental features of irreversible thermodynamics: thedynamics leaves invariant
thermodynamic properties, and the dynamics is defined by some fluxes generated
by some phenomenological laws associated with the thermodynamic nonequilibrium.

DEFINITION 3. A conservative contact systemis defined as a set(M, θ,L, K0),
where (M, θ) is a contact manifold,L a Legendre submanifold andK0 a contact
Hamiltonian satisfying the invariance condition (i.e.K0 is identically zero onL).
The dynamics is then given by the differential equationẋ ′ = XK0.

A conservative contact is simply a dynamical system defined on a contact manifold
by a contact vector field which furthermore satisfies the invariance condition of
Theorem 2 with respect to some Legendre submanifold. In terms of modeling of
physical systems, the Legendre submanifold defines the thermodynamic properties of
a physical system. This might be the state equations of an ideal gas presented in an
Eexample 1, or the (free) energy of a reversible Hamiltoniansystem as presented
in Section 3.1. The contact Hamiltonians generating the vector field corresponds to
dynamical phenomena due to nonequilibrium conditions. We have seen two examples
of such contact Hamiltonian for reversible Hamiltonian systems (the nonequilibrium
condition consists in this case in the interdomain couplingrepresented by the
Poisson tensor), and dissipative Hamiltonian systems in Section 3. However, contact
Hamiltonians may be quite general functions allowing to cope with a great variety
of phenomenological laws, near thermodynamical equilibrium or not.

We shall conclude with two simple examples: a gas in a cylinder undergoing
some nonadiabatic transformation, and the heat conductionbetween two gases.
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EXAMPLE 4. A gas in a cylinder under a piston.Consider in this example a
gas contained in a cylinder closed by a piston subject to gravity (see Fig. 1).

U, x , x , xS V N

m

F

x pot

0

g

Fig. 1. A gas in a cylinder under a piston.

The thermodynamic properties of this system may be decomposed into the
properties of the piston in the gravitation field and the properties of the perfect
gas. The properties of the piston in the gravity field are defined by the sum of the
potential and kinetic energies:

H0 =
1

2m
xkin2

+ mgxpot,

where xpot denotes the height of the piston andxkin its kinetic momentum. The
properties of the perfect gas may be defined by its internal energy U(xS, xV , xN )
where xS denotes the entropy variable,xV the volume variable andxN the number
of moles. The properties of the total system gas and piston are defined in the TPS

TGP = R × R
10 ∋ {x0, xS, xV , xN , xpot, xkin, pS, pV , pN , ppot, pkin}, (37)

and are given by the potentialH(x ′) = U(xS, xV , xN )+H0(x
pot, xkin). The Legendre

submanifoldL generated byH is given by

pS |L =
∂U

∂S

∣

∣

∣

∣

L

, T ,

pV |L = −
∂U

∂V

∣

∣

∣

∣

L

, −P,

pN |L =
∂U

∂N

∣

∣

∣

∣

L

, µ,

ppot

∣

∣

L
= mg , F,

pkin|L =
xkin

m
, v,

(38)

where T is the temperature,P the pressure,µ the chemical potential of the gas,
F the gravity force, andv the velocity of the piston.
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The gas in the cylinder under the piston may undergo anonreversible trans-
formation when the piston moves. We assume that in this case a nonadiabatic
transformation due to mechanical friction,8 and that thedissipated mechanical energy
is converted entirely into a heat flow in the gas. Consider the contact Hamiltonian

Ktot = Kmec− (pV + P) Av − (pkin − v) AP + (pkin −
pS

T
v) ν v, (39)

where ν is the friction coefficient defining the mechanical energy dissipation,P , v
and T are the functions defined in (38), and

Kmec = −(ppot, pkin)

(

0 1

−1 0

)(

F

v

)

. (40)

This contact Hamiltonian is composed of four terms. The firstone is precisely the
contact Hamiltonian associated with the piston moving in the gravity field alone,
that is the contact HamiltonianK0 in (20) of a lifted Hamiltonian system. The last
term is a quadratic term in the velocityv associated with the mechanical friction,
analogous to the nonlinear term of the contact Hamiltonian (31) associated with
dissipative Hamiltonian systems. The second and third terms are associated with the
coupling between the piston and the gas by relating the forceF e and pressureP
on the piston and the velocityv of the piston and the variation of volumef e

V
(

f e
V

F e

)

=

(

0 A

−A 0

) (

(−P)

v

)

(41)

where A denotes the area of the piston.
It is immediately seen that the contact Hamiltonian satisfies the invariance

condition Kirr |L = 0. The dynamics restricted to the Legendre submanifold and
projected on the extensive coordinates is

dxS

dt

∣

∣

∣

∣

L

=
dS

dt
= −

∂Ktot

∂pS

=
1

T
νv2 , σ,

dxV

dt

∣

∣

∣

∣

L

=
dV

dt
= −

∂Ktot

∂pV

= A v,

dxN

dt

∣

∣

∣

∣

L

=
dN

dt
= −

∂Ktot

∂pN

= 0,

dxpot

dt

∣

∣

∣

∣

L

=
dz

dt
= −

∂Ktot

∂ppot
= v,

dxkin

dt

∣

∣

∣

∣

L

=
dπ

dt
= −

∂Ktot

∂pkin
= −F + A P = −mg + AP,

(42)

8Notice that another (equivalent) way to model irreversibility is to introduce theviscosity coefficientof the
gas, providing the same dynamics.
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where z denotes the height, andσ the irreversible entropy creation associated with
the mechanical friction. The last equation is simply Newton’ law applied to the
piston, the fourth is the definition of the velocity. The third equation indicates that
the system is closed (there is no exchange of matter). The second equation indicates
that the motion of the piston induces a variation of the volume of the gas. And
the first one is the entropy balance where irreversible creation of entropy due to
mechanical friction is transformed into an entropy flow in the gas.

It is interesting to note that this formulation of an irreversible transformation
of a gas-cylinder system encompasses the formulation of reversible transformation
using a port Hamiltonian system defined on a Dirac structure proposed in [19] (by
setting ν = 0, the entropy variation becomeṡxS = 0, hence characterizes reversible
transformations).

The next example concerns a classical example of irreversible system: heat
conduction with Fourier’s law.

EXAMPLE 5. Heat conduction.Consider two simple thermodynamic systems,
indexed by 1 and 2 (for instance two ideal gases), which may interact only through
a heat flow through a conducting wall. The thermodynamic properties of each ideal
gas are described in the composed TPS

T = R × R
12 ∋ x ′ = (x0, x

j

i , pj i
)i=1,2j=1,...,3 (43)

where the x
j

i denote the coordinates of the extensive variables andpj i
of the

conjugated intensive variables of the systemi. Assume that the thermodynamic
properties of each system are generated by the internal energy Ui(x

j

i ) for i = 1, 2
and j = 1, . . . , 3 (for an ideal gas given in Example 2). The thermodynamic
properties of the composed system are simply obtained by considering the Legendre
submanifoldLU generated by the potentialU = U1 + U2.

The two systems may exchange a heat fluxQ̇ according to Fourier’s law
Q̇ = λ(T1 − T2), where λ ∈ R

∗
+ denotes Fourier’s heat conduction coefficient. The

heat transfer dynamics is described by the conservative contact system onL with
the internal contact Hamiltonian

K0(x
′) = (p11, p12)

tR(p11, p12)3
♯
(

(T1, T2)
t
)

= R(p)3(p, T ), (44)

where

R(p) = λ

(

1

p12
−

1

p11

)

, Ti =
∂Ui

∂p1i

(x
j

i ), i = 1, 2,

and 3♯ denotes the vector bundle map associated with the canonicalsymplectic
Poisson tensor3 on R

2. Note that this multiplicativeR destroys the Hamiltonian
structure (Poisson or Dirac structure) and allows to take into account entropy
productionvia nonlinear generating flux laws. By construction, the contact Hamiltonian
K0 satisfies the invariance condition of Theorem 2, and leaves invariant the Legendre
submanifoldL, that is, it satisfies Gibbs’ relation. Let us now write the restriction of
the vector fieldXK0 to the Legendre submanifoldL. Consider firstly its projection
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on the temperature coordinatesp11, p12. Using the fact that the systems are isochore
together with the definition of the calorific capacitanceCV = ∂U

∂T
, one obtains

d

dt
(p11, p12)

t

∣

∣

∣

∣

L

= (Ṫ1, Ṫ2) =

(

∂K0

∂x1
1
,

∂K0

∂x1
2

)t ∣
∣

∣

∣

L

=

(

−CV 1
−1 λ(T1 − T2)

CV 2
−1 λ(T1 − T2)

)

. (45)

These two equations are simply the energy balance equationswritten in terms
of the temperature and using the calorimetric relations, for each of the simple
thermodynamical systems 1 and 2. Consider now the projection on the entropy
coordinates,

d

dt
(x1

1, x
1

2)

∣

∣

∣

∣

L

= (Ṡ1, Ṡ2) = −

(

∂K0

∂p11
,

∂K0

∂p12

)t ∣
∣

∣

∣

L

=









−
λ(T1 − T2)

T1
λ(T1 − T2)

T2









, (46)

which corresponds to the entropy balance equation written for each simple thermo-
dynamic system. It may be seen that this system resembles a Hamiltonian system,
however the multiplicative modulus

R(T1, T2) = λ

(

1

T2
−

1

T1

)

(47)

renders the relation between the entropy flowsdS/dt and the temperaturesnonlinear.
This is again an illustration in which sense the contact formulation allows to
encompass irreversible phenomena in opposite to Hamiltonian systems. Finally, we
may consider the projection on the energy coordinatex0,

dx0

dt

∣

∣

∣

∣

L

= −

(

R(T1, T2) +
∂R

∂p1

t ∂U

∂x1

)

3

((

T1

T2

)

,

(

T1

T2

))

= 0, (48)

which indicates that the potentialU , i.e. the internal energy, is conserved on
trajectories on the Legendre submanifold. Furthermore, itis worth noting that the
entropy source term, given by

σ = Ṡ1 + Ṡ2 = Q̇

(

1

T2
−

1

T1

)

≥ 0, (49)

is a positive term which vanishes at the thermodynamic equilibrium (T1 = T2).

4.2. Nonisolated systems

In this section, we shall extend the previously defined conservative contact
systems in order to cope with models ofopen thermodynamical systems. Therefore
we shall follow a construction very similar to the definitionof Hamiltonian control
systems [4, 36, 32]. Namely we shall introduce additional contact Hamiltonians,
called interaction contact Hamiltonians, which will represent the interactions of the
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system with its environment. First, we shall give the definition of these conservative
control contact systems and illustrate it with simple examples. Second, we shall
define pairs of conjugated port variables by considering a power balance equation.

Let us first extend the definition of conservative contract systems to control
systems as follows.

DEFINITION 4. A conservative control contact systemis defined as a conservative
contact system together with input vector fields, i.e. as theset (M, θ,L,U , K0, . . . ,
Km) where (M, θ) is a contact manifold,L a Legendre submanifold,U the input
space, withm + 1 contact Hamiltonians satisfying the invariance condition

Kj |L
= 0, j = 0, . . . , m, (50)

and the dynamics is given by the differential equation

dx ′

dt
= XK0(x

′) +

m
∑

j=1

XKj
(x ′, uj ) = X(x ′, u). (51)

The system’s dynamics is composed of two terms. The first termconsists of
the drift dynamicsXK0 which defines precisely a conservative contact system with
respect to the Legendre submanifoldL in the sense of Definition 3. The second
term is composed by the linear combination ofm contact fields generating also
m conservative contact systems with respect to the Legendre submanifold L. All
these vector fields satisfy the invariance condition of Theorem 2 with respect to
the Legendre submanifoldL. Obviously, their linear combinationX(x ′, u) satisfies
as well the invariance condition, and leavesL invariant.

In the context of thermodynamic systems, this system may be interpreted as
follows. The Legendre submanifoldL represents the thermodynamic properties of
the system. The internal contact HamiltonianK0 represents the law giving the fluxes
in the closed system due to nonequilibrium conditionsin the system (for instance
due to heat conduction or chemical reaction kinetics). Finally the interaction contact
HamiltoniansKj give the fluxes due to the nonequilibrium of the system with its
environment. The invariance conditions guarantee the fundamental thermodynamic
principle: thermodynamic properties are invariant under the dynamics. In other words,
Gibbs’ relations are satisfied along irreversible transformations.

In order to illustrate this definition, let us consider the following examples.

EXAMPLE 6. Lift of port Hamiltonian system as conservative control contact
system.The lift of a port Hamiltonian system to its TPS is a conservative control
contact system with the internal contact Hamiltonian givenby (20), and interaction
contact Hamiltonians (21). Notice that the interaction contact Hamiltonians are linear
in the input functionsui .

The second example consists in Example 5 (heat conduction between two
simple thermodynamic systems) which is now assumed to interact with an external
thermostat.
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EXAMPLE 7. Heat conduction continued.Consider again the example of two
simple thermodynamic systems, indexed by 1 and 2 (for instance two ideal gases)
which may interact through a heat flow through a conducting wall. But consider
now that one of the systems, indexed by 2, interacts through aheat flow with
a thermostat with constant temperatureTe; the heat conduction coefficient will be
denotedλe. The interaction with the thermostat at temperatureTe is given by the
interaction contact Hamiltonian

Kint(x
′, Te) = λe

[

(

p12 − T2
)

+

(

Te ln

(

T2

p12

))]

. (52)

Notice that this interaction contact Hamiltonian is affine in the control variableTe.
By construction, it satisfies the invariance condition of Theorem 2. The restriction
of its associated vector field to the Legendre submanifold projected on the energy
coordinate is

dx0

dt

∣

∣

∣

∣

L

=
dU

dt
= λe (Te − p12), (53)

which is simply the energy balance equation. The projectionon the temperature
coordinates, using tha fact that the systems are isochore and CV i = ∂U

∂T
, gives

d

dt
(p11, p12)

t

∣

∣

∣

∣

L

= (Ṫ1, Ṫ2)
t =





−CV 1
−1 λ(T1 − T2)

CV 2
−1 λ(T1 − T2)



+





0

CV 2
−1 λe(Te − T2)



 ,

(54)
which is precisely the dynamics of the isolated system (45) augmented with the
second term corresponding to the heat flux from the environment into the system
2. The projection on the entropy coordinates gives :

dx1
i

dt

∣

∣

∣

∣

L

=
dSi

dt
= λ

(

1

T2
−

1

T1

)

(

0 −1

1 0

) (

T1

T2

)

+

(

0

λe (1/T2 − 1/Te) Te

)

(55)

which are the entropy balance equation (46) of the isolated system augmented with
a second term which describes the entropy flow in the system 2 due to the heat
flow from the thermostat.

The third example consists in a gas in a cylinder with moving boundary, that is a
subpart of Example 4.

EXAMPLE 8. Gas in a cylinder with moving boundary.The dynamics of an ideal
gas in a cylinder with a moving boundary (the surface of the piston) undergoing
some mechanical work, may be defined as a conservative control contact system.
This system is defined on the TPSTgas = R × R

6 ∋ (x0, xj , pj ) where xi denote
the extensive variables andpi the conjugated intensive variables. Its thermodynamic
properties are given by the Legendre submanifold already defined in (9). As the gas
is considered to be in equilibrium with the control volume, the drift dynamics is
of course zero. And the external mechanical work provided byan external pressure
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P e, and variation of volumef e
V leads to the interaction contact Hamiltonian

K i
gas= (p2 − P) f e

V , (56)

where by definition the pressure of the gas isP = p2|L. The restriction of the
system to the Legendre submanifold followed by a projectionon the extensive
variables gives the dynamics

dS

dt
= 0,

dV

dt
= −f e

V ,

dN

dt
= 0.

(57)

4.3. Energy balance equation and port variables

In this paragraph we conclude with some considerations on the definition of
output variables conjugated to the input variables in the sense that they define a
power balance equation. Indeed, the definition of control Hamiltonian systems and
the time variation of the Hamiltonian function (or some Legendre transformation
with respect to the inputs) lead to the definition of outputs conjugated to the inputs,
and include these systems in the class of dissipative systems [41, 4, 36, 39]. From
a thermodynamic point of view, each pair of conjugated variables consists of an
intensive variable and the rate of its conjugated extensivevariable, such as for instance
the pair entropy flow and temperature, or the pair molar flow and enthalpy. Any pair
has the property that it allows to express either continuityor discontinuity of some
flows, or the equilibrium or nonequilibrium conditions at the boundary of the system.

In order to define such pairs of conjugated variables, let us first write the time
derivative of an arbitrary functionV ∈ C∞(M). A straightforward calculation leads
to the following equality [12],

dV

dt
= s0

V +

m
∑

j=1

s
j

V , (58)

where s0
V is the internal source termdefined by

s0
V = {K0, V } + V

∂K0

∂x0
, (59)

and s
j

V is the external source term associated with the inputuj

s
j

V = {Kj , V } + V
∂Kj

∂x0
. (60)

If, furthermore, there exists a functionyj

V (x ′, uj ) such thatsj

V = uj y
j

V , then (58)
may be written dV

dt
=

m
∑

j=1

uj y
j

V + sV , (61)

and y
j

V is called theV -conjugate output variable.
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REMARK 3. If the interaction contact Hamiltonians are linear functions of the
inputs, that is, there exists a function̄Kj such thatKj (x

′, uj ) = K̄j (x) uj , then
there exists a port-conjugate output variable

y
j

V = {K̄j , V } + V
∂K̄j

∂x0
. (62)

This is the case of the lift of a port Hamiltonian system, and the gas in a cylinder
with moving piston.

If, on the whole TPS, the equality (61) is satisfied with the following conditions:
(i) the function V is bounded from below, (ii) the source termsV is smaller or
equal to 0; then the control contact system would be dissipative and the function
V is then called astorage function[41, 38]. In the particular case when the source
term is zero, the system is said to belossless. However, through a few examples
we shall see that for thermodynamic systems, the definition of conjugate output
variables and the balance equation should be rather considered on the restriction of
the control conservative contact system to its Legendre submanifold.

Let us first consider the lift of a port Hamiltonian system considered in Section 3.1.

EXAMPLE 9. Port-conjugate variable and power balance equation of a lifted
port Hamiltonian system.Consider as a first case the lifted port Hamiltonian system
(20)–(22), and the time derivative of the internal Hamiltonian H0. Then the source
term writes

sH0 = 3(dxH0(x), dxH0(x)) = 0. (63)

Hence the source termsH0 is zero on thewhole thermodynamic phase space, and
this amounts to saying that the internal Hamiltonian is a conserved quantity on the
whole thermodynamic phase space. It is remarkable that the nullity of the source
term sH0 (everywhere on the TPS) is equivalent to the invariance condition of the
contact fieldK0|L = 0. The H0-conjugate output defined by the interaction contact
Hamiltonian Kj = 〈dH0 − p, gj 〉 reads

y
j

H0
= L(gj )H0. (64)

Notice that they are precisely theport outputsof a port Hamiltonian system defined
in (17). Hence, the power balance equation (18) is satisfied both for the port
Hamiltonian system and its lift to the TPS.

Consider now an example including an irreversible system like the heat conduction
in Example 5.

EXAMPLE 10. Heat conduction with thermostat: port-output and power balance
equation. We shall consider Example of the heat conduction between twosimple
thermodynamic systems and with a thermostat as treated in the examples 5 and 7.
We shall analyze here the variation of a natural candidate function for a power
balance equation: the internal energyU of the system. A straightforward calculation
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shows that the source term with respect to the internal energy is

sU = R(p1)3

((

T1

T2

)

,

(

T1

T2

))

+

(

∂U

∂x

T ∂R

∂p

)

3

((

p11

p12

)

,

(

T1

T2

))

=

(

∂U

∂x

T ∂R

∂p

)

3

((

p11

p12

)

,

(

T1

T2

))

.

(65)

This time, the source term does not vanish on the whole TPS, but it does when
restricted to the Legendre submanifoldLU , which is the only physically meaningful
dynamics.

Consider now the port-conjugate output with respect to the internal energyU
of the system

∂Kint

∂p12

∂U

∂x2
2

= λe
p12 − T2

p12
T2 =

[

λe

(

1

Te
−

1

p12

)

T2

]

Te. (66)

This leads us to define the port-conjugate output

yUtot = λe

(

1

Te
−

1

p12

)

T2, (67)

the restriction of which to the Legendre submanifold is precisely the entropy flow

into the environment
−λe (Te − T2)

Te
conjugated to its temperatureTe.

5. Conclusion

In the first instance we have defined a class of contact systems, calledconservative
contact systems, allowing us to describe the dynamics of isolated irreversible
thermodynamic systems. They are defined on some contact manifold by two objects:
a Legendre submanifold of the contact structure, and a contact vector field. In the
context of physical systems’ modeling, these objects may beinterpreted as follows.
The Legendre submanifold describes thermodynamic properties of some physical
system according to the classical differential-geometricformulation of equilibrium
thermodynamics. The contact vector field is associated withsome phenomenological
laws induced by some thermodynamical nonequilibrium conditions in the system, and
are generated by contact Hamiltonians being the virtual power associated with these
phenomena. Furthermore this contact Hamiltonian should satisfy a compatibility
condition with the Legendre submanifold, actually should vanish on it, hereby
ensuring the invariance of the thermodynamic properties along the trajectories. The
class of conservative contact systems has been shown to encompass models such as
reversible Hamiltonian systems, and reversible as well as irreversible thermodynamic
transformations.

In the second instance we have completed this class of systems in order to cope
with models ofopen thermodynamic systems. Therefore we have defined an interaction
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contact Hamiltonian associated with phenomenological laws describing the interaction
of the system with its environment according to some phenomenological laws
associated with nonequilibrium conditions between the system and its environment.
We have shown that this class of systems, calledcontrol conservative contact
systems, encompasses the class of port Hamiltonian systems as well as coupled
mechanical and thermodynamical systems. Finally, we have defined pairs of power
conjugated variables associated with the energy flow at the boundary of the system
when restricted to the Legendre submanifold.

In our perspective, the definition of the class of conservative contact systems
opens the way for further investigations in two main directions. It remains open
to define some additional characterizations of a class of contact Hamiltonians
(and related Legendre submanifolds) which agree with the second principle of
thermodynamics in the sense that one may deduce an entropy creation term.
Moreover, the definition of irreversible transformations using contact functions, could
also open the way for the definition of irreversible phenomenological laws far
from equilibrium and the investigation of global stabilityproperties of irreversible
thermodynamic systems. Another open investigation aera concerns the nonlinear
control of physical systems. Indeed the definition of nonlinear contact Hamiltonians
opens the way for the definition of power continuous interconnection structures
generalizing the interconnection of Hamiltonian systems using Dirac structures
[40, 37]. As a consequence the class of nonlinear control laws used in the
so-called Passivity Based Control - Interconnection and Damping Assignment [34]
could also be generalized and lead to novel stabilizing controllers.
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