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Introduction

The word system describes a variety of concepts, so it is hard to give a 
meaningful definition, but here two basic assumptions hold 

A system is assumed to be an entity separable from the rest of the universe 
(the environment of the system) by means of a physical or conceptual 
boundary between what is considered to be part of the system and what 
represents an external disturbance or command originating from outside 

A system is composed of interacting parts, with the reticulation of a system 
into its component parts is something that requires skill and art 

The art and science of system modelling has to do with the 
construction of a model complex enough to represent the relevant 
aspects of the real system but not so complex as to be untreatable



Models of systems

The focus is on the dynamics of the system, since systems of all kinds 
can exhibit counterintuitive behaviour when considered statically  

A good understanding of dynamic response is crucial to the design of a 
controller for mechatronic systems  

Models of systems are simplified, abstracted constructs used to 
predict their behaviour (e.g., scaled physical models) 

Here we deal with another kind of model, i.e. the mathematical one 
Because a model must be a simplification of reality, there is a great deal of 
art in the construction of models, and the trick is to reach the “right” level 
of complexity, or simplicity

No system can be modelled exactly and 

any system designer needs to have a 

procedure for constructing a variety of 

system models of varying complexity



Models of systems

System models will be constructed using a 
uniform notation for all types of physical systems  

Models belonging to apparently diverse branches 
of engineering science can all be expressed using 
the notation of bond graphs based on energy and 
information flow 

This allows one to study the structure of the 
system, i.e. the nature of the parts and the manner 
in which the parts interact  

Analogies between various types of systems are 
made evident 

Experience in one field can be extended to other 
fields



(Sub-)Systems & Components

To model a system, it is necessary to break it up into smaller parts, 
and then to assemble the system model from the parts 

The breaking up of the system is accomplished in several stages 

Subsystems ➤➤ Components ➤➤ Elements  

The hierarchy of components is not absolute 

One needs to know how the component interacts with other 
components and one must have a characterisation of the component 

Otherwise a component is treated as a “black box”

Signal 
generator

Controller

Electrical 
amplifier

Accelerometer

Test structure

Hydraulic 
shaker

To hydraulic power supply

It is not necessary to 

provide a detailed model 

of all the sub-systems!!



Engineering multiports

We start now with the first steps toward the development of system 
modelling techniques for engineering systems involving power 
interactions 

Major subsystems are identified, and the means by which the subsystems 
are interconnected are studied 

The fact that interacting physical systems must transmit power then 
power is used to unify the description of interconnected subsystems 

A uniform classification of the variables associated with power and 
energy is established, and bond graphs showing the interconnection of 
subsystems are introduced 

Finally, the notions of inputs, outputs, and pure signal flows are 
discussed



Engineering multiports

We give a collection of subsystems or components of engineering 
systems to introduce the concept of an engineering multiport 
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Engineering multiports

Places at which subsystems can be interconnected are where power 
can flow between the subsystems, and such places are called ports 

Physical subsystems with one or more ports are called multiports 

The variables listed for the previous multiports are called power variables, 
because the product of the two variables considered as functions of time is 
the instantaneous power flowing between the two multiports 

Since power could flow in either direction, a sign convention for the 
power variables will be established  

Since power interactions are always present when multiports are 
connected, it is useful to classify the power variables in a universal 
scheme and to describe all multiports in a common language 

All power variables are called either effort or flow



Engineering multiports

The power flowing through a port can be expressed as the product of 
an effort and a flow variable: 

Two other types of variables (energy variables) turn out to be 
important in describing dynamic systems:  

Momentum: 

Displacement:
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TABLE 2.1. Some Effort and Flow Quantities

Domain Effort, e(t) Flow, f (t)

Mechanical translation Force component, F (t) Velocity component, V (t)
Mechanical rotation Torque component, τ (t) Angular velocity component, ω(t)
Hydraulic Pressure, P (t) Volume flow rate, Q(t)
Electric Voltage, e(t) Current, i (t)

following expression:
P(t) = e(t)f (t). (2.1)

In a dynamic system the effort and the flow variables, and hence the power, fluc-
tuate in time. Two other types of variables turn out to be important in describing
dynamic systems. These variables, sometimes called energy variables for reasons
that will become clearer later, are called the momentum p(t) and the displacement
q(t) in generalized notation.

The momentum is defined as the time integral of an effort. That is,

p(t) ≡
∫ t

e(t) dt = p0 +
∫ t

t0

e(t) dt, (2.2)

in which either the indefinite time integral can be used or one may define p0 to
be the initial momentum at time t0 and use the definite integral from t0 to t . In
the same way, a displacement variable is the time integral of a flow variable:

q(t) ≡
∫ t

f (t) dt = q0 +
∫ t

t0

f (t) dt. (2.3)

Again, the second integral expression in Eq. (2.3) indicates that at time t0 the
displacement is q0.

Other ways of writing the definitions in Eqs. (2.2) and (2.3) follow by con-
sidering the differential rather than the integral forms:

dp(t)

dt
= e(t), dp = e dt; (2.2a)

dq(t)

dt
= f (t), dq = f dt. (2.2b)

The energy, E(t), which has passed into or out of a port is the time integral of
the power, P(t). Thus,

E(t) ≡
∫ t

P(t) dt =
∫ t

e(t)f (t) dt. (2.4)

P (t) = e(t)f(t)

p(t) = p0 +

Z t

t0

e(⌧) d⌧

q(t) = q0 +

Z t

t0

f(⌧) d⌧

These relations can be equivalently written in derivative formdp
dt

(t) = e(t) dq
dt

(t) = f(t)

Some effort and 

flow quantities



Engineering multiports

The energy flow is the time integral of the power flow: 

There are cases where an effort is a function of a displacement, or a 
flow is a function of a momentum, which implies that

E(t) =

Z t

P (⌧) d⌧ =

Z t

e(⌧)f(⌧) d⌧

E(t) =

Z t

e(⌧) dq(⌧) =

Z t

f(⌧) dp(⌧)

This should explain why momentum and displacement are the energy variables 

E(q) =

Z q

e(q̄) dq̄ E(p) =

Z p

f(p̄) dp̄

The only types of variables that 

will be needed to model physical 

systems are represented by the 

power and energy variables 

e
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dt

R
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f
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Engineering multiports
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TABLE 2.2. Power and Energy Variables for Mechanical Translational Systems

Generalized Mechanical
Variables Translation SI Units

Effort, e Force, F newtons (N)
Flow, f Velocity, V meters per second (m/s)
Momentum, p Momentum, P N-s
Displacement, q Displacement, X m
Power, P F (t)V (t) watts (N-m/s = W)
Energy, E

∫ x
F dx,

∫ p
V dP joules (N-m = J)

Table 2.2 shows power and energy variables for mechanical translational ports.
Since the power variables force and velocity are considered primitive, the units
of the remaining variables follow from a choice in units for the power variables.
Units are the shoals on which many a system analysis has foundered, and it
is worthwhile to consider the great advantage that the metric or International
System of Units (SI) has for system dynamic studies as compared with the many
other unit systems that have been used in the past. In the SI system, power is
always measured in newton-meters per second (N-m/s) or the equivalent watts
(W), no matter what type of physical system is being studied. Similarly, energy
will always be measured in newton-meters or the equivalent joules (J) for an
electrical, mechanical, hydraulic, or any other type of physical system. Thus, if
the e, f , p, and q variables are given SI units, no bothersome unit conversions
will be necessary to properly account for power and energy interactions.

Anyone who has attempted to describe a complex system using traditional
units such as pounds, slugs, feet, volts, pounds per square inch, gallons per hour,
and the like will appreciate how difficult it is to ensure that the proper unit
conversions have been incorporated. In fact, computer programs for processing
bond graphs into the equivalent differential equations for subsequent analysis and
simulation are incapable of incorporating conversion factors and thus essentially
assume that the SI system will be used. In this text, we will make the same
assumption. After an analysis or simulation has been completed, it is a relatively
simple matter to convert some results to a traditional unit system if desired. The
power demand of an electric car in kilowatts (kW), for example, could readily
be converted to horsepower if this would be better understood by consumers, but
we believe that it is a mistake to create a mathematical model using units that
require conversion factors internally.

Table 2.3 gives power and energy variables for ports involving mechanical
rotation. The shafts of motors, pumps, gears, and many other useful devices
represent such ports.

The entries in Table 2.4 for hydraulic power again are related to the variables
used in solid mechanics, but some unusual quantities are defined. The momentum
quantity is defined according to Eq. (2.2) as the integral of the effort, or in this
case, the pressure. Not only is the pressure momentum a quantity not often

Power and Energy 

Variables for Mechanical 

Translational Systems 
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TABLE 2.3. Power and Energy Variables for Mechanical Rotational Ports

Generalized Mechanical
Variables Rotation SI Units

Effort, e Torque, τ newton-meters (N-m)
Flow, f Angular velocity, ω radians per second (rad/s)a

Momentum, p Angular momentum, pτ N-m-s
Displacement, q Angle, θ rada

Power, P τ (t)ω(t) N-m/s = W
Energy, E

∫ θ
τ dθ,

∫ pτ ω dpτ N-m = J

aRadians and other angular measures are dimensionless, but there are scale factors between, say,
radians, revolutions, and degrees which can cause errors not discoverable by dimensional analysis.
The formulas used in this book all are based on the radian as the unit of angular measure.

TABLE 2.4. Power and Energy Variables for Hydraulic Ports

Generalized Hydraulic
Variables Variables SI Units

Effort, e Pressure, P newtons per square meter
Pa = (N/m2)a

Flow, f Volume flow rate, Q cubic meters per second (m3/s)
Momentum, p Pressure momentum, pp N-s/m2

Displacement, q Volume, V m3

Power, P P (t)Q(t) N-m/s = W
Energy, E

∫ v P dV,
∫ pp Q dpp N-m = J

aIn subsequent tables, when pressure is involved, the units will be given as N/m2 rather than the
equivalent pascals (Pa) for clarity.

encountered in conventional fluid mechanics, but it is also a quantity without an
obvious symbol. The symbol pp is meant to indicate a momentum quantity that is
the integral of P (t), just as in Table 2.3 pτ was a momentum quantity defined as
the time integral of τ (t). Fortunately, the lack of a commonly accepted symbol
for certain variables is not a serious handicap. When some facility in system
modeling has been developed, the generalized variables, e, f , p, and q , can be
used for variables in all the energy domains, if desired.

Finally, Table 2.5 gives power and energy variables for electrical ports. The
only new quantity that needs to be defined is the unit of electrical charge, the
coulomb. It is common to use volts and amperes for the units of voltage and
current rather than their equivalents in terms of coulombs and SI units. Most
of the variables in Table 2.5 should be familiar, with the possible exception of
the momentum or flux linkage variable λ. The usefulness of this variable will
become evident when inductors are studied in Chapter 3.

Power and Energy 
Variables for Mechanical 

Rotational Systems 
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TABLE 2.5. Power and Energy Variables for Electrical Ports

Generalized Electrical
Variable Variable Units

Effort, e Voltage, e volt (V) = newton-meter per
coulomb (N-m/C)

Flow, f Current, i ampere (A) = coulomb per sec-
ond (C/s)

Momentum, p Flux linkage variable, λ V-s
Displacement, q Charge, q C = A − s
Power, P e(t)i (t) V-A = W = N-m/s
Energy, E

∫ q
e dq,

∫ λ
i dλ V-A-s = W-s = N-m = J

The tables of variables presented give at least preliminary evidence that the
variables associated with a variety of physical systems can be fitted into the
scheme of Figure 2.2. The usefulness of this viewpoint will become increasingly
evident as systems are modeled in detail. In the next sections the ways in which
subsystem interconnections can be indicated graphically using the e, f , p, q
classification will be shown.

2.2 PORTS, BONDS, AND POWER

The devices sketched in Figure 2.1 can all be treated as multiport elements with
ports that can be connected to other multiports to form systems. Further, when
two multiports are connected, power can flow through the connected ports and
the power can be expressed as the product of an effort and a flow quantity, as
given in Tables 2.2–2.5. We now develop a universal way to represent multiports
and systems of interconnected multiports based on the variable classifications in
the tables.

Consider the separately excited dc motor shown in Figure 2.3. Physically,
such motors have three obvious ports. The two electrical ports are represented
by armature and field terminal pairs, and the shaft is a rotary mechanical port
as sketched in Figure 2.3a . Figure 2.3b is a conventional schematic diagram in
which the mechanical shaft is represented by a dashed line, the field coils are
represented by a symbol similar to the circuit symbol for an inductance, and
the armature is represented by a highly schematic sketch of a commutator and
brushes. Note that the schematic diagram does not indicate what the detailed
internal model of this subsystem or component will be. To write down equations
describing the motor, an analyst must decide how detailed a model is necessary.

Figure 2.3c represents a further step in simplifying the representation of this
engineering multiport. The name dc motor is used to stand for the device, and the
ports are simply indicated by single lines emanating from the word representing
the device. In a system in which several subsystems are connected, these port

Power and Energy 
Variables for Electrical 

Systems 
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TABLE 2.3. Power and Energy Variables for Mechanical Rotational Ports

Generalized Mechanical
Variables Rotation SI Units

Effort, e Torque, τ newton-meters (N-m)
Flow, f Angular velocity, ω radians per second (rad/s)a

Momentum, p Angular momentum, pτ N-m-s
Displacement, q Angle, θ rada

Power, P τ (t)ω(t) N-m/s = W
Energy, E

∫ θ
τ dθ,

∫ pτ ω dpτ N-m = J

aRadians and other angular measures are dimensionless, but there are scale factors between, say,
radians, revolutions, and degrees which can cause errors not discoverable by dimensional analysis.
The formulas used in this book all are based on the radian as the unit of angular measure.

TABLE 2.4. Power and Energy Variables for Hydraulic Ports

Generalized Hydraulic
Variables Variables SI Units

Effort, e Pressure, P newtons per square meter
Pa = (N/m2)a

Flow, f Volume flow rate, Q cubic meters per second (m3/s)
Momentum, p Pressure momentum, pp N-s/m2

Displacement, q Volume, V m3

Power, P P (t)Q(t) N-m/s = W
Energy, E

∫ v P dV,
∫ pp Q dpp N-m = J

aIn subsequent tables, when pressure is involved, the units will be given as N/m2 rather than the
equivalent pascals (Pa) for clarity.

encountered in conventional fluid mechanics, but it is also a quantity without an
obvious symbol. The symbol pp is meant to indicate a momentum quantity that is
the integral of P (t), just as in Table 2.3 pτ was a momentum quantity defined as
the time integral of τ (t). Fortunately, the lack of a commonly accepted symbol
for certain variables is not a serious handicap. When some facility in system
modeling has been developed, the generalized variables, e, f , p, and q , can be
used for variables in all the energy domains, if desired.

Finally, Table 2.5 gives power and energy variables for electrical ports. The
only new quantity that needs to be defined is the unit of electrical charge, the
coulomb. It is common to use volts and amperes for the units of voltage and
current rather than their equivalents in terms of coulombs and SI units. Most
of the variables in Table 2.5 should be familiar, with the possible exception of
the momentum or flux linkage variable λ. The usefulness of this variable will
become evident when inductors are studied in Chapter 3.

Power and Energy 

Variables for Hydraulic 

Systems 

…and what about thermodynamic systems??



Ports, bonds & power

Multiport elements can be connected to other multiport to form 
systems, and power can flow through the connected ports  

We develop now a universal way to represent multiports and systems of 
interconnected multiports based on power and energy variables 

The separately excited d-c motor:
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Ports, bonds & power

When two multiports are coupled so that the effort and flow variables 
become identical, the two multiports are said to have a common 
bond, in analogy to the bonds between component parts of molecules 
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Bond graphs

A bond graph consists of subsystems linked together by power bonds 

When major sub-systems are represented by words, then the graph is 
called a word bond graph  

Such a bond graph establishes multiport subsystems, the way in which the 
subsystems are bonded together, the effort and flow variables at the ports 
of the subsystems, and sign conventions for power interchanges 

The word bond graph serves to make some initial decisions about the 
representation of dynamic systems 
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Bond graphs

A more complex example…
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Inputs, outputs & signals

In performing experiments, the notions of input and output arise 
The same concepts will carry over when “mathematical” models 

One must make a decision about what is to be done at the ports. At each 
port, both an effort and a flow variable exist, and one can control either 
one but not both of these variables simultaneously
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Inputs, outputs & signals

To know which of the effort and flow signals at a port is the input of 
the multiport, only one piece of information has been supplied  

In bond graphs the way in which inputs and outputs are specified is 
by means of the causal stroke 

The causal stroke is a short, perpendicular line made at one end of a bond  

It indicates the direction in which the effort signal is directed 

The end of a bond that does not have a causal stroke is the end toward 
which the flow’s signal arrow points

effort is output of A, input to B 

flow is output of B, input to A 

effort is output of B, input to A flow is output of A, input to B 
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Inputs, outputs & signals

But, what about pure signal flow, or the transfer of information with 
negligible power flow?? 

Multiports in principle all transmit finite power when interconnected  

In many cases, systems are designed that only one of the power variables 
is important, i.e. a single signal is transmitted between two subsystems 

Electronic amplifier 

Ideal ammeter 

Control system (ideal actuator) 

When the system is dominated by signal interactions, then either an 
effort or a flow may be suppressed at many interconnection points 

In this case, the bond degenerates to a single signal (active bond)

e
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e

The flow, f , has a 
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Basic multiport elements

Real devices can be considered as subsystems from the point of view 
of power exchanges and external port variables 

It’s time to present a basic set of multiport elements that can be used 
to model subsystems in detail 

Idealised mathematical models of real components, or… 

“Entities” used to model physical effects in a device  

Only a few basic types of multiport elements are required in order to 
represent models in a wide variety of energy domains 

The bond graph notation often allows one to visualise aspects of the 
system more easily than with the state equations or with some graphical 
notation designed for a single energy domain / signal flow 

The search for a bond graph model of a complex system frequently 
increases one’s understanding of the physical system



Basic 1-port elements

A 1-port element has a single pair of effort and flow variables 
This does not mean that it is a simple system!!  

In the sequel, we deal with the most primitive 1-ports 
Energy dissipation 

Energy storage 

Energy supply 

The 1-port resistor is an element in which the effort and flow variables 
at the single port are related by a static function 
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Basic 1-port elements

Usually, resistors dissipate energy, i.e. power flows into the resistor 
but never comes out of it (disappears…) 

Power flows into the port when the product of e and f is positive according 
to the sign convention shown, so power is always dissipated if the 
constitutive relation lies in the first and third quadrants of the e–f plane  

When a resistive element is assumed to be linear, it is conventional to 
indicate this on the bond graph by appending a colon (:) next to R 

For passive (power dissipating) resistors, establish the power sign 
convention by means of a half-arrow pointing toward the resistor 
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Basic 1-port elements

Next consider a 1-port device in which a static constitutive relation 
exists between an effort and a displacement 

Such a device stores and gives up energy without loss 

In bond graph terminology, an element that relates e to q is called a 1-port 
capacitor or compliance 

In physical terms, a capacitor is an idealisation of devices as springs, 
torsion bars, electrical capacitors, gravity tanks, and hydraulic 
accumulators 

There are idealised linear compliance elements as well as nonlinear ones 
e

q =
R
f dt

q = �C(e)

e = ��1
C (q)e

f
C

Nonlinear  

1-port capacitor

The linear compliance is defined 
as the inverse of the slope of the e 
versus q curve 



Basic 1-port elements

With the same sign convention 
of the resistor, we have that 

The conservation of energy for C 
is obvious 

The power flow into the port 
reverses and power flows out of 
the port 

During the process, no energy is 
lost, i.e. it is conserved
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Basic 1-port elements

The dual of the capacitor is the inertia, an energy-storing 1-port with 
the momentum p related by a static constitutive law to the flow f  

It is used to model inductance effects in electrical systems, and mass or 
inertia effects in mechanical or fluid systems

The ”linear inertia” is defined as 
the inverse of the slope of the f 
versus p curve 
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Basic 1-port elements

The inertia is an energy storing element, and as before we have 
 
 
 
 
 

Let’s give a closer look to the stored energy!
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Basic 1-port elements
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Basic 1-port elements

The effort source and the flow source are idealised versions of voltage 
supplies, pressure sources, vibration shakers, constant-flow systems… 

An effort or flow is either maintained reasonably constant, or constrained 
to be some particular function of time 

A source maintains one of the power variables constant or a specified 
function of time no matter how large the other variable may be
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Basic 2-port elements

One might expect that it would be necessary to define more basic 
types of 2-ports than 1-ports, but, in fact, only two basic types of 2-
ports need to be defined here  

We need to discuss here only those that cannot be modelled using the 
basic 1-ports and other elements to be defined later  

The 2-ports to be discussed here are ideal in the specific sense that 
power is conserved 

Let us consisted a conservative 2-port with a through power sign 
convention: 
 
 

Transformer (TF): 

Gyrator (GY):

e1 = me2, mf1 = f2

e1 = rf2, rf1 = e2

e1(t)f1(t) = e2(t)f2(t)TP
e1

f1

e2

f2



Basic 2-port elements

Some examples of transformer…

e1
f1

e2
f2

TF

Ne1 = e2

f1 = Nf2

e1 e2

i1 i2

(r1/r2)!1 = !2

⌧1 = (r1/r2)⌧2

(b/a)V1 = V2

F1 = (b/a)F2 a b

V1

V2

F2F1

F = AP
AV = Q
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r2

!1⌧1

⌧2!2
F P Q
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Basic 2-port elements

Some examples of gyrator…

e1
f1

e2
f2

GY

If the rotor spins very rapidly, a push in the 

direction of F1 will yield a proportional velocity 

V2. Similarly, a force F2 will result in a velocity V1. 

The counterintuitive behaviour of the gyroscope is 

predicted by the gyroscope equations. For 

example, if the gravity force is in the direction of 

F2, then the device precesses in a horizontal path. 

e = TV
T i = F

e1 = Nf2
Nf1 = e2

e1

i1 i2

e2

F1

V1V2

F2

Magnet

Coil

T

F

V

e
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Basic 2-port elements

The gyrator seems to be a mysterious element!!  
Before the significance of the gyrator was recognised, it was common to 
make equivalent electrical network diagrams for electromechanical or 
electro-hydraulic systems using only transformers, but this is not correct!! 

A gyrator is a more fundamental element than a transformer, e.g. two 
gyrators cascaded are equivalent to a transformer 
 
  

It is also important to realise that the gyrator essentially interchanges the 
roles of effort and flow, so it allows to map C-elements into I-elements 

No need to have two different kinds of energy storage elements

e1

f1
TF

e3

f3

e1

f1

e2

f2
GY GY

e3

f3

e1

f1

e2

f2
GY C I

e2

f2

e1

f1

e2

f2
GY I C

e2

f2



Basic 2-port elements

The scaling ratio for a TF or a GY can be time-dependent: 

Many physical devices may be modelled by the modulated 2-ports. For 
example, the electrical autotransformer contains a mechanical wiper, 
which, when moved, alters the turns ratio between the primary and 
secondary coils: this alteration takes no power  

In mechanics, the MTF is particularly important and may be used to 
represent geometric transformations or kinematic linkages 

e1

f1

e2

f2
MTF

m
e1

f1

e2

f2
MGY

r
Modulated 
TF and GY

! = ✓̇
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3-port junction elements

These 3-port, power conserving elements serve to interconnect other 
multiports into subsystems or system models 

They are the most fundamental ideas behind bond graph formalism, and… 

…an abstraction the parallel and series connections of electrical circuits 

They appear in all physical domain

0-junction

1-junction

0

1
1

1

2

2

3

3

e1(t) + e2(t) + e3(t) = 0
f1(t) = f2(t) = f3(t)

e1f1 + e2f2 + e3f3 = 0

Q3

e1 e2

e3

i1 i2

i3

Q1 Q2

P3

P2P1

V1 V2

V3 = Ẋ3

X3

F

e1 e2

e3

i1 i2

i3 i3

i1 i2

�P1 �P2

�P3

V = V1 = V2 = V3

V

F1
F2
F3

e1(t) = e2(t) = e3(t)

f1(t) + f2(t) + f3(t) = 0



3-port junction elements

Electrical circuits 
0-junction: Kirchhoff’s current law for a node where three conductors join  

1-junction: Kirchhoff’s voltage law written along a loop in which a current 
flows and experiences three voltage drops 

Mechanical systems  
0-junction: geometric compatibility for a situation involving a single force 
and three velocities that algebraically sum to zero 

1-junction: dynamic equilibrium of forces associated with a single 
velocity; when an inertial element is involved, the junction enforces 
Newton’s law for the mass element 

Hydraulic systems  
0-junction: conservation of volume flow rate at a point where three pipes 
join 

1-junction: the sum of pressure drops around a circuit involving a single 
flow must sum algebraically to zero 



3-port junction elements

Some example systems involving 3-port junctions 
Systems using 0-junctions 

Systems using 1-junctions

1
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3
0
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Note the sign convention  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3-port junction elements

The generalisation of 3-port junction to n-port is quite immediate 

The following identities hold: 

This implies that, with some sign patterns, the 2-port 0- and 1-
junctions serve to reverse the sign definition of an effort or flow

0 0 0 111

10



Causality for basic 1-ports

For effort and flow sources, causality is trivial! 

The 1-port resistor is normally indifferent to the causality imposed 
upon it, so there are two possibilities:  

The constitutive law of 1-port capacitor is a static relation between 
effort and displacement, which means that 

Dually, the constitutive law of 1-port inertia is a static relation 
between flow and momentum

e = �R(f) f = ��1
R (e)

e = ��1
C

✓Z t

f d⌧

◆
f =

d

dt
�C(e)

q =
Z t

f d⌧

p =

Z t

e d⌧

integral causality

f = ��1
I

✓Z t

e d⌧

◆
e =

d

dt
�I(f)

integral causality



Causality for basic 1-ports

To summarise…
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3.4.1 Causality for Basic 1-Ports

The effort and flow sources are the most easily discussed from a causal point of
view, since, by definition, a source impresses either an effort or flow time history
upon whatever system is connected to it. Thus, if we use the symbols S e— and
S f — for the abstract effort and flow sources, the only permissible causalities for
these elements are

Se and Sf .

in which the causal stroke indicates the direction that the effort signal is oriented.
(Remember that a sign-convention half-arrow could be placed on either end of
the bond without affecting the causality.) The causal forms for effort and flow
sources are summarized in the first two rows of Table 3.6.

In contrast to the sources, the 1-port resistor is normally indifferent to the
causality imposed upon it. The two possibilities may be represented in equation
form as follows:

e = !R(f ), f = !−1
R (e),

where we use the convention that the variable on the left of the equality sign
represents the output of the resistor (the dependent variable), and that appearing
in the function of the right side is the input (independent) variable for the element.
This convention is used commonly, but not universally, in writing equations and
corresponds to the notation used in computer programming.

The correspondences between the causally interpreted equations and the causal
strokes on the bond of the R— element are shown in the third row of Table 3.6.
As long as both the functions !R and !−1

R exist and are known, either causal
version of them could be used in a system model. It is possible, however, that
the static relation between e and f shown in Figure 3.1 is multiple valued in one
direction or the other; that is, either !R or !−1

R might be multiple valued. In

TABLE 3.6. Causal Forms for Basic 1-Ports

Element Acausal Form Causal Form Causal Relation

Effort source Se ⇀ S e e(t) = E(t)

Flow source Sf ⇀ Sf f (t) = F(t)
Resistor R ↼ R e = !R(f )

R f = !−1
R (e)

Capacitor C ↼ C e = !−1
C

(∫ t
f dt

)

C f = d

dt
!C(e)

Inertia I ↼ I f = !−1
I

(∫ t
e dt

)

I e = d

dt
!I (f )
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Causality for basic 2- & 3-ports

For basic 2-ports, there are two possible causal assignments 
For example, in a TF, as soon as one of the e’s or f’s has been assigned as 
an input, the other e or f is constrained by the constitutive relation 

Similar considerations are valid also for 3-ports (junctions)
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relations (3.9) and (3.11) show. As soon as one of the e’s or f ’s has been
assigned as an input to the —TF—, the other e or f is constrained to be an
output by Eq. (3.9). Thus, in fact, the only two possible choices for causality for
the transformer are T F and T F . The possible causalities are tabulated
in the first row of Table 3.7. Again, causal equation equivalents to the causal
stroke notation are given for all elements in Table 3.7.

For the gyrator, Eqs. (3.11) show that as soon as the causality for one bond has
been determined, the causality for the other is also. Thus, the only permissible
causal choices for the —GY — are GY and GY . The choices for the
causality for the gyrator are summarized in the second row of Table 3.7.

3.4.3 Causality for Basic 3-Ports

The causal properties of 3-port 0- and 1-junctions are somewhat similar to those
of the basic 2-ports. Although each bond of the 3-ports, considered alone, could
have either of the two possible causalities assigned, not all combinations of bond
causalities are permitted by the constitutive relations of the element. For example,
the constitutive relations for the 0-junction given in Table 3.5 indicate that all
efforts on all the bonds are equal and the flows must sum to zero. Thus, if on any
bond the effort is an input to a 0-junction, then all other efforts are determined,
and on all other bonds they must be outputs of the 0-junction. Conversely, if all
the flows on all bonds except one are inputs to the 0-junction, the flow on the
remaining bond is determined and must be an output of the junction. A typical

TABLE 3.7. Causal Forms for Basic 2-Ports and 3-Ports

Element Acausal Graph Causal Graph Causal Relations

Transformer e1 = me2

f2 = mf1

1
T F

2 1
T F

2

1
T F

2
f1 = f2/m

e2 = e1/m

Gyrator
1

GY
2 1

GY
2

e1 = rf2
e2 = rf1

1
GY

2
f1 = e2/r
f2 = e1/r

0-Junction e2 = e1
1

0
3

2 1
0

3

2

e3 = e1
f1 = −(f2 + f3)

1-Junction f 2 = f 1
1

1
3

2 1
1

3

2

f 3 = f 1
e1 = −(e2 + e3)



Although the causal considerations have been stated for all the basic 
multiports defined so far, it can hardly be clear as to what all the 
implications of causality are 

The study of causality is very important, and bond graphs are 
uniquely suited to this study 

Only when some real system models have been assembled is it clear why 
causal information is so important 

Using the rules of causality, it is possible to predict many important 
features of these systems even before the constitutive laws for all the 
elements have been decided upon 

Predict the order of the model before any equations are written 

Support for writing the state equations or in setting up a system simulation

Some remarks on causality



Causality and block diagrams

Block diagrams indicate how input and output signals flow 
The blocks show how the signals are transformed 

Block diagrams are inherently causal since they show how an input signal 
is transformed into an output signal 

When causal strokes are added to a bond graph, one may represent the 
information in the bond graph by a block diagram  

Block diagrams are more complex graphically than bond graphs because a 
single bond implies two signal flows on a block diagram 
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Causality and block diagrams

1-port 

capacitor & inertia 
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Causality and block diagrams
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Mechanical systems

Mechanical systems are those composed of such components as 
masses, springs, dampers, levers, flywheels, gears, shafts, and so forth 

When dynamic systems are put together from these components, we 
must interconnect rotating and translating inertial elements with axial 
and rotational springs and dampers, and we must appropriately 
account for the kinematics of the systems 

Main topics: 
Mechanical translation 

Mechanical systems that rotate 

Dynamics of plane motion



Mechanics of translation

Construction procedure for electrical systems: 
Identify the important node voltages and represent them with 0-junctions 

Create the appropriate voltage drops with 1-junctions 

Select the reference voltage (ground) 

For mechanical systems, the procedure is dual  
Representing system velocities using 1-junctions 

Create the appropriate relative velocities using 0-junctions

zero power….
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Vref
Vref
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Mechanics of translation

The spring and damper react to the relative velocity across them  

The velocities on the C- and the R-elements bonds represent the  
rate of extension of these elements 

When forces are positive in tension, power will flow toward the elements 

Construction procedure for Mechanical Translation 
Use arrows and symbols to indicate the positive direction of absolute 
velocity components. State whether force-generating elements are positive 
in tension or compression using symbols such as +T or +C 

Use 1-junctions to represent each distinct velocity  

Attach to each 1-junction any element that relates to the absolute velocity 
represented by the junction, usually inertias 

Use 0-junctions to establish relative velocities, with sign-convention so that 
the connecting elements are positive in compression or tension  

Eliminate the bonds with zero velocity



Mechanics of translation

Example: the quarter car model

ms

mus

ks bs

kt

vin

vus

vs

g

1

1

1

0 0

0

RC

C

I

I

SE

SE

SF

vin

vus

vs
SE

SE I

I

SF

vin

vus

vs

1

1

1

ms is the sprung mass (one-quarter of the body mass) mus is the unsprung mass (tire, wheel, and some part of the brakes and suspension)  
ks, bs are the suspension spring and damper constants kt is the tire stiffness 

Correct relative velocity: 

if positive, then the 

element is compressing 

+C

+C



Mechanics of translation

We paid attention only to establishing the proper velocity 
components, and no attention to the forces 

The beauty of power conservation in junctions is that we need only to 
constrain the velocities, and the forces will automatically be balanced 

Consider the free-body diagram for the quarter-car  
Masses are isolated 

Forces (springs, dampers, and gravity) are exposed  

Newton’s law for the masses: 

Note that the force balance is realised by 1-junctions!! 
The forces were constrained without further effort 
after enforcing the velocity constraints 

No explicit action-reaction principle

msg

musg

Fkt

Fkt

Fks

Fks

Fbs

Fbs

Fs = Fks + Fbs �msg

Fus = Fkt � Fks � Fvs �musg



Mechanics of translation

The construction procedure requires to determine a relative velocity 
for both the spring and the damper using 0-junctions 

The result is correct and the very common resulting bond graph structure 
is what is called a reducible loop 

You saw it already for an electrical system 

The structure can be simplified

The result is a slightly simpler bond graph emphasising that several elements have exactly the same relative velocity 
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Mechanics of translation

Model of impacting train

F (t)
g1 2 3

Snubber

R12

SE
F (t)
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0

0 0

0
1 11
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R12C12
C23 R23

C3

R3

00 11 1

11 A zero source flow has been omitted…



Mechanics of translation

With minor efforts, it is possible to deal with translational systems 
containing levers, pulleys, and other simple motion–force 
transforming devices 
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Plane motion

Mechanical bodies with finite mass both translate and rotate in real 
applications, i.e. the dynamics are governed by a simultaneous 
combination of translation and rotation 

3-D motion is not trivial, plane motion is much simpler 

Plane motion results when the inertial bodies of a physical system are con- 
strained to translate in two dimensions and to rotate only about an axis 
perpendicular to the plane of motion 
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Plane motion

Devices are attached to rigid bodies at different places on the body 

Associated bond graph  
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The procedure is scalable for multiple points

…but, what about the forces / torques??



Plane motion

The forces / torques are transformed “dually” by construction 

The result is an “object” with a force / velocity interface towards the 
environment, i.e. what is outside the system
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Plane motion

Question: how can we interconnect rigid bodies to obtain complex 
mechanisms? 

It is necessary to define a (set of) joints, i.e. element that constraint 
the motion in only in some directions 

Rotational joint 

Translational joint 

For a rotational joint, the relative linear velocity is set equal to zero, 
while the angular one is free
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Plane motion

A translational joint allows a relative motion only along a specified 
linear direction 

Since velocities are in the inertial frame, this direction is not fixed

v
Ax

vAy

!A
1

0

!B

v
Bx

vBy
0

ṽ
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Plane motion

2-dof planar manipulator

⌧2 !2

SE :0
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…same velocities

The joint ports can be used to attach 
actuation, or to perform inverse dynamics experiments. This depends 

on the chosen causality

1

2



Plane motion

Slider-crank mechanism
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Plane motion

4 bars linkage
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Transducers & multi-energy domain models

Transducers are devices that couple subsystems of distinct energy 
domains 

Electromechanical devices: motors, generators, and relays 

Hydraulic-mechanical devices: pumps, motors, and rams 

Electro-hydraulic valves 

We start with some relatively simple transducers based on 2-port 
transformers and gyrators that allow the modelling of multi-energy-
domain systems using bond graphs 

A major reason for studying bond graphs is that they provide a 
uniform and precise way to represent systems when several forms of 
power and energy are involved



Transformer transducers
A simple example, the hydraulic ram 

Ideal transformer transducer applies only to the effects at the face of 
the piston, but all real devices contradict the idea that mechanical 
power can be converted with no loss to hydraulic power 

On the mechanical side, the added 1-junction and resistor are used to 
include mechanical friction effects  

On the hydraulic side, the combination of the 0-junction and resistance 
represent a possible leakage past the piston  
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Transformer transducers

Positive displacement hydraulic pumps and motors consist of a 
number of pistons and a mechanism for moving them back and forth 
as a function of the angular position of a shaft 

With a large number of pistons (7 to 9), the angular speed of the shaft is 
related to the volume flow rate by a nearly constant coefficient 

Mechanical and hydraulic powers could both be negative, indicating that 
the model could as well represent a motor  

The bond graph is ideal, but the model could be augmented by adding 
resistors to model losses, or an I-element on a 1-junction on the 
mechanical side to represent the moment of inertia of the rotating parts
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Gyrator transducers

The importance of electromechanical transducers, such as rotary and 
linear motors or voice coils in electrodynamic loudspeakers, justifies 
a short discussion of why gyrators are used to describe a number of 
useful devices  

The basis of the gyrator models is a current-carrying conductor 
moving in a magnetic field under the action of an applied force that is 
equal but opposite to a magnetic force 

Because of the motion, a voltage is induced in the conductor 

e = BlV Bli = F

Lorentz forceFaraday’s law 
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Gyrator transducers

The case of a conductor in a magnetic field lead to the representation 
of electric motors and generators as gyrators  

It is assumed that the field is due to permanent magnets and a commutator 
switches the coils so that the voltage at the terminals induced by the rotary 
motion is proportional to the angular speed of the rotor 

The torque produced is proportional to the current at the terminals 

A more detailed model can be easily developed
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The idea of starting with ideal transducers and 

adding realistic effects is developed further 



Multi-energy-domain models

An electrical-hydraulic-mechanical system 
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Multi-energy-domain models

There is an art to making a useful mathematical model 
There is a scientific basis for the ideal models that involve power or energy 
conservation, and these are elegantly incorporated in bond graph elements 

There are a number of effects that can be added to the ideal elements to 
account for effects that occur in real systems 

These extra loss and dynamic elements must be added with restraint, since 
a complicated model that is hard to understand is often just as bad as an 
oversimplified model 

The best model is the simplest one capable of demonstrating those 
aspects of the behaviour of the system that need to be understood 

Good modellers are always ready to modify a preliminary model…
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