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a b s t r a c t

In recent work a class of quasi port Hamiltonian system expressing the first and second principle of
thermodynamics as a structural property has been defined: Irreversible port-Hamiltonian system. These
systems are very much like port-Hamiltonian systems but differ in that their structure matrices are
modulated by a non-linear function that precisely expresses the irreversibility of the system. In a first
instance irreversible port-Hamiltonian systems are extended to encompass coupled mechanical and
thermodynamical systems, leading to the definition of reversible–irreversible port Hamiltonian systems.
In a second instance, the formalism is used to suggest a class of passivity based controllers for
thermodynamic systems based on interconnection and Casimir functions. However, the extension of
the Casimir method to irreversible port-Hamiltonian systems is not so straightforward due to the
“interconnection obstacle”. The heat exchanger, a gas-piston system and the non-isothermal CSTR are
used to illustrate the formalism.

& 2013 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Port Hamiltonian systems (PHS) [13] have been widely used in
modelling and passivity-based control (PBC) of mechanical and
electro-mechanical systems [6]. On the state space Rn 3 x, a PHS is
defined by the following state equation:

_x ¼ JðxÞ ∂U
∂x

ðxÞþgðxÞuðtÞ ð1Þ

where U : Rn-R is the Hamiltonian function, JðxÞARn � Rn is a
skew-symmetric structure matrix, gðxÞARm � Rn is the input map
and uðtÞARm is a time dependent input. For those systems, the
Hamiltonian function represents the total electro-mechanical
energy of the system and the skew-symmetric structure matrix
represents the energy flows between the different energy domains
of the system. Furthermore the structure matrix J(x) relates to
symplectic geometry as it defines a Poisson bracket, if it satisfies
the Jacobi identities, else it is a pseudo-Poisson bracket (see [29]).
If J is constant in some local coordinates then it satisfies the Jacobi
identities [28]. In the sequel we will consider only true Poisson
brackets (not pseudo-Poisson brackets). The Poisson bracket of

two C1ðRnÞ functions Z and G is expressed as

fZ;GgJ ¼
∂Z
∂x

>
ðxÞJðxÞ ∂G

∂x
ðxÞ: ð2Þ

If its structure matrix is not full-rank, then the Poisson bracket
admits a kernel which is characterized by its Casimir functions
[28], that is C1ðRnÞ functions that satisfy fC;GgJ ¼ 0 for any
function G. These Casimir functions are invariants of any Hamilto-
nian systems defined with respect to the Poisson bracket. The PHS
dynamics may be expressed in term of the Poisson bracket:

_x ¼ fx;UgJþgðxÞuðtÞ: ð3Þ

The properties of Poisson brackets such as its skew-symmetry and
the existence of Casimir functions correspond to the existence of
conservation laws or balance equations for open systems [6]. This
is the base of the control using PBC methods [19].

In the case when dissipation is taken into account, Hamiltonian
systems have been extended by considering structure matrices
which are no more skew-symmetric, defining a so-called Leibniz
bracket [16]. A dissipative PHS [28] with Hamiltonian function U is
defined by a Leibniz bracket which expresses the loss of energy
induced by some dissipative phenomenon. However, in this case
the Hamiltonian function U is no more invariant, and the dis-
sipative PHS does not represent the conservation of energy. Even
due to dissipative Hamiltonian systems have reported excellent
results in control applications [19], the fact that the Hamiltonian is
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not an invariant of the system leads to the well known dissipation
obstacle [17].

For physical systems representing irreversible phenomena, i.e.
transformations that involve irreversible entropy creation, it is
not sufficient to express only the conservation of energy (first
principle of thermodynamic); it is also necessary to express the
irreversible entropy creation (second principle of thermodynamic)
as a system theoretic property. The first and second principle
express, respectively, the conservation of energy and the irrever-
sible transformation of entropy. It is possible to represent this by
the following equations:

dU
dt

¼ 0 and
dS
dt

¼ s x;
∂U
∂x

� �
Z0 ð4Þ

where the Hamiltonian U is the total energy, S denotes an entropy
like function (that may be equal to the total entropy S) and
sðx; ∂U=∂xÞ the irreversible entropy creation which in general
depends on the state and the gradient of the total energy. By
skew-symmetry of the Poisson bracket the total energy of the
system satisfies the energy balance equation

dU
dt

¼ ∂U
∂x

>
gu: ð5Þ

Indeed, since gðxÞuðtÞ represents the flows through the controlled-
ports of the system the only energy variation is due to the
interaction with the environment. The entropy variation on the
other hand is given by

dS
dt

¼ ∂S
∂x

>
JðxÞ ∂U

∂x
þ∂S
∂x

>
gu:

A consequence of the second principle of thermodynamic is that
the entropy variation due to internal transformations is always
greater than or equal to zero. This actually requires J(x) to
explicitly depend on ∂U=∂x,

∂S
∂x

>
J x;

∂U
∂x

� �
∂U
∂x

¼ sintZ0; ð6Þ

since this should hold for any generating function U(x). In order to
include the second principle an alternative geometric structure
has to be considered. This is the reason that for physical systems
embedding the internal energy and expressing simultaneously the
energy conservation and the irreversible entropy creation as it
occurs in chemical engineering for instance, the Hamiltonian
formulation has to be questioned.

Several attempts have been made in order to preserve as much
as possible of the PH structure, leading to a class of system called
quasi PHS [11,22,24,7,12]. These systems retain as much as possible
the port Hamiltonian structure, but differ by their structure
matrices and input vector fields which depend explicitly on the
gradient of the Hamiltonian. An important remark is that,
although the forms of PHS (1) and quasi PHS are very similar
and both embed, by skew-symmetry of the structure matrix, the
conservation of energy, in the latter the drift dynamic is a
nonlinear function in the gradient ∂U=∂xðxÞ. In this sense the
symplectic structure of the PHS, given by the Poisson tensor
associated with the structure matrix J(x), is destroyed.

In this paper we shall present a class of quasi PHS where the
skew-symmetric structure matrix is defined in such a way that
both the conservation of the total energy (i.e. the first principle of
Thermodynamics) and the irreversible creation of entropy (i.e. the
second principle of Thermodynamics) are encoded. These systems
have been suggested in [23, ch. 2], [25,26] for models of homo-
geneous thermodynamic systems and have been called Irreversi-
ble Port Hamiltonian Systems (IPHS). In this paper, after having
recalled their definition we shall elaborate two main ideas. Firstly,
we shall show how these systems may be extended in order to

handle systems that couple (reversible) mechanical systems with
(irreversible) thermodynamical systems. This actually encom-
passes the modelling and control of the so called multi-energy
systems, also known as multi-physical systems. Secondly we shall
show how the notion of Casimir function may easily be extended
from the structure matrix J to the modulated matrix RJ as their left
kernel are identical, hence the Casimir-based control schemes may
also be used for the stabilization of IPHS.

2. Irreversible PHS for homogeneous thermodynamic systems

2.1. Definition of irreversible port Hamiltonian systems

There is a large class of thermodynamic systems that can be
expressed as quasi PHS if the Hamiltonian function is selected as a
thermodynamic potential such as the internal energy or the
entropy [8,9,23]. In this paper we shall use the internal energy
as generating potential and we shall recall in this section the
definition of IPHS according to [23, ch. 2], [25,26] and give some
illustrative examples.

Definition 1 (Ramirez [23]). An Irreversible Port Hamiltonian
systems (IPHS) is the nonlinear control system

_x ¼ R x;
∂U
∂x

;
∂S
∂x

� �
J
∂U
∂x

ðxÞþW x;
∂U
∂x

� �
þg x;

∂U
∂x

� �
u; ð7Þ

where xðtÞARn is the state vector, uðtÞARm is the control input,
and defined by

� two (smooth) real functions called Hamiltonian function UðxÞ :
C1ðRnÞ-R and entropy function SðxÞ : C1ðRnÞ-R,

� the structure matrix JARn � Rn which is constant and skew-
symmetric,

� a real function R¼ Rðx; ∂U=∂x; ∂S=∂xÞ defined as the product of a
positive definite function and the Poisson bracket of S and U:

R x;
∂U
∂x

;
∂S
∂x

� �
¼ γ x;

∂U
∂x

� �
fS;UgJ ; ð8Þ

with γðx; ∂U=∂xÞ ¼ γ̂ ðxÞ : C1ðRnÞ-R, γ̂Z0, a non-linear positive
function of the states and co-states of the system that may be
expressed as a function of the states only.

� two vector fields Wðx; ∂U=∂xÞARn and gðx; ∂U=∂xÞuARn asso-
ciated with the ports of the system.

The main difference with the definition of a PHS is that
Rðx; ∂U=∂x; ∂S=∂xÞ depends on the co-state variables destroying
the linearity of any Poisson tensor, considering the mapping
∂U=∂x to the drift dynamics

R x;
∂U
∂x

;
∂S
∂x

� �
J
∂U
∂x

and associated with the matrix RJ. Furthermore, the two vector
fields Wðx; ∂U=∂xÞ and gðx; ∂U=∂xÞu may also depend on states and
co-states.

Let us comment Definition 1 for the particular case of thermo-
dynamic systems. The first principle of thermodynamic states that
the energy of the system is conserved. This condition is also true
for PHS in mechanics. It is then logical that the Hamiltonian
function of IPHS is chosen to be the energy (as for PHS). As for PHS,
there is sometimes more than one conserved quantity that may be
used as Hamiltonian function. For instance in mass balance
systems a conserved quantity frequently used as Hamiltonian
function is the total mass of the system [27,7]. In the case of IPHS
there may also exist more than one conserved quantity depending
on the constraints of the system. For instance in the case of a
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continuous stirred tank reactor (CSTR) with constant pressure and
volume, the enthalpy is a conserved quantity and may be used as
Hamiltonian function.

The second item of Definition 1 states that J is a constant skew-
symmetric matrix. As it has been exposed in [13,14,30], PHS arise
systematically from network models of physical systems. In net-
work models of complex physical systems the overall system is
seen as the interconnection of energy-storing elements via basic
interconnection (balance) laws as Newton's third law in mechanics
or Kirchhoff's laws in electrical circuits, as well as power conser-
ving elements, like transformers together, with energy-dissipating
elements. PHS formalize these basic interconnection laws together
with the power conserving elements by a geometric structure.
In PHS the structure matrix J(x) and the input matrix g(x) are
directly associated with the network interconnection structure,
while the Hamiltonian is the sum of the energies of all the energy-
storing elements. In thermodynamics there is a similar network
relation between different domains. The efforts (intensive vari-
ables) of one domain generates the flows in other domains (time
evolution of the extensive variables). We expect the IPHS to
represent this network-like interconnection, thus we also expect
J to be constant with coefficients given by the network structure of
the system. We will show that for a simple thermodynamic system
as the heat exchanger J will just indicate the direction of the flows,
thus its elements will be �1, 0, or 1, while for more complex
systems such as chemical reactions it is given by the stoichiometry
of the chemical network.

The fact that in the definition of IPHS the structure matrix J is a
constant matrix forces the function Rðx; ∂U=∂xÞ to capture all the
state and co-state dependent behaviour of the internal intercon-
nection of the system. Let us now comment the definition of the
modulating function Rðx; ∂U=∂xÞ with respect to the energy and
entropy balance equations.

Firstly by the skew-symmetry of J, the energy obeys a con-
servation law. Indeed, computing dU=dt along the trajectories of
(7) we obtain

dU
dt

¼ ∂U
∂x

>
RJ

∂U
∂x

� �
þ∂U
∂x

>
ðWþguÞ

¼ R
∂U
∂x

>
J
∂U
∂x

 !
þ∂U

∂x

>
ðWþguÞ

¼ ∂U
∂x

>
ðWþguÞ ð9Þ

due to the skew-symmetry of J. Since the energy of the system is
conserved, the only admissible energy variation is through the
input and output ports (interaction point with the environment) of
the system. In the terminology of PHS [6], the gradient ∂U=∂x is a
vector of efforts, and the vector fields W and gu are vectors of
flows. The energy balance equation (9) may then be interpreted as
the power product of two port conjugated variables.

The entropy balance of the system is given by

dS
dt

¼ R
∂S
∂x

>
J
∂U
∂x

þ∂S
∂x

>
ðWþguÞ:

If it is assumed that the system is isolated (W¼0 and g¼0) the
balance becomes

dS
dt

¼ R
∂S
∂x

>
J
∂U
∂x

and by definition of the modulating function in (8), it may be
written

dS
dt

¼ R
∂S
∂x

>
J
∂U
∂x

¼ γ x;
∂U
∂x

� �
fS;Ug2J ¼ sint ; ð10Þ

where sint is called the internal entropy production. As the function
γðx; ∂U=∂xÞ is defined as positive, the internal irreversible entropy
production is always positive according to the second principle of
thermodynamics: sintZ0. Hence for the open system (Wa0 and
ga0) the entropy balance equation is

dS
dt

¼ γ x;
∂U
∂x

� �
fS;Ug2J|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼ sint Z0

þ∂S
∂x

>
ðWþguÞ ð11Þ

Recall that with the choice of the internal energy as Hamiltonian
function, the entropy is a state variable and the gradient of the
entropy ∂S=∂x is a vector whose elements are either 1 or 0. Since
the Poisson bracket is defined with respect to the constant matrix
J, the bracket fS;UgJ is a linear combination of the co-energy
variables (elements of ∂U=∂x) and it appears that it actually defines
the thermodynamic driving force of the irreversible phenomena in
the system.

The next two subsections give a brief illustration of this
definition through the examples of a heat exchange process and
the CSTR.

2.2. Example: the heat exchanger

Consider two simple thermodynamic systems, indexed by
1 and 2 (for instance two ideal gases), which may interact through
a conducting wall with compartment 2 interacting with the
environment through a heat conducting wall. The dynamics of
this system is given by the two entropy balance equations of each
compartment

_S1
_S2

" #
¼ λ

T2ðS2Þ
T1ðS1Þ �1
T1ðS1Þ
T2ðS2Þ �1

2
4

3
5þλe

0
TeðtÞ
T2ðS2Þ �1

" #

where S1 and S2 are the entropies of subsystem 1 and 2, Te(t) a
time dependent external heat source and λ40 and λe40 denotes
Fourier's heat conduction coefficients. The temperatures are mod-
elled as exponential functions of the entropies TðSiÞ ¼ T0 expðSi=ciÞ
[5], where T0 and ci are constants. This system may be written as a
quasi PHS

_x1
_x2

" #
¼ λ

1
∂U
∂x2

� 1
∂U
∂x1

 !
0 �1
1 0

� � ∂U
∂x1
∂U
∂x2

2
4

3
5þλe

0
1
∂U
∂x2

� 1
u

2
4

3
5u;

with state variable x¼ ½S1; S2�t , Hamiltonian Uðx1; x2Þ ¼ U1ðx1Þþ
U2ðx2Þ being the total internal energy of the overall system composed
of the addition of the internal energies of each subsystem, tempera-
tures

TðxÞ ¼ ½T1ðx1Þ; T2ðx2Þ�t ¼
∂U
∂x1

;
∂U
∂x2

� �t
and u(t), the controlled input that corresponds to the external heat
source at temperature Te(t). This system admits a IPHS formulation (7)

_x ¼ Rðx; TÞJTðxÞþgðTÞuðtÞ; ð12Þ

with modulating function Rðx; TðxÞÞ ¼ λð1=T2�1=T1Þ, constant struc-
ture matrix J ¼ ½01 �1

0 � and vector field

gu¼ λe
0

1
T2

� 1
u

� �" #
u:

The total entropy of the system is given by the sum of the entropies of
each compartments S¼ S1þS2. The Poisson bracket fS;UgJ is then
simply the difference of temperatures between the compartments
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which is the driving force of the heat conduction

fS;UgJ ¼
∂S
∂x

>
J
∂U
∂x

¼ 1
1

� �> 0 �1
1 0

� � T1

T2

" #
¼ T1�T2:

And one may express the modulating function according to Defini-
tion 1

Rðx; TÞ ¼ λ
1
T2

� 1
T1

� �
¼ λ

T1�T2

T1T2
¼ γðTÞfS;UgJ ;

with γðTÞ ¼ λ=T1T2. Since λ, T1 and T2 are greater than zero, γ is a
positive function. The vector field gðT2Þu defines the entropy flow
generated by the interaction of subsystem 2 and the external heat
source, hence corresponds to the port of the system. □

2.3. Example of the CSTR

Consider a continuous stirred tank reactor (CSTR) with a single
reaction and the following reaction scheme in gas phase

ν1A1þ⋯þνlAl⇌νlþ1Alþ1þ⋯þνmAm; m4 lZ1:

The dynamical model consists firstly in the mass balance equa-
tions off each species [2]

_ni ¼ Fei�FsiþriV i¼ 1;…;m ð13Þ

where ni is the number of moles of the species i, Fei and Fsi are
respectively the inlet and outlet molar concentrations, ri ¼ ν ir,
with r being the reaction rate of the reversible reaction r¼ ðrf �rbÞ,
where rf and rb are the rates of the forward and backward
reactions respectively. Each reaction rate depends only on the
temperature and reaction concentration, and νi is the stoichio-
metric coefficient of the species i: ν i ¼ �νi if it appears on the left-
hand side of the reaction scheme, ν i ¼ νi in the other case (we
assume here that each species appears solely either in the educt or
product). Following the usual assumptions [2,10], V is the volume
in the reactor is assumed to be constant as well as the pressure.
The assumptions of constant volume and pressure impose a
constraint over the total outlet flow Fs ¼∑m

i ¼ 1Fsi rendering the
outlet flows Fsi of each species i, state dependent [5]. Under the
previous assumptions the internal energy of the CSTR, derived
from Gibbs' equation, is given by

U ¼ ∑
m

i ¼ 1
ni½cviðT�T0Þþu0i�;

where cvi, u0i are respectively the heat capacity and reference
molar energy.

Secondly, for a non-isothermal CSTR, we shall complete the
model with the entropy balance equation

_S ¼ ∑
m

i ¼ 1
ðFeisei�FssiÞþ

Q
Tw

þs; ð14Þ

where

s¼ ∑
m

i ¼ 1

Fei
T

ðhei�Tsei�μiÞþ
Q
T
� Q

Tw
� ∑

m

i ¼ 1
μiνi

r
T

is the entropy creation due to mass transfer, heat transfer and
chemical reactions.

The formulation of the dynamics of the CSTR as an IPHS has
been presented in detail in [23, ch. 2], [26] where its lift to the
complete Thermodynamic Phase Space as a control contact system
has also been presented. In this paragraph we rapidly recall its
formulation as IPHS as an illustration and in order to prepare the
control section.

The dynamical equation of the CSTR may be expressed as the
IPHS

_x ¼ R x;
∂U
∂x

;
∂S
∂x

� �
J
∂U
∂x

ðxÞþWðx; FeÞþg
Q
T

ð15Þ

with state vector x¼ ½n1;…;nm; S�> , the internal energy U(x) as
Hamiltonian function,

J ¼

0 … 0 ν1

0 … 0 ⋮
0 … 0 νm

�ν1 … �νm 0

2
6664

3
7775

a constant skew-symmetric matrix whose elements are the
stoichiometric coefficients of the chemical reaction mapping the
network structure of the reaction, and

R¼ γ x;
∂U
∂x

� �
fS;UgJ ¼

rV
TA
� �

A

where γ ¼ rV=TA may be shown to be a strictly positive function
[26] and the Poisson bracket fS;UgJ ¼A, which is the chemical
affinity of the reaction A¼ �∑m

i ¼ 1ν iμi and indeed corresponds to
thermodynamic driving force of the chemical reaction [5,21]. The
port of the IPHS is given by WþgQ and is composed by the
extended input and output flow vector and the thermal interaction
vector defined respectively as

W ¼

Fe1�Fs2
⋮

Fem�Fsm
ω

2
6664

3
7775; g¼

0
⋮
0
1

2
6664
3
7775Q
T

with ω¼ 1=T∑m
i ¼ 1ðFeisei�FsisiÞ.

3. Irreversible PHS for coupled mechanical and
thermodynamic systems

In this section we shall extend the formulation of Irreversible
PHS [23, ch. 2], [25,26] recalled in Definition 1, to multi-domain
physical systems composed of a mechanical system coupled to a
simple thermodynamic system.

3.1. Definition of reversible–irreversible port Hamiltonian systems

In this case we have to compose the reversible transformation
of an ideal lossless mechanical system (port-Hamiltonian system)
with the irreversible transformation occurring in a simple thermo-
dynamic system. This leads to define an irreversible port-
Hamiltonian system where the skew-symmetric structure matrix
is the sum of a structure matrix J0ðxÞ of a Poisson bracket and the
skew-symmetric matrix RJ of the quasi-Poisson bracket.

Definition 2. A reversible–irreversible port Hamiltonian system
(RIPHS) is defined by the dynamical equation

_x ¼ Jir x;
∂U
∂x

;
∂S
∂x

� �
∂U
∂x

ðxÞþW x;
∂U
∂x

� �
þg x;

∂U
∂x

� �
u; ð16Þ

where the skew symmetric matrix Jir is defined as the sum:

Jir x;
∂U
∂x

;
∂S
∂x

� �
¼ J0ðxÞþR x;

∂U
∂x

;
∂S
∂x

� �
J ð17Þ

where J0ðxÞ is the structure matrix of a Poisson bracket and
Rðx; ∂U=∂x; ∂S=∂xÞ and J are defined according to Definition 1 of
an IPHS. Furthermore the entropy function SðxÞ is a Casimir
function of the Poisson structure matrix J0ðxÞ.

This definition may be commented as follows. The RIPHS may
be seen as the composition of a PHS and an IPHS with structure
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matrices being the sum of a Poisson structure matrix and a quasi-
Poisson structure matrix in the sense of Definition 1 and with
common Hamiltonian function.

Computing the time derivative of the Hamiltonian UðxÞ, by
skew-symmetry of Jirðx; ∂U=∂x; ∂S=∂xÞ, the Hamiltonian obeys the
same balance equation (9) as for IPHS, depending only on the
power product at the port of the system. Now computing the time
derivative of the total entropy for an isolated system (W¼0 and
g¼0), one obtains

dS
dt

¼ ∂S
∂x

>
Jir

∂U
∂x

¼ ∂S
∂x

>
J0

∂U
∂x

þR x;
∂U
∂x

;
∂S
∂x

� �
∂S
∂x

>
J
∂U
∂x

 !

¼ fS;UgJ0 þγ x;
∂U
∂x

� �
fS;Ug2J

¼ γ x;
∂U
∂x

� �
fS;Ug2J

using that SðxÞ is a Casimir function of the Poisson structure matrix
J0ðxÞ, that is it satisfies fS;UgJ0 ¼ 0 for any Hamiltonian UðxÞ.
In consequence the entropy balance equation of the RIPHS (16)
is identical with the entropy balance equation (10) of the IPHS.

The benefit of the energy based formulation of IPHS (Hamilto-
nian given by the internal energy) is clearly emphasised in this
case, since it allows to naturally perform the interconnection with
conventional PHS. This is not the case for quasi-Hamiltonian
formulations of thermodynamic systems where for instance the
entropy (or some function of the entropy) is used as Hamiltonian.
As an illustration, let us consider the example of a gas-piston
system where a homogeneous simple thermodynamic system (the
gas) interacts with a mechanical system, the piston.

3.2. Example of the gas-piston system

Consider a gas contained in a cylinder closed by a piston
submitted to gravity. The thermodynamic properties of this system
may be decomposed into the properties of the piston in the
gravitation field and the properties of the perfect gas. The proper-
ties of the piston in the gravity field are defined by the sum of the
potential and kinetic energies: Hmec ¼ 1=2m p2þmgz, where z
denotes the altitude of the piston and p its kinetic momentum.
The properties of the perfect gas may be defined by its internal
energy UðS;VÞ where S denotes the entropy variable, V is the
volume variable and the number of moles N is constant as the
system is closed (there is no exchange of matter) and hence
becomes an index. The total energy of the system is:
EðxÞ ¼ UððS;VÞÞþHmecðz; pÞ, where x¼ ½S;V ; z; p�> is the vector of
state variables. The co-energy variables are defined by the gradient
of the total energy

∂E
∂S 9T
∂E
∂V 9�P
∂E
∂z ¼mg9Fg
∂E
∂p 9v

ð18Þ

where T is the temperature, P is the pressure, Fg is the gravity
force, and v is the velocity of the piston.

The gas in the cylinder under the piston may undergo a non-
reversible transformation when the piston moves. We assume that
in this case a non-adiabatic transformation due to mechanical
friction (and/or viscosity of the gas), and that the dissipated
mechanical energy is converted entirely into a heat flow in the
gas. The resisting mechanical force due to friction is Fr ¼ νv. The

entropy balance equation is then

dS
dt

¼ 1
T
νv2 ¼ sint

which is the irreversible entropy flow at the temperature T,
induced by the heat flow νv2 due to the friction of the piston. As
the temperature is positive and the irreversible entropy flow is a
quadratic term in the velocity v, it is indeed positive. The coupling
between the piston and the gas consists in relating the force Fe and
pressure P on the piston and the velocity v of the piston and the
variation of volume fV

e of the gas

f eV
Fe

" #
¼ 0 A

�A 0

� � ð�PÞ
v

� �
ð19Þ

where A denotes the area of the piston.
The dynamics of the gas-piston system is then given by

dS
dt

¼ 1
T
νv29sint

dV
dt

¼ Av

dz
dt

¼ v

dp
dt

¼ �FgþAP�Fr ¼ �mgþAP�νv

The first equation is the entropy balance accounting for the
irreversible creation of entropy due to mechanical friction. The
second equation indicates that the motion of the piston induces a
variation of the volume of the gas. The third equation defines the
velocity of the piston. The last equation is simply Newton' law
applied to the piston. This control system may be written in state
space representation form as follows:

d
dt

S

V

z
p

2
66664

3
77775¼

0 0 0 νv
T

0 0 0 A

0 0 0 1
� νv

T �A �1 0

2
66664

3
77775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Jir ðT ;vÞ

T

�P

F

v

2
6664

3
7775 ð20Þ

This system is a quasi-Hamiltonian system as its skew-symmetric
structure matrix depends on two co-energy variables, the velocity
v and the temperature T. However it may be written in RIPHS form
according to Definition 2 by decomposing further its structure
matrix as the sum

JirðT ; vÞ ¼ J0þR x;
∂U
∂x

;
∂S
∂x

� �
J

with the constant Poisson structure matrix

J0 ¼

0 0 0 0
0 0 0 A

0 0 0 1
0 �A �1 0

2
6664

3
7775

and the structure matrix associated with the dissipative phenom-
enon, the friction of the piston

J ¼

0 0 0 1
0 0 0 0
0 0 0 0
�1 0 0 0

2
6664

3
7775

The Poisson structure matrix J0 is indeed associated with the
reversible coupling composed of the symplectic coupling ð 0

�1
1
0Þ

between the kinetic and potential energies of the mechanical
system and the coupling through the piston area A. The modulating
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function for the irreversible phenomenon is

R x;
∂U
∂x

;
∂S
∂x

� �
¼ γ x;

∂U
∂x

� �
fS;UgJ

with the Poisson bracket

fS;UgJ ¼ ½1 0 0 0�J

T

�P

F

v

2
6664

3
7775¼ v

which is the velocity of the piston and indeed the driving force of
the friction and function

γ x;
∂U
∂x

� �
¼ γðTÞ ¼ ν

T

which is strictly positive as the temperature and the friction
coefficient are strictly positive. It may be easily checked that the
entropy is a Casimir function of J0 as its first row (and column)
is zero.

Assuming now that there is an external force Fmot acting on the
piston and that the gas is subject to an exchange of heat with a
thermostat at temperature Te through a wall with Fourier's heat
conduction coefficient λe40, the system may be completed to the
control system (16) with input vector ½u1;u2� ¼ ½Te; Fmot � and the
vector field associated with the port:

gu¼

λe 1
T � 1

u1

� �
0

0 0
0 0
0 1

2
66664

3
77775u ð21Þ

4. Passivity-based control of IPHS

The Port Hamiltonian formulation may be used in a straightfor-
ward way for passivity-based control methods [3,28] by using the
associated energy balance equation (5). Moreover, the port-
Hamiltonian structure and the Poisson structure matrix JðxÞ in
(1) allow to use other invariants and their associated balance
equations, defined by the Casimir functions for synthesis methods
based on the interconnection-reduction method or in the Inter-
connection and Damping Assignment Passivity-based methods
(IDA-PBC) [17,19,15,20,6].

IPHS share a similar structure with PHS with the precise
difference that the Poisson structure matrix J is multiplied by the
modulating function Rðx; ∂U=∂x; ∂S=∂xÞ depending on the gradient
∂U=∂x. Obviously the energy balance equation (9) may also be used
for passivity-based control. Moreover the notion of Casimir func-
tion may easily be extended from the structure matrix J to the
modulated matrix RJ as their left kernel are identical, hence the
Casimir-based control schemes may also be used. On the other
side the entropy balance equation (11) clearly shows the controll-
ability problems which may arise due to the irreversible entropy
creation.

In this section, we shall elaborate on the control by embedding
and reduction by Casimir functions, also called control by inter-
connection [17,19].

4.1. Control by interconnection of IPHS

Let us first recall the method of stabilization by modulated
interconnection and adapt it to the IPHS. Consider first an IPHS (7),
where we assume the vector field W¼0; this might be for instance
obtained by a change of the control variable.

The first step is to embed the IPHS into a higher dimensional
system by interconnecting it with a PHS through a feedback
interconnection. In this paper we shall consider the most simple
Hamiltonian system namely a simple integrator with controller
state xcARm with Hamiltonian and dynamical model

Σc

_xc ¼ uc

yc ¼ ∂Hc
∂xc ðxcÞ

(

This is indeed a Hamiltonian system with structure matrix Jc ¼ 0
and Hamiltonian HcðxcÞ.

Remark 3. In the case where this system is a constant source, the
Hamiltonian is chosen as HcðxcÞ ¼ �unxc .

Consider the following feedback interconnection of the two
systems modulated by the m�m matrix βðxÞ

u

uc

 !
¼

0 βðxÞ
�βðxÞ 0

 !
y
yc

 !

The total system, embedding the IPHS, may then be expressed as
follows

d
dt

x

xc

 !
¼

R J gðxÞβðxÞ
�βtðxÞgtðxÞ 0

 ! ∂Hcl
∂x
∂Hcl
∂xc

0
@

1
A

y¼ ðgðxÞt ;0Þ
∂Hcl
∂x
∂Hcl
∂xc

0
@

1
A

where Hclðx; xcÞ ¼ UðxÞþHcðxcÞ with structure matrix

Jclðx; xcÞ ¼
R J gðxÞβðxÞ

�βtðxÞgtðxÞ 0

 !
:

This again defines a quasi-Poisson bracket as the modulating
function is R¼ γðx; ∂U=∂xÞfS;UgJ and depends on the co-energy
variables as ∂U=∂x¼ ∂Hcl=∂x.

The second step is to prepare the reduction of the embedding
system by analysing the condition for the existence of m Casimir
functions Cðx; xcÞ of the structure matrix Jclðx; xcÞ. Therefore we
look for Casimir functions Cðx; xcÞ of the type

Cðx; xcÞ ¼ FðxÞ�xc:

Then the function FðxÞ should satisfy

∂F
∂x

t

; � Im

� � R J gðxÞβðxÞ
�βtðxÞgtðxÞ 0

 !
¼ 0

which is equivalent to

�RJ
∂F
∂x

þβðxÞgðxÞ ¼ 0

∂F
∂x

t

gðxÞβðxÞ ¼ 0 ð22Þ

If the system (22) has a solution FðxÞ then the interconnected
system is again IPHS with structure matrix

R J gðxÞβðxÞ
�βtðxÞgtðxÞ 0

 !
¼ R

J J ∂F∂x

� J ∂F∂x
	 
T 0

0
@

1
A:

Indeed denoting

JeðxÞ ¼
J J ∂F∂x

� J ∂F∂x
	 
T 0

0
@

1
A

the entropy function SðxÞ does not depend on the control state
variables xc hence fS;UgJ ¼ fS;HclgJe and one may express the
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modulating function

R¼ γ x;
∂Hcl

∂x

� �
fS;UgJe :

The third step consists, assuming that (22) has a solution FðxÞ,
to reduce the embedding system by restriction to the invariant
manifold Cðx; xcÞ ¼ FðxÞ�xc ¼ 0. In a similar way as for PHS, it may
be shown that this manifold admits as coordinate x and its
dynamics may be written

dx
dt

¼ R J
∂H0

∂x
þgðxÞβðxÞ ∂Hc

∂xc
ðFðxÞÞ

¼ R J
∂H0

∂x
þ RJ

∂F
∂x

� �
∂Hc

∂xc
○FðxÞ

Hence the reduced system is the following IPHS with identical
structure matrix and modified Hamiltonian

dx
dt

¼ RJ
∂
∂x

ðH0þHc○FÞ: ð23Þ

It is equivalent to the IPHS with the state feedback uðxÞ ¼ βðxÞ∂
Hc=∂xc○FðxÞ which may be interpreted as shaping the Hamiltonian
to HclðxÞ ¼ ðUþHc○FÞðxÞ.

Remark 4. In the case where the control is a constant source un,
then the control is uðxÞ ¼ βðxÞun and the shaped Hamiltonian is
ðU�unFðxÞÞðxÞ.

The fourth step is the stabilizing control synthesis. Now assume
that ðxn;unÞ defines some equilibrium of the IPHS. And assume that
there exists a solution FðxÞ of (22) such that the shaped Hamilto-
nian is a Lyapunov function for the closed-loop system (23). Then,
by Lasalle's theorem, the control uðxÞ ¼ βðxÞ ∂Hc=∂xc○F

	 
ðxÞþv with
v¼ �k gtðxÞ∂Hcl=∂x stabilizes the system to the largest invariant
set included in the set fxARn s:t: gtðxÞ ∂Hcl

∂x ¼ 0g.

4.2. Application to the heat exchanger system

Consider now the IPHS representation of the heat exchanger as
presented in Section 2.2. Let us first perform the following change
of input variable u′¼ ðu=T2�1Þ which is regular as the tempera-
ture is positive: T240. Then the heat exchanger is written as IPHS
with input vector field g′¼ λeð 0

�1Þ. It may be noticed that g′ is
Hamiltonian with respect to J and generated by ð�λeS1Þ

g′¼ λe
0
1

� �
¼ 0 �1

1 0

� �
∂
∂S

ð�λeS1Þ

¼ J
∂
∂S

ð�λeS1Þ:

Secondly, let us characterize the equilibria ðxn;unÞ of the control
system. As the matrix J is symplectic, the equilibrium point ðxn;unÞ
is given by the equivalent conditions

RJ
∂U
∂x

ðxnÞþg′u′n ¼ 0

3R
∂U
∂x

ðxnÞþu′n ∂
∂S

ð�λe S1Þ ¼ 0

3

RðxnÞ∂U
∂x1

ðxnÞ�λe u′n ¼ 0

RðxnÞ∂U
∂x1

ðxnÞ ¼ 0

8>>><
>>>:

3
RðxnÞ ¼ 0
un ¼ Tn

2

(

3
Tn

1�Tn

2 ¼ 0
un ¼ Tn

2

(

Let us now check the existence of a Casimir function. The
condition (22) is equivalent to

�R
∂F
∂x

þβðxÞλe
1
0

� �
¼ 0

∂F
∂x

t

λe
0
�1

� �
βðxÞ ¼ 0

which is equivalent to ∂F=∂x2 ¼ 0 and

βðxÞ ¼ 1
λe

R
∂F
∂S1

ðS1Þ

where Fðx1Þ is freely chosen as the transversality condition is
always satisfied

∂F
∂x

t

λe
0
�1

� �
βðxÞ ¼ ∂F

∂x1
;0

� �
λe

0
�1

� �
βðxÞ ¼ 0:

Choosing the control system Hamiltonian to be HcðxcÞ ¼ �un, the
feedback is u′ðxÞ ¼ unβðxÞ which may be interpreted as shaping the
Hamiltonian to
HclðSÞ ¼ ðUðSÞ�unFðS1ÞÞðxÞ ¼ U1ðS1Þ�unFðS1ÞþU2ðS2Þ.

Let us now choose unFðS1Þ ¼ AðS1; Sn1Þ as the energy based
availability function of compartment 11

AðS1; Sn1Þ ¼U1ðS1Þ� U1ðSn1Þþ
∂U1

∂S1

>
ðSn1ÞðS1�Sn1Þ

" #
Z0: ð24Þ

For simple homogeneous thermodynamic systems, the energy
based availability function AðS1; Sn1Þ is a strictly convex function
with a unique minimum at Sn1, where Sn1 is the desired equilibrium.
This follows from the second law of thermodynamics, where the
internal energy is a convex function [4,1].

Then by the properties of IPHS one has the energy balance
equation dHcl=dt¼ 0. However this cannot lead to stability of the
desired equilibrium point as the Hamiltonian HclðSÞ ¼ AðS1; Sn1Þþ
U2ðS2Þ has a strict minimum in its first component by energy
shaping but the second component is invariant and has no strict
minimum. Although discouraging, this “interconnection obstacle”,
is not entirely unexpected, since it may be interpreted in terms of
the well known dissipation obstacle for dissipative PHS [18].

This implies that for this system one has to use not only energy
shaping methods by interconnection but needs also some IDA-PBC
synthesis methods which are beyond the scope of this paper.

5. Conclusion

A class of quasi port-Hamiltonian systems (PHS) that encom-
passes a large set of thermodynamic systems, including heat
exchangers and continuous stirred tank reactors (CSTR) has been
defined: Irreversible port-Hamiltonian Systems (IPHS). It includes
as a structural property the conservation of energy and the
irreversible production of entropy, expressed by a Poisson bracket
evaluated on these two quantities. The structure of the IPHS
resembles classical PHS since the constant structure matrix repre-
sents the network structure of the system (direction of flows for
the heat exchanger and stoichiometric chemical network for the
CSTR). The modelling of coupled mechanical-thermodynamical
systems has also been studied and an extension of IPHS have has
been proposed: Reversible-IPHS (RIPHS). These systems are com-
posed by the interconnection of a PHS and an IPHS, being the total
Hamiltonian the sum of the individual Hamiltonians of the
systems. Additionally, the skew-symmetric structure matrix of

1 We thank Yann Le Gorrec (ENSMM, Besançon, France) for pointing to this
Lyapunov function candidate.
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RIPHS is the sum of a structure matrix of a Poisson bracket (with
Casimir function the total entropy) and a skew-symmetric matrix
of a quasi-Poisson bracket.

The stabilization by interconnection of IPHS has been addressed.
Since IPHS share a similar structure with PHS, with the precise
difference that the Poisson structure matrix J is multiplied by the
modulating function Rðx; ∂U=∂x; ∂S=∂xÞ, it may seem that the
Casimir method could be extended to this kind of systems in a
rather straightforward manner. However the irreversible entropy
creation, related to Rðx; ∂U=∂x; ∂S=∂xÞ, limits the Casimir method
and makes it not possible to shape the closed-loop Hamiltonian in all
its components. This “interconnection obstacle”, although discoura-
ging, is not entirely unexpected, since it may be interpreted in terms
of the well known dissipation obstacle for dissipative PHS [18].

Future work will study the IPHS for complex chemical reaction
networks and how to overcome the interconnection obstacle and
specialise these results for the stabilization of complex thermo-
dynamic systems, such as the CSTR.
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