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1. Introduction

One of the central features of passivity-based control (PBC),
where the first step is passivation of the system [1], is that the
passive output can be easily regulated using integral control (IC)—
with arbitrary positive gains. The regulation is, moreover, robust
with respect to constant input disturbances. In many applications,
however, the signal to be regulated is not a passive output and the
disturbances are not matched with the input. Classical examples
are mechanical systems and electrical motors, where the passive
outputs are velocities and currents, respectively, but the output of
interest is often position.

In this paper we propose a procedure to design ICs to regulate
non-passive outputs, which are robust to unmatched disturbances.
We restrict our attention to port-Hamiltonian (pH) models that,
as is widely known, characterize the behavior of a large class of
physical systems [2,3]. Another motivation to consider pH systems
is that the popular interconnection and damping assignment
PBC design technique [4,5]—and the closely related canonical
transformation PBC [6]—endow an arbitrary nonlinear system with
a pH structure. The aim of the additional IC is then to ensure that
output regulation is robust vis-d-vis external disturbances.

The controller design is formulated in the paper as a feedback
equivalence problem, where a dynamic feedback controller and
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a change of coordinates such that the transformed closed-
loop system takes a desired pH form are sought. To avoid the
need to solve partial differential equations, the interconnection
and damping matrices of the target system, as well as its
energy function, are kept equal to the ones of the original
system, and only add to it an integral action in the non-passive
output. This construction is largely inspired by the one proposed
in [7], but here we explicitly take into account the presence of
the disturbances, which significantly complicates the task. An
additional contribution of our paper is that necessary and sufficient
conditions for feedback equivalence, in terms of some rank and
controllability properties of the linearized system, are given. The
method is applied to linear and mechanical systems for which
robust globally asymptotically stabilizing solutions are obtained,
under some reasonable assumptions.

The remaining of the paper is organized as follows. The problem
is formulated in Section 2. The output regulation and disturbance
rejection properties of IC of the passive output are revisited
in Section 3. In Section 4 the feedback equivalence problem is
presented, and its solution is given in Section 5. Section 6 contains
the main result of the paper, namely the robust stabilization of pH
systems via IC of non-passive outputs. In Section 7 the application
to linear and mechanical systems is given. Finally, we wrap-up the
paper with some concluding remarks in Section 8.

Notation: All vectors defined in the paper are column vectors and
all functions are sufficiently smooth. For a scalar function H : R™ x
R™ x --- x R"™ — R,x — H, where x := col(xq, X, ..., Xp), the

T
operators V;H(x) := (35—;")) are defined. The shorthand notation
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[ViH1(z) := V;H(x)|y—;, that is, the evaluation of the function
ViH(x) atz € R™ x R™ x --- x R™ is used. V2H(x) is used for the
Hessian matrix. For the distinguished constant element x* € R"
and a mapping L : R" — R°*P, the abridged notation L(x*) =: L*
is used. Unless stated otherwise, it is assumed that the various
properties of the functions—e.g., rank conditions and signs—are
satisfied in a neighborhood of an equilibrium point.

2. Perturbed port-Hamiltonian systems and problem formula-
tion

2.1. Class of systems and control objectives

The perturbed pH systems considered in the paper are of the
form

x=FXVHX) +gXu+d

y=g (x)VH®) (1)

wherex € R",u € R™, g : R" — R™™ s the full rank input
matrix, d € R" is a constant disturbance, H : R" — R s the energy
function and

F(x) +F'(x) <O0.

As is well-known [2,3], unperturbed pH systems define cyclo-
passive operators u — y, with storage function H (x). This property
is strengthened to passivity if H(x) is bounded from below.

We are interested in the scenario where the energy-shaping and
damping injection stages of PBC, for the unperturbed system, have
been accomplished. That is, it is assumed that an output feedback
proportional term has already been added’ and, consequently,

VHT®0)[F(0) +F' )]IVH®) < —algT 0 VH®, ()
for some @ > 0, where | - | is the Euclidean norm. Furthermore, it

is assumed that a suitable energy function H(x) has been assigned.
The choice of this function is a delicate point that, as explained
below, depends on whether the disturbances are matched or
unmatched.

The control objectives are now, to preserve stability of a desired
equilibrium and to drive a given output towards zero, in spite of the
presence of disturbances. It will be shown below that, for matched
disturbances, i.e., those that enter the image of g (x), and the passive
output y, an IC around y achieves the objectives. In this paper we
are interested in the cases where the disturbance is not matched
and the signal to be regulated is not the passive output—but is also
zero at the desired equilibrium.

2.2. Notational simplifications

In writing the paper we have decided to sacrifice generality
for clarity of presentation. Consequently, two assumptions that,
without modifying the essence of our contribution, considerably
simplify the notation are made. First, since we consider the case
where disturbances enter in the (n —m) non-actuated coordinates,
the internal model principle indicates that it is necessary to add
(n — m) integrators. To ensure solvability of the problem it
is reasonable to assume that the number of control actions is
sufficiently large. This leads to the following assumption

m>n—m. (3)

If less integrators are added this restriction can be relaxed—but
then the notation gets very cumbersome. See [9] for further details.

The second simplification that we introduce concerns the
matrix g(x). Dragging this matrix through the calculations

1 This control action is also known in the literature as LgV control [8,3].

significantly complicates the notation, therefore it will be assumed
in the following that, after redefinition of the inputs and the states,
the input matrix takes the form

g0 = [’g] , (4)

where I, is the m x m identity matrix.

For notational convenience, we partition the state and distur-
bance vectors as x = col(xq, X2), d = col(dq, d3), where dq, x; €
R™ and d,, x; € R"™ ™. Similarly, the matrix F(x) is block parti-
tioned as

Fi1(x) Fpa(%)
Feo = [Fil(x) Fii(x)]’

with Fy1(x) € R™™ and Fy, (x) € RO~™>@=m) With this notation
the passive output is y = V;H(x). For future reference we also
define a second output to be regulated as the (n — m)-dimensional
vector

r = VH(X). (3)

2.3. Some remarks about equilibria

In the absence of disturbances the desired assignable equilib-
rium x* € R" is an isolated minimizer of H (x), that is,

x* = argmin H(x),

ensuring that H(x) is positive definite. In view of (2), whenu = 0
and d = 0, we have that
H<-aly <0,
and x* is a stable equilibrium of the unperturbed open-loop system
with Lyapunov function H(x). Furthermore, invoking standard
LaSalle arguments it is possible to prove that lim;_, ., y(t) = 0 and,
if y is a detectable output, that x* is asymptotically stable. See, for
instance, [8,3].

To simplify the presentation, in the sequel we identify the set of
minimizers of H(x) with

M= {x € R" [VH(x) = 0, V?H(x) > 0}. (6)

Since the second order (Hessian positivity) condition is sufficient,
but not necessary, for x* to be a minimizer of H(x), the set .M is a
subset of the minimizer set, hence the consideration is taken with
a slight loss of generality.

In the perturbed case, the set of assignable equilibria of (1) and
(4) is given by
€ :={xeR" | KLX)ViH®X) + Fu(x)V2H(x) = —d,}. (7
It is clear that, if the disturbances are matched, i.e., d; = 0,
MC 6.
That is, all energy minimizers are assignable equilibria and it is
desirable to preserve in closed-loop the open-loop equilibria. On

the other hand, in the face of unmatched disturbances, that is,
when d; # 0,

MNE =0 (8)
In other words, it is not possible to assign as equilibrium a
minimizer of the energy function. As will become clear below,

this situation complicates the task of rejection of unmatched
disturbances.

Remark 1. A problem with the equilibria, similar to the one
described above, appears when the desired value for the output
to be regulated is different from zero, which is discussed in point 4
of Section 3.2.

3. Robust IC of the passive output

In this section the output regulation and disturbance rejection
properties of IC of the passive output of a pH system are revisited.
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Although both properties are widely referred in the literature, to
highlight the differences with our main result, a detailed analysis
and some comments and extensions are given below.

3.1. Robustness to matched disturbances

Proposition 1. Consider the perturbed pH system
x=F(Xx)VH(x) + ['g] (u+dy)

y=ViH(x) 9)
with an equilibrium x* € M, and d; € R™ a constant disturbance, in
closed-loop with the IC

n =Ky

u=—n, (10)
where K; € R™™ is an arbitrary symmetric positive definite matrix.

(i) (Stability of the equilibrium). The equilibrium (x*, d,) is stable.

(ii) (Output regulation). There exists a (closed) ball, centered at
(x*, dy) such that for all initial states (x(0), n(0)) € R" x R™
inside the ball the trajectories are bounded and

lim y(t) = 0.
t—00
(iii) (Asymptotic stability). If, moreover, y is a detectable output

for the closed-loop system (9) and (10), the equilibrium is
asymptotically stable.

The properties (i)-(iii) are global if H(x) is globally positive definite
and radially unbounded.

Proof 1. Define the Lyapunov function candidate

1
Wix, n) = H(X)+§(n—d1)TKf1(n—d1)- (11)
The closed-loop system (9) and (10) may be written in the pH form
. —K;
m —| f® [ o] VW (X, ). (12)
Tl o] o

Clearly, in view of (2) and (4), we get W < —aly|2. The proof
is completed invoking standard Lyapunov and LaSalle arguments
[10,3]. O

Remark 2. It is clear from (9) that, to ensure x* € M remains an
equilibrium of the closed-loop system, the desired value for u, and
consequently for —», is —d;. This aspect is also reflected in (11).
The fact that in IC the disturbances fix the equilibrium value of their
state, will also be exploited in the case of unmatched disturbances,
allowing us to concentrate our attention on the x components of
the equilibrium set.

3.2. Discussion and extensions

1. Proposition 1 is a global result that holds for arbitrary
positive values of the integral gain. The fact that PBC yields
high-performance, easily tunable, simple designs (like PI control)
explains its wide-spread popularity in applications.

2. Proposition 1 applies verbatim for a general input matrix g (x). In
this case, the closed-loop is the pH system

. —g(X)K;
["] _ Feo [ o] YW, ).
| [keT® o] 0

On the other hand, the presence of g(x) in the subsequent material
considerably complicates the notation. Hence, our assumption (4).

3. Looking at the linearization of the closed-loop system (9) and
(10), it is possible to show that, if x* € M and the (2, 2) block of
the matrix F(x), evaluated at x* is full rank, x* is an exponentially
stable equilibrium. The rank condition holds if and only if the triple

<F*, [_(ﬂ [ 0])

has no transmission zeros at the origin. This assumption is standard
for integral control of nonlinear systems. See, e.g., Section 12.3 of
[10].

4. If the desired value for the output y is different from zero, say
Ya € R™, it is common in practice to use a PI controller

B = ViH®X) — ya
u = —K[ViH() — yq] — Ki¥%,

where the proportional term, with K, > 0, replaces the previous
damping injection. Local stability of this scheme can be established
looking at its linearization. It is not clear to the authors under which
conditions is it possible to establish a global result—like the one
obtained in Proposition 1. A particular case when this is so is when
the matrix F (x) is constant. Then, following the analysis of [ 11], it is
possible to show that the shifted Hamiltonian qualifies as a global
Lyapunov function.

5. Another difficulty that arises when y4 # 0 is that a necessary
condition to achieve output regulation is the existence of x* € R"
verifying

x€e&N{xeR" | ViHX) = y4}.

That is, an assignable equilibrium such that the output function,
evaluated at this equilibrium, takes the desired value. If y; # 0, it
is clear that x* ¢ M. This, unfortunately, makes the expression of
the linearized system rather complicated and it does not seem to
be possible to easily complete the analysis with an assumption like
the rank condition of point 3 above.

4. A feedback equivalence problem

As shown in the proof of Proposition 1 the key property to
prove that IC of the passive output rejects matched disturbances is
the preservation of the pH structure, moreover, with a separable
energy function, see (11) and (12).2 A key contribution of the
paper is the proof that, under some conditions, it is possible
to retain these properties in the unmatched disturbance case.
More precisely, it is proposed to add a new dynamic extension
and a change of coordinates, without modifying the functional
relations in the matrix F(x) nor the energy function H(x).
Preserving the energy function avoids the need to solve a partial
differential equation, while keeping the same interconnection and
damping matrix, simplifies the nonlinear algebraic equations. This
motivates the following definition of feedback equivalence.

Definition 1. The perturbed system

x=F(x)VH(x) + ['g]w [C(I)J (13)

2 This property is a consequence of the well-known fact that power-preserving
interconnections of pH systems—through power-port variables—preserve the pH
structure with energy the sum of the energies of the pH systems. See [2] for a
detailed study of this fundamental property.

3 See Remark 4 for a clarification of this point.
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is said to be feedback equivalent to a matched disturbance integral
controlled system—for short, MDICS equivalent—if there exists two
mappings

Yy : R" xR xR"™™ — R™,

with

rank{V1¢¥ (x4, X2, £)} = m, (14)
such that the system in closed-loop with the “integral” control

¢ = Ki[V2H(W (1, %2, £), %0)]

u=u(x,x2,¢), (15)
expressed in the coordinates,

z1 =Y (X1,%2,¢)

Zy = X
23 = ;: (]6)
takes the pH-form
0
F(Zh ZZ) |:_I<]
z= 1 vu(2), (17)
[0 K] o
where
1
U@z) =H(z1,22) + 5(23 —dy) 'K (z3 — do). (18)

It is said to be robustly MDICS equivalent if the mappings
¥ (X1, X2, £) and i(x1, X2, ¢) can be computed without knowledge
0fd2.4

MDICS equivalence guarantees that the transformed closed-
loop system takes the desired form (17). (Compare with (12).) The
rank condition (14) ensures that (16) is a diffeomorphism that
maps the set of equilibria of the (x, ¢)-system into the equilibria
of the z-system. This is, of course, necessary to be able to infer
stability of one system from stability of the other one.

At this point we make the important observation that choosing
the desired value for z; to be equal to d, is necessary to be able
to solve the robust MDICS equivalence problem. Indeed, since in
the change of coordinates (16) we fixed z; = x5, and these are
unactuated coordinates, it is necessary that d,, which appears in x,,
appears also in z,. This fact will become evident in the next section,
when we give the solution to the MDICS equivalence problem.
Remark that, since z3 = ¢, the equilibrium value for ¢ is also d».

As explained in Section 2.3 the equilibrium sets of (13), (15) and
(17) are not just different, but they are actually disjoint, see (8).
Indeed, while the (x components of the) former are in the set

Eq = EN{x € R" | [V2H](Y (x1, %2, d3), X2) = O}, (19)

the (z1, z;) components of the latter are in .M. In spite of that, the
fact that (16) is a diffeomorphism ensures that the implication

[(X1,%2) € 81 = (Y (x1, X2, d2), X2) € M], (20)
is true, which will be essential for future developments.

Remark 3. The proposed control (15) is, in general, not an integral
action because of the possible dependence of v (xq, x5, £) with

respect to {. We have decided to keep the name because in the
z coordinates it is, indeed, an integral action of the form

23 = KiV,H (21, 25). (21)

4 See Remark 6 for a precise explanation.

Remark 4. It is important to underscore that in the feedback
equivalence problem considered here the matrix F(z;, z;) and
energy function H(zy, z) are just the evaluations of the original
functions of the x system in the z coordinates, without applying the
(inverse) change of coordinates.> That is, H(x1, o) # H(z1,23) o
¥ (x), but simply H(z1,2;) = H(X1, X2)|x;=z,,x,=z,- This, rather
arbitrary, choice is done to be able to translate MDICS equivalence
into an algebraic problem.

5. Conditions for MDICS equivalence

In this section we present two propositions that identify
conditions for MDICS equivalence. The first one is global and
identifies the matching conditions that the mapping v (x1, X2, ¢)
has to satisfy. The second one gives a necessary and a sufficient
condition for existence of a local result in terms of controllability
and a rank condition of the linearized systems, respectively. To
simplify the notation we introduce the 2n — m state vector

X = col(x1, x2, ).
5.1. Global MDICS equivalence

Proposition 2. The perturbed pH system (13) satisfying condi-
tion (3) is MDICS equivalent if the mapping v (x) verifies (14) and
the following algebraic equation:

(DyM) (Dynamics matching)
¢ = —Fa1(X)ViH(X) — F22(x) VoH(x)
+Fa1 (¥ (x), ) [VIH(Y (X)), x2)]
+Faa (Y (x), %) [V2HWY (X)), %2)]. (22)
Moreover, the control signal ii(x) is independent of d, if ¥ (x)
verifies
(DiM) (Disturbance matching)
Vo (x)d2 = 0. (23)

Proof 2. We will prove that, under the condition (22), there exists
ti(x) such that the closed-loop system (13), (15) takes, in the
z-coordinates, the pH form (17). Furthermore, if (23) holds, the
mapping () is independent of d,. For, computing ¥ and setting
it equal to zq, as defined in (17), yields

V= VY (Ox
= Vi GOIFi1 () ViHX) + Fio () VoH (%) + ()]
+ Vo QOF21 () VIH(X) + Foa (x) VoH (%) + da ]
+ Vs GOIV2HW (), x2)] = 23
= [F11(2)V1H(2) + F12(2) VaH(2)]l2,=¢ ().20=x, - (24)
Since V¢ (x) is full rank, (24) has a unique solution that defines
the mapping ii(x ). Notice that the disturbance enters through the
term V¢ (x)d,, which cancels if v () satisfies (23).
Proceeding now with x,, and setting it equal to Z,, leads to
X = F1(X)ViHX) + Fa(X)VoHX) +dy = 2,
= [F21(2)V1H(2) + F22(2) V2H(2)
- (23 - dz)]lzlzljf(x),zzzxz,Q:;"
which is the matching equation (22). It is important to note that the
disturbance d», that enters through x,, is canceled with the term z,,

which also contains this signal. .
Finally, the third coordinate z3 is equal to ¢ by construction. O

5 To avoid cluttering the notation the same symbols, H(-) and F(-), have been
used for both functions.
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5.2. Local MDICS equivalence

To streamline the presentation of the next result define the
linearization of the pH system (13) at the points x* € &§;andx € M
as

A:=VEQVH®) =xr.  E = (FQOVHE))|x=x (25)
These n x n matrices are block partitioned as

Al A
A= ,
[A21 Axp
withA;; € R™*™and Ay, € R®~™ * (=™ with a similar partition

for E. Notice that, since VH(x) = 0, the linearization at a point in
the minimizer set takes a simpler form.

Proposition 3. Consider the perturbed pH system (13) satisfying
condition (3) and two points: x* € & and X € M.

(NC) A necessary condition for MDICS equivalence is that the
linearizations of the pH system at the points x* and X are
controllable. That is, the pairs

([5]) (=[5)

are controllable pairs.

(SC) A sufficient condition for MDICS equivalence is that the (2, 1)
blocks of the matrices A and E defined in (25) are full rank. That
is,

rank{A,1} = rank{Ey1} = n —m. (26)

Moreover, the system is robustly MDICS equivalent if
Ay = Ep (27)
Az]Xq = —dz. (28)
Proof 3. Since we are interested in local solutions we will solve the
MDICS equivalence problem for the linearization of the systems
(13), (15) and (17)—around their corresponding equilibrium

points. In particular, we are interested in their unactuated
dynamics, x, and z,, for which we get®

Xy = A1 (X1 — X)) + An(x2 — X3),
and
2y = E3(z1 —X1) + Ex(zo — X%3) — 23 + ds.

The linearization of the mapping ¥ () at (x*, d;) yields
YOO =9 +Ti(x1 — X)) + To(xa — x5) + T3(8 — dy), (29)

with the constant matrices T; := V;y*, i = 1, 2, 3. Setting X, equal
to z,—evaluated at (16)—yields the dynamics matching equation
Ayi(X1 —X7) + A (xy — X3)
= Ex[T1(x1 — X)) + Ta(X2 — X3) + T3(8 — da)]
+En(; —x3) — ¢ +do, (30)

where the identities x; = X, and /* = x;, that stem from (20), are
used. Eq. (30) has a solution if and only if the matrices T; satisfy

Ay = EnTh, Axp = En Ty + Ep, Ex Tz = In. (31)

Remark that, in view of (3), the matrices A, and E,; are not tall,
being either square or fat.

We now proceed to prove (SC). Assume rank{A,1} = rank{E,;}
= n—m.Then, 521EZT] isinvertible and, defining the pseudo-inverse,

6 with an obvious abuse of notation the same symbols for the original equations
and their linearizations are used.

El, == EJ(ExE);)~", propose

T, = E;r]Azu T, = Egl(Azz — Ex), T3 = EL (32)

as solutions of (31). Notice that T; is the product of full-rank
matrices, hence is full rank, and the condition (14) is satisfied.
To prove (NC) assume a solution of (31) exists. Then,

rank{E,1T3} = rank{l,_,} = n —m.

Since rank{AB} < min{rank{A}, rank{B}}, the identity above
implies that rank{E;;} = n — m. Now, from the Popov-Belevitch-
Hautus test we have that the linearized system (E,g) is
controllable if and only if, for all v € C" ™, the following
implication is true

(vV'Ex =0,Ej,u=Av,A€C=v=0). (33)

The rank condition ensures then that the system (E, g) is control-
lable. It only remains to prove that (A, g) is also controllable. To-
wards this end, note that Ay; = E»1T;. The rank condition on Tj,
(14), imposes that A, is full rank that, once again, implies control-
lability of (A, g).

The claim of robust MDICS equivalence follows noting that, on
one hand, (27) and (31) imply T, = 0, hence ensuring (23). On
the other hand, replacing (28) and (32) in (29), yields the resulting
mapping

V() =% + B} (Aaxi + 0), (34)
which is, obviously, independent of d,. O

Unfortunately, there is a gap between the necessary and the
sufficient conditions of Proposition 3. Indeed, controllability of
the linearized systems is necessary, but not sufficient, for MDICS
equivalence. The gap stems from the fact that, without further
qualifications on E,, the implication (33) does not ensure that
rank{E;1} = n—m.On the other hand, it is obvious that (26) implies
controllability.

Proposition 3 establishes that, if (26)-(28) hold, the system
is locally robustly MDICS equivalent—in a neighborhood of
(x7, X3, d2)—to the linear mapping (34). Of course, there might be
other, possibly nonlinear, admissible mappings valid in a large
region of the state space. It is shown in Section 7, that this is the
case for linear systems and nonlinear mechanical systems.

Remark 5. Condition (27) imposes restrictions on the dependence
of F(x) and H(x) with respect to the unactuated coordinate x,.
Condition (28), on the other hand, is related to the form of the
assignable equilibrium set &. Recalling that the matrices A and E
are linearizations of the same vector field at two different points,
itis clear that both sets &, and M play a role in these assumptions.
Interestingly, even though these assumptions are now technical,
they are satisfied in the examples of Section 7, as well as in the
motor example of [7].

Remark 6. In Definition 1 the feedback equivalence was said to be
robust—for obvious reasons—if the mappings v (x) and () can
be computed without knowledge of the disturbance d,. As seen
from the proof of Proposition 2, ii(x ) may, indeed, depend on d,.
However, from the dynamics matching equation (22) that defines
¥ (x), itis not clear why would it depend on d,. The reason is that,
as shown in Proposition 3, when looking for a local solution around
the equilibria, these depend on d,. See (29) and (30).

6. Robust integral control of a non-passive output

In this section the main result of the paper is presented. Namely,
the design of an IC, which is robust vis-d-vis unmatched distur-
bances. More precisely, the controller preserves stability of the
equilibrium and ensures regulation (to zero) of the signal (5) that,
being of relative degree larger than one, is not a passive output.
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Proposition 4. Consider the perturbed pH system (13) satisfying
condition (3). Assume there exist two points, x* € g and X € M,
that is, an assignable equilibrium and a minimizer of the energy H(x),
such that (26)-(28) hold, with A and E defined in (25). Under these
conditions, there exist two mappings

Yy : R"xR"™™ xR"™™ — R",
such that the “integral” control (15) ensures the following properties.
(i) (Stability of the equilibrium). The equilibrium (x7, x5, dy) is
stable.
(ii) (Regulation of the passive output). There exists a (closed) ball,
centered at the equilibrium, such that for all initial states

(x(0), £(0)) € R™ x R"™ inside the ball the trajectories are
bounded and

lim y(t) = 0.
t—o00

(iii) (Asymptotic stability). If, moreover, y is a detectable output
for the closed-loop system (13) and (15), the equilibrium is
asymptotically stable.

(iv) (Regulation of the non-passive output). Under condition (iii),
there exists a (closed) ball, centered at the equilibrium, such that
for all initial states (x(0), £ (0)) € R" x R" ™ inside the ball the
trajectories are bounded and the output (5) satisfies
lim r(t) = 0.

t—o00
The properties (i)-(iv) hold globally if the function H(x) is
globally positive definite and proper (with respect to X) and the
mapping ¥ (xq, X2, ¢) satisfies (globally) the conditions (22) and

(23) of Proposition 2.

Proof 4. The proof is an immediate corollary of Propositions 2 and
3. Indeed, under the conditions of the proposition, the perturbed
pH system (13) is robustly MDICS equivalent to (17). That is, (16) is
a diffeomorphism that transform the closed-loop system into (17).
Now, since x € M, U(z) is a positive definite function with respect
to (x, d). Computing the derivative of U(z) along the trajectories
of (17), and using (2), yields

U< —alyl.

The proof of (i)-(iii) is completed, as the proof of Proposition 1,
invoking standard Lyapunov and LaSalle arguments. Claim (iv)
follows from asymptotic stability of the equilibrium and the fact
that Vo,H(X) = 0. O

7. Examples

In this section we prove that the proposed IC ensures global
asymptotic stability for linear systems and nonlinear mechanical
systems.

7.1. Linear systems

Proposition 5. Consider the linear perturbed pH system (13) satisfy-

ing condition (3), with F constant verifying
XT(F+FNx < —alx?, a>0,

forallx € R", and with” H(x) = 1|x|%. Assume rank{F»;} = n — m.
The IC

¢ =Kix,
u= —FZTIK,‘XZ + F]]FZT];, (35)

7 The choices of decoupled energy function and zero equilibrium are done for
simplicity and without loss of generality.

ensures the equilibrium (—F;ldz, 0, dy), is globally asymptotically
stable with Lyapunov function

1
V) = (11 + Fi P+ bl + (¢ = ) K6 = ).

Proof 5. In this case
€=E61={x €eR" | Fx; = —d, x, =0}, M = {x =0},

and F = A = E. Hence, the conditions for robust MDICS
equivalence of Proposition 3 are satisfied. The mapping (34) takes
the form ¢ (x) = x1 + Fglg. The proof is completed computing the
expression of u from (24), which yields (35). O

7.2. Mechanical systems

Proposition 6. Consider an m-degrees of freedom, fully actuated,
fully damped, perturbed mechanical system represented in pH
form (13), with state x = col(p, q), where q,p € R™ are the

generalized positions and “momenta”,® respectively, and

K —In
r[ % )
The energy function is given by H(x) = 3x{ M~'x; + P(xy), with
M € R™*™ the positive definite, constant inertia matrix, and P(x;)
the potential energy function. Assume x, = arg minP(x;), and it is

isolated and global.
The IC

¢ =K VP(x)
u= —K,¢ — MK;VP(x,), (36)

ensures the equilibrium (—Mds, X5, d5) is globally asymptotically
stable with Lyapunov function

1
V(x ¢) = S0+ M) TM ™ (x; + M¢) + P(xp)
1
+56 - d2) 'K (¢ — dy).

Proof 6. A global solution to the dynamics matching equation (22)
is given by ¥ (x) = x; + M¢, which clearly satisfies (23). Hence,
the conditions for global asymptotic stability of Proposition 4 are
satisfied. The proof is completed computing the expression of u
above from (24). O

The disturbance considered in the example represents a
bias term in the measurement of velocity that propagates into
the system through the damping injection. This fact is clear
writing the dynamics of the open-loop system in Euler-Lagrange
form

MG + Ky(q — d) + VP(q) = u.

It is interesting to note that, after differentiation, the closed-loop
system is given by

MG + Ky + (I + MK)V*P(q) + K,K;VP(q) = 0.

Hence, the stabilization mechanism is akin to the introduction
of nonlinear gyroscopic forces plus a suitable weighting of the
potential energy term.

The result can be extended—under some assumptions—to the
case of nonconstant inertia matrix. Indeed, it is easy to verify that

8 Notice the non-standard definition of the state. See also the discussion after the
proof for the physical meaning of the model, which explains the use of quotation
marks for the momenta.
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the mapping ¥ (x) = X1 + M(x2)¢, is a global solution of the
dynamics matching equation (22). However, additional constraints
on M(x,) and/or d, are needed to satisfy the disturbance matching
equation (23). Namely, that the i-th component of the disturbance
vector is zero if M (x,) depends on the i-th element of x,.

8. Concluding remarks and future work

Motivated by the developments of [7] a new IC that ensures
regulation (to zero) of the passive output, as well as the non-
passive output V,H(x), of the pH system (13)—in spite of
the presence of disturbances in the non-actuated coordinates—
has been proposed. Because of its simplicity and widespread
popularity, we have concentrated here on basic IC solutions. An
alternative approach to reject the unmatched disturbance is to use
the well-known output regulation techniques as done, for instance,
in [12-14], which clearly lead to more complicated state-feedback
designs. See also [15].

Robustness with respect to input disturbances of the proposed
IC is unclear and is currently being investigated. If the system
is fully damped, it can be shown that it is input-to-state stable
and, consequently, for a constant input it has a steady state [16].
However, it would be interesting to analyze the effect of adding to
the new IC a standard integral action in the passive output, as done
in the simulation example of [7].

Another research avenue that we are currently pursuing is to
add a new degree of freedom modifying the matrix F(x) in the z-
dynamics. To avoid the need to solve a partial differential equation,
it is desirable to keep the same energy function, however there
is no particular reason to keep the same matrix—as long as the
symmetric part of new one is also negative semidefinite. Towards
this end, the matching equation and the control are accordingly
modified, but the new algebraic equations are more complicated
because of the particular way they depend on the new matrix.
Finally, as pointed out in Remark 5, we have a poor understanding
of the meaning of conditions (27) and (28) that, at this point, are
just technically motivated.
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