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a b s t r a c t

Control contact systems represent controlled (or open) irreversible processes which allow us to
represent simultaneously the energy conservation and the irreversible creation of entropy. Such systems
systematically arise in models established in Chemical Engineering. The differential-geometric of these
systems is a contact form in the same manner as the symplectic 2-form is associated to Hamiltonian
models ofmechanics. In this paperwe study the feedback preserving the geometric structure of controlled
contact systems and render the closed-loop system again as a contact system. It is shown that only
a constant control preserves the canonical contact form, hence a state feedback necessarily changes
the closed-loop contact form. For strict contact systems, arising from the modelling of thermodynamic
systems, a class of state feedback that shapes the closed-loop contact form and contact Hamiltonian
function is proposed. The state feedback is given by the composition of an arbitrary function and the
control contact Hamiltonian function. The similarity with structure preserving feedback of input–output
Hamiltonian systems leads to the definition of input–output contact systems and to the characterization
of the feedback equivalence of input–output contact systems. An irreversible thermodynamic process,
namely the heat exchanger, is used to illustrate the results.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Control contact systems [1,2] have been introduced for the rep-
resentation of controlled (or open) irreversible processes. They al-
low us to represent simultaneously the energy conservation and
the irreversible creation of entropy, the fundamental principles
of Irreversible Thermodynamics. Such systems are defined on the
Thermodynamic Phase Space which is endowed with a contact
structure (or a contact form) which is canonically associated with
Gibbs’ relation defining the Thermodynamic Equilibrium proper-
ties of physical systems [3–6]. Extending the work on reversible
thermodynamical transformations in [7] to irreversible transfor-
mation of open thermodynamical systems leads to the definition of
control contact systems [1,2]which are a strict extension of control
Hamiltonian and port-Hamiltonian systems [8], and to the analysis
of some of their dynamic properties [2,9].

In this paper we consider the state feedback of controlled
contact systems and analyse under which conditions the closed-
loop system again is a contact system, more precisely when it
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leaves invariant some contact structure. This problem is precisely
in the line with a similar problem of feedback controls preserving
the symplectic structure of input–output Hamiltonian systems
treated in [10,11].

The paper is organized as follows. In Section 3 we give
conditions under which a state feedback leads to a closed-loop
system which is a contact system with respect to some closed-
loop contact form in terms of a matching equation between the
feedback and the closed-loop contact form. In Section 4 we restrict
the problem to control contact systems defined by strict contact
vector fields, that is that leave invariant the contact form itself,
and the difference between the open-loop and the closed-loop
contact form is an exact 1-form. These assumptions allow us
to define the class of admissible feedback equations as well as
a matching equation for the added exact 1-form defining the
closed-loop contact form. In Section 5 we shall deduce a natural
output for controlled contact systems and define input–output
contact systems. Then we deduce the conditions for the feedback
equivalence between input–output contact systems. Some final
remarks and perspectives of future work are given in Section 6.

2. On controlled contact systems

In this section we shall briefly recall the definition and main
properties of a class of nonlinear control systems, called control
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contact systems, that arise when modelling control systems in
chemical engineering or any process where the internal energy
(or entropy) balance equation is written. They may be considered
as the analogue of Lagrangian or Hamiltonian control systems
associatedwithmechanical systems and defined on the state space
of configuration–momentum which is endowed with a natural
symplectic structure [12,11,13]. Controlled contact systems are
defined on the Thermodynamic Phase Space consisting of n + 1
extensive variables and n intensive variables and endowed with
a contact structure associated with Gibbs’ relation defining the
thermodynamic properties of the system. On the Thermodynamic
Phase Space, one may then define controlled contact systems
which are the analogue of control Hamiltonian systems and have
been introduced in [1] and further developed in [2,9,8]. After the
introductory example of a 2-compartment heat exchange system
we shall recall the precise definitions needed in this paper.

2.1. The example of the heat exchanger

Consider a system consisting of two compartments exchang-
ing heat flow through a heat conducting wall and one of the com-
partments exchanging heat flow with the environment and called,
for simplicity, a heat exchanger. It consists of two entropy balance
equations one for each compartment and is the paradigmatic ex-
ample for irreversible systems, in the sameway as themass–spring
system is for mechanical systems.

The thermodynamic perspective to this system consists in
considering two simple thermodynamic systems, indexed by 1
and 2 (for instance two ideal gases), which may interact only
through a heat conducting wall and compartment 2 exchang-
ing a heat flow with the environment. In the first instance the
Thermodynamic properties are described in the Thermodynamic
Phase Space as follows. The thermodynamic phase space is R5

∋

(x0, x1, x2, p1, p2)⊤ with the first coordinate x0 corresponding to
the total internal energy, the coordinates x1 and x2 corresponding
to the entropies of subsystem 1 and 2, the coordinates p1 and p2
corresponding to the temperatures, the intensive variables conju-
gated to the entropies x1 and x2. The thermodynamic properties are
defined by Gibbs’ equation:

dx0 −

n
i=1

pidxi = 0 (1)

and are practically defined by a thermodynamic potential being
the sum of the internal energy function of each compartment
U(x1, x2) = U1(x1) + U2(x2). The gradient of the total internal en-
ergy ∂U

∂xi
= Ti(xi) is composed of the temperatures of each compart-

ment with Ti(xi) = T0 exp


xi
ci


, where T0 and ci are constants [14].

The state space of the heat exchanger is then defined as the fol-
lowing submanifoldLU of the Thermodynamic Phase Space where
Gibbs’ equation is satisfied

LU :


x0 = U (x1, x2)

x = [x1, x2]⊤

p =


∂U
∂x1

,
∂U
∂x2

⊤

= T (x) = [T1 (x1) , T2 (x2)]⊤

 .

In a second instance, one completes the thermodynamic properties
by irreversible phenomena, in this example the heat conduction
through the internal wall given by Fourier’s lawwith heat conduc-
tion coefficient λ. The dynamics of the thermodynamic variables
may be shown to leave the submanifoldLU invariant and restricted
to the submanifold LU , defining the following control system
d
dt


U
x1
x2
T1
T2

 =



u

−
λ(T1 − T2)

T1
λ(T1 − T2)

T2
+

u
T2

−CV 1
−1 λ(T1 − T2)

CV 2
−1 [λ(T1 − T2) + u]


(2)

where CVi =
∂Ui
∂Ti

are the calorific capacitances and the input u(t)
is the heat flow delivered by the external heat source. This control
system expresses the total energy balance in the first coordinate,
the entropy balance equations in the second and third coordinates
and the partial energy balance equations (written in terms of the
temperatures and using the calorimetric relations) for each com-
partment in the fourth and fifth coordinates.

Hence the Thermodynamic perspective to this heat exchanger
is to obtain a redundant dynamical representation where the
dynamics of all intensive and extensive thermodynamic variables
are expressed.

2.2. Contact manifold and contact systems

The Thermodynamic Phase Space is structured by Gibbs’
equation which endows it with a canonical differential-geometric
called contact structure. In the sequel we shall recall briefly the
main definitions and properties of contact geometry used in
this paper; the reader is referred to the following textbooks for
a detailed justification [15, app. 4.], [5] and to [2,8,9] for the
application to controlled irreversible thermodynamic systems.

The contact form corresponds to the definition of Gibbs’
equation (1) and is defined as follows.

Definition 2.1. A contact structure on a 2n + 1-dimensional
differentiablemanifoldM is defined by a 1-form θ of constant class
(2n + 1) satisfying

θ ∧ (dθ)n ≠ 0, (3)

where ∧ denotes the wedge product, d the exterior derivative and
(·)n the n-th exterior power. The pair (M, θ) is then called a contact
manifold, and θ a contact form.

Note that condition (3) represents a non-degeneracy condi-
tion [15]. According to Darboux’s theorem there exists a set of
canonical coordinates x̃ = (x0, x, p) ∈ R × Rn

× Rn of M where
the contact form θ is given by

θ = dx0 −

n
i=1

pidxi.

There exists a particular vector field, characteristic of the contact
form, called the Reeb vector field.

Definition 2.2. The Reeb vector field E associated with the contact
form θ is the unique vector field satisfying

iEθ = 1 and iEdθ = 0 (4)

where iE · denotes the contraction of a differential form by the
vector field E. In canonical coordinates the Reeb vector field is
expressed as E =

∂
∂x0

.

Notice that i·· is also known as the interior product or interior
derivative of a differential form by a vector field [15]. The irre-
versible thermodynamic phenomena leads to dynamical systems
which are defined by contact vector fields.

Proposition 2.1 ([16]). A (smooth) vector field X on the contact
manifold M is a contact vector field with respect to a contact form
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θ if and only if there exists a smooth function ρ ∈ C∞(M) such that

LXθ = ρθ, (5)

where LX · denotes the Lie derivative with respect to the vector field X.

It may be shown that contact vector fields are uniquely defined
by smooth real functions.

Proposition 2.2 ([16]). The map Ω(X) = iXθ defines an isomor-
phism from the vector space of contact vector fields in the space of
smooth real functions on the contact manifold.

The real function K generating a contact vector field X is
obtained by
K = Ω(X) = iXθ (6)
and is called the contact Hamiltonian. The contact vector field
generated by the function K is denoted by XK = Ω−1(K), where
Ω−1 is the inverse isomorphism. Finally the function ρ of (5) is
given by
ρ = iEdK (7)
where E is the Reeb vector field. A contact vector field, in any set
of canonical coordinates, is expressed by

XK =

K
0
0


+

0 0 −p⊤

0 0 −In
p In 0




∂K
∂x0
∂K
∂x
∂K
∂p

 , (8)

where In denotes the identity matrix of order n.
With this definition of contact vector fields, one may define

control contact systems according to [1,2] which represent the
dynamics of irreversible Thermodynamic systems [8] such as the
Continuous Stirred Tank Reactor [17,18].

Definition 2.3. A controlled contact system affine in the scalar input
u(t) ∈ Lloc1 (R+) is defined by the two functions K0 ∈ C∞(M),
called the internal contact Hamiltonian and Kc ∈ C∞(M) called the
interaction (or control) contact Hamiltonian and the state equation

dx̃
dt

= XK0 + XKcu, (9)

where XK0 and XKc are the contact vector fields generated by K0 and
Kc with respect to the contact form θ .

2.3. The example of the heat exchanger (continued)

Consider the control contact system defined by the internal and
control contact Hamiltonians

K0(x, p) = −R(x, p)p⊤JT (x),

Kc(x, p) =
p1
T1


1 −

p2
T2


,

(10)

with R(x, p) = λ


p1−p2
T1T2


and J =


0 −1
1 0


. It may be checked

that on the Legendre submanifold generated by U the contact
Hamiltonian functions vanish, K0|LU = 0 and Kc |LU = 0, and
hence the contact vector field XK0 + XKcu leaves the Legendre
submanifold LU invariant (i.e. the thermodynamic properties).
Using (8) it is computed that its restriction to LU is equivalent to
the system equations (2).

3. State feedback of controlled contact systems and invariance
of contact forms

The main question of this paper is to characterize under which
conditions, in a closed-loop, may the system be interpreted again
as an irreversible Thermodynamic system, in other words conserv-
ing a physical structure. In this section we shall characterize the
state feedback u = α(x̃) such that the closed-loop vector field

X = XK0 + XKcα

x̃


(11)
is a contact vector field with respect to some contact form which
may be different from the open-loop one, θ .

3.1. Feedback equivalence with respect to the same contact form

In a first instance let us analyse under which condition the
closed-loop vector field (11) is a contact vector field with respect
to the contact form θ . Therefore let us make the following
assumption.

Assumption 1. The control contactHamiltonianKc ∈ C∞(M) van-
ishes on a submanifold of measure 0 of M.

Proposition 3.1. Consider the controlled contact system (9)with As-
sumption 1, and the feedback u = α(x̃) being a smooth function of the
state variables. The closed-loop vector field X is a contact vector field
with respect to the canonical contact form θ if and only if the state
feedback is constant, i.e., α(x̃) = α0 ∈ R.

Proof. Recall Cartan’s formula: LX · = iXd · +diX ·. Then one may
compute, using (6) and (7),

LXθ = LXK0+αXKc θ

= LXK0 θ + α iXKc dθ + d (α Kc)

= LXK0 θ + αLXKc θ + Kcdα

= (ρ0 + αρc) θ + Kcdα

where ρ0 = iEdK0, ρc = iEdKc . Hence by (5), the vector field
X = XK0 + XKcα is a contact vector field if and only if there exists
a function φ ∈ C∞(M) such that Kcdα = φθ . Using Assumption 1
we may rewrite the last expression as

dα =


φ

Kc


θ,

and using that d2α = 0 one obtains

d


φ

Kc


∧ θ +


φ

Kc


dθ = 0.

Taking the wedge product with θ and using that it is a 1-form,
hence θ ∧ θ = 0, one gets

φ

Kc


dθ ∧ θ = 0.

According to Definition 2.1, dθ ∧ θ is nonzero at any point, hence
φ

Kc


= 0 which implies dα = 0 and that α is a constant

function. �

3.2. Feedback equivalence with respect to a modified contact form

Proposition 3.1 shows that using non constant state feedback of
a controlled contact vector field it is not possible to obtain a contact
vector field with respect to the same contact form. In this section
we develop the feedback conditions under which the closed-loop
contact vector fieldX (9) is again a contact vector field,with respect
to a different contact form associated with the closed-loop vector
field and denoted by θd. Therefore it has to be checked that the
closed-loop vector field X satisfies condition (5) with respect to θd:
LXθd = LXK0+αXKc θd

= LXK0 θd + αLXKc θd + (iXKc θd)dα

which leads to the following proposition.
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Proposition 3.2. The closed-loop vector field obtained by the
feedback α ∈ C∞(M) in (9) is a contact system with respect to a
contact form θd if and only if there exist a function ρd ∈ C∞(M) such
that the following matching equation is satisfied

ρdθd = LXK0 θd + αLXKc θd + (iXKC θd)dα. (12)

In the following we proceed to simplify the problem by
assuming that the open and closed-loop contact vector fields are
strict contact vector fields.

Assumption 2. The internal and control contactHamiltonian func-
tions K0 and Kc are invariants of the Reeb vector field E of the con-
tact form θ and the closed-loop vector field X is a strict contact
vector field with respect to the contact form θd (that is, ρd = ρ0 =

ρc = 0).

Assumption 2 expresses that X , and respectively XK0 and XKc ,
leave invariant the contact form itself, θd respectively θ . For
contact systems arising from the modelling of physical systems,
this is not restrictive since this is equivalent to assuming that
the contact Hamiltonians are invariants of the Reeb vector field.
In canonical coordinates this means that they do not depend
on the x0 coordinate associated with the Reeb vector field. For
models of physical systems where the x0 coordinate represents
the generating potential of the thermodynamic system (the total
energy or the total entropy), this is in general the case [2,8]. Under
Assumption 2, the matching equation (12) is reduced to a relation
on the feedback α and the closed-loop contact form θd

LXK0 θd + αLXKc θd + (iXKc θd)dα = 0. (13)

4. Solutions of the matching equations

4.1. Matching to the contact form θd = θ + dF

In order to facilitate the computation of a solution to the
matching equation we shall make in the sequel the following
assumption.

Assumption 3. The closed-loop contact form θd is defined as

θd = θ + dF , (14)

with F ∈ C∞(M) satisfying iEdF = 0.

Note that the condition iEdF = 0means that F is an invariant of
the Reeb vector field E and is equivalent in canonical coordinates
to assume that the function F depends only on (x, p) and not on
x0. The following proposition proves that the 1-form θd defined in
Assumption 3 is actually a contact form for any choice of invariant
F of the Reeb vector field E.

Proposition 4.1. The 1-form (14) is a contact form.
Proof. Recall that θd is a contact form if it is a Pfaffian form of class
2n + 1, satisfying [16],

θd ∧ (dθd)n ≠ 0.

Note that using d2F = 0 one has that

θd ∧ (dθd)n = (θ + dF) ∧ (d(θ + dF))n

= (θ + dF) ∧ (dθ)n.

Proceed by contradiction and assume that θd ∧ (dθd)n = 0. Then,
using the fact that iE is a ∧ antiderivation and the properties (4) of
the Reeb vector field:

iE

θd ∧ (dθd)n


= iE


(θ + dF) ∧ (dθ)n


= iE(θ + dF) ∧ (dθ)n

+ (−1) (θ + dF) ∧ iE

(dθ)n


= (1 + iEdF) ∧ (dθ)n
and iEdF = 0, implies that (dθ)n = 0 which contradicts the fact
that θ is of class 2n + 1. �

Note that it has been assumed that F satisfies iEdF = 0.
However, from the proof of Proposition 4.1 it is clear that it is only
required that iEdF ≠ −1. In this sense the assumption iEdF = 0
is restrictive, however it may be related to somemethod of energy
shaping as is commented now. Firstly it may be observed that this
assumption allows us to derive some canonical coordinates for the
closed-loop contact form θd. In some set of canonical coordinates
(x0, x, p) of θ , the closed-loop contact form (14) is given by

θd = θ + dF =


dx0 −

n
i=1

pidxi


+ dF (x, p) ,

= d(x0 + F(x, p)) −

n
i=1

pidxi,

= dx′

0 −

n
i=1

pidxi.

A set of canonical coordinates for θd is now given by (x′

0, x, p)
with x′

0 = x0 + F (x, p). Secondly one may interpret this as
the feedback changing the direction of the Reeb vector field
in the closed loop. Recall that the contact structure appears
in the differential-geometric representation of thermodynamic
systems [5,6,4], where x0 is the coordinate of a thermodynamic
potential, such as the energy U or the entropy S. Given some
thermodynamic properties defined for instance by the internal
energy, changing the Reeb vector field amounts to changing the
energy: U ′

= U + F . This interpretation is in accordance to the
one provided in [5, chap. 6] and [6, chap. 9] for the isothermal
interaction of thermodynamic system using contact geometry.

Let us now express the matching equation (13) with θd defined
by (14) in terms of a matching equation in the function F and the
feedback α. The Lie derivatives in (13) may be developed as

LXK0 (θ + dF) = LXK0 θ + LXK0 dF = ρθ + LXK0 dF

with

LXK0 dF = iXK0 d(dF) + d(iXK0 dF) = d

XK0(F)


.

Using Assumption 2 and iXKc θd = iXKc (θ + dF) = Kc +XKc (F), (13)
becomes

d

XK0(F)


+ αd


XKc (F)


+

Kc + XKC (F)


dα = 0. (15)

Since X = XK0 + XKcα, it follows that

d(X(F)) = d(XK0(F)) + αd(XKc (F)) + XKc (F)dα.

Finally, (15) may be rewritten as the following matching equation
in the feedback α and the function F

d (X(F)) + Kcdα = 0. (16)

Remark 4.1. Notice that if dα = 0 (i.e. α is constant), then (15) (or
(16)) is satisfied if d (X(F)) = 0, or equivalently if X(F) is constant.
This in turn is satisfied if dF ∈ ann


Span


XK0 , XKc


, i.e. X(F) = 0.

Two special cases may be identified, namely when dF = 0 i.e.
θd = θ (Proposition 3.1) and when F is an invariant of X .

4.2. Admissible state feedback

In order to solve the matching equation (15) we shall make the
following assumption.

Assumption 4. The differential dKc of the control contact Hamilto-
nian Kc ∈ C∞(M) vanishes on a submanifold of measure 0 of M.
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Observe that by taking the exterior derivative of (16) we get

dKc ∧ dα = 0.

This leads us to consider a candidate feedback function of the
interaction contact Hamiltonian function Kc

α = Φ ′
◦ Kc,

where Φ ′
∈ C∞(R) is the derivative of a smooth function Φ : R

→ R.

Proposition 4.2. Let M be a contact manifold with contact form
θ with associated Reeb vector field E and consider the smooth real
functions K0, Kc, F ∈ C∞(M), such that iEK0 = iEKc = iEF = 0.
Then the closed-loop vector field X = XK0 + αXKc , with α ∈ C∞(M),
is a strict contact vector field with respect to the shaped contact form
θd and the shaped contact Hamiltonian K , respectively,

θd = θ + dF and K = K0 + Φ ◦ Kc + cF ,

where Φ ∈ C∞(R), if and only if

α = Φ ′
◦ Kc(x, p),

and the matching equation

XK0(F) + (Φ ′
◦ Kc)[Kc + XKc (F)] − Φ ◦ Kc = cF (17)

is satisfied. The closed-loop vector field is then denoted by X = X̂K ,
where X̂K denotes the contact vector field generated by K with respect
to the contact form θd.

Proof. Note that the control law solves the equation dKc ∧ d(Φ ′
◦

Kc) = dKc ∧(Φ ′′
◦Kc)dKc = 0. Using the definition of the feedback,

(16) becomes

d

XK0(F) + (Φ ′

◦ Kc)XKc (F)

+ Kc(Φ

′′
◦ Kc)dKc = 0,

and by defining Ψ (λ) =
 λ

0 χΦ ′′(χ)dχ it may be written as

d

XK0(F) + (Φ ′

◦ Kc)XKc (F) + Ψ ◦ Kc


= 0.

If Ψ (λ) is integrated by parts the following is obtained

d

XK0(F) + (Φ ′

◦ Kc)XKc (F) + Kc(Φ
′
◦ Kc) − Φ ◦ Kc


= 0,

where Φ(λ) =
 λ

0 Φ ′(χ)dχ . This means that there is a constant
cF ∈ R such that X = XK0 + αXKc is invariant with respect to
θd if and only if (17) is satisfied. By taking the exterior derivative
of (16) we get dKc ∧ dα = 0 which is a necessary condition for
Kcdα to be closed and, by Assumption 4, dα = µdKc for some
function µ. However observing that (16) implies that KcµdKc is
an exact 1-form and using Assumptions 1 and 4, one obtains that
µ is a function of the interaction contact Hamiltonian Kc . Finally
by integration one obtains that the feedback α may be written
α = Φ ′

◦ Kc . Now, the closed-loop contact Hamiltonian function
is given by the contraction of the closed-loop contact vector field
and the closed-loop contact form: K = iXθd. Computing this last
expression yields

K = iXK0 (θ + dF) + αiXKc (θ + dF),

= K0 + iXK0 dF + α(Kc + iXKc dF),

= K0 + XK0(F) + α(Kc + XKc (F)).

Replacing the control law in this expression, and since F(x, p) and
Φ ′

◦ Kc verify (17), K = K0 + Φ ◦ Kc + cF is obtained. Finally, since
X is a contact vector field with respect to θd, it may be written as

X = XK0 + αXKc = X̂K ,

where X̂K is the contact vector field generated by K with respect to
the contact form θd. �
Remark 4.2. It is also possible to obtain the expression of the
closed-loop contact Hamiltonian by using the representation in
coordinates of the closed-loop contact form and vector field.
Indeed, the closed-loop contact form is given by

θd = d (x0 + F(x, p)) − p⊤dx

= dx0 −


p −

∂F
∂x

⊤

dx +
∂F
∂p

⊤

dp.

The closed-loop vector field in local coordinates is X = XK0 + XKcα
and K is given by the contraction of the 1-form θd by this vector
field. Recalling (8),

K = iXθd = K0 +


∂K0

∂x

⊤ ∂F
∂p

−
∂K0

∂p

⊤ ∂F
∂x


+

∂F
∂p

⊤

p
∂K0

∂x0

+


Kc +


∂Kc

∂x

⊤ ∂F
∂p

−
∂Kc

∂p

⊤ ∂F
∂x


+

∂F
∂p

⊤

p
∂Kc

∂x0


α.

Since α = Φ ′
◦ Kc and ∂K0

∂x0
=

∂Kc
∂x0

= 0, and using the coordinate
expression (8) of a contact vector field, we obtain by identification
of the terms

K = K0 +


∂K0

∂x

⊤ ∂F
∂p

−
∂K0

∂p

⊤ ∂F
∂x


+


Kc +


∂Kc

∂x

⊤ ∂F
∂p

−
∂Kc

∂p

⊤ ∂F
∂x


(Φ ′

◦ Kc)

= K0 + XK0(F) + (Φ ′
◦ Kc)[Kc + XKc (F)].

Finally replacing (17) in this equation we obtain K = K0 + Φ ◦ Kc
+ cF .

The previous development shows that the matching condition
(17) is characterized by the state feedback and the function
F , which leads to a characterization of the closed-loop contact
Hamiltonian function and vector field in terms of the state
feedback.

5. Input–output contact systems and their feedback equiva-
lence

5.1. Natural output of controlled contact systems

The result of Proposition 4.2 is similar to the one obtained
when investigating the feedback equivalence of input–output
Hamiltonian systems [10,11], with the difference that in this frame
the Poisson bracket is the same in the open and closed loop
whereas for control contact systems the contact form in the open
loop is different from that in the closed loop. However in both
cases the feedback is defined as the composition of some function
with the control Hamiltonian, respectively the control contact
Hamiltonian. For input–output Hamiltonian systems the control
Hamiltonian defines a natural output. In this sectionwe follow this
line and define the natural output of a contact Hamiltonian system
in a similar manner.

Definition 5.1. An (single) input–(single) output contact system is
an affine control contact system, according to Definition 2.3,
augmented with the output relation

y = Kc(x̃).

Onemaynote immediately that this definition of output also co-
incides with the more general definition suggested in [12] for con-
trol Hamiltonian systems nonlinear in the inputs: y =

∂K
∂u (x̃, u) =

Kc(x̃) with the definition of the contact Hamiltonian K = K0 +

uKc + cF . One may also note that this output is quite different
from V -conjugated outputs for conservative contact systems intro-
duced in [2,19], defined with respect to an arbitrary smooth func-
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tion V ∈ C∞(M) and the interaction contact Hamiltonian function
Kc . Using Definition 5.1 the state feedback of Proposition 4.2 may
be expressed as an output feedback

α = Φ ′(y), (18)

and the closed-loop contact Hamiltonian as a function of the natu-
ral output

K = K0 + Φ(y) + cF . (19)

5.2. Feedback equivalence of input–output systems

Having defined input–output contact systems, we may now
follow similar questions as for input–output Hamiltonian sys-
tems [20], and look for the feedback equivalence of these in-
put–output contact systems. This means that we look for a control

u

t, x̃


= α

x̃

+ v(t) (20)

such that the closed-loop system

dx̃
dt

=

XK0 + XKcα


x̃


+ XKcv (21)

is again an input–output contact system. From Section 4 we know
that the closed-loop drift vector field of (21) is a contact vector field
when Proposition 4.2 is satisfied. In order to have an input–output
contact system it remains to check that its input vector field XKc
is also a strict contact vector field with respect to the closed-loop
contact form θd. This is true if LXKc θd = 0 which by,

LXKc θd = LXKc (θ + dF)

= LXKc dF
= dXKc (F) = 0.

As a consequence, the feedback equivalence of input–output
contact systems is summarized in the following proposition.

Proposition 5.1. An input–output contact system, according to Def-
inition 5.1, on some contact manifold M endowed with the contact
form θ , with internal contact Hamiltonian K0 and control Hamilto-
nian Kc , is feedback equivalent using (20) to an input–output contact
system with respect to the contact form θd = θ + dF , defined in As-
sumption 3, if and only if there exist two real numbers c1 and cF as
well as a real function Φ ∈ C∞ (M) such that the following system of
linear PDE’s is satisfied

XKc (F) = c1, (22)

XK0(F) + (Φ ′
◦ Kc)[Kc + c1] − Φ ◦ Kc = cF . (23)

5.3. Some remarks on control synthesis

From the expressions of the closed-loop contact Hamiltonian
(19) and the output feedback (18) it is clear that the function Φ

is a control design parameter. A choice of Φ shapes the closed-loop
contact Hamiltonian (19) in a very similar manner as the feedback
of input–output Hamiltonian systems [10] or the Casimir method
for port-Hamiltonian systems [21].

However there is an additional condition that there should exist
a real function F ∈ C∞ (M) satisfying thematching condition (17),
which may equivalently be written
XK0 + (Φ ′

◦ Kc)XKc , dF

+ (Φ ′

◦ Kc)Kc − Φ ◦ Kc = 0,

where ⟨ , ⟩ denotes the pairing between vector fields and 1-forms
on M. It then appears clearly that the matching equation defines
a linear first-order PDE in the function F defining the modified
contact form θd in (14). In the canonical coordinates of θ this PDE
may be written as

∂F
∂x
∂F
∂p


⊤ −

∂K0

∂p
− (Φ ′

◦ Kc)
∂Kc

∂p
∂K0

∂x
+ (Φ ′

◦ Kc)
∂Kc

∂x

+ (Φ ′
◦ Kc)Kc

−Φ ◦ Kc = 0.

This linear PDE may then be solved by using classical methods
such as the method of characteristics [22–24]. If one looks for
the feedback equivalence to an input–output contact system,
according to Proposition 5.1, this function F should moreover
satisfy the linear first-order PDE (22) which however does not
depend on the feedback (that is on the function Φ).

5.4. The example of the heat exchanger (continued)

Consider the example of the heat exchanger presented in
Section 2.1. We shall briefly illustrate Proposition 5.1 by giving
a particular solution to the matching equations (22) and (23),
corresponding to some choice of feedback. We consider the
control contact system defined by the internal and control contact
Hamiltonians (10)

K0(x, p) = −R(x, p)p⊤JsT (x),

Kc(x, p) =
p1
T1


1 −

p2
T2


.

It appears that for the solution of thematching equation it eases the
computations, and the interpretations of the results, to use another
lift of the entropy balance equations (2) and modify the internal
contact Hamiltonian K0 by adding the following auxiliary contact
Hamiltonian

Ka = λT1


p1
T1

−
p2
T2

2

+
λ2
e

2
p21
T1


1 −

p2
T2

2

,

and model the heat exchanger with the contact vector field
XK0+Ka + XKcu. The function Ka has been chosen such that it van-
ishes on LU and that XKa |LU = 0. As a consequence the restric-
tions of both contact vector fields XK0+Ka + XKcu and XK0 + XKcu
to the Legendre submanifold LU are equal and both define admis-
sible lifts of the entropy balance equations of the heat exchanger
(see Section 2.1). Let us choose Φ (χ) = −

1
2χ

2, from which the
following control law is obtained

u

t, x̃


= Φ ′(Kc)

x̃

+ v(t) = −λe

p1
T1


1 −

p2
T2


+ v(t).

A solution of (23) is then given by the function F =


p1
T1

+
p2
T2


which moreover is an invariant of XKc , i.e., XKc F = 0 and satisfies
(22). According to Proposition 5.1, the closed-loop contact system
is an input–output contact system with contact form

θd = dx′

0 − p⊤dx = d

x0 +

p1
T1

+
p2
T2


− p⊤dx,

and closed-loop contact Hamiltonian

K = K0 + Ka −
1
2
K 2
c + vKc .

Remark 5.1. The stability of the closed-loop system is not
discussed in this paper. However it is possible to define a restriction
of the control law to some desired Legendre submanifold LUd ,
where Ud is a desired generating function, such that the closed-
loop contact vector field is stable restricted to LUd . This has
been presented in [25]. For this particular example, an invariant
Legendre submanifold with p1 = p2 =

∂Ud
∂x1

=
∂Ud
∂x2

= T ∗ >

0, where T ∗ is a desired temperature, stabilizes the closed-loop
contact vector field restricted to LUd at T ∗.
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6. Conclusions

In this paper the feedback equivalence of input–output contact
systems have been analysed extending preliminary results of [26].

In Section 3 we have shown that the only state feedback pre-
serving the contact structure of a control contact system is the
constant one. This result is different than for the control of Hamil-
tonian systems [10,11], despite the formal similarity between the
two classes of systems. This leads us to look for a state feedback
which results in a closed-loop systemwhich leaves a different con-
tact form invariant. This is a problem quite similar to the IDA-PBC
method for port-Hamiltonian systems, where the closed-loop sys-
tem is port-Hamiltonian with respect to different structure matri-
ces (or Leibniz brackets) [27]. We have then established a match-
ing condition between the closed-loop contact form and the state
feedback.

In Section 4 we restrict the problem to control contact sys-
tems defined by strict contact vector fields, that is that leave in-
variant the contact form itself, and where the difference between
the open-loop and the closed-loop contact form is an exact 1-form.
This allows to show that the admissible feedbacks are the compo-
sition of an arbitrary function with the control contact Hamilto-
nian, a result completely similar to input–output Hamiltonian sys-
tems [10,11]. However there is an additional condition to be satis-
fied which consist in a linear first-order PDE in the function whose
differential is the added exact 1-formdefining the closed-loop con-
tact form, andwhich guarantees the existence of a closed-loop con-
tact form.

In Section 5, based on the definition of the admissible feed-
back, the natural output of a control contact system is defined
as the control contact Hamiltonian. From this follows the defini-
tion of input–output contact systems, completely analogous to in-
put–output Hamiltonian systems. It is shown that the conditions
for feedback equivalence of input–output contact systems consist
in adding to the previous matching PDE, the condition that the
function whose differential is the added exact 1-form, is an invari-
ant of the control contact vector field.

A logical extension of this work is to consider multi-input
and output contact systems, but more interesting is the problem
of finding stabilizing structure-preserving feedback controls.
Preliminary work [25] has considered a subclass of control
contact systems, called conservative contact systems, which leave
invariant some Legendre submanifold in closed-loop. In this case
the closed-loop system may be interpreted as a thermodynamic
system and the control law may be expressed as a state-feedback
of the base manifold of extensive variables of the system. Finally it
should be observed that contact systems have been contextualized
in this paper as irreversible thermodynamic systems expressed
in the Thermodynamic Phase Space. However contact systems
also appear to represent time-dependentHamiltonian systems [16,
Chap. V] and in this context, the presentwork could eventually also
be used for the stabilization of time-dependent port-Hamiltonian
systems [28].
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