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Abstract

We examine the control problem of curve-tracking for
a fully actuated mechanical system. Using a coordinate
transformation on the momentum variables, we split the
kinetic energy of the system in a desired and an un-
desired part, and then design an (intrinsically passive)
controller as an interconnection of port-Hamiltonian
subsystems, in such a way that asymptotic convergence
to the desired curve is obtained. We illustrate the per-
formance in a simulation.

Keywords: Hamiltonian control systems, mechanical
systems, nonlinear control.

1 Introduction

Traditional robot motion control tries to make a robot
follow a reference point as closely as possible, as this
reference point moves in space over time. Although
this approach is a very sensible choice for many appli-
cations, there are also applications (e.g. contour fol-
lowing) for which the time aspect of the task is not so
important, and the task is much more to stay on a cer-
tain curve at all times; the exact position in time is not
directly important, as long as it is somewhere on this
desired curve.

For this task, traditional controllers like PID can
not be applied directly, since there is no clearly de-
fined error signal between the actual and desired po-
sition. Instead, a very elegant approach (a form of stiff-
ness/impedance control as presented in [16], [6], and
[11]) is to build a virtual potential field around the de-
sired curve, such that the potential energy is minimal
everywhere on the desired curve, and increases as the
deviation from the desired curve increases (Figure 1).
The gradient of the potential field then gives the con-

U

desired curve

Figure 1: The desired curve and a potential field U with gra-

dient towards the desired curve.

trol torque to be applied to the robot, such that the robot
moves as if a spring is pulling it in the direction of the
desired curve.

Although this approach to curve tracking is very ele-
gant and features many desirable properties like passiv-
ity, intuitive interpretation, and intuitive tuning, the per-
formance is not so spectacular. The reason is that cen-
trifugal and Coriolis forces drive the robot away from
the minimum, and the potential field only produces a
correcting torque after the robot has already deviated
from the desired curve.

In this paper, we extend this potential field controller
and improve the performance, without destroying the
features like passivity and intuitive interpretation. We
add control terms that are power-continuous (i.e., they
do not change the energy) but change the distribution of
kinetic energy over the various (desired and undesired)
directions to obtain asymptotic convergence.

The control law in this paper is based on the con-
troller described in [3] and partially in [5], but the re-
sults have been completely reformulated in terms of an
interconnection of port-Hamiltonian systems. The main
advantage of this formulation is that the structure of
the equations directly reveals energy storage and pos-
sible energy flows inside the system. Furthermore, the
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approach is suitable for modular controller design; we
construct the total controller as a port-interconnection
of subcontrollers for specific subtasks.

The control idea in this paper is also related to the
Passive Velocity Field Control (PVFC) strategy de-
scribed in [8, 9], but the main differences are (1) PVFC
uses temporal energy storage in the form of a virtual fly-
wheel whereas our approach is power-continuous, and
(2) PVFC uses a cleverly chosen vector field to obtain
convergence to a single curve where we use the poten-
tial field and extra power-continuous terms to obtain
this convergence.

This paper is organized as follows. Section 2 gives
the necessary mathematical preliminaries for the rest of
the paper. Section 3 presents a derivation of the port-
based control law, the main result of this paper. Sec-
tion 4 then shows the behavior of the controller in a
simulation. Finally, Section 5 gives the main conclu-
sions and a discussion on possible directions for future
research.

2 Preliminaries

In this section, we discuss the mathematical background
knowledge necessary for the rest of the paper.

2.1 Manifolds and Tensors

We denote a differentiable manifold by Q, its points by
q, and its dimension by n ∈ N. The tangent bundle TQ
of Q is the union of the tangent spaces TqQ at all points
q ∈ Q. Similarly, the cotangent bundle T ∗Q of Q is the
union of all cotangent spaces T ∗

q Q. The intrinsic dual
product between an element v ∈ TqQ and an element
α ∈ T ∗

q Q is denoted by ⟨v|α⟩ ∈ R.

A C∞ tensor field T (k)
(l) is a C∞ mapping which as-

signs to each point q ∈ Q a tensor of order k contra-
variant and order l co-variant (a type (k, l) tensor) such
that the mapping

T (q) : TqQ × . . . × TqQ
︸ ︷︷ ︸

l times

×T ∗

q Q × . . . × T ∗

q Q
︸ ︷︷ ︸

k times

→ R

is linear in all its arguments at all q ∈ Q. Tensor fields
can locally be expressed using coordinates, e.g. T xy

vw

expresses the value of T acting on the basis vectors
∂v, ∂w ∈ TQ and dx, dy ∈ T ∗Q. We use the Einstein
summation convention, which means that repetition of
an index (once upper, once lower) implies summation

over that index. Furthermore, we denote the partial

derivative of a tensor T (k)
(l) to qi by T (k)

(l),i.

A Riemannian metric tensor field (denoted by g or
in coordinates by gij) assigns to each point a symmet-
ric positive-definite two-covariant tensor. A manifold
endowed with such a structure is called a Riemannian
manifold. Using the metric, we denote the inner prod-
uct of two tangent vectors as

⟨v, w⟩g = gijv
iwj ∈ R v, w ∈ TqQ.

The inverse of the metric defines a metric g−1 acting on
elements of T ∗

q Q as

⟨α,β⟩g−1 = gijαiβj ∈ R α,β ∈ T ∗

q Q

2.2 Port-Hamiltonian Systems

A general explicit port-Hamiltonian system is a dynam-
ical system that can be represented by a set of differen-
tial equations of the following form

ẋ = (J(x) − R(x))
∂H(x)

∂x
+ g(x)u

y = gT (x)
∂H(x)

∂x
+ (K(x) + S(x))u

(1)

in which x ∈ X is the state, H : X → R is the (dif-
ferentiable) energy function, J(x) and K(x) are skew-
symmetric matrices (to model power-continuous ele-
ments), R(x) and S(x) are positive semi-definite ma-
trices (to model dissipative elements), and (u, y) ∈
U × U∗ is the port through which the system can in-
teract with e.g. a controller. For systems of this form it
is straightforward to show that Ḣ ≤ ⟨u|y⟩, i.e., the sys-
tem is passive with respect to the port (u, y) with stor-
age function H . Several generalizations for this kind of
systems exist, e.g. implicit formulations, and we refer
the interested reader to [12] and [1].

In this paper, we consider the subclass of mechanical
systems (with H the mechanical energy) and we start
from a conservative simple mechanical system (a sys-
tem for which the total energy is the sum of kinetic and
potential energy). If we take the state to be an element
of the cotangent bundle T ∗Q, the dynamics can be de-
scribed by a port-Hamiltonian system of the form

d

dt

[

q
p

]

=

[

0 I
−I 0

]
[

∂H
∂q
∂H
∂p

]

+

[

0
B

]

u

y =
[

0 BT
]

[
∂H
∂q
∂H
∂p

] (2)
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where (q, p) are canonical coordinates on the cotan-
gent bundle (generalized positions and momenta), and
H equals

H(q, p) =
1

2
⟨p, p⟩g−1 + V (q). (3)

The first term of H is the kinetic energy, the second
term is the potential energy. Systems described in these
coordinates (q, p) with J as shown are called symplec-
tic systems.

2.3 Bond Graphs

Though not commonly known, bond graphs (introduced
by Paynter [10]) can be very useful to analyze energy
aspects of physical systems. We give a rough guide
how to read and use a bond graph like the ones in Fig-
ures 2 through 7; interested readers are referred to [7]
for a more accurate and complete introduction to bond
graphs, and to [15] for the use of bond graphs in robot-
ics.

The half-arrows called bonds represent energy con-
nections between subparts, carrying dual variables
(called effort and flow, for mechanical systems force
and velocity) where the dual product between the two
represents the power flowing in the direction of the ar-
row. The stroke on either side of the arrow indicates the
signal direction of the effort (force); the signal direction
of the flow (velocity) is then in the opposite direction.
A single arrow represents a one-dimensional bond, a
double arrow represents a multi-dimensional bond.

The Is are inertial elements, which integrate the in-
coming effort (force) to get the internal state (momen-
tum), and output the partial derivative of the energy
function to the state (i.e., the velocity). Similarly, a C-
element represents an elastic element, integrating the
incoming flow (velocity) to get the internal state (dis-
placement), and output the partial derivative of the en-
ergy function to the state (i.e., elastic force).

Both an MTF-element (modulated transformer) and
an MGY-element (modulated gyrator) establish a
power-connection between two bonds, the coupling
strength of which can be modulated by some external
(matrix) signal X . For the MTF we have the relations
f2 = Xf1 and e1 = XT e2, while for the MGY we
have the relations e2 = Xf1 and e1 = XT f2 (which
automatically makes both elements power-continuous;
the total power flowing in on one bond is always in-
stantaneously equal to the total power flowing out on
the other bond). Furthermore, an MGY with only one

bond represents an element for which e1 = Xf1 with
X skew-symmetric, such that the total instantaneous
power on that bond is always zero.

Finally, 0- and 1-junctions represent generalized
Kirchhoff laws, i.e., all connecting bonds on a 0-
junction have equal effort, all connecting bonds on a
1-junction have equal flow, and the (signed) sum of the
power on the bonds equals zero.

Throughout this paper, we use bond graphs to give
a graphical illustration of the various equations; even
though the equations contain all the results, it can be
very helpful to look at the corresponding bond graph to
get a direct intuitive physical idea of what is going on
in terms of energy flows.

3 Controller Derivation

As stated in Section 1, the control goal is to make a
certain simple mechanical system follow a prescribed
curve in joint space, denoted by a submanifold Qd ⊂ Q.
In this section we develop a port-based controller that
accomplishes this goal. The controller itself is again
the port-interconnection of several parts, each of which
has its own purpose that can be described in terms of
energy flows.

Instead of immediately trying to tackle the problem
of convergence to Qd, we first relax the control goal as
follows: we replace the single desired curve by a fam-
ily of non-intersecting curves (one of which is Qd), one
through each point of Q, in the form of a smooth non-
zero vector field on Q, which we denote by w. This au-
tomatically implies that we will take a local approach,
since the topology of the configuration space as well as
the shape of the specified desired curve can make it im-
possible to define such a vector field globally (e.g. on
S2n this is the famous ‘hairy-ball theorem’).

Since we have a positive-definite metric g on Q, we
can also equivalently look at this family of curves as
a (local) smooth submanifold of T ∗Q by transforming
the vector field of each point into a covector at that point
and considering these covectors as elements of T ∗Q.

The initial goal is now for the system to converge to
this submanifold, i.e., to build a controller that forces
all kinetic energy in the direction of the desired vector
field. The main goal, convergence to the desired curve
Qd, is then obtained by introducing a suitable potential
field, that is, by a form of classical energy shaping.
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3.1 Change of Coordinates

The first step is to represent the system of the form (2)
in different coordinates (q,α) instead of (q, p). So in
other words, we use the same coordinates q for the con-
figuration, but different coordinates α for the momenta.
The first1 coordinate represents the desired momentum
direction, and the other coordinates represent the other
directions. We choose a new set of basis vectors ha(q)
for T ∗

q Q such that2

1. Every element p ∈ T ∗

q Q can be written as a linear
combination of ha(q) (i.e., it is a basis)

2. For all a ∈ {2, . . . , n} we have ⟨ha|w(q)⟩ = 0.

3. The set of {ha}(q) defines a (local) diffeomor-
phism between Rn and T ∗

q Q. In coordinates, the
mapping ha

i relates p ∈ T ∗

q Q and α ∈ Rn as

pi = ha
i αa

αa = (h−1)j
apj = ĥj

apj

(4)

where we defined ĥ := h−1 for ease of notation.

4. The metric ḡ on Rn induced by g and h, i.e.,

ḡab(q) = ha
i (q)gij(q)hb

j(q) (5)

is diagonal and independent of q.

Note that properties 1, 2, and 4 together imply that

gij(q)w
j(q) = γ(q)h1

i (q) (6)

for some γ(q) ̸= 0, and hence also that h1(q) is a
(scalar) multiple of g(q)w(q).

This choice of coordinates means that we will (lo-
cally) write T ∗Q as the product Q × Rn with coordi-
nates (q,α), and the energy H̄ in these new coordinates
can be written as

H̄(q,α) :=H(q, haαa)=
1

2

〈

haαa, hbαb

〉

g−1
+ V (q)

=
1

2
ḡabαaαb + V (q) =

1

2
⟨α,α⟩ḡ−1 + V (q)

which is just the sum of the potential energy and the
kinetic energies of the components α in the directions

1We restrict the derivation to convergence to a (one-dimensional)
curve. The results can be easily generalized to convergence to higher-
dimensional submanifolds.

2See also the remark at the end of this section.

defined by h. Furthermore, the first coordinate α1 rep-
resents the momentum in the desired direction (and thus
the corresponding energy 1

2 ḡ11(α1)2 is the energy in the
desired direction) while the other coordinates α repre-
sent the momentum (and corresponding energy) in the
undesired directions. This splitting relies on the in-
duced metric ḡ being diagonal, and hence the basis vec-
tors ha being orthogonal in the metric g−1.

Given a certain choice of h satisfying the criteria
(there are many choices, since there are many choices
of orthogonal basis vectors with constant norm), we can
rewrite the dynamic equations in the new coordinates
as presented in the following theorem. The results and
derivation are similar to the ones in [4], but now with
an invertible mapping h. They are also highly related to
[13], as discussed in [2].

Theorem 1. The mechanical system (the plant) defined

by (2) with coordinate transformation defined by h as

before can be written as

d

dt

[

qi

αa

]

= J̄

[
∂H̄
∂qj

∂H̄
∂αb

]

+

[
0

ĥj
aBk

j

]

uk

yi =
[

0 Bi
j ĥ

j
b

]
[

∂H̄
∂qj

∂H̄
∂αb

] (7)

where H̄(q,α) := 1
2 ⟨α,α⟩ḡ−1 + V (q) and

J̄ :=

[

0 ĥi
b

−ĥj
a ĥj

a

(

hc
k,j − hc

j,k

)

αcĥk
b

]

Proof. We want to transform the dynamic equations in
terms of (q, p) coordinates to (q,α) coordinates. First
note that from (4) we have

∂αa

∂qi
= −ĥj

ahc
j,iαc

∂αa

∂pi
= ĥi

a

and hence

α̇a = −ĥj
ahc

j,iαcq̇
i + ĥi

aṗi

On T ∗Q, we should have H̄(q,α) = H(q, p) and hence
also

∂H

∂qi
=

∂H̄

∂qi
+

∂H̄

∂αb

∂αb

∂qi

∂H

∂pi
=

∂H̄

∂αb

∂αb

∂pi
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Combining these results, we obtain

q̇i =
∂H

∂pi
=

∂H̄

∂αb

∂αb

∂pi
=

∂H̄

∂αb
ĥi

b

α̇a = −ĥj
ahc

j,kαc

(

ĥk
b

∂H̄

∂αb

)

+ ĥj
a

(

−
∂H̄

∂qj
+

∂H̄

∂αb
ĥk

bhc
k,jαc + Bk

j uk

)

yi = Bi
j

∂H̄

∂αb

∂αb

∂pj
= Bi

j

∂H̄

∂αb
ĥj

b

These equations can be expressed in matrix form as in
the theorem. !

Before we continue, let us structure the equations (7)
in matrix form as follows:

d

dt

⎡

⎣

q
α1

α2

⎤

⎦=

⎡

⎣

0 ĥT
1 ĥT

2

−ĥ1 0 X
−ĥ2 −XT Y

⎤

⎦

⎡

⎢
⎣

∂H̄
∂q

∂H̄
∂α1

∂H̄
∂α2

⎤

⎥
⎦ +

⎡

⎣

0
ĥ1B
ĥ2B

⎤

⎦ u

y=
[

0 BT ĥT
1 BT ĥT

2

]

⎡

⎢
⎣

∂H̄
∂q

∂H̄
∂α1

∂H̄
∂α2

⎤

⎥
⎦

where Y is skew-symmetric, subscripts 1 and 2 denote
the first (desired) and other (undesired) components, re-
spectively, and where the energy can be written as

H̄(q,α1,α2) =
1

2
αT

1 ḡ−1
1 α1 +

1

2
αT

2 ḡ−1
2 α2 + V (q)

since ḡ is diagonal. When written in this form, the equa-
tions can be represented by the bond graph of Figure 2.
The kinetic energy in the system is now represented by
two I-elements: one (corresponding to ḡ1) representing
the energy in the direction of the desired vector field w,
and one (corresponding to ḡ2) representing the energy
in the other directions. There is still an energy coupling
between the two storage elements through the modu-
lated gyrator X and the C (the potential energy), and
furthermore the energy supplied through the port (u, y)
can still flow to both storage elements. The first purpose
of the controller to be developed is to break the power
connection between the two storage elements and en-
sure that all energy eventually flows to the ḡ1 storage
element (which corresponds exactly to converge to mo-
tion in the desired direction).

Remark. Readers familiar with the concepts of Rie-
mannian geometry may wonder whether it is always

ĥT
1

ĥT
2

−BT

−BT

: X

: Y T

: ḡ1

: ḡ2

u

y
C

MTF

MTF

MTF

MTF

MGY

MGY

I

I

00

1

1

1

1

Figure 2: Bond graph of the plant model in coordinates (q, α).

possible to find a basis h that induces a constant diag-
onal metric g. Indeed, in Riemannian geometry it is
shown how coordinate transformations can give such
an induced metric only if the original metric is differ-
entially flat, which is in general not the case. How-
ever, in this case we use a transformation h only on the
momenta variables, i.e., it is not induced by a transfor-
mation on the q variables as is the case in the afore-
mentioned Riemannian context. In our case, we just
want to find a transformation h (smoothly varying in q)
that transforms a symmetric positive-definite matrix g
(smoothly varying in q) to a constant diagonal matrix,
which is indeed always possible.

3.2 Nominal Control

With the system in new coordinates, we now derive
the first controller part, the nominal controller, with
the goal to remove the energy-coupling between the
two energy storages (desired and undesired). From this
point, we will assume the potential energy (represented
by the C in Figure 2) to have been compensated for,
so the only energy in the plant is the kinetic energy.
We propose the following controller (shown as a bond
graph in Figure 3).

Theorem 2. For the mechanical system (2) or in trans-

formed coordinates (7) with V (q) = 0, the following

controller is power-continuous and keeps the kinetic en-

ergy of the system separated in two storage elements as

defined by the mapping h.

⎡

⎣

u
ȳ1

ȳ2

⎤

⎦ =

⎡

⎣

K B−1h1 B−1h2

−hT
1 B−T 0 0

−h2B−T 0 0

⎤

⎦

⎡

⎣

−y
ū1

ū2

⎤

⎦ (8)
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where K is a skew-symmetric matrix defined as

K = B−1
[

h1 h2

]
[

0 X
−XT 0

] [

hT
1

hT
2

]

B−T

and (ū1, ȳ1) and (ū2, ȳ2) are new control ports, one

connected to each energy storage elements.

Proof. To prove power-continuity, we compute the
power Pin going into the controller as well as the power
Pout coming out:

Pin = ūT
1 ȳ1 + ūT

2 ȳ2 = ūT
1 hT

1 B−T y + ūT
2 hT

2 B−T y

Pout = uT y = yT Ky + ūT
1 hT

1 B−T y + ūT
2 hT

2 B−T y

which are clearly equal (by skew symmetry of K),
proving power continuity.

To prove the energy separation property, we can com-
pute the interconnected system as

d

dt

⎡

⎣

q
α1

α2

⎤

⎦=

⎡

⎣

0 ĥT
1 ĥT

2

−ĥ1 0 0
−ĥ2 0 Y

⎤

⎦

⎡

⎢
⎣

∂H̄
∂q

∂H̄
∂α1

∂H̄
∂α2

⎤

⎥
⎦+

⎡

⎣

0 0
1 0
0 I

⎤

⎦

[

ū1

ū2

]

[

ȳ1

ȳ2

]

=

[

0 1 0
0 0 I

]

⎡

⎢
⎣

∂H̄
∂q

∂H̄
∂α1

∂H̄
∂α2

⎤

⎥
⎦

Since V (q) = 0, we have ∂H̄
∂q

= 0, so the equations for
α̇1,2 and ȳ1,2 reduce to

α̇1 = ū1

α̇2 = Y ḡ−1
2 α2 + ū2

ȳ1 = ḡ−1
1 α1

ȳ2 = ḡ−1
2 α2

which shows that indeed the two storage elements α1

and α2 are decoupled, and the two ports (ū1, ȳ1) and
(ū2, ȳ2) act separately on the two storage elements. !

3.3 Asymptotic Control

The interconnection of the plant with the nominal con-
troller of the previous section results in two decoupled
systems, one of which represents the desired motion,
whereas the other represents the undesired motions. To
obtain asymptotic convergence, we just need to reduce
the energy in the undesired direction to zero.

We present two approaches to accomplish this goal:
the first one uses straightforward dissipation, the second
one uses a power-continuous interconnection.

u

y

ū1

ȳ1

ū2

ȳ2

hT
1

hT
2

B−T

−X : MTF

MTF

MTF

MGY 11

1

1

Figure 3: Bond graph representation of the nominal controller.

ū1

ȳ1

ū2

ȳ2

ũ1

ỹ1

ũ2

ỹ2

R

1

Figure 4: Bond graph representation of the dissipative asymp-

totic controller.

3.3.1 Using Dissipation

The most straightforward way to reduce the energy in
the α2 subsystem is to dissipate it, i.e., to apply the con-
troller

⎡

⎢
⎢
⎣

ū1

ū2

ỹ1

ỹ2

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

0 0 1 0
0 R 0 I
−1 0 0 0
0 −I 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

−ȳ1

−ȳ2

ũ1

ũ2

⎤

⎥
⎥
⎦

with R a positive-definite matrix. The controller is rep-
resented as a bond graph in Figure 4. The power bal-
ance for this controller is

Pin = ũT
1 ỹ1 + ũT

2 ỹ2 = ũT
1 ȳ1 + ũT

2 ȳ2

Pout = ūT
1 ȳ1 + ūT

2 ȳ2 = ũT
1 ȳ1 + ũT

2 ȳ2 − ȳT
2 Rȳ2

which shows that Pout ≤ Pin, so this controller is pas-
sive. Furthermore, if ũ2 = 0 (i.e., no forces/torques
are applied to the second port), then since R > 0, the
kinetic energy in the second storage element (the un-
desired energy) decreases monotonically to zero, thus
providing asymptotic convergence to the desired vector
field.

3.3.2 Using Power-Continuous Control

Instead of dissipating the undesired energy as was done
in the previous section, we can reuse the undesired en-
ergy by pumping it to the desired direction. An example
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ū1

ȳ1

ū2

ȳ2

ũ1

ỹ1

ũ2

ỹ2

: aα1α
T
2MGY

1

1

Figure 5: Bond graph representation of the powercontinuous

asymptotic controller.

of such a controller is the following (with correspond-
ing bond graph in Figure 5).

⎡

⎢
⎢
⎣

ū1

ū2

ỹ1

ỹ2

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

0 −aα1αT
2 1 0

aα2αT
1 0 0 I

−1 0 0 0
0 −I 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

−ȳ1

−ȳ2

ũ1

ũ2

⎤

⎥
⎥
⎦

(9)

with a > 0 a parameter. The power balance for this con-
troller can be shown to give Pin = Pout, proving that
this controller is power-continuous. More interestingly,
we can compute the change of the kinetic energy in the
two storage elements when this controller is connected
(and both inputs ũ1,2 are set to zero).

d

dt

(
1

2
⟨α1,α1⟩ḡ−1

1

)

= a ⟨α1,α1⟩ḡ−1

1

⟨α2,α2⟩ḡ−1

2

d

dt

(
1

2
⟨α2,α2⟩ḡ−1

2

)

= −a ⟨α2,α2⟩ḡ−1

2

⟨α1,α1⟩ḡ−1

2

which shows that whenever both α1 and α2 are
nonzero, the undesired energy will decrease and the de-
sired energy will increase. So, if the initial desired en-
ergy is nonzero (i.e., the system is moving at least a
little bit in the desired direction), then the system will
again converge to the desired vector field.

Remark. This particular choice of controller gives
slow convergence because it is quadratic in α2, so as
α2 approaches zero, the control force approaches zero
even faster. This can be improved for example by re-
placing the parameter a by the expression

a →
a

√

⟨α2,α2⟩ḡ−1

2

+ ϵ

for some small ϵ > 0. We use this controller for the
simulations of Section 4.

3.4 Potential Energy

The interconnection of the two power-continuous con-
trollers of the previous section establishes asymptotic
convergence to motion along the desired vector field w.
So depending on the initial conditions, the system con-
verges to motion along one of the integral curves of the
vector field.

In this section, we add an artificial potential field
V̄ (q̄) (with q̄ ∈ Q) to the controller to obtain conver-
gence to one specific integral curve, i.e., Qd. The func-
tion V̄ has to satisfy the following properties

1. V̄ is radially unbounded.

2.
〈

dV̄ |w
〉

= 0 for all q ∈ Q (with w the desired
vector defined in Section 3).

3. V̄ (q) ≥ 0 with equality if and only if q ∈ Qd.

Given such a V̄ , we are ready to derive the final con-
troller.

Theorem 3. Given the mechanical system (2 or in

transformed coordinates (7) with V (q) = 0, and define

a new controller as the interconnection of the nominal

controller (8) with the asymptotic controller (9) and ex-

tend the nominal controller to become

d

dt
q̄ =

[

−B−T 0 0
]

⎡

⎣

−y
ū1

ū2

⎤

⎦

⎡

⎣

u
ȳ1

ȳ2

⎤

⎦ =

⎡

⎣

K B−1h1 B−1h2

−hT
1 B−T 0 0

−h2B−T 0 0

⎤

⎦

⎡

⎣

−y
ū1

ū2

⎤

⎦

+

⎡

⎣

−B−1

0
0

⎤

⎦
∂V̄

∂q̄

with V̄ satisfying the properties discussed above. Let

the initial conditions be such that q̄(0) = q(0), α1(0) ̸=
0, and that

H̄(q(0),α(0)) + V̄ (q̄(0)) < V̄ (qx)

for all qx in
{

q ∈ Q
∣
∣dV (q) = 0, q /∈ Qd

}

. Then the

closed loop system converges asymptotically to Qd,

while the total energy H̄(q,α) + V̄ (q̄) is constant.

Proof. Figure 6 shows a bond graph of the total con-
troller, and it can be seen that the extended version of
the nominal controller just means the addition of a C
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Figure 6: Bond graph representation of the complete con-

troller.
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Figure 7: Bond graph representation of the closed-loop sys-

tem.

element (with state q̄ and energy function V̄ (q̄)). From
(2) we can see that d

dt
q̄ = q̇, so if q̄(0) = q(0), then

q̄ = q at all times3. In the following, we assume q̄ = q
and write V̄ as a function of q accordingly.

The closed-loop equations of the controller intercon-
nected to the plant can be computed as

d

dt

⎡

⎣

q
α1

α2

⎤

⎦ =

⎡

⎣

0 ĥT
1 ĥT

2

−ĥ1 0 aα1αT
2

−ĥ2 −aα2αT
1 Y

⎤

⎦

⎡

⎢
⎣

∂V̄
∂q

∂H̄
∂α1

∂H̄
∂α2

⎤

⎥
⎦

which again can be represented as a bond graph, shown
in Figure 7. It can be seen that if q̄ = q, then both bonds
connected to the MTF-element labeled ĥT

1 have zero

power flowing through them (and hence ĥ1dV̄ = 0).
The fact that the closed-loop system is Hamiltonian

immediately proves energy conservation. To prove as-
ymptotic convergence to the desired curve, we propose
the following candidate Lyapunov function L:

L(q,α) :=
1

2
⟨α2,α2⟩ḡ−1

2

+ V̄ (q)

3This means that q − q̄ will be a Casimir function of the closed-
loop system.

so the Lyapunov function precisely equals the undesired
kinetic energy (associated with deviation from motion
along the vector field) plus the virtual potential energy
(associated with deviation from the desired curve), and
it is positive definite. We compute its time derivative as

d

dt
L(q,α) =

∂T V̄

∂q
q̇ + αT

2 ḡ−1
2 α̇2

=
∂T V̄

∂q

(

ĥT
1 ḡ−1

1 α1 + ĥT
2 ḡ−1

2 α2

)

+ αT
2 ḡ−1

2

(

Y ḡ−1
2 α2 − ĥ2

∂V̄

∂q
− aα2α

T
1 ḡ−1

1 α1

)

= −a ⟨α1,α1⟩ḡ−1

1

⟨α2,α2⟩ḡ−1

2

where we used the second property of V̄ and skew-
symmetry of Y . Thus, d

dt
L is negative everywhere ex-

cept in the set

E :=
{

(q,α1,α2)
∣
∣α1 = 0 and/or α2 = 0

}

We now look for the largest invariant set in E. For α1 =
0 and/or α2 = 0 we can compute

α̇1 = ĥ1dV = 0

α̇2 = ĥ2dV + Y T ḡ−1
2 α2

Which shows that the largest invariant set M in E is

M =
{

(q,α1,α2)
∣
∣α1 = 0 or (α2 = 0 and dV = 0)

}

Now first consider the first part; α1 = 0. By energy
conservation and the fact that L is decreasing, we have
that the desired kinetic energy increases over time, im-
plying that also ⟨α1,α1⟩ can only increase over time.
So once α1 ̸= 0, it will never become zero again. In
other words, if initially the system has (even a very
slight) motion in the desired direction, then the condi-
tion α1 = 0 will never be satisfied and the system will
never get stuck in that condition.

So given this (mild) restriction on initial conditions,
the only invariant set in E left is the one where dV̄ = 0
and α2 = 0. Given furthermore the condition that the
total (initial) energy is less than V̄ (qx) for all qx in the
given set, it follows that Qd is the only reachable set
for which dV̄ = 0. So indeed, the only invariant set in
E is the one for which α2 = 0 and q ∈ Qd. Hence,
by the Local Invariant Set Theorem [14], the system
converges asymptotically to the desired curve, which
was to be proved. !
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Figure 8: Schematic view of the 2DoF manipulator that needs

to be controlled to follow the unit circle.

Remark. The extra state q̄ for the controller is only
introduced for the theoretical proof of passivity. Com-
puting this state by integrating the measured velocity in
open loop is clearly very sensitive to drift, and hence in
practice q̄ will be estimated by directly measuring q, in
which case the initial condition on q̄ is void. Still, as in
most proofs based on passivity, perfect transfer of port-
variables between plant and controller is assumed, i.e.,
perfect velocity sensors and perfect force actuators.

4 Simulation Results

We demonstrate the behavior of the controller on a
simple planar manipulator with two unit-length links,
shown in Figure 8. The goal is to make the end-effector
trace the unit circle, which in joint space corresponds to
the set of configurations with q2 = 2

3π and q1 arbitrary
(we do not consider the second solution of q2 = − 2

3π
and q1 arbitrary). As desired family of curves, we take
all circles around the origin, which corresponds to the

desired vector field w(q) =
[

1 0
]T

. We also choose
the virtual potential field to be V̄ (q) = 1

2k(q2 − 2
3π)2.

With these given, we apply the control algorithms from
Section 3 (we choose the power-continuous asymptotic
controller of Section 3.3.2) and simulate the behavior of
the closed-loop system.

Figure 9 shows the resulting time-evolution of the
various energies involved: the sum of virtual potential

0 1 2 3 4 5 6
-1

0

1

2

3

en
er

g
y

time

undesired energy
undesired kinetic energy
potential energy
desired kinetic energy
total energy

Figure 9: Time-evolution of the various energies defined in

Section 3; the undesired energy decreases to zero, while the

total energy is constant.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x

y

starting point

Figure 10: Trajectory as traced by the end effector of the ma-

nipulator. It converges to motion along the unit circle, as de-

sired.

and undesired kinetic energy decreases monotonously,
whereas the total (kinetic plus virtual potential) energy
is constant at all times. Figure 10 shows the trace of the
end-effector; starting from some initial configuration, it
indeed converges to motion along the desired curve.

5 Conclusions and Future Work

5.1 Conclusions

In this paper, we used a port-based Hamiltonian ap-
proach to derive a controller that makes a mechanical
system move along a reference trajectory. We first used
a coordinates transformation to separate explicitly the
desired and undesired motion. We then interconnected
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the system with two power-continuous controllers: one
to decouple the desired energy flows from the undesired
energy flows, and one to establish a unidirectional flow
from the undesired energy storage element to the de-
sired energy storage element, obtaining asymptotic con-
vergence to motion along the integral curves of a vector
field. Finally, we added an artificial potential field to
obtain convergence to the one specified curve.

The controller was formulated as an interconnection
of port-Hamiltonian subsystems; this representation di-
rectly exposed properties like passivity of the subsys-
tems, and also showed where energy is stored and how
energy can flow inside the system. Furthermore, the
modularity of the port-based approach allowed for ex-
ample to design two sub-controllers for asymptotic con-
vergence and just plug one of them into the total con-
troller without altering the other parts.

5.2 Future Work

Future work is possible in several directions. First, the
splitting in different desired and undesired directions
can be directly generalized from desired curves to de-
sired submanifolds, e.g. to obtain convergence to a sur-
face instead of a curve.

Secondly, the simplification was made here to have
constant energy along the curve. An extension could be
made to have a certain varying energy along the curve,
the variations of which could then be stored temporarily
in the controller, e.g. in a C-element or an I-element
(the latter would correspond to the virtual flywheel used
in [8]).

Thirdly, practical applications always suffer from
friction which drains energy from the system. There-
fore, a useful (non-passive) extension would be an ad-
ditional control term that carefully adds or removes en-
ergy to or from the system, depending on the current
and desired energy level. Passivity will be lost in this
case, but energy balancing can still be taken into ac-
count carefully.

Fourthly, we want to apply the results from this paper
to the control of walking machines, in particular bipeds.
This means that the approach should be extended to in-
clude impacts and state jumps, which occur when the
feet of the robot come in contact with the ground.

Finally, several extensions can be made to account
for systems which do not have full actuation or full state
measurement. The results of this paper can also be com-
bined with the results in [4] to include nonholonomic
constraints.
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