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a b s t r a c t

In this paper we propose an analytical formulation of the dynamical behaviour of complex and open
physical systems which is formulated on the total thermodynamic phase space using the contact form
associated with Gibbs’ relation. Starting from balance equations we construct control contact systems
by using the entropy function to represent the thermodynamic properties. The contact Hamiltonian
function generating the dynamical behaviour has then the units of an entropy variation. We consider
complex thermodynamic systems, described by compartmental systems, and we construct the
associated control contact system by composing the control contact formulation of every compartment.
The contact Hamiltonian functions generating the dynamical behaviour are discussed with respect to
two alternative formalisms used for describing coupled sets of reversible and irreversible processes,
namely the GENERIC formulation and the Matrix formulation. This analysis is then illustrated on the
elementary example of a coupled mechanical and thermodynamic system.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Physics-based control design is an approach for the control of
physical systems for which a growing interest has risen in the
recent years. The design of the control systems is based on
the understanding of the physical phenomena that give rise to the
dynamical behaviour. For electro-mechanical systems, this
approach has been largely studied with the use of the Lagrangian
or Hamiltonian formalism. However with regard to chemical
processes and more generally to thermodynamic systems in the
large (i.e. systems where reversible and irreversible phenomena
take place), this area is only in its early stages. Some results in
interpreting physical properties in terms of nonlinear dynamical
system theory and control have been already achieved. For
instance quantities related to the entropy (e.g. the entropy itself,
the entropy production, the availability) have been considered as
Lyapunov function candidates (Alonso and Ydstie, 2001; Favache,
2009; Favache and Dochain, 2009a, b; Ydstie, 2002). In this paper
we shall develop an analytical formulation adapted to modelling
thermodynamic systems with the perspective of formalizing the
previous results and extend them in a systematic way.

The modelling of complex transport phenomena as they arise
in the analysis of rheological fluids, multiphase fluids, meteor-
ological systems for instance, is greatly enhanced by the use of
structural properties associated with the basic physical modelling
assumptions. They result from the main physical modelling
assumptions that encompass the formulation of conservation
laws, the thermodynamic properties of matter and the reversible
and irreversible phenomena. This leads to dynamical behaviours
that possess dynamical invariants or preserve some geometric
structures for instance whose flows are symplectic transforma-
tions. The main issue is to express the dynamical equations in
such a way to explicitly embed the physical properties. Consider-
ing for instance complex fluids, the aim is to embed the
thermodynamic properties of the fluid, as well as the structure
of the fluid dynamics and the irreversible phenomena in the
formulation of the dynamical system. The thermodynamic
properties are captured in the definition of one or several
thermodynamic functions (such as the internal energy or any of
its Legendre transformations). The reversible processes are
captured in the definition of some differential geometric struc-
tures such as Poisson brackets (for mechanical systems or fluid
dynamics) (Arnold, 1989; Olver, 1993) and the irreversible
processes are defined using a symmetric bracket (Grmela and
Öttinger, 1997; Ortega and Planas-Bielsa, 2004). Physical systems
subject simultaneously to reversible and irreversible processes
are expressed as the sum of gradient and pseudo-Hamiltonian
dynamical systems (Dalsmo and van der Schaft, 1999; Grmela and
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Öttinger, 1997; Öttinger and Grmela, 1997). In order to include
the interaction with their environment (i.e. open systems), or for
their control, these systems have been extended in two ways. A
first extension consists in rendering the Hamiltonian functions or
the generating potential of gradient systems depending not only
on the state but also on some input variables (Cortés et al., 2005;
van der Schaft, 1989). The second extension consisted in the
description of the interaction with the environment, in terms of a
geometric structure called Dirac structure (Courant, 1990), a
generalization of the Poisson bracket, defined on manifolds
including the input and output spaces (Dalsmo and van der
Schaft, 1999; van der Schaft and Maschke, 1995; Yoshimura and
Marsden, 2006).

In this paper we suggest to use an alternative formulation,
based on contact forms, another geometrical structure, arising
from the differential geometric formulation of the thermody-
namic properties of matter as it has been developed in
Carathéodory (1909) and Mruga"a et al. (1991) according to the
geometrical definition suggested by Gibbs (1873b). Recent work
has shown that the same structure might be used in order to
describe reversible thermodynamic transformations (Mruga"a,
2000) and irreversible dynamical processes (Eberard et al.,
2007; Grmela, 2002b; Grmela and Öttinger, 1997). In the present
paper we propose a formulation based on the entropy form of
Gibbs’ equation and suggest a general formulation of a class of
compartmental systems as the composition of elementary
models.

In order to discuss the advantages of the suggested contact
formulation, we shall analyze two alternative formal frameworks
for modelling thermodynamic systems: the GENERIC formalism
(general equation for the non-equilibrium reversible-irreversible
coupling) by Grmela and Öttinger (1997) and Öttinger and Grmela
(1997) as well as the Matrix formalism developed by Jongschaap
(2001) and Jongschaap and Öttinger (2004).

In Section 2 we shall recall the definition of the contact
structure associated with a thermodynamic system and the
definition of reversible and irreversible systems on this structure
using contact vector fields. We shall also show how one may
formulate open thermodynamic systems in this framework. In
Section 3, after a brief exposition of the GENERIC and Matrix
formalisms, we shall show how they can be related to the contact
formulation. Section 4 illustrates the contact formalism in
comparison with GENERIC and Matrix by considering the simple
example of a gas-piston system also treated in Jongschaap and
Öttinger (2004).

2. Contact formulation of open and irreversible systems using
the entropy

In this section we first recall how the geometric definition of
the thermodynamic properties of simple systems introduced by
Gibbs (1873a) using tangent planes is formalized in a differential-
geometric way using Pfaffian equations and the contact geometry
(Arnold, 1989; Carathéodory, 1909; Herman, 1973). Secondly we
recall how the reversible and irreversible transformations of a
thermodynamic system may be expressed by a contact vector
field generated by some contact Hamiltonian function defining
the transformation (Eberard et al., 2007; Grmela, 2002b; Mruga"a,
1993, 2000). However we shall depart from the cited work in the
sense that we shall use the fundamental thermodynamic equation
in terms of the entropy function instead of the energy function.
Thirdly we shall consider complex thermodynamic systems, in the
sense of compartmental systems, and show that the contact
systems of every subsystem may be composed to obtain the
contact system of the complex system.

2.1. Gibbs’ relation in the thermodynamic phase space

Let us first consider a simple thermodynamic system1 (Callen,
1960) consisting of a mixture of N chemical species. Its
thermodynamic properties may be described in the thermody-
namic phase space composed of 2dþ1 state variables, where
d¼Nþ2. They are composed of dþ1 extensive quantities (the
internal energy U, the volume V, the number of moles ni of
the species i¼1,: :,N, the entropy S) and d intensive quantities
(the pressure P, the temperature T and the chemical potential mi

of the species i). If several chemical species are present in the
subsystem, then we denote by n and m the N-dimensional vectors
with entry i for each species. According to the Gibbs’ phase
theorem, only d of these quantities are independent since they
have to obey Gibbs’ relation:

dS#
1
T

dU#
P
T

dVþ
mt

T
dn¼ 0 ð1Þ

The thermodynamic properties may be derived from a funda-
mental thermodynamic equation (Gibbs, 1873a) relating the set of
extensive variables and which may be defined in an equivalent
way as the energy function: U ¼ ~UðS,V ,nÞ or preferably in this
paper, the entropy function:

S¼ ~SðU,V ,nÞ ð2Þ

The d dependent quantities are then obtained by writing the
differential of the entropy function (2):

1
T
¼
@ ~S
@U

,
P
T
¼
@ ~S
@V

, #
m
T
¼
@ ~S
@n

ð3Þ

Hence the entropy conjugate variable to the internal energy, to
the volume and to the number of moles ni of species i are 1/T, P/T
and #mi=T , respectively.

This thermodynamic perspective may be extended in order to
include other physical domains, the mechanical domain if the
system or some part of it undergoes some motion, or the
electromagnetic domain if some species are charged for instance.

In his work, Gibbs developed a geometrical approach of
thermodynamics (Gibbs, 1873a, b). The fundamental relation (2)
of a subsystem can be represented by an hypersurface in a (dþ1)-
dimensional space of the extensive variables. This hypersurface is
called the thermodynamic surface. The relation (3) indicates that
the intensive variables define the tangent hyperplanes to the
thermodynamic surface. Actually the structure of Gibbs’ relations
(1) endows the thermodynamic phase space with a canonical
geometric structure, called contact structure, in the same way as
Lagrangian and Hamiltonian formulations endow their state space
with a symplectic form or Poisson bracket (Arnold, 1989; Herman,
1973). In the remainder of this paragraph we shall briefly recall
some basic notions of contact geometry useful for thermodynamic
systems and refer the reader to the books (Arnold, 1989; Herman,
1973) for a detailed mathematical exposition and to Chen (1999),
Eberard (2006), Mruga"a (1978), and Mruga"a et al. (1991) for the
application to equilibrium thermodynamics. For the sake of
simplicity we shall restrict ourselves to a presentation in some
coordinates and hence identify the thermodynamic phase space
with the real vector space T ¼R2dþ1,dAN.

Gibbs’ relation and the definition of the equilibrium thermo-
dynamic properties have been defined in a differential-geometric
way in the fundamental paper of Carathéodory (1909) who
formulated them in terms of a Pfaffian equation. This Pfaffian
equation is expressed in terms of a 1-form, called contact form,
which in a set of canonical coordinates ðx0,x1, . . . ,xd,p1, . . . ,pdÞ is

1 I.e. a macroscopically homogeneous, isotropic and uncharged system.
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written as follows:

y¼ dx0#
Xd

i ¼ 1

pi dxi ð4Þ

and defines locally a 1-form of class 2dþ1 (Arnold, 1989; Herman,
1973).

The solution of the Pfaffian equation y¼ 0 with y being Gibbs’
contact form (4) (for instance (1)), is a d#dimensional integral
manifold of the thermodynamic phase space R2dþ1, called
Legendre submanifold. Any point of this Legendre submanifold
corresponds to state variables compatible with the thermody-
namic properties of the considered system. It may be shown that
in a set of canonical coordinates ðx0,x1, . . . ,xd,p1, . . ., pdÞ, a
Legendre submanifold is defined by a generating function F ðxI ,pJÞ
using the following relations:

x0 ¼F ðxI ,pJÞ#pJ
@F
@pJ

, xJ ¼#
@F
@pJ

, pI ¼
@F
@xI

ð5Þ

for any disjoint partition I [ J¼ f1, . . . ,dg of the set of indices.
Furthermore the generating functions for the different partitions
are partial Legendre transformations of each other.

Example 1. Consider the example of a simple thermodynamic
system consisting of a mixture of N species, and choose canonical
coordinates such that restricted on the Legendre submanifold, we
have the following equivalence:

x0 & S

x& ½U, V, n(t

p& ½pU ,pV ,pn(t

8
><

>:
ð6Þ

and the partition I¼ f1, . . . ,dg and J¼ |, then the generating
equation (5) is simply the entropy function ~SðxIÞ of the funda-
mental thermodynamic equation (2) and the identification on the
Legendre submanifold with the energy-conjugated intensive
variables is explicitly written as follows:

x0 ¼ ~SðxIÞ and pI ¼
@ ~S
@xI
ðxIÞ ¼

1
T

,
P
T

,#
m
T

! "t

Other choices of partition correspond to choose as generating
function some partial Legendre transformations of the entropy
function also called Massieu–Planck functions.

2.2. Reversible and irreversible transformations as contact vector
fields

It appears that the transformations of thermodynamic systems
may also be formulated in this geometric framework as
transformations that leave the contact structure invariant. Indeed
if the transformations undergone by the system define a quasi-
static process, the transient states are all thermodynamic
equilibrium states, and the state variables fulfill the fundamental
relation. Such infinitesimal transformations may be defined in
terms of contact vector fields X on the thermodynamic phase space
T (Arnold, 1989; Herman, 1973). Furthermore it may be shown
that contact vector field are uniquely defined by a real-valued
function f called contact Hamiltonian (and actually the reverse is
also true). In the sequel we shall denote by Xf the contact vector
field generated by the contact Hamiltonian function f. In a set of
canonical coordinates ðx0,x1, . . . ,xd,p1, . . . ,pdÞ, the contact vector

field is expressed by

Xf ¼
f

0

0

0

B@

1

CAþ
0 0 #pt

0 0 #Id
p Id 0

0

B@

1

CA

@f
@x0

@f
@x
@f
@p

0

BBBBBBB@

1

CCCCCCCA

ð7Þ

where Id denotes the d) d identity matrix.
Contact vector fields usually appear in the framework of time-

varying Hamiltonian systems and also, however much less used,
for the formulation of thermodynamic transformations (Eberard
et al., 2007; Grmela, 2002b; Mruga"a, 1993, 2000; Mruga"a et al.,
1991). For (quasi-static) transformations of a thermodynamic
system, a trivial condition on the contact vector field is that it
should leave the Legendre submanifold characterizing its thermo-
dynamic properties invariant. This leads to a condition on the
contact Hamiltonian function given in Mruga"a et al. (1991) and
that states that a contact vector field Xf , generated by the contact
Hamiltonian f, is tangent to a given Legendre submanifold L if and
only if the contact Hamiltonian function f is identically zero on L:

L* f#1ð0Þ ð8Þ

In this paper we are interested in the contact formulations of
irreversible processes in the continuation of the formulation
suggested in Grmela (2002b) and the formulation of the so-called
conservative contact systems suggested in Eberard et al. (2006,
2007). This allows to generalize the contact Hamiltonians from
the state equations used to generate reversible transformations to
contact Hamiltonians generating irreversible transformations and
defined by the constitutive relations of the irreversible phenom-
ena.

Definition 1. A conservative contact system is defined as a
quadruple composed of a contact manifold T endowed with the
contact form y, a Legendre submanifold L characterizing some
thermodynamic properties, a contact Hamiltonian function f0

satisfying the invariance condition (8) and the differential
equation: ðdx=dtÞðtÞ ¼Xf0

.

In this paper we shall use the entropy form of Gibbs’ relation (1)
which leads in the case of a mixture of N species, to the
identification of the canonical coordinates relations (6). Indeed
with the entropy 1-form, the conservative extensive quantities
are gathered in the vector x, the intensive quantities are gathered
in the vector p and the non-conserved entropy is given by x0. The
time variation dx/dt of the conserved variables corresponds to the
balance equations on the energy, the volume and the matter
which are the base equations of models in chemical engineering.
As will be shown in the sequel this choice of coordinates is well
adapted for the derivation of the contact formulation (see also
Favache et al., 2009). A striking feature of this formulation is that
the total entropy balance equation is then derived directly from
the contact Hamiltonian function. This departs from the work of
Eberard et al. (2005, 2007) who used the internal energy form
dU#T dSþP dV#mt dn¼ 0. The formulation in Eberard et al. (2005,
2007) has indeed been developed as an extension of controlled
Hamiltonian systems and is well adapted to electro-mechanical
systems for which the entropy is not expressed. Hence the
entropy formulation is better adapted for thermodynamic
systems in general, especially if heat exchanges or chemical
reactions occur.

When dealing with open thermodynamic systems, the con-
servative Hamiltonian systems of Definition 1 is extended to
control contact systems following the definition suggested in
Eberard et al. (2007).
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Definition 2 (Eberard et al., 2007). A conservative control contact
system is defined as a quintuple composed of a contact manifold T
endowed with the contact form y, a Legendre submanifold L
characterizing the system’s thermodynamic properties, U ¼Rm 3
u¼ ðu1,: :,umÞ the input space, and an internal contact Hamiltonian
f0 with m control contact Hamiltonians fj(x,uj), j¼1,: :,m satisfying
the invariance condition (8). The dynamics are given by the
differential equation:

dx
dt
¼Xf0

ðxÞþ
Xm

j ¼ 1

Xfj
ðx,ujÞ ¼ Xðx,uÞ ð9Þ

As an elementary illustration, consider the example of an open
simple thermodynamic system undergoing some irreversible
transformation due to thermodynamic non-equilibrium condi-
tions with its environment.

Example 2. Consider a simple mono-constituent thermodynamic
system with thermodynamic properties given by the fundamental
relation with some entropy function as the generating function
(2). Define its thermodynamic properties by the Legendre
submanifold according to Example 1. Let us assume that the
system is closed and isochore and may only exchange a heat flux
due to conduction through the wall separating it from the
environment being at some temperature Tenv. Let us consider
the following contact Hamiltonian function:

f ðxU ,pU ,TenvÞ ¼# pU#
@ ~S
@U

 !
_Q ðpU ,TenvÞ

where ð@ ~S=@UÞðU,V ,NÞ ¼ 1=T , _Q denotes the heat flux through the
wall: _Q ðpU ,TenvÞ ¼ kðTenv#1=pUÞ and k denotes the heat conduc-
tion coefficient. As the contact Hamiltonian function does not
depend on P/T and mt=T, i.e. the entropy-conjugated intensive
variables to the volume and the number of moles, it generates an
isochore and closed transformation. Let us now compute the time
evolution of the internal energy, its conjugated variable and the
entropy using (7) and restricted to the Legendre submanifold:

dS
dt

####
L
¼#pU

@f
@pU

####
L
¼

_Q
T

dU
dt

####
L
¼#

@f
@pU

####
L
¼ _Q

d
dt

1
T

$ %
¼

dpU

dt

####
L
¼
@f
@U

####
L
¼ _Q

@2S

@U2

It may be noted that in the above example, the Hessian matrix
of the entropy function appears in the dynamic equation on the
intensive variable. Following the second principle of thermo-
dynamics this function is concave. A stability analysis of the above
dynamical system would show that the concavity leads to a
stability criterion. In Favache et al. (2009) a stability criterion for
contact systems has been established and has been given a
physical interpretation using the concavity of the entropy
function.

2.3. Complex systems

In this section we shall give the formulation of systems
consisting of sets of coupled conservation laws (Favache et al.,
2007) generalizing systems appearing in chemical and biological
systems under the name of compartmental models.

Such a system is composed of K compartments consisting of
simple thermodynamic systems exchanging fluxes of their
extensive variables. Let us assume that the dynamics of each
compartment, indexed by i¼1,: :,K, is described by the balance

equations on the extensive variables. x(i)¼[U(i), V(i), n(i)]t. The total
flux for each extensive variable, denoted by N ðiÞx , is the variation of
the quantity x due to the incoming/outcoming fluxes and to the
consumption/production term (for n(i)); it depends on the
thermodynamic state (x(i), p(i)) of the subsystem i, the variables

ZðiÞ ¼C Gij

xðjÞ

pðjÞ

 !t" #t

j ¼ 1,: :,n

0

@

1

A ð10Þ

that refer to the state of the other compartments interacting with
the compartment i and where Gij is the adjacency matrix of the
graph defining the compartmental system and the variables xext

that refer to the state of environment of the compartmental
system. For instance xext could be the temperature of the
environment whereas ZðiÞ could be the temperature of the
subsystem ja i. The dynamics are given by the following balance
equations on the energy, the volume and the mass, respectively:

dUðiÞ

dt
¼N ðiÞE ðx

ðiÞ,pðiÞ,ZðiÞ,xextÞ ð11aÞ

dV ðiÞ

dt
¼N ðiÞV ðx

ðiÞ,pðiÞ,ZðiÞ,xextÞ ð11bÞ

dnðiÞ

dt
¼N ðiÞn ðx

ðiÞ,pðiÞ,ZðiÞ,xextÞ ð11cÞ

Consider the following contact Hamiltonian function:

f ðiÞðxðiÞ,pðiÞ,ZðiÞ,xextÞ ¼
@F ðiÞ

@xðiÞ
#pðiÞ

 !t

N ðiÞðxðiÞ,pðiÞ,ZðiÞ,xextÞ ð12Þ

where N ðiÞ ¼ ½N ðiÞU ,N ðiÞV ,N ðiÞn (
t and F ðiÞðxðiÞÞ is the generating function

of the Legendre submanifold generating the thermodynamic
model of the compartment i. By construction, this contact
Hamiltonian satisfies the invariance condition (8) and defines a
conservative contact system according to Definition 2 (for a proof,
see Favache, 2009; Favache et al., 2007).

Let us now consider the dynamics of the K interconnected
compartments. First we shall define the thermodynamic proper-
ties of the total compartmental system. Therefore similarly as
suggested in Eberard et al. (2006) and Favache et al. (2007), we
shall define the thermodynamic phase space of the compart-
mental system on the product space of the pairs of entropy-
conjugated variables of each compartment augmented by the
total entropy of the compartmental system. The thermodynamic
phase space of the compartmental system is defined by the
ð2
PK

i ¼ 1 d
ðiÞ þ1Þ#dimensional real vector space endowed with the

entropy contact form

y¼ dxtot
0 #

XK

i ¼ 1

ðpðiÞÞt dxðiÞ ¼ dxtot
0 #pt dx ð13Þ

with the following canonical coordinates:

xtot
0 ,x¼ ½xð1Þ, . . . ,xðKÞ(t , p¼ ½pð1Þ, . . . ,pðKÞ(t

The thermodynamic properties of the compartmental system are
defined as the ð

PK
i ¼ 1 d

ðiÞÞ#dimensional Legendre submanifold L
generated by the function F ðxÞwhich is the sum of the generating
functions of each subsystem:

F ðxÞ ¼
XK

i ¼ 1

F ðiÞðxðiÞÞ ð14Þ

It is easy to see from (5) that on the Legendre submanifold L, the
total entropy satisfies xtot

0 ¼
PK

i ¼ 1 xðiÞ0 where ðxðiÞ0 ,xðiÞ,pðiÞÞALðiÞ for
all iAf1, . . . ,Kg and that, due to the separation property of the
generating function (i.e. the entropy of each subsystem depends
only on the state of the subsystem itself and not on the state of
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the other subsystems), setting F ðjÞ ¼ 0,ja i, one recovers
ðxtot

0 ,xðiÞ,pðiÞÞALðiÞ.
The contact Hamiltonian function generating the dynamics of

the global system is given by the sum of the contact Hamiltonian
of each compartment:

f ðxtot
0 ,x,p,xextÞ ¼

XK

i ¼ 1

f ðiÞðxðiÞ,pðiÞ,ZðiÞ,xextÞ ð15Þ

with

ZðiÞ ¼C Gij

xðjÞ

pðjÞ

 !t" #t

j ¼ 1,: :,n

0

@

1

A

3. Contact formulation of GENERIC and Matrix

In the preceding section, we did not specify the general
expression of the fluxes in the balance equations on the extensive
variables (11a)–(11c). However following the theories of irrever-
sible thermodynamics near equilibrium, these fluxes are in
general expressed as semi-linear functions of the generating
forces giving rise to dynamical phenomena (Bird et al., 2002;
Callen, 1960; deGroot and Mazur, 1962; Jou et al., 2001;
Prigogine, 1962).

In order to discuss the structure of the balance equations, we
shall recall two other formalisms based on the axioms of
irreversible thermodynamics in the definition of the state space
and the generating functions as thermodynamic state variables
and potentials. The first one is called GENERIC (general equation
for the non-equilibrium reversible-irreversible coupling) and
consists in the sum of an Hamiltonian and a pseudo-gradient
dynamical system generated by two different generating func-
tions, namely the entropy and the energy (Grmela, 2002b; Grmela
and Öttinger, 1997; Öttinger and Grmela, 1997). We shall recall its
definition for isolated systems defined on the extensive variables
subject to conservation laws and its lift to a contact formulation
on the thermodynamic phase space. We shall then discuss the
representation of the interaction with the environment. The
second formalism is called Matrix and is based on defining a
structured (semi-)linear mapping which is composed of skew-
symmetric and a symmetric part, on thermodynamic force and
flux variables (Jongschaap, 2001; Jongschaap et al., 1994;
Jongschaap and Öttinger, 2004). We shall recall its definition
and give its contact formulation on the thermodynamic phase
space.

3.1. The GENERIC formalism

The GENERIC formalism was first developed by Grmela and
Öttinger with the aim to model the hydrodynamics of complex
fluids like polymers and to embed both reversible and irreversible
physical systems in a single framework (Grmela and Öttinger,
1997; Öttinger, 1999; Öttinger and Grmela, 1997). It has been first
developed for isolated thermodynamic systems, but Muschik and
Jongschaap have proposed two different approaches to extend it
to open systems (Jongschaap and Öttinger, 2004; Muschik et al.,
2000). Therefore we shall first present the GENERIC formalism as
it was initially developed for isolated systems in Section 3.1.1,
then show how to extend it to open systems in Section 3.1.2.

3.1.1. Representation of isolated systems
In the GENERIC formalism, the time evolution of the d

independent variables required for the description of the system,
denoted by ZARd, of a complex thermodynamic system is
expressed as the sum of a Hamiltonian system and a dissipative

system. The Hamiltonian system is defined with respect to a
Poisson bracket (with structure matrix denoted by LðZÞ) and
generated by the total energy Etot(Z) of the system as the
Hamiltonian function. The dissipative system is defined with
respect to the Riemannian metric with the positive symmetric
structure matrix MðZÞ and generated by the total entropy, denoted
by Stot(Z), as the potential function. These two contributions are
the reversible and the irreversible contributions, respectively.

Definition 3. A GENERIC system on the vector space Rd 3 Z is
defined by a Poisson bracket denoted by { ,} with structure matrix
LðZÞ and a pseudo-Riemannian metric a Ginzburg–Landau dis-
sipative bracket denoted by [ ,], with semi-definite positive
symmetric structure matrix MðZÞ. The GENERIC system is
generated by two functions Etot(Z) and Stot(Z) fulfilling the
following conditions:

8gðZÞAC1ðRdÞ : ½gðZÞ,EtotðZÞ( ¼ 0 i:e: MðZÞ
@Etot

@Z
¼ 0 ð16aÞ

8gðZÞAC1ðRdÞ : fgðZÞ,StotðZÞg¼ 0 i:e: LðZÞ
@Stot

@Z
¼ 0 ð16bÞ

The system dynamics are then given by the following differential
equation:

dZ
dt
¼ fZ,Etotgþ½Z,Stot( i:e:

dZ
dt
¼ LðZÞ

@Etot

@Z
þMðZÞ

@Stot

@Z
ð17Þ

Remark 1. The bracket [ ,] is called the Ginzburg–Landau
dissipative bracket (Grmela and Öttinger, 1997). The Ginzburg–
Landau dissipative bracket is symmetric (i.e. for all A,BAC1ðZÞ,
[A(Z), B(Z)]¼[B(Z), A(Z)]) and satisfies the positivity condition
½AðZÞ,AðZÞ(Z0 for all AAC1ðRdÞ.

This definition is justified for models where the reversible
phenomena are generated by the gradient of the total energy
function Etot(Z) and the irreversible phenomena are generated by
the gradient of the total entropy function Stot(Z) of some complex
thermodynamic system (Grmela, 2002a, b; Grmela and Öttinger,
1997; Öttinger and Grmela, 1997). It could seem that the two
generating functions Etot(Z) and Stot(Z) are chosen independently.
However when considering quasi-static processes for the sub-
systems they both are the sum of entropy and energy functions
characterizing the thermodynamic equilibrium states of the
subsystems. Thus they are linked by the fundamental relation
(2) of each of the subsystems. However when considering quasi-
static processes for the complex system and each of its
components, they are related by the fundamental relation (2).

The condition (16a) expresses that the energy function is a
Casimir function of the (Ginzburg–Landau) dissipative bracket.2

As a consequence, using also the skew-symmetry of the Poisson
bracket, the total energy is conserved:

dEtot

dt
¼ fEtot ,Etotgþ½Etot ,Stot ( ¼ 0

Condition (16b) expresses that the entropy function is a Casimir
function of the Poisson bracket. Hence, using the positivity of the
dissipative bracket, the entropy balance equation becomes as
follows:

dStot

dt
¼ fStot ,Etotgþ½Stot ,Stot ( ¼ ½Stot ,Stot(Z0

Therefore by using two different generating functions satisfying
the conditions (16a) and (16b), one may express simultaneously
the energy conservation and the irreversible entropy production.

2 I.e. a function f ðZÞAC1 such that ½f ðZÞ,gðZÞ( ¼ 0 for any function gðZÞAC1 .
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Remark 2. The Hamiltonian part of dynamics (i.e. the Poisson
bracket) in (17) refers to reversible phenomena, whereas the
dissipative part (i.e. the dissipative bracket) refers to irreversible
phenomena. This can be seen in the expression for the entropy
production since the Poisson bracket does not appear in it:

sS ¼
dStot

dt
¼
@tStot

@Z
MðZÞ

@Stot

@Z

Defining the thermodynamic forces by Yk ¼ @Stot=@Zk with
k¼ 1,2, . . . ,d and defining the flux variable Jk by the law of fluxes
as Jk ¼

Pd
l ¼ 1 MklðZÞ@Stot=@Zl, the entropy production sS can be

written as a bilinear product of the thermodynamic forces and the
conjugated fluxes (deGroot and Mazur, 1962):

sS ¼
XdF

k ¼ 1

JkYk ¼ YtJ

If the selected pairs (Yk, Jk) are such that they follow the Onsager
reciprocal relations, then the matrix MðZÞ is a matrix in which the
entries are equal to the parameters appearing in the phenomen-
ological laws.

3.1.2. Extension to open systems
In order to apply the GENERIC formulation to open systems,

two approaches can be found in the literature (Jongschaap and
Öttinger, 2004; Muschik et al., 2000). The first approach consists
in extending the open system to a combined system composed of
the open system and the environment endowed with some
thermodynamic properties. In this case the total system is the
universe, which is isolated by definition. Usually the thermo-
dynamic model of the environment is very simple as for instance a
thermostat for which the entropy function is linear in the internal
energy (Eberard et al., 2007). The second approach, developed in
Jongschaap and Öttinger (2004), represents open systems in an
intrinsic way by introducing interface or external variables
representing the fluxes and intensive variables at the boundary
of the open system and is better suited for the composition of
subsystems into complex systems. This approach is similar to
approaches for controlling open physical systems in the sense that
it uses pairs of conjugated variables to describe the interaction of
the open system with its environment as they appear for
dissipative control systems (Brogliato et al., 2007; van der Schaft,
2000; Willems, 1972), input–output Hamiltonian-systems, (van
der Schaft, 1989) and port Hamiltonian systems (van der Schaft
and Maschke, 1995, 1997). In the GENERIC formalism, two pairs of
conjugated external variables are defined. First we shall define a
pair of variables ð _X ham,FhamÞARm1 )Rm1 , associated with the
formulation of an open Hamiltonian system, actually a port
Hamiltonian system with port variables ð _X ham,FhamÞ and secondly
a pair of variables ð _X diss,FdissÞARm2 )Rm2 , associated with an open
dissipative system. The GENERIC representation of open systems
is then defined as the sum of a port Hamiltonian (van der Schaft
and Maschke, 1995) and a dissipative system (Cortés et al., 2005)
as follows.

Definition 4. An open GENERIC system on the vector space Rd of
extensive variables with the two pairs of external variables,
denoted by ð _X ham,FhamÞARm1 )Rm1 and ð _X diss,FdissÞARm2 )Rm2 is
defined by a skew-symmetric tensor with the following structure
matrix:

~LðZÞ ¼

0 0 CðZÞ
0 0 0

#CtðZÞ 0 LðZÞ

0

B@

1

CA

and a symmetric tensor with the following positive structure

matrix:

~MðZÞ ¼

0 0 0

0 0 PðZÞ
0 PtðZÞ MðZÞ

0

B@

1

CA

with CðZÞARm1 )Rd and PðZÞARm2 )Rd. The dynamics is
generated by two functions Etot(Z) and Stot(Z) satisfying the
conditions (16a) and (16b) and the system of algebro-differential
equations:

# _X ham

_X diss

dZ
dt

0

BBB@

1

CCCA¼
~LðZÞ

Fham

0
@Etot

@Z

0

BBB@

1

CCCAþ
~M ðZÞ

0

Fdiss

@Stot

@Z

0

BBB@

1

CCCA ð18Þ

Let us now consider the balance equations of the total energy
and the total entropy. The energy balance equation is obtained by
computing the product ð@tEtot=@ZÞdZ=dt:

dEtot

dt
¼ Ft

ham
_X hamþ

@tEtot

@Z
PðZÞFdiss ð19Þ

The two terms on the right hand side may be interpreted as the
power entering the system through its boundaries, the first one
being the supply rate of the port-Hamiltonian system and the
second one energy flow due to the coupling with the dissipative
system. The pair of external variables ð _X ham,FhamÞ is conjugated
with respect to the power (rate of energy) as their product has the
dimension of power (it is a term of the energy balance equation).
The entropy balance equation is obtained by computing the
product ð@tStot=@ZÞdZ=dt:

dStot

dt
¼
@tStot

@Z
MðZÞ

@Stot

@Z
þ _X

t
dissFdiss#

@tStot

@Z
CtðZÞFham

This is the entropy balance for isolated systems augmented with
two terms. These two terms may be interpreted as the flow of
entropy entering the system through its boundaries, the first one
being the supply rate of the dissipative system with respect to the
entropy storage function and the second one being the entropy
flow due to the coupling with the port Hamiltonian system. The
pair of external variables ð _X diss,FdissÞ is conjugated with respect to
entropy flow (rate of entropy) as their product is a term of the
entropy balance equation.

Remark 3. The extension of Remark 2 to the case of open systems
implies that ðFham, _X hamÞ refers to reversible exchanges with the
environment, whereas ðFdiss, _X dissÞ refers to irreversible exchanges
with the environment. As a consequence the matrix ~L fulfills
(16b), i.e. the following condition should be fulfilled:

CðZÞ
@Stot

@Z
¼ 0

The pair of conjugated external variables ðFham, _X hamÞ refers to
reversible exchanges with the environment, whereas ðFdiss, _X dissÞ
refers to irreversible exchanges with the environment. As a
consequence the matrix ~L fulfills (16b), i.e. the following
condition should be fulfilled:

CðZÞ
@Stot

@Z
¼ 0

The entropy balance involves only the pair of external variables
ðFdiss, _X dissÞ and can finally be written as follows:

dStot

dt
¼
@tStot

@Z
MðZÞ

@Stot

@Z
þ _X

t
dissFdiss

Yet ~M does not fulfill (16a) since ð@tEtot=@ZÞPðZÞFdissa0. In the
energy balance equation (19) not only the pair ðFham, _X hamÞ appears

A. Favache et al. / Chemical Engineering Science 65 (2010) 5204–5216 5209



Author's personal copy

but also the external force Fdiss related to irreversible phenomena
as these indeed may result in an energy flow.

Example 3. Consider the example of a simple closed and isochore
thermodynamic system exchanging heat with the environment
through a heat conduction wall which has already been
considered in Example 2. Let us choose the independent extensive
variables Z ¼UAR. Then the total entropy function is simply the
entropy function ~SðUÞ defining the thermodynamical model
StotðZÞ ¼ ~SðUÞ and the total energy function is Etot(Z) ¼ U. The
process is quasi-static and according to the Gibbs’ relation, the
gradient of the total entropy is given by the following relation:

@Stot

@Z
¼
@ ~S
@U
¼

1
T

3.1.3. Contact formulation of the GENERIC models
The contact formulation of GENERIC models for closed systems

has already been suggested in Grmela (2002a, b) and Grmela and
Öttinger (1997). In this section we shall briefly recall the contact
formulation for closed systems and suggest the contact formula-
tion of GENERIC models of open systems according to Definition 4.
Starting from the dynamic equations expressed on the variables
ZARd and using a procedure called lift (Eberard et al., 2007), the
contact system is defined on the whole thermodynamic phase
space R2dþ1 3 ðx0,Z,pZÞ endowed with the contact form
y¼ dx0#pZ dZ. This results in the definition of a Legendre
submanifold (actually its generating function) and a contact
Hamiltonian function generating a conservative contact system
such that its restriction to the Legendre submanifold is precisely
the system expressed in the Z coordinates. At that point it should
be noticed that there is no unique solution as it has been
discussed in Favache et al. (2009). For GENERIC models of closed
systems (Definition 3), it is easy to check that the lift is a
conservative contact system with Legendre submanifold gener-
ated by the total entropy function Stot and the contact Hamilto-
nian function:

f0ðZ,pZÞ ¼#pt
ZLðZÞ

@Etot

@Z
ðZÞ# pZ#

@Stot

@Z
ðZÞ

$ %t

MðZÞ
@Stot

@Z
ðZÞ ð20Þ

Now consider the differential equation of an open GENERIC
system (18). Its lift to the thermodynamic phase space is again
easily seen to be a control contact system according to Definition
2 with Legendre submanifold generated by the total entropy
function Stot(Z) and the contact Hamiltonian, sum of the internal
contact Hamiltonian (20) and an interaction contact Hamiltonian
function fint:

fintðZ,pZ ,Fham,FdissÞ ¼# pZ#
@Stot

@Z

$ %t

ð#CtðZÞFhamþPtðZÞFdissÞ ð21Þ

Finally it should be noted that in this framework, there is no
obvious choice of flow variables conjugated to the force variables
Fham and Fdiss. In the case of control contact systems with contact
Hamiltonian function affine in the input variables, conjugated
port variables have been defined (Eberard et al., 2006, 2007).

3.2. The matrix formalism

3.2.1. Definition
The Matrix model was developed by Jongschaap to describe

the thermodynamics of complex fluids (Edwards et al., 1997;
Jongschaap, 2001; Jongschaap and Öttinger, 2004). The Matrix
formalism distinguishes between two kinds of variables: on one
side the internal variables characterizing the state of the
subsystems and the external variables referring to the environ-
ment of the subsystems.

The state of the subsystems are characterized by a set of
extensive internal variables and a fundamental equation such that
the rate of change of the energy due to the changes of non-
thermal extensive state variable X is given by

Pint ¼ Ft
th

dX
dt

where Fth ¼ @ ~U=@X is the set of conjugated thermodynamic forces
and U ¼ ~UðS,XÞ is the fundamental equation.

Besides, the action of the environment the subsystems is
characterized by some controllable external forces Fe and some
external rate variables _X e such that the mechanical power
supplied to the system is given by the following relation:

Pext ¼ Ft
e
_X e

As a consequence, the time variation of the internal energy is
given in terms of the internal variables and in terms of the
external variables by these two following relations:

dU
dt
¼ Ft

th

dX
dt
þT

dS
dt

ð22aÞ

dU
dt
¼ Ft

e
_X eþ _Q ð22bÞ

where _Q is the heat provided to the system. Using the Principle of
Macroscopic Time Reversal (Jongschaap, 2001), the dynamics can
finally be expressed as the sum of a non-dissipative and a
dissipative coupling as follows:

Fe

dX
dt

0

@

1

A¼ 0 #!t

! 0

 !
_X e

#Fth

 !
þ

g 0

0 b

 !
_X e

#Fth

 !
ð23Þ

where ! is skew-symmetric matrix linked to the reversible
phenomena and b and g are positive matrices linked to the
irreversible phenomena. It is to remark that the skew-symmetry
of the part due to the reversible phenomena is due to the Principle
of Macroscopic Time Reversal and is the counterpart of condition
(16b) of the GENERIC formalism. This matrix is not associated to
the operator L of the GENERIC formalism, whose skew-symmetry
was inherited from the Poisson structure of classical mechanics.

The dissipation D is obviously the difference between the
mechanical power supplied by the environment and the internal
rate of energy (without considering the rate of change of the
thermal state variables), i.e.:

D¼ Ft
e
_X e#Ft

th

dX
dt
¼ ð _X eÞtg _X eþFt

thbFth ð24Þ

3.2.2. Contact formulation of the Matrix model
The contact formulation of the Matrix system (23) may be

obtained by lifting the system on the extended space
R2ðd#1Þþ1 +R) TRðd#1Þ of dimension 2d#1. However this space
would not be the physical thermodynamic space associated with
Gibbs’ equation (22a) which includes the entropy and energy
variables. We shall define the thermodynamic phase space
R2dþ1 3 ðx0,x,pÞt with the following identification:

x0 ¼ S

x¼ ½U,X(t

p¼ ½pU ,pX (t

8
><

>:
ð25Þ

The thermodynamic properties of the system are defined by the
generating function given by the fundamental relation (2) given in
entropy form. On the Legendre submanifold L, generated by
~SðU,XÞ, one has the following relations: pU jL ¼ @ ~S=@U ¼ 1=T and
pX jL ¼ @ ~S=@X ¼#Fth=T . Proceeding by analogy with (12) on the
balance equations (22b)–(23) allows to define the following
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internal contact Hamiltonian function:

f0 ¼#
@ ~S
@X
#pX

 !t

bFth

and the following interaction contact Hamiltonian function:

fint ¼
@ ~S
@U
#pU

 !
½ð _X eÞtg _X eþ _Q þFth! _X e(þ

@ ~S
@X
#pX

 !t

! _X e

¼
@ ~S
@U
#pU

 !

½ð _X eÞtg _X eþ _Q (#ðpXþpUFthÞ
t! _X e

It should be noted again that the contact Hamiltonian functions
are tensor products, defined by the matrix b for the internal
contact Hamiltonian function and by the matrix ! for the control
contact Hamiltonian function, both with the dimension of an
entropy flow. The term containing ! is linear in the intensive
variables and cancels out when calculating the entropy produc-
tion using the expression of the x0-component of the contact
vector field (7):

dS
dt
¼

dx0

dt

####
L
¼#pU

@ðf0þ fintÞ
@pU

####
L
#pX

@ðf0þ fintÞ
@pX

####
L

¼
1
T
½ð _X eÞtgt _X eþ _Q þFt

thbFth(

As expected, the entropy variation is due to the dissipative effects
(via the terms containing b and g) and to the heat exchange. By
comparison with (24), the dissipation D represents the entropy
variation that is not due to heat transfer.

4. Case study: the adiabatic piston

In this section, we shall illustrate the contact formalism by
considering the example of a gas in an adiabatic isolated cylinder
closed by a piston (Fig. 1). When the piston moves, friction effects
cause transformation of mechanical energy into heat. The system
cannot exchange heat with the environment, but a heat transfer
between the gas and the piston can take place.

This example has already been used in order to illustrate the
GENERIC and Matrix formalism and to emphasize some relations
with dissipative port-Hamiltonian systems in Jongschaap and
Öttinger (2004). It is a very simple example and hence the contact,
GENERIC and Matrix models of this system are easy to build.
However it is sufficient to illustrate the differences and to
highlight the advantages of the contact model from the point of
view of control. Indeed it is an open system and it can be seen as a
complex system composed of two subsystems: the piston and the
enclosed gas.

The piston is considered as a solid and its volume is considered
to be constant. Furthermore its mass is constant as it is subject to
no mass exchange. Finally we assume that the temperature

distribution in the piston is uniform. Hence it will be described as
a simple thermodynamic system in motion, closed and under-
going isochore transformations. The displacements of the piston
are assumed to be small enough so that the center of mass of the
gas does not undergo significant motion. We shall also consider
the additional assumption that there is no mass exchange with
the environment.

As a consequence of the above assumptions, the state of the
system can be described by d¼ 5 variables (2 degrees of freedom
for the gas, 3 degrees of freedom for the piston). For instance, the
following set of variables can define the state of the system:

, for the piston: the internal energy Upis, the momentum q and
the position z;
, for the gas: the internal energy Ugas and the volume V.

Remark 4. For the sake of clarity in the notations, the super-
scripts ‘‘gas’’ and ‘‘pis’’ are not used when it is obvious to which
system the quantity applies. For example we are not considering
the motion of the center of mass of the gas, and thus the only
momentum we have to consider is the one of the piston.
Consequently we shall use the notation q instead of qgas.

4.1. Contact formulation as a compartmental system

We shall consider the gas–piston system as a compartmental
system composed of the piston and the gas in the cylinder.
According to Section 2.3, we first give the contact formulation of
each subsystem and then gather them through interconnection
relations. Both subsystems, the gas and the piston, are considered
as simple homogeneous thermodynamic systems.

4.1.1. The compartment gas
The thermodynamic model and its description in the thermo-

dynamic phase space has been given in Example 1. However
considering that there is no mass exchange with the environment,
and for the sake of simplicity, the vector of extensive variable may
be reduced to xgas¼(Ugas, Vgas) with the internal energy Ugas and
volume Vgas. The thermodynamic phase space becomes R5 3
ðx0,Ugas,Vgas,pU ,pV Þ with intensive variable of the gas pgas¼(pU, pV)
and the entropy function of the gas: ~S

gas
ðUgas,VgasÞmay be used as

generating function of the Legendre submanifold associated with
the thermodynamic properties of the gas.

The dynamical model is given by the balance equation on the
extensive variables xgas¼(Ugas, Vgas). The internal energy balance
equation is the sum of the heat flow coming from the piston and
the mechanical power due to the displacement of the piston:

dUgas

dt
¼ _Q p-g#AvwallP ð26aÞ

where vwall denotes the velocity of the surface, of area A, in
contact with the piston and P denotes the pressure of the gas:

P¼#
@Sgas

@V
@Sgas

@Ugas

$ %#1

:

The ‘‘balance’’ equation on the volume is equal to

dV
dt
¼ Avwall ð26bÞ

The formulation as a control contact system on the whole
thermodynamic phase space is then obtained in accordance with
Section 2.3 by using the balance equation in the definition of
generated by the contact Hamiltonian function:

f gasðxgas,pgas,ZgasÞ ¼ @
~S

gas

@Ugas
#pgas

U

 !
_Q p-g#vwallAP

& '

Fig. 1. Study case: the adiabatic piston.

A. Favache et al. / Chemical Engineering Science 65 (2010) 5204–5216 5211



Author's personal copy

þ @
~S

gas

@V
#pgas

V

 !
ðAvwallÞ ð27Þ

with the interconnection variables with the piston being:
Zgas ¼ ½ _Q p-g ,vwall(.

4.1.2. The compartment piston
The contact formulation of thermodynamic systems has been

derived based on the Gibbs’ equation in Section 2 for systems at
rest. But the piston is a mechanical system in motion and Gibbs’
relation has to be extended to its displacement and momentum
variable.

Assuming that the piston does not exchange matter (dnpis¼0)
and is undeformable (dVpis¼0) its thermodynamic model is
defined by the restricted relation:

dSpis ¼
1

Tpis
dUpis ð28Þ

Furthermore the total energy of the piston is

~E
pis
ðUpis,q,zÞ ¼Upisþ ~E

kin
ðqÞþ ~E

pot
ðzÞ

the sum of the kinetic energy depending on the kinetic
momentum q of the piston: ~E

kin
ðqÞ ¼ q2=2m, the gravity potential

energy depending on the position z of the piston: ~E
pot
ðzÞ ¼mgz

and its internal energy Upis.
Combining the differential of the total energy:

dEpis ¼ dUpisþv dq#Fpot dz

where v¼ q=m is the velocity of the piston and Fpot¼#mg is the
gravity force, with (28), one obtains the extended form of the
Gibbs’ relation:

dSpis ¼
1
T

dEpis#
v
T

dqþ
Fpot

T
dz ð29Þ

In the same way as Gibbs’ relation (28) is equivalent to the
fundamental relation defined by the entropy function ~S

pis

0 ðU
pisÞ,

the extended Gibbs’ relation (29) is equivalent to the fundamental
relation:

Spis ¼ ~SðEpis,q,zÞ ¼ ~S
pis

0 Epis#
q2

m
#mgz

$ %
ð30Þ

The contact formalism can now be applied directly by using
(29) as the 1-form for endowing the thermodynamic phase space
with a contact structure and (30) as the generating function of the
Legendre manifold Lpis. In the case of the piston the thermo-
dynamic phase space can be taken as R7 with the local
coordinates (x0

pis,xpis,ppis) which have the following physical
interpretation on the Legendre submanifold:

xpis
0 ¼
Lpis

Spis

xpis ¼ ½xpis
E ,xpis

q ,xpis
z (t ¼

Lpis

½Epis,q,z(t

ppis ¼ ½ppis
E ,ppis

q ,ppis
z (t ¼

Lpis 1
Tpis

,#
v

Tpis
,
Fpot

Tpis

! "t

8
>>>>>><

>>>>>>:

The dynamical model is given by the balance equation of the
total energy, the momentum (Newton’s equation) and the
displacement (kinematic relation):

dEpis

dt
¼ _Q g-pþðFgas#FextÞv ð31aÞ

dq
dt
¼ Fgas#Fext#Fpot#av ð31bÞ

dz
dt
¼ v ð31cÞ

where Ffric ¼ av is the force due to friction with a the friction
coefficient. The heat transfer rate from the gas to the piston _Q g-p

and the force Fgas exerted by the gas on the piston compose the
vector of interaction variables of the piston: Zpis ¼ ½ _Q g-p, Fgas(. The
external interaction variable with the environment of the gas–
piston system is the force exerted by the environment on the
piston Fext ¼ xext .

The control contact system on the whole thermodynamic
phase space is generated by the following contact Hamiltonian
function defined in accordance with Section 2 as follows:

f pisðx,p,Zpis,FextÞ

¼ @
~S

pis

@Epis
#ppis

E

 !
_Q g-p# Fgas#Fext

( ) ppis
q

ppis
E

 !

þ @
~S

pis

@q
#ppis

q

 !

Fgas#Fext#
ppis

z

ppis
E

þa
ppis

q

ppis
E

 !

# @
~S

pis

@z
#ppis

z

 !
ppis

q

ppis
E

ð32Þ

4.1.3. The gas–piston system
The thermodynamic properties of the composed system are

obtained according to Section 2.3 by considering the independent
extensive variables x¼ ðxpis,xgasÞt AR5 with associated intensive
variables p ¼ (ppis, pgas)t and the composed thermodynamic phase
space R11 3 ðx0,xt ,ptÞ. The properties of the composed system are
simply defined by the Legendre submanifold with generating
function being the sum of the generating functions:

F ðxÞ ¼ ~S
pis
ðxpisÞþ ~S

gas
ðxgasÞ ð33Þ

The interconnection relations (10) defining the variables Zpis and
Zgas are defined as follows:

, the heat exchange due to conduction:

_Q p-g ¼# _Q g-p ¼ k
1

ppis
E

#
1

pgas
E

 !
ð34aÞ

, the kinematic relation relating the velocity of the piston with
the velocity of displacement of the moving wall:

vwall ¼ v¼#
ppis

q

ppis
E

ð34bÞ

, the static equilibrium:

Fgas ¼ AP¼ Apgas
V ð34cÞ

The contact system for the composed system is then simply
generated by the sum of the contact Hamiltonian functions (27)
and (32) with the interconnection relations (34a)–(34c):

f ðx,p,xextÞ ¼ f pisðx,p,xextÞþ f gasðx,p,xextÞ ð35Þ

We may illustrate now an important property of the contact
formulation, namely that it embeds not only the balance equation
on the conserved quantities but also that one may simply deduce
from the contact Hamiltonian the dynamics of their conjugated
intensive variables as well as of all thermodynamic potentials in
particular the total entropy balance equation. As the system is
isolated, there is no external entropy flux, and the variation of the
total entropy of the system is thus equal to the entropy
production sS. The variation of the total entropy is obtained by
computing the x0-component of the vector field generated by the
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contact Hamiltonian function (35) and then restricting it to the
Legendre submanifold generated by F ðxÞ and one obtains

sS ¼
dx0tot

dt

####
L
¼ _Q g-p @

~S
gas

@Ugas
#@

~S
pis

@E

 !
þ@

~S
pis

@q
a @Ekin

@q
ðqÞ

In terms of the usual thermodynamic quantities, this is equal to
the following relation:

sS ¼ _Q g-p
1

Tgas
#

1
Tpis

$ %
þa v2

Tpis
ð36Þ

We can clearly recover the two sources of irreversibility: the heat
transfer and the viscous dissipation.

4.2. The GENERIC model

In this section we shall recall how the complete piston–gas
system would be modelled using GENERIC according to Section
3.1.2. We shall comment in detail the construction of the
structure matrices L and M of the dynamic equation (18).

The state space may be chosen to be the set of conserved
extensive variables of each subsystem:

Z ¼ ½Upis,z,q,Ugas,V (

The two generating functions (or potentials in thermodynamic
terms) are the total energy, that is the sum of the total energy of
the piston and the gas:

EtotðZÞ ¼
1

2m
q2þmgzþUpisþUgas

and the total entropy function of the system, that is the sum of the
entropy functions of the piston and of the gas:

StotðZÞ ¼ ~S
pis

0 ðU
pisÞþ ~S

gas
ðUgas,VÞ

The gradient of these potentials define the two vectors of
generating forces @Etot=@Z for the reversible phenomena and
@Stot=@Z for the irreversible phenomena:

@Etot

@Z
¼ 1,

@Epot

@z
,
@Ekin

@q
,1,0

$ %t

¼ ð1,#Fpot ,v,1,0Þt ð37aÞ

@Stot

@Z
¼ @

~S
pis

@Upis
,0,0,@

~S
gas

@Ugas
,@
~S

gas

@V
Þ

t

¼
1

Tpis
,0,0,

1
Tgas

,
P

Tgas

$ %t
0

@ ð37bÞ

The vector @Etot=@Z contains only the mechanical co-energy
variables as independent variables, and the vector @Stot=@Z only
the thermodynamic intensive variables as independent variables.
The non-independence of the two potentials Etot(Z) and Stot(Z) is
translated in the two coefficients of @Etot=@Z equal to 1.

Let us first find the GENERIC model of the isolated system
obtained by choosing Fext¼0. The first step consists in splitting the
left-hand side of the balance equations (26) and (31) into two
vector fields; the first one, denoted by Xham, corresponding to a
Hamiltonian vector field, and the second one, denoted by Xgrad, to
the dissipative vector field in (17). The suggested choice
corresponds to split it into a vector field corresponding to the
reversible phenomena and the other one to the irreversible

phenomena as follows:

dUpis

dt
dz
dt
dq
dt

dUgas

dt
dV
dt

0

BBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCA

¼

0

v

FgasþFpot

#PAv

Av

0

BBBBBB@

1

CCCCCCA

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Xham

þ

_Q g-pþav2

0

#av

# _Q g-p

0

0

BBBBBB@

1

CCCCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Xgrad

ð38Þ

For the Hamiltonian vector field, it appears that there exists a
unique skew-symmetric matrix L that corresponds to the Poisson
bracket such that the total energy Etot(Z) generates the Hamilto-
nian vector field Xham and such that the total entropy is a Casimir
function:

L¼

0 0 0 0 0

0 0 1 0 0

0 #1 0 AP #A

0 0 #AP 0 0

0 0 A 0 0

0

BBBBBB@

1

CCCCCCA
ð39Þ

where P¼ ð@ ~S
gas
=@VÞðUgas,VÞ.

The matrix L defines indeed a Poisson bracket as it is skew-
symmetric and it satisfies the Jacobi identities which will be
proven by giving a complete set of Casimir functions. Note first
that, as the pressure satisfies P40 for any state, the rank of L is 2.
Secondly there are three obvious independent Casimir functions,
namely the internal energy of the piston C1(Z) ¼ Upis, the entropy
function of the gas C2(Z) ¼ Sgas(Ugas, V), and the third one being
the geometric relation (modulo some constant) between the
volume and the position of the piston C3(Z)¼V#Az. The three
Casimir functions have the immediate physical interpretation that
the Hamiltonian vector field leaves invariant the internal energy
of the piston, the entropy of the gas and the kinematic relation
relating the moving wall of the gas with the piston. Finally it may
be observed that StotðZÞ ¼ ~S

pis
ðC1ðZÞÞþC2ðZÞ and is indeed gener-

ated by the chosen set of independent Casimir functions. The
invariance of Stot(Z) and Sgas proves that the Hamiltonian vector
field corresponds to isentropic transformations of both the gas
subsystem and the total gas–piston system.

For the dissipative vector field there is no unique solution for
the matrix M as it has been noted e.g. in Muschik et al. (2000).
One possible semi-definite positive symmetric matrix M that
generates the vector field Xgrad and admits the total energy Etot(Z)
as Casimir function is the following one:

M ¼

kTgasTpisþTpisav2 0 #aTpisv #kTgasTpis 0

0 0 0 0 0

#kTpisv 0 kTpis 0 0

#kTgasTpis 0 0 kTgasTpis 0

0 0 0 0 0

0

BBBBBB@

1

CCCCCCA
ð40Þ

with

Tpis ¼ @
~S

pis

@Upis

 !#1

ðUpisÞ

Tgas ¼ @
~S

gas

@Ugas

 !#1

ðUgas,VÞ

v¼
@Ekin

@q
ðqÞ
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The matrix M is symmetric and semi-definite positive as the
friction and conduction coefficients a and l are positive as well as
the temperatures, but it is not definite. Actually it has rank 2 and
admits three Casimir functions: D1(Z) ¼ z and D2(Z) ¼ V which
implies that the dissipative vector field corresponds to isochore
transformations and the third Casimir function is, by construction,
the total energy Etot(Z).

This model may be extended in order to account for the
interactions with the environment due to the external force Fext.
As this interaction consists of a reversible phenomenon, it is
sufficient to augment the Hamiltonian vector field and the
GENERIC formulation of the open system can then be written as
follows:

# _X ham

dZopen

dt

0

B@

1

CA¼
0 CðZÞ

#CtðZÞ LðZÞ

 ! Fext

@Etot

@Z

0

@

1

Aþ
0 0

0 MðZÞ

 ! 0
@Stot

@Z

0

@

1

A

The second row can be developed and the following expression is
obtained:

dZ
dt
¼#CtðZÞFextþLðZÞ

@Etot

@Z
þMðZÞ

@Stot

@Z
ð41Þ

Actually the external force appears solely in the momentum
balance (31b), hence it is easy to define the interaction matrix C:

CðZÞ ¼ ð0 0 1 0 0Þ

The conjugated port variable _X ham associated to Fext is conse-
quently equal to the velocity of the piston:

# _X ham ¼C
@Etot

@Z
¼ v

4.3. The Matrix model

We have recalled in Section 3.2 that the Matrix model only
represents the balance equations on the extensive thermody-
namic variable at the exclusion of the entropy balance equation.
Gibbs’ equation in energy form may be generalized to encompass
the thermodynamic states of the piston and the gas:

dUtot ¼ Tpis dSpisþTgas dSgas#P dV

with respect to the fundamental equation

~U
tot
ðSpis,Sgas,VÞ ¼ ~U

pis
ðSpisÞþ ~U

gas
ðSgas,VÞ

For the gas–piston system this implies that the conjugated pair
of extensive variables and intensive variables of the Matrix model
is reduced to (X, Fth) ¼ (V, #P). The external flux and effort
variables Fe, _X e are deduced from the balance equation of the total
internal energy balance:

dUtot

dt
¼

dUpis

dt
þ

dUgas

dt
ð42Þ

The internal energy balance of the piston is obtained from the
energy balance (31a) as follows:

dUpis

dt
¼

dEpis

dt
#

dEkin

dt
#

dEpot

dt

¼ _Q g-pþðFgas#FextÞv#@
~E

pot

@z
v

#@
~E

kin

@q
ðFgas#Fext#Fpot#avÞ

¼ _Q g-pþav2

By combining with (26a) we finally obtain

dUtot

dt
¼

dUpis

dt
þ

dUgas

dt
¼ ðav#APÞv

which, according to (22b), leads to define:

Fe ¼ av#AP and _X e ¼ v

The balance equation on the volume and the definition of the
matrix model in (23) lead to the Matrix model of the piston–gas
system:

av#AP
dV
dt

0

@

1

A¼
a #A

A 0

$ %
v

P

$ %
ð43Þ

Note that (43) reduces to a single balance equation on the volume
corresponding the conservation of space. This result is indeed
analogous to that presented in Jongschaap and Öttinger (2004).

Note also that the final formulation of the Matrix model (43)
does not include explicitly the energy balance.

The total dissipation can now be calculated using (24):

D¼ _X eZ _X e ¼ av2 ð44Þ

As shown in Section 3.2, the dissipation is related to the entropy
variation which is not due to heat effects. Indeed by comparing
with (36), we have

sS ¼
1

Tgas
#

1
Tpis

$ %
_Q g-pþ

D
Tpis

4.4. Concluding comments

On the example of a gas–piston subject to an external force we
have illustrated the construction of the conservative control
contact system, of the GENERIC and of the Matrix models starting
from the balance equations of an independent set of extensive
variables. The control contact system has been constructed by
considering the gas–piston system as a compartmental system
composed of the gas and the piston according to Section 2.3. The
GENERIC and Matrix models have been constructed for the total
system. We have discussed in detail the construction and the
properties of the two structure matrices of the GENERIC model
from the balance equations and have interpreted the Casimir
functions of the skew-symmetric structure matrix as isentropic
transformations and the Casimir functions of the symmetric
structure matrix in terms of isochore transformations. It may be
noticed that the kinematic interconnection relation between the
gas and the piston corresponds precisely to one of the Casimir
functions of the skew-symmetric structure matrix. By definition
the Matrix model represents basically the balance equations by
considering the mechanical part of the system: its structure
matrix has been shown to be composed of a symplectic part
corresponding to the usual mechanical model augmented with
some symmetric terms associated with the dissipative phenom-
ena. However the interconnection relation cannot appear in this
formulation as only the mechanical part of the systems is
explicitly represented.

Both the conservative control contact and the GENERIC
formulation are based on some differential-geometric structure.
The GENERIC imposes some differential-geometric structure on
the space of the n independent extensive variables: the skew-
symmetric structure matrix defines (in coordinates) a Poisson
bracket as it arises in mechanical systems and the positive
symmetric structure matrix defines a pseudo-Riemannian struc-
ture associated with the dissipative phenomena. The control
contact formulation uses the contact structure associated with
Gibbs’ relation on the whole (2n+1)-dimensional thermodynamic
phase space containing all the extensive and the intensive
variables.

This contact structure is canonical, in the same way as the
symplectic structure for Lagrangian systems, however the
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structure matrices of the GENERIC formulation are not. They have
to be constructed for each system of balance equations and are in
general not uniquely defined. In our example, there is a unique
solution for the skew-symmetric structure matrix but a non-
unique solution for the symmetric matrix.

Furthermore by construction, the gradient of the total energy or
the total entropy functions should be in the kernel of the structure
matrices (see Eqs. (16a) and (16b)). Hence the structure matrices
depend explicitly on the intensive variables: in the example the
skew-symmetric matrix L depends on the pressure and the
symmetric structure matrix M on the temperatures and the velocity.
If this dependence is left explicit and not expressed as functions of
the extensive variables by using the thermodynamic properties of
the system, the structure matrices do not really define a Poisson
bracket or a Riemannian metric. This is a sharp contrast with the
situation in mechanical systems where the Poisson structure matrix
may be defined in a canonical way from the structure of the
configuration space of the mechanical system.

When considering the contact formulation of the GENERIC model
on the thermodynamic phase space, this implies that the contact
Hamiltonian is no more defined as the tensor product on the space
of intensive variables (as Poisson bracket would do) but rather
functions, eventually semi-linear, on the whole thermodynamic
phase space. This was indeed one of the major motivations to
consider contact structures and contact vector fields defined on the
whole thermodynamic phase space (Eberard et al., 2005, 2007).

Let us also emphasize the fact that the considered system is an
interconnection of two subsystems. In the above study case the
advantage of the contact formulation appears clearly. Indeed the
contact model has been built first for each subsystem individually
(the gas and the piston) and the total model has been deduced from
the two previous ones. In the GENERIC and in the Matrix
formulations, the interconnection of two systems would require to
recompute the structure matrices for the whole system and check
their kernel, which can become very tedious as the dimension
increases. With the contact formalism, the total model is obtained
simply by adding a term in the already computed contact
Hamiltonian function (35). Hence one of the major forces of the
contact formalism compared to the two other formalisms for
expressing thermodynamic systems is the easy handling of inter-
connected systems.

5. Conclusion

In this paper we have been considering the differential-
geometric structure of the dynamic systems associated with
thermodynamic systems such as the GENERIC, the Matrix or the
control contact system formulations. The first two formalisms are
based on defining some Poisson and Riemannian metric matrices
on the state space of independent extensive thermodynamic
variables. The third one defines the dynamics as a contact vector
field on the complete thermodynamic phase space endowed with
the canonical contact form associated with Gibbs’ relation.

All the formulations may be formulated in terms of contact
systems as the lift of the balance equations on the extensive
variables to the whole thermodynamic phase space and the
expressions of the contact Hamiltonian generating the contact
vector field may be compared. The GENERIC and Matrix formula-
tions lead to contact Hamiltonian functions being tensor products
of the thermodynamic forces whereas the control contact system
admits more general expressions which allows for a more general
expression of fluxes.

An important feature of considering the dynamics on the
thermodynamic phase space is to allow for a simplified expres-
sion of the tensors arising in the contact Hamiltonian function.

Indeed one may express the generating forces as simple functions
of the extensive variables instead of using their expression in
terms of the extensive variables via the state equation necessary
to define the Poisson and Riemann tensor on the space of
extensive variables.

The contact formalism is well suited for extending the
formulation to open systems or control systems. In this case the
contact Hamiltonian is additively augmented with a contact
Hamiltonian depending on the state variable of the environment.
This feature has been used in order to define the contact
formulation of a complex system composed of simple thermo-
dynamic systems (possibly in motion) interconnected through a
graph representing the exchange of fluxes between the subsys-
tems. The GENERIC formulation does not include interconnections
of subsystems and is less adapted to open systems. Hence the
contact formalism is better adapted for control purposes, and
especially of interconnected systems such as chemical processes
for example.

The GENERIC and Matrix formalism can also be applied to
distributed parameter systems. The case of distributed systems
has not been considered in this paper, but the extension of the
contact formalism to such systems should not be an issue, if
assuming that the thermodynamic equilibrium is reached locally.
Indeed then local forms of the Gibbs’ relation and of the
thermodynamic flows can then be used as it has been described
in Grmela (2002b) for instance.

The contact formalism appears to be a powerful tool for the
analysis and control of the dynamical behaviour of open
thermodynamic systems. It encompasses an interconnection
based approach of thermodynamic systems which is of great
interest when considering chemical processes. The elements of
the contact representation of a thermodynamic system are closely
related to thermodynamic properties and at the same time they
are well defined objects of a formal mathematical theory. Hence
the contact formalism gives a formal structure to the thermo-
dynamics which allows us to link the dynamical behaviour of the
system to its thermodynamic properties and to the underlying
physical phenomena.

The use of the physical and thermodynamic properties such as
the convexity of the entropy function (Hangos et al., 1999; Ydstie,
2002) or some pseudo-Hamiltonian formulations (Ramı́rez et al.,
2009) has been used recently for the control of open thermo-
dynamic systems such as chemical reactors. The contact formula-
tion based on the entropy form of Gibbs’ equations, opens the
road for some alternative approach to the control problem by
shifting the control design from energy shaping and IDA-PBC
methods to the design of closed-loop entropy and entropy
variation (the closed-loop contact Hamiltonian).
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Öttinger, H., 1999. Nonequilibrium Thermodynamics—a tool for applied rheolo-
gists. Applied Rheology 9, 17–26.
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