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Overview

M This lecture is devoted to two main topics

* Modelling of distributed parameter systems
within the port-Hamiltonian framework

% Fnergy-based control of a class of distributed
port-Hamiltonian systems with one dimensional
spatial domain
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Very go0od...

Now, let’s start with some
€8> modelling!!
-
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Modelling origins

@ This part presents the formulation of distributed parameter systems in
terms of port-Hamiltonian system

™ For different examples of physical systems defined on one-
dimensional spatial domains, the Dirac structure and the port-
Hamiltonian formulation arise from the description of distributed
parameter systems as systems of conservation laws

@ Systems of two conservation laws describe two physical domains in
reversible interaction

* They may be formulated as port-Hamiltonian systems defined on a
canonical Dirac structure called canonical Stokes-Dirac structure
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Modelling origins

™ Boundary port-Hamiltonian systems that extend the port-Hamiltonian
formulation from lumped parameter systems

@ Dynamic models of distributed parameter systems are defined by
considering time and space as independent parameters on which the
physical quantities are defined

* Vibrating strings or plates;

* Transmission lines or electromagnetic fields;

%k Mass and
™ Distributed

heat transfer in tubular reactors or fuel cells

parameter systems are now formulated in terms of systems

of conservation laws




i 2Conservation law and irreversible thermodynamics

™ Heat diffusion in 1-dimensional medium (e.g., a rod with cylindrical
symmetry)

%* The medium is undeformable (i.e. its deformations are neglected);

* Only the thermal domain and its dynamics are considered

M Write a conservation law of the conserved quantity i.e., the density of
internal energy, denoted by u(t,7):

extensive —_ spatial domain

thermodynamic @_ * B e TR
variable ot~ O N a, ] C S

M The heat flux Jg arises from the thermodynamic non-equilibrium and
is defined by some phenomenological law, for instance defined
according to Fourier’s law by:

. thermodynamic
“\driving force F(z,t)
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i 2:Conservation law and irreversible thermodynamics

™ The thermodynamic driving force F(z,t) characterises the non-
equilibrium condition

* Conservation and phenomenological laws should be completed by a
relation between the driving force F and the conserved quantity u;

* This relation is given by the thermodynamical properties of the medium
which is characterized by some thermodynamical potential

M The thermodynamical properties are given by Gibbs relation:

du = 1T'ds /;/ OdeXChange of matter
n the Volume of the
* s is the entropy of the medium (extensive variable); __medium is copggan,

———

* Due to the irreversibility of thermodynamic processes, T is strictly positive,
in such a way that one may choose equivalently the internal energy or the
entropy as thermodynamical potential

™ Who is the thermodynamic potential?
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5 ‘Conservation law and irreversible thermodynamics

@ Choice #1: the internal energy u = u(s). Then, Gibbs relation defines the
temperature as intensive variable conjugated to the entropy:

du
T = —
T (s)

@ This leads to the following entropy balance equation (also called
conservation law with source term or Jaumann’s entropy balance):

% — _ing — _QJS 1+ o Irreversip /e
ot T 0z 0z entropy creation
with ,
1 1 0 1 0T XNT) (0T
= —Jo=—-ANT1T,2)==—T(t = ———Jg = >0
/s TJQ ( ’Z)Tﬁz (£, 2) 7 T@zJS T2 ((9,2) -

flux of entropy

@ The flux of entropy may be written as a function characterising the
(irreversible) phenomenon of heat conduction and in terms of the
generating force: |

At 2) 9 d It depends on the

B , 2 B u differential of the inter l
— F Ft,z) = ——— > e
JS (t7 Z) T (t7 Z)7 (t7 Z) az dS (S) }‘ energy function J

}
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Conservation law and irreversible thermodynamics

@ Choice #2: chose the entropy s = s(u). Then, Gibbs relation defines the
inverse of the temperature as the intensive variable conjugated to the

internal energy:
1 - ds g\;: — J
T~ '™ L a2
M@ The heat flux is a function of the driving force o
1 0 ds
= T°F  F'| &) =2+
Jo = AT 2) (T) 0z du ()

Usual expression of heat conduction. The
start is the calorimetric property (assume a

constant volume):

du = ¢y (T)dT |
By direct substitution in the conservation law,
one obtains the heat equation:

oT 0 9, )
= = — (\NT,2)=—T
v G = o ( (T.2)5,
Note that this does not retain the structure of
a conservation law J

T

Thg thermodynamic axioms (near equilibrium)
define dynamical Systems as conservation laws
completed with the definition of the flux variab//e
by an irreversible phenomenological law,
expressing the flux variable as g function/ of the
generating force which is the spatial derivative of
the differential of some thermodynamical
potential characterising the thermodynamic (or
equilibrium) properties of the system

\1——:‘

ALMA MATER STUDIORUM ~ UNIVERSITA DI BOLOGNA




M In order to define a port-Hamiltonian formulation for
infinite dimensional systems, we shall apply the
thermodynamic analysis to reversible physical systems

M Electromagnetic or elasto-dynamic systems are
considered as two physical domain coupled by a
reversible inter-domain coupling

* In bond graph terms this coupling is represented by a
gyrator;

* For distributed parameter systems, one may define some
analogous canonical inter-domain coupling which
however correspond to an extension of a symplectic
gyrator

@ The thermodynamic perspective for reversible
physical systems makes appear a canonical Dirac
structure associated with some canonical inter-
domain coupling
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2 Reversible physical systems of 2 coupled conservation laws

™M Ideal lossless transmission line:

00 ol
©_ 2 1 [Q%(t,2)  ¢%(L,2)
ot 0z

™M The current and voltage are the flux variables of the conservation laws

oH Q
D)) -G o) (8)
1 1 0 EES 1 0 T
™ The flux variable of the electrical domain is identical with the co-

energy variable of the magnetic domain and vice versa

* This is the canonical inter-domain coupling via a symplectic gyrator

* This relation is the pendant of the phenomenological law for irreversible
systems, for reversible systems

* It expresses a coupling by a anti-diagonal matrix which has no parameters

* The electro-magnetic energy “is” the thermodynamical potential I
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Reversible physical systems of 2 coupled conservation laws

Definition. Consider a functiolr)lal H defined by

Hl|x| = / H (Z,x,x(l),...,x(”)> dz

. a . . . .
for any smooth real function x(z), z € Z. The variational derivative of the

functional H is denoted by
oH

Sz
and is the only function that satisfy for every € € 2 and smooth real function
0x(z), z € Z, such that their derivatives satisfy 0x”(a) = d0x"(b) =0, i =0,...,n:

H|x + edx| = H|z] + e/b (;—l;l&cdz + O(€%) |
1%t 2) | (2, 2)
HQ =5 |+ 5

K Transmission line eq.’
—_—
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i 2 Reversible physical systems of 2 coupled conservation laws

™ For the transmission line, the co-energy variables are then interpreted
as the variational derivatives of the total electromagnetic energy

_ (o) _ (€ da (0 =2\ (5
= (2)=(3) o8 5-(% ) ()

@ This system is an infinite-dimensional Hamiltonian system defined
with respect to the matrix differential operator:

0 -9
— 0z
7= (2 )
and generated by the Hamiltonian function H

@ One has to check that the matrix differential operator satisfies
* Skew-symmetry;

% Jacobi identities

™M Consider two vectors of smooth functions
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i Reversible physical systems of 2 coupled conservation laws

M Skew-symmetry:

b
b
eTj / 1T L 5’ / a
/a ( e Te je) dz—/a [61 (—8262 + e (—626’1)+
/ a / 8
+ €1 <—0262> +€2 <—82€1) ]dz

g b. . o« » . :_[616/2+€2€/1]2:O
Jacobi identities: immediate since 7 is a constant differential operator

Ac L . .
l?_fa S lrzj(tjhe finite-dimensional case, the Hamiltonian structure results in
n additional conservation law, namely the conservation of energy:

gH:/b(é_ﬂ sH \ 00  sH  sH oL
dt . doq 5a2) atdZZ/a (E E)j<%oﬁ>d,2:0

50&2

For the skew-symmetry of 7 there might be no energy
exchange at the boundaries. This is a very particular
situation, not suitable neither from a modular point of
view as for control. This is the major motivation for
introducing port variables and extend the Hamiltonian

formulation to a boundary port Hamiltonian system IMP””TAN]' I




2 Reversible physical systems of 2 coupled conservation laws

™ For functions that are not zero at the boundary, the differential
operator is no more skew-symmetric and boundary terms appear

* In terms of physical modelling, the energy is not conserved

dH oH oH OH OH b
= (t,a)—(t,a) — —(t,b)——(t, b) =(

dt 50&1( ,&)5&2( ,CL) 50&1( 7 )5042( ’ )
@ This suggests to introduce the restriction of the co-energy variables to

the boundary of the spatial domain as external variables:
SH SH
€0/ \saz/lap \U 9/ \Gaz/ 1oy

<e1) = (e1(a) e1(b) ea(a) ex(d))

€2 a.b

V(t,b)I(t,b)

= = e

where

We show that this is the starting point for
the definition of a port Hamiltonian
system defined with respect to a Dirac

structure called Stokes-Dirac structure I
- B owiwmswoow- vavsmonooona |




)2 Reversible physical systems of 2 coupled conservation laws

M Space of tlow variables: = [a,b]aZ:{% b}
f1 -
F = {f — (fQ) S Cm([aa b]) X Cm([aa b]) X R{a,b}}
fo

™ Space of effort variables:

E = {e = (Z;) e C*(la, b]) x C*(la, b]) X R{“’b}}
€y

M Non-degenerated bi-linear product or pairing:

€1 f1 b
< (62) : (fz) > = / (e1f1 +eafa)dz +es(b) fo(b) —esla)fs(a)
fo a

€9
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Reversible physical systems of 2 coupled conservation laws

Proposition. The linear subset 2 c 7 x £ defined by:

f e
D{ f; : e; c FxE | (fl):(oa —(%)(61)
fo es I & °2
and (2) (a,b) = (? (1)) (Z;) (a, b)}

is a Dirac structure with respect to the symmetric pairing:

< <£><£,/) >= (e, f) + (¢, f) (Z),(i:>efx5

— S — . :
The Construction of the POrt vari A port Hamiltonian SYtSte:t‘u\:gth
structure asso 't variab|eg and th : this Dirac stru .
C ; . e ect to .
lated with the djf erentig| OperatD’raC reﬁ) e similarly to the definition
s, or follo al systems

0z for finite dimension
has been extended to / 0z
"/ Mmetric operators
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| 2 Reversible physical systems of 2 coupled conservation laws

Definition. A boundary port Hamiltonian system with state variables

at) = (Zl%) e C*([a,b]) x C*(la,b])

fa(t) 5 a,
(eg(t)> e Ri®b} » Riob}

generated by the Hamiltonian functional

Hla] = / b?—[(z,a)dz

with respect to the previous Dirac structure is defined by

and port variables

80&1 C?H

ot o
oo 5Hl cD
8t ? 5(12

Jo e
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/i ) Reversible physical systems of 2 coupled conservation laws

@ Going back to the transmission line equation...

am (D-CHM-CHE)-CHE
96 Y 14 1 0/ \1I 1 0)\ %% 1 0 %
E: 0z

conservation laws

co-energy variables

QL) (1)
H(Q’@‘i[ o) L) ]

electro-magnetic energy

port variables

The pairing consists in two integral terms
corresponding to the electric and the magnetic
power in the spatial domain Z plus two terms
corresponding to the electromagnetic power at
both boundary points of the domain k
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/i ) Reversible physical systems of 2 coupled conservation laws

displacement
I Vibrating string as a port Hamiltonian system u(t, 2)
L el
™ State variables:
e(t, 2) —~_ 0 — 0
o) = (557) @ gt )@ ot ) = gt
p (t’ Z) strain 0z Om:omem‘um ot

™ Jotal energy, sum of kinetic and elastic energies:

"1 >, 1
Hy(a) = 5 Toz1—|—;oz2 dz

ependS on/

d
Va/'/.ab/es aﬂd
0H 0H : 10t on theijy
By= 5= =Te 2:5_028 %
87 pant 87
stress ! velocity 2 H

@ The model is expressed by:
oo _ 0 9 5H()
ot % 0/ da

system of two conservation laws
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2 Reversible physical systems of 2 coupled conservation laws

@By looking at the model: da ( g e ) 0Ho
* The first equation is purely kinematic;, ot ER S

* The second equation is Newton’s law;

* The fluxes are expressed as a function of the generating forces by:
SH 5H
0 -1 0 - -1 0 Te
o= ()= (o B) ()= (0 ) (%)
5o 0 -1 S 0 -1 %
%* Port boundary variables:
<fa> _ <52>
€s B1) |,

By using as state variables the variables on which the elementary
conservation laws applies and such that the energy is a function of
them and not their derivatives, one may express the dynamics as a
port Hamiltonian system defined on a Dirac structure which is 1<
canonical, i.e. it express simultaneously, the conservation laws, '
the inter-domain coupling and the interaction through the
boundary of the system, independently of its energy properties

o
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@ Usually, the model of the vibrating string is expressed in terms of the
geometric state variables the displacement u and the velocity v

™ Total energy: b
|
i :
velocity v =
M System dynamics:
\ﬁ Tau
0z %
M This is an Hamiltonian syst oy MY

——

%* The skew-symmetric operator depends on some parameter, and this goes
against the idea of compositional modelling (energy and inter-domain
coupling are now coupled with the definition of this matrix)

* The Hamiltonian system is not expressed as a system of conservation laws
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“i'2 Reversible physical systems of 2 coupled conservation laws

@ Even if the model look simpler, there is a drawback for the case when
there is some energy flow through the boundary of the spatial domain

%* The variational derivative has to be completed by a boundary term as the
Hamiltonian functional depends on the spatial derivative of the state:

s e =Uw < [ 2 (5% )zt |y (T%)] +O(e) -

a a

2] - ) A

a a

d_H_ d 5H8u+5H8v ds 4+
dt J, \(du Ot v Ot

@ One may introduce the following two boundary variables:

J a) B ( v ) |
— du 1 relation With
al rela .
(68 T 52/ lap NontriV ! derivatives

. L a
the variation
and dependmg on the
meters

— energy P ——

The power continuity
Properties are not visjp|el

—_—
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Bored????

So, it’s time for talking
€8> about control!!!
A
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Initial remarks

M This second part of the lecture deals with the energy-based control of
distributed port-Hamiltonian systems

* Initially, this task has been accomplished via the energy-Casimir method

m Boundary control

m Application to particular systems (e.g., transmission line, flexible
structures, fluid dynamics)

a Simple stability
| No analysis of solutions for the open and the closed-loop systems
| Linearity

* There has been the need for a connection with functional analysis, e.g.
semigroup theory for linear, distributed port-Hamiltonian systems

m Precise formalization of the problem

| Results on the existence of solutions, definition of boundary control systems
and analysis of interconnected systems

m Stability analysis, at least in the linear case
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Initial remarks

M The initial work has been then reformulated (and rediscovered) in this
well-structured framework

* We now know how to prove existence of solutions, and to verify the
stability properties in closed-loop

* Complete characterisation of the energy-Casimir method in the linear case,
and for one-dimensional spatial domain

M The stability proofs can take advantage from other tools, the La Salle’s

invariance principle in particular 3

% Physical interpretation of the approach, and of the results

% There some evil hypotheses to check

% Nonlinearities and state-dependent (boundary) control actions

* Move the focus to the trajectories, rather than on structural properties only

M Energy-based control beyond the dissipation obstacle

* “Ceometric” interpretation of the results

@ Simple nonlinear systems
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Energy-based control

™ Let us consider a finite-dimensional port-Hamiltonian system:

i(t) = [J(x(t) — R(x(t))] %—Z(w(t)) + G(x(t))u(t)

(1) = G (1) 5 (a(1)

W cr
@/’g Y ba/a nc /ng

G @) = (o 60)) RO w0+ Oue

M Standard approach is to rely on “energy considerations” to obtain and
prove asymptotic stability of equilibria
% Damping injection
% Energy-shaping

M Standard assumption is [/ bounded from below
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Damping injection

M Suppose that H has an isolated minimum at a desired equilibrium

OH , | 0°H
9z &) =0 972

(%) > 0

@ The idea is to dissipate energy until the minimum is reached
* Asymptotic stability if there is “enough dissipation”
%k Zero-state detectability

* La Salle’s Invariance principle

M The control action is
u(t) = —Kpy(t), Kp=Kj >0

dH / — (%—5(3:(15))) (R(z(t)) + KD)%—ZI(x(t)) <0
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Energy-balancing control

@ 1n general, it is necessary to shape the open-loop Hamiltonian to
introduce a minimum at the desired equilibrium

@ From the energy-balance relation we have
t
H(x(t) = HGO) = [ 4" (rjulr)dr — d)

@ The standard formulation of passivity-based control requires to
determine a control action
u(t) = B(z(t)) + u'(?)

such that the closed-loop dynamics satisfies: "W energ
alap~r i
—_— nC/n

Hy(x(t)) — Ha((0)) = / g () (7) dr — da(t) .

™ Hy is a desired energy function, while d, replaces the natural
dissipation "

* Energy-shaping plus damping injection
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Energy-balancing control

A A large class of dynamical systems can be stabilized by requiring that
the supplied energy is a function of the state of the plant

. / yT(1)B(x(r)) dr = Ho(2(t)) + &

@ We require that along all system trajectories

@ The “desired” closed-loop Hamiltonian is then
Hi(z(t)) = H(z(t)) + Hqo(z(2))

@ The previous PDE provides the class of H, and the control actions,
while stability analysis follows from the energy-balance relation

% u’ can be used to add damping
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Energy-balancing control

@ The methodology can be applied to generic nonlinear systems

(&= f(z) + g(a)u
|y = M=)

M From KYP lemma, passivity is equivalent to the existence of a function
H(x) such that

\

(55 @) <0 () = 4" (@) (2)
M Matching equation:
T JE— pplied power
(Fe@) [+ 9] Ch @)

@ At the equilibrium:
f@) +g(@)B") =0 = h'(a")Ba") =0
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Energy-Casimir method

M Let us consider a port-Hamiltonian controller

) = [Tele(t) - Relé®)] 52 (€(0) + Gele®)uo(t)

OH
yo(t) = GE(f(t))a—§<§<t>> {ﬂt) R

5 @(0) + Gla(t)u(t
V() = 6" (2(6) 2 (1)

@ Closed-loop Hamiltonian:

H(x(t)) + Ho(£(1))
@ How can we select Hc to properly shape the closed-loop Hamiltonian
in the “x-direction”?
%* We need to introduce the concept of Casimir function

* We look for, or we generate, a set of functions that are constant
independently from the Hamiltonians, i.e. for all the possible achievable
trajectories in closed-loop
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Energy-Casimir method

@ We look for Casimir functions in the form
C(z,§) =& — V(x)
™ In this way, for the closed-loop system we have
H(x)+ He(§) = H(x) + Ho(¥(2) + K)
M The advantage is that
* There is no need to explicitly deal with the trajectories of the system
* Stability can be analysed by looking at the energy-balance only

% Complete characterisation of all the energy-balancing controllers

(55 @) TG = Jo(© R() 2 (@) =
Ro(§) = 0 (@) I = Ge©)6™w)

The solution is determined by the Dirac

structure and independent from the
resistive relation
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Control with state-modulated source

@ The idea is to compute a state feed-back action

u(t) = B(x(t)) +u'(?)
so that the open-loop system is mapped into a new one, but with a
desired Hamiltonian

Hy(x(t)) = H(x(t)) + Hy(x(1))

e

B(t) = [J(x(t)) — R(x(t))] %(w(t)) + G (x(t))u'(t)

M A direct computation leads to

G(2)B(x) = [J(z) — R(z)] 222

ox

A further generalization leads to the /DA-PBC control technique,
where we shape -
¢ 9 J

* Hamiltonian Y
* Interconnection and resistive structure 1 I
i

.y A
._.JJ‘

(x) matching condition
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Example: “series” RLC circuit

lZfPor.t—Har;I;Itoman model: fo Li fr Rp
xQ — % ‘
7 __8_H
¢ &EQ (933@‘ |

S

EEquilibrium con 'guration
(wa,azg) = (Cv™,0)

A 1f the controller is an integrator, Casimir function are given by

§ =uc
 oH Cleq,70,6) =€ —zo I
Yo = a—g(f) e 4

M Asymptotic stability with

1+ < E+k  Same result with
Ca energy-balancing

E—

ALMA MATER STUDIORUM ~ UNIVERSITA DI BOLOGNA



L JIr fo

. . f_)_j:?f'\fgfv\ |
M Port-Hamiltonian model ex TR %Xelgﬁq%
L
i = — 1 OH I OH | ]
07q (2Q:72) = 5 (C L

I Desired equilibrium configuration

AN
cC’'L ) "R

@ From the matching equation we have that

1 0H, 0H,
i gng W@ Te) + g (@ re) =0 C)ie) = ) - R) My
OH,
e (xg,7r8) = B(rQ,*s)
Ha(vax@) — F(x@ + R$Q) K *x\2 _ R€*g
—¢ Ha(’i):—é—(&/&)
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Some stability tools

M For linear, distributed, port-Hamiltonian systems, it is convenient to
rely on the semi-group theory for proving

* Existence of solution, also in case of boundary control action

* (Exponential) stability in closed-loop

@ On the other hand, the strict connection between port-Hamiltonian
systems and “physical intuition,” suggests that it could be convenient
to rely on physical considerations for

% The synthesis of the control law
* (Asymptotic) stability analysis
@ Here, we give some of tools for

* Determining when the Hamiltonian has an isolated minimum

* Studying the steady state behaviour of the state trajectories, i.e. an
extension of La Salle’s invariance principle ﬁ
- s

“

}yl
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Some stability tools

M The idea behind the stability of distributed parameter systems remains
the same of the finite dimensional case, but the positive definiteness
of the second differential of the Hamiltonian is not, in general,
sufficient to guarantee asymptotic stability

* When dealing with distributed parameter systems, it is necessary to specify
the norm associated with the stability argument

I Definition. Denote by x™ an equilibrium configuration. Then, x™ is said
to be stable in the sense of Lyapunov with respect to the norm 1 1 if,

for every € > O there exists 0 > 0 such that
|l2(0) = 27| <0 = [[a(t) — 27| <e
M@ We refer to Arnold’s first and second stability theorems for linear and
nonlinear infinite dimensional systems
* Here, we speak about Arnold’s first nonlinear stability theorem

% A constructive procedure is now illustrated
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Some stability tools

™ Denote by H a candidate Lyapunov function, i.e. the Hamiltonian

@ Show that the equilibrium is an extremum of the Hamiltonian, i.e.

* —
VH(z") =0 check that b.c
. . tible
M Introduce the nonlinear functional are compa

N(Ax) = H(x* + Azx) — ) M N(Az) —AZETVQH(ZE*)Aa?

™ Verify if the functional satisfies the following convexity condition with
respect to a suitable norm, in order to assure its positive definiteness:

Cy || Az||” < N(Az) < Cy || Ax||® a,Cy,Cy >0

Af it is the case, the configuration is stable in the sense of the previous

definition... l ?
I...but can we do something for proving asymptotic stability?¢? U
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Some stability tools

™ To prove asymptotic stability, La Salle’s invariance principle could be
“too much,” so it is better to rely on other methods, e.g. the energy-
multipliers

M Just take o« = 2, and assume that x” = 0 with H(x") = 0
Ch [|lz]* < N(x) < G |l
M Suppose that there exists a function p such that
()| < Cp |||

for some Cp > 0, and a constant € > 0, supposed “small,” such that
V(z) = H(z) 4 ep(x)

satisfies

dV

@(ﬂ?(t)) < —C. |z®)| »
for some C¢ > 0, then x" is an asymptotically stable equilibrium 4
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Some stability tools

M In fact, we have that ; ;
(C1 —eCy) [lz]|” < V(z) < (C2 +eC)) |||

dV
dV C. —— (=) < _¢ 2
o £)) < — ¢ dt e //:C(t)//
a e s —m e Vie) =

——

lz(®)]| = 0

I Approaches similar to this can be often found in literature

* 7. H. Luo, B. Z. Guo, O. Morgul, Stability and stabilization of infinite
dimensional systems with applications, Springer—Verlag, London, 1999

& Another way is to rely on La Salle’s arguments
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Some stability tools

M a Salle’s invariance principle in brief: if in a domain about the
equilibrium we can find a Lyapunov function whose derivative along
system trajectories is negative semidefinite, and no trajectory can stay
identically at point where it is zero except at the equilibrium, then
this configuration is asymptotically stable

™ For a distributed parameter system, with state space X, consider the

following operator
d(t): X - X, z(t) =P(t)z(0)

* ®(t) is a family of bounded and continuous operators which is called Co-
semi-group on X

* The operator ® gives the solutions of the associated PDE once initial and
boundary conditions are specified

M Denote the set of all orbits passing through x by

y(z) = ®(t)x

t>0
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Some stability tools

@ Then, define the (possibly empty) w-/imit set of x as

w(zx) = {a‘c € X|z= lim ®(t,)x, with t, - co as n — oo}
n—oo

* . . . . o B
w(x) is always positively invariant, i.e A set V/ is pre-compact

Cb(t)w(x) C w(x) (or, relatively compact) if
its closure is compact ‘
I ———

M Theorem. If x € X and Y (x) is pre-compact, then wW(x) is nonempty,

compact, and connected. Moreover, distance
Jim d(@(t)z,w(z)) =0, dT,Q) = inf ||z -w| D

M La Salle’s invariance principle. Denote by H a continuous Lyapunov
function, and by & the largest invariant subset of )

~

{oeX|H(x) =0}, ie @®)B=8,vt>0 40 ,/(

% and closed

If Y(x)is pre-compact, then ‘\ /

lim d(®(t)x,B) =0
|

t— 00
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5 2A class of distributed port-Hamiltonian systems

M Linear PDE, with one dimensional domain X = Lo(a,b;R")
ox 0,

o (1.2) = Poo- (L(2)a(t, 2)) +(Po— Go) L(2)a(t, 2)
M Boundary port:

=5 )
(E)=a P)(E) » o .

\

=R

™ /nputs and outputs:

u(t) = W (fa(t))

_ i [ Ja(d) dH
es(t) y(t) =w <38(t))
™ Important properties:

%* This system with input u is a boundary control system

* Existence of a contraction semigroup on X when u(t) =
0

0 i e
jx:Pla £x+(PO_GO)£xt
(t) =0}

= {Lz € H'(a,b;R"™)




‘; A class of distributed port-Hamiltonian systems

™ For this class, let us study what happens when a finite dimensional,
linear port-Hamiltonian system is interconnected to the boundary

tc = (Jo — Re)Qczc + (Ge — Po) uc (Rg PC>>0
) =
yo = (Go + PC)Tchc + (Mc + Sc) uc ASCR T Qo=0Qf >0

—

Ac=(Jo—Rc)Qc Be=Ge — Pc
AC) BC) CC') DC’ !
( ) Y Co=(Go+Po)'Qe Do = Mg+ Sc

M Boundary interconnection:

(5= (0 (29) + (&) o 0= S0+ t0ores

@ In compact f(?rm: =He(t)
§=Jak )
u=Bx U’ —éFDCC Co) € =: B¢ i: <x0>65:: (R{fi

e (5 a) (o) .
The extended system is a L . cl BcC Ac Lo M
boundary control system . I
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(Boundary) Energy-Casimir control

M The control by energy shaping relies on the choice of the controller
Hamiltonian to shape the closed-loop energy to introduce a minimum
in the desired equilibrium configuration

% Such minimum is reached if “sufficient” dissipation has been introduced

* A common way is to relate the state variable of the controller to the state
variable of the plant by means of a set of Casimir functions

A Definition. Consider the (autonomous) port-Hamiltonian system
introduced before. A Casimir function is a function C that is constant
along the solutions for every possible choice of £ and Hc

C(z(t),zc(t) =T zc(t) + (¥ | z(t))

=T1zo(t) —I—/ Ul (2)a(t, 2)dz

a

We establish a constant algebraic
rolation between state of the plant and

of the controller




(Boundary) Energy-Casimir control

M The characterisation of the possible Casimir function is given by

P w(z) + (R0 (2) =

0z
Ro=Po=Ms=58c=0
constraint JoI + GeWR (qj(b)) — 0 o -

(
control action GEP +WR (qjéb)> — 0

dissipation obstacle

O (again...)

Py a\lf(z) + Py®(2) =0 Go¥(z) =0

M A “practical” choice is to have
b

roi(t) = (Y, | z(t)) = / Ul (2)x(t, 2)dz + Ky

a

These results are valid also when the
plant is described by a PDE plus ODE
—
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A A simple proof (with Gy = 0)

d g,
&C:FTx'C—l—/ \PT—de

OHc

1T (JC

- b

0

- 2((Eac)TP1\If) —(La)" (P12\If + Po‘I’)

0z 0z

ALMA MATER STUDIORUM ~ UNIVERSITA DI BOLOGNA



Example: transmission line + sRLC

M The distributed port-Hamiltonian formulation of the line is
( % 8 5HTL

(ta Z) - (ta Z) l 2

ot 0z 0 1 r: oo
e e = [ (G )
\ ﬁ(t, z) = "9z on, (L, 2)

/"

i JeREATE B g
M RLC load in series configuration: ol T T e
. aHL 1 332 5132 o 1
rQ — Ora HL(ijxq)) _ = Q 4 2 T —
OH OH A
. L L
Ty = — — R V tl
(I) (%Q L (933@ +
[ 0Hj, o *Desireo’ equilibrium
O, (%% % S
@ Boundary interconnection: L7C L, ) =(€0e50), orep

(To, Vo) = (22(0). $2(0))
(Lg, Vi) :( OH (0), OH (5)) % (Lo, Vo) = (—=1,V)

“51s )5 u,
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Example: transmission line + sRLC

I Let us fix the port-Hamiltonian controller as follows

() = uc(t) = Io(t)
vo(t) = 25 (€)= Vol

A1t is possible to prove that one Casimir function i Is present

f,a:Qx%x— —TQ — /:chz
Hc(€) = He (xQ+AequZ)

Physical interpretation??? I
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Example: transmission line + sRLC

. . “=Yyo +u
™ Asymptotic stability follows from La Salle’s arguments — — oY

* We add damping through the further input v’
u'(t) = —Kpy'(t),  Kp>0
* Coordinate change (move to 0 the equilibrium)

*
q

Hy = Hy + Hro + He

Ty =2y — T Ty = Ty —
T =g — T Tp = Ty —

 6H, Z4(t,0)

u’(t)—(sjjq(t,()): o T Kog(t)

~ 2 - 2
£Uczs(()))
; i —d_ R (22) -K
y'(t) = 5Hd(t,0) _ (.0 A\ dt k (LL> b ( L

- 0 L energy balancing

In steady state we have that xo, xo and g are
constant, with Hy constant, which implies that the
energy stored in the line is constant, and the line

ds constant applied voltages and currents |

The only invariant solution 15
with constant voltage and
current in the line




MWhat happens when boundary control by damping injection is
applied to a boundary control system in port-Hamiltonian form?
* See e.g. the previous situation with transmission line and sRLC

* What about the existence of solutions, i.e. associated Co-semigroup?

@ Given the class of linear, distributed port-Hamiltonian systems, a
contraction Co-semigroup is generated when

at) =W (fa(t)> =0, WIWT>0

63(t)
A If the system is in impedance form, we have that —_— ;Wi‘vx;i 1
W =
t ~ / - —
0= () 0= ()

T Let’s introduce damping
o _ i [ fo %751 T
o_u_u+KDy—(W+§DW)(68 ’ WEWT > 0

_J/
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Example: transmission line + pRLC

b A . o L fr ; J—
. . . D r— en Y ?
M@ RLC load in parallel configuration: G]WFTGQ
, 1 0H;, O0HL N
TH = — o ——
« RL 6’:1:Q | aZEq)
o — - 0H v Desired equilibrium
aCBQ * 1,% CIZE) wqb, _ _6:
,CB’Q _ ‘/’Cq _ 6* = = L — RL
— ‘ '
8:13q>

A1t is easy to check that there are no Casimir functions in closed-loop

* This is coherent with the fact that the supplied power at the equilibrium
must be in general different from 0

% The energy-Casimir method fails, as all the possible energy-balancing
controller
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(Boundary) Energy-shaping control

M Let us consider the next PDE, with the “usual” choice of u and y

ox o,
o \b7) = Plc’)( Poxiﬁ

Als the classical energy ba/ance Contro/ appllcable?
u(t) = Bla(t) + ' -t—/ (7)) dr = Ho(a(t) + »
T b/ 6H a T ox S g
RO = [ (Y G
.

rwn(E0) - [ (42)' (i s i)

)+ n (%))
|
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(Boundary) Energy-shaping control

@ The energy-balance controller exists if

g (i) o

\ oH OH
a b _ a b
BZ_WR(%D 'S ozwg(ég,magag)
control act; e
@M poundary condition

@ Now it is necessary to analyse what happens in closed-loop

%k Existence of solution

* Energy-shaping

* Stability analysis

M Note that the boundary action is state dependent < @ /
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Energy-shaping vs. energy-Casimir

M The idea is to see under which conditions the energy-balance control
law can be obtained from the energy-Casimir method

* All the results about existence of solutions, stability, and so on can be used

0
J Py @‘IJ( ) T PO\IJ(Z) 0 C(x(t)’xc(t)):PTCUC(t)+<lI/]x(t)>
c=20 ~ \Il(b) b
Go =1 JCF + GCWR (W(a)) = () :I’Txc(t) -I—/a leT(Z)CI:(t, 2)ds
(b)) _
car e wa (20 <o :
He(wo(t)) = He ([, U7 (2)a(t, 2)dz)
5H *
Yo = ofc _ —WR (5%’5 (b)) The relation is much clearer if analysed from a
Orc 5o (@) “geometric” point of view, as in finite dimensions
control action
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@ The stabilisation can be alternatively performed by relying directly on
energy-balancing considerations

L
* The class of functions H, is given by e f®<\LfR A e
| =
€Q

/
H,(&), &=uzq +/ T, dz
0
%* The control action is then given by

OH,
5(33q,$@) - = ag

(£(z4, 7))

@ Clearly, the result is the same, provided that Hc = H,

H,(6) = SC (e € — "L+ Ko(Cr+ O
T
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State-modulated boundary control

@ Energy-Casimir method fails because we look for H; (or Hc) functions
that are independent from the Hamiltonian and from the dissipative
structure

* If you restrict the dynamics of the closed-loop system on the invariant, in
finite dimensions it is immediate to see that the feedback action maps the

open-loop systema into a “desired” ong 5
, H H v O0Hc Ow
=(J—-R)—+Gu=(J—R)— — R
t=(J— R) 5 Gu = (J — R) 5 GGg Ire

‘ o
» a5 7= G
i = (J = R)2—(H + H) o

%k s it the same in the infinite dimensional scenario????

M'Why don’t we try to do the same for a specific system dynamics, as in
the control with state-modulated source, here applied to the
boundary of the domain??¢? I

ALMA MATER STUDIORUM ~ UNIVERSITA DI BOLOGNA



oH b)
o _p 2 g™ uowa (]
ot P Oz dx (Fo = Go) ox %(a
M Target (or desired) dynamics o
Ezplaz ox (Fo = Go 0x °~d(a)
M Matching conditions
u = B(x)+u H;=H+ H,
!; same state evolution!!
5H.g
0 6H 6H, ( 7 (b)> 0
= — =0 + WR | %
1 0z dx (o = Go) 0x b 5(5; (a)

An energy-balancing controller satisfies these
\ conditions, but the inverse implication is not true
2 ) | }
\——
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Example: transmission line + pRLC

@ The distributed port-Hami/tonian formulation of the line is
( é%ﬁq é? 5ffTL

— (t,2) = 2

ot CE 5% 1 Yo T
Oz, Z)__a(SHTL ! Hrv(@q, 7o) 2/ <O+L>dz
ot T 0z bxy bz

/"

fo Kk~ fr fa
: . , oA ey Ty
G RLC load in parallel configuration: ex z RL%X CE\—X@Q
. L OH, , OH, (a2 a2 | J
- _ ——
@ Ry, 0xqg Oz Hi(zq,ze) = 5 <CL + )
0OH
T =~ -4V t;
LQ . Desired equilibrium
<9EIL 1@ ;r¢ T* -
I p— E —— Q @ * 6* e*
-y L GL) (TR R\)
& Boundary interconnection \LLJ

(To, Vo) = (22(0). $2(0))
(Ip, V) = (—5—H(5), 5_H(€)) & (L,V) = (-1LV)

0T 4 o,
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@ Complete model of the plant:

o2 (/0 —1 0 0 000 0 o\) [
/3% _ /— 0 0 o\ 0 /0 0 0 0\ S
“Ylo o oofaTlo 0o & 1](]an
o) Wooo0)™ Vo o)) 3
Lo

@ A similar expression is valid for the desired dynamics, but with a
different Hamiltonian

% Open-loop and target systems have the same “interconnection structure,”
and resistive relation

* Only the Hamiltonian is changed thanks to the control action
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M We obtain that
0 0H, 0 0H,

0H,
&zch

(O) boundary control action

)
z, 4+ Rpxq)dz
q Q
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Example: transmission line + pRLC

I Stability follows from [a Salle’s arguments, once further dissipation is
introduced in z =0

. u'(t) = %(t, 0) = Zalt0) g

. J({t)=-Kpy(t), Kp>0 ( oo ~ (c | LRLE()
: L . Y(t) = <=2(t,0) = Ze(b,0 )

@ The starting point is the energy-balance relation: %y L THew

dHq e A\’ Z4(0) A\

—v, — - |\ A KR — K K o -~ e
dt Ry (CL + L§> D( L T Lf T, =Tq— Tq Tp = T ajci
ng:g;Q—xZ? To =2 — Lo

$(0)
L

steady state

o, Xo and § are

ich implies that the

nd the line as ,The.only Invariant solution
IS with constant voltage

and current in the line | I
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In steady state we have that x

constant, with Hd constant, wh
he line is constant, a

voltages and currents

energy stored in't
constant applied




“Almost linear” d-pH systems

@ The motivating problem has been the stability analysis of a nonlinear

flexible link, with one-dimensional spatial domain
(dq 0 0H SH — =

ot~ 0z 5p T adera) 5 op
Op 0 0H OH (5_H

— = —— —ad/ A
L Ot 0z dq a+n) 5, 0q P op

*H(q,p) = %/Z ((p!p>y+ (q | Q>c—1)dz

@ “Natural” boundary ports

(To(t). Wa() = (5 (6.0~ (£0))

(10 W0) = (5, 0. 5 (.1)
M The system has a nonlinearity in the algebraic skew-symmetric term

% Lxistence of solutions with algebraic boundary control

Y/

dH

E(t) = (Wr(t), T (t)) + (Wo(t), To(t))

%k Stability analysis
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“Almost linear” d-pH systems

@ We study the following class of distributed port-Hamiltonian systems
ox 9,

gy (t,2) = Pl& (E(z)a:(t, z)) J( Py(z, z)ﬁpz)x(t, 2)
!L X =C'(a,b;R"),
H(x(t, ) = % / 2Tt 2) ()t 2) d —

@ We use the same parametrisation for the definition of v and y

* Boundary port:

(B)-5(F )& o8 aew)

J

wywT _ WEWT —0
e (1) fa(t) WIW?T =

-~

=R

% Boundary input and output:
t
0= (50)

It is possible to “revea
in both the direction

() =y (Du(r)

the power traveling along the spatial domain,

I//
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“Almost linear” d-pH systems

@ Proposition. There always exists a coordinate change that puts the
system in the following form:

5 terms of class C’
% t,2) Qe (. 2) 0T er 2

diagonal

VEG)PVER) =" @A) A= (Y70 )

§(t,2) = D(2)VL(2)a(t, 2)

‘—T

ttering decomposition
(S—\- a(st(;?s—,a(t)) — (g—\—(tv CL), ‘g——(tv a))
Z) dz \ (S-%j b(t)a S—,b(ﬂ) — (£+(t7 b>7£— (tv b)M
e __aa

™ Energy and energy balance:

LA (B)E- () — ET(B)A+ (B)&+ (b)) +
1@ ()84 (a) — €7 (@A ()¢ (a)
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“Almost linear” d-pH systems

A In the context of quasi-linear hyperbolic PDEs, we have the dynamics
in terms of the Riemann invariants or coordinates
%7 Z) :g

0&; 0E;
€z(t,z):)\i(z) éhq’(t,z), i=1,....n g —
ot 0z
% t t t
§r
5(t) + ni(z(t) =9 &~
/
)\j <0
)\z’ > ( g—l—_
£_
t=20 t=20 t=20 t=20
Z=a Characteristic curves 2z =10 zZ=a Boundary conditions z=20

A1f Po and £ do not depend on z, we have
2 §— (ta Z) _ Al 0 2 5_(t72) ue(t) = <S—,b(t)>
ot <§+(t, Z)) - ( 0 —A_|_) 0z <£+(t72)> ’ S( ) 3_|_,a,(t)
bR (62,602 (§07) ity = (50
£(t2) = el T st
S\WH2) =94 \/Z(z) (¢, 2) port-Hamiltonian system scattering variab Iesl



“Almost linear” d-pH systems

M Inputs and outputs, and algebraic boundary control
1000

() ¢
7o ug(t) = g(ye(t))

’ ((CD L) ) 0 ) (( . (b)> control action
(Lx)(

0 (WF) (a)
M Some definitions...

~N O O

01
I0
00

%k Norm on &":
€] == max(|&il, i=1,...,n)
% Norms for C° and C! functions: 7
Jolco(ap) = max | fo(2)]

filetaw) = 1fileowy) + | filco,n
%k Spectral radius of a matrix A:
p(A) = max(|A;])
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“Almost linear” d-pH systems

M Theorem (Prieur et al. [2008]). Let us consider the “almost linear”
port-Hamiltonian system, with the boundary control introduced
before. Given €9 > 0 and M > 0, if

p (abs (Vg(0))) <1

and

V (ME)E)|,_, < M
then there exists 0 < €; < €9, 1 > 0 and C > 0 such that, for all
continuously differentiable initial conditions €7 € Bc(€;), there exists

an unique solution for the PDE, and the solution satisfies
€, )] o1 0,0y < Ce ™ €F| oy 0,0y, VE >0
@ Note that asymptotic stability is obtained e.g. if

0 k e
Ug = (k?a ()b) Y¢ t‘ Kok <1 #\ /&

This is equivalent to have full § 2
boundary dissipation at least on one I
side of the domain ‘
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Stabilization of a nonlinear flexible beam

A Let’s apply the previous result to the nonlinear beam equation

.= (363) =% ) n=(10)
e

(Lx)(t,2) = (?p—_llg((f: 2) — (‘;/((ti’ j))) | co-energy variables]

R —

™ For the boundary input and output, we proceed as before

o L(T-To 1 (W W
O 2 \ W + W 0= A\ Tr+T

2 2 \ I 0
u = (32) Yy = (%2) \system in impedance form I
T —
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Stabilization of a nonlinear flexible beam

A(OF

€ (o) = —u (\/C—lq(t,z)+ Ip_lp(t,z)> N g_(t,z):ixp(\/EW(t,zHﬁpT(t,z))

A Scattering decomposition:
VO~ I =U'Tw
I After the coordinate change...

N—

V2 @ V2
£ (t,2) = \%xp (\/C—lq(t,z) - Ip_lp(t,z)> = (t,2) = %\If (\/EW(t,z) —VI,T(t, z))

@ ...and on the boundary
(S_|_,Q7 S_,()) T\Ij (\/_W() + \/_TQ, \/_WO — \/_TO)

(S+.0,5-1) = E (\/_WL — \/TOTL, VOW + \/_pTL)

M In case of free-end in z = L, and control action in z = 0, we have
—1

_ WO _ KDO TO ™ S1L.0 CKD—\/f \/EKD—F 1 S_0
=)--(vo)(n) @ ) VKD ¢ 2o
N—— = —

S—L — —S+,L

- KD>OJ
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Dirac structures & control synthesis

M A Dirac structure describes internal power flows and the power
exchange between the system and the environment

@ Denote by 7 x £ the space of power variables, and by (e, f) the
power associated to the port (f, e) e Z x £

I Definition. A (constant) Dirac structure on Z is a linear subspace D c
7 x £ such that
dim D = dim F (e, f) =0, Y(f,e) €D
M Coordinate representations:

ErT
D:{(f’e>€fxg|f=ETA,ezFTA,AeRn} Fr v e _

T ﬁk(F/E):n
D=1(fe)c FxE|Ff+FEe=0 o
{ }

-

oOH

port-Hamiltonian system I




Dirac structures & control synthesis

@ In the general case:

D = {(f57fR)fC7f17657€R7€C761) e F x¢& ’
Fsfs+ Frfr+ Fofc + Frfr+

Rifr+ Reerp =0

resjstiye relation

»

|

ox

RfRE = Re
rank (Rf \

—

: OH
—Fst+ Es—— + Frfr + Erer+

+ Eses + Erer + Ecec + Erer = 0}

R} >V
R€> ::dlm]:R

e

+Fofo+ Ecec + Frfr + Erer =0
RffR + ReeR =0

7 (interaction)

S (storage) C (control)

R ( dissipation) J
e —

d
d\tngng +e?f[

—_—

—

—

This is the most general formulation of a
port-Hamiltonian system. Usually, the
spatial discretisation of a distributed
parameter systems is in this form |




1 0
0 1 fo
0 0 (f¢>+
0O O
=:Fg,
0
L
0
0
=:ER s
S ,
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Dirac structures & control synthesis

@ 1n a similar manner for Dirac structures on Hilbert spaces

& Assume that the space of flows 7 = £ is an Hilbert space, and denote
by ¢ | -) the inner product on 7

* The Cartesian space 7 x £ is an Hilbert space with the inner product
((f1,e1) | (f2:€2)) rge = (f1 ] f2) + (€1 ] e2)
% The bond space &is 7 x € with the indefinite product
< (fr,e1), (f2,e2) >= (f1 | e2) + (f2 | e1)
* Given a linear space # c &, its orthogonal complement is
At = {a’ eB |<a,d >=0, Vac A}
I Definition. 2 is a Dirac structure on & if
D =D"

D:{(f,e)eB | f:E*)\,e:F*)\,V)\EA}

- D:{(f,e)€B|Ff—|—Ee:O} I
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0 0
a—f(t, z) = Pl& (L(z)x(t,2)) + (Po—Go)L(2)x(t, 2)
% Boundary port: H2(t)) < _% lz(2)])
1 (P, —P b - -
(D) =5 ) (D) s i) < om0
* Inputs and outputs: -
_ o(t) _ i (folt) dH T
ST = WEWT =0 u(t) =W (ea(t)> yt) =w (ea(t)> - (@) =y~ (Q)u(?)
wsw' =1
% Dirac structure: }“\
I P2+ P 0 =S5 X Fr X Fe
e |9 gl —~Gr, o (] T ——
S 0 7| -WERB A
0 ~WRB 0
GR 0 0 Fg = L2(a,7b;Rn)
0 {0 10 Fr=R"
Ep = 3 Fo = ? Ec = é Fo-®
fo— 02 0H _ I
T ot STy LT ern=-Gfp
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Dirac structures & control synthesis

™ Kernel representation:
dom (F E) = {(f, e) € F xE | eg absolutely

\

865
continuous, and —— € Ly(a, b;R"™) ¢

0z J
M /mage representation:

* A W )

dom(F*> :{AEA | (A ) _ (W)RBAS

A= (s, Ar, Ay, M) ! E y ,
| c_ (-pL—-P —Gr ! Oﬂ
A:LQ(CL,bQRn)XRTXRnXRn ES_—:&Z/

Vv

The image representation

D:{(f,e) €B | f=FE*A\ e=F*\ V)e A
allows an easy mapping of the effect of the
boundary (inputs) on the system dynamics: for
this reason, it is the main tool used in the control

synthesis J -

E 5
Rl

em— ==
_— -
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Dirac structures & control synthesis

M Energy-balancing control in case of finite dimensional systems

GOV e = (GEEO) 0 = e

THa
(_aax E§+5TE£>A=0
0H, I
—Es— + Ecp =0

M A sufficient condition is that

ERNE

Ep
T
_gHG c Im ?% =D
Ox S
0 FE
\ 5 ) \F

This is equivalent to the control by I — o obstacle???
. . . . . disS,pa ,O °
I interconnection and Casimir generation ALMA e ———, _




Dirac structures & control synthesis

I For distributed-parameter systems, we have

—B7 (2(1)y(t)

-

<Ecﬁ — Eg

ot
ox

0
0

0
\ -5/

b 6TH,
Ox

/

OH,
ox

*

(£
5
2

R

\

ox
(tv Z) E (ta Z)dZ

|A>:O
- (0, 0, 0

0H,
» S !

0,-8) €D

Ec

\F¢ )

All the results based on energy-Casimir
method for distributed port-Hamiltonian
systems are solution of this PDE

|
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Dirac structures & control synthesis

M Let us consider at first the finite element model of a transmission line,
which is characterized by a Dirac structure with matrices

Foo — (FS,OO FC,OO FI,OO) Eoo — (ES,OO EC,OO EI,OO)
and an Hamiltonian

L
1 N
controller — 4 1

load

The plant is a finite dimensional port-

Hamiltonian system with control port (fc, ec) ’/
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Dirac structures & control synthesis

™ For the complete system we have
T
T = ($Q T $oo) t‘ H(z) = Ho(Too) + Hp (20, 20)

-

M Simple physical considerations lead to the desired equilibrium:

ﬁ:xff*ze* ﬁ:x;’*:o
CL CZ LL Li
@ The energy-balance controller follows if it exists A such that
OH, _ T
- Ox =57 A

= R Lo

0=EsA=Efg\=Fp\=E}\
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Dirac structures & contral cvnthecig

L r
fﬂfiwwim—@
LS “er _|
6[ CL Tte

M The port-Hamiltonian formulation of the line is

( Oz

(t,2) = — (t,2) . 2
ot 0z 0 1 r: oo
e e = [ (G )
\ ﬁ(ta z) = "9z on, (L, 2)

0 0Hr, ——

/"

o . o . . F _
@ In case of RLC load in series configuration: s = Ly(o GR?) o o

(1 0 0 0) (0 -0 0 0) ‘R=F
010 0 9, 0 0 0 T =R
00 1 0 @ 0o 0 1 —
00 0 1 e 10

Fs=10 0 0 of #57 () 0 -1
00 0 0 0 1 BR:—RLfR
0 0 0 0 — o 0 0 - o
\0 0 0 0/ \ Cl)o o)
0 0 0 0
(0\ {0\ (0\ (0 .
0 0 0 0 Desired equilibrium

Foe |V Bpe | o= |2 Bo=|Y
0 0 0 0
1 0 0 0
0 0 0 1
\0/ \0/ \1/ \0/
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O 0, 0 0 0 0 0 O
E* L (8z O O \ __A/L: LQ(O,Z;R2)><R6
710 0 0 T
Ag0> Aq0)
\0 0 1 A = Orgs Mg AQs A&y ALy AR 290, 2407

E* N
F*> == {)\ cA ’ )\q(O) = )\q07 >\¢(O) — )\(po,

A(L) = Mgz Aol(L) = Acp}

@ To have a boundary energy-balancing control we need that

0H, OH,
0H, OH, i/
¢ T Al A0 T s g b » VV‘_’

H = Cyd e
a(§)7 g_wQ_l_/O QZ‘q Ztl 6(33(],37Q)—— ag (5)

1(€-¢)? . CL+C>
Ha(i)zé(gc ) — € <1+ Cc .

C
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Dirac structures & control synthesis

@ Finding the £B regulator means finding a state dependent control
action able to shape the open-loop Hamiltonian, in such a way that
closed loop and target dynamics have the same behaviour at the
storage, resistive and control ports

* Very strong requirement!

* Let us ask less: just a matching between open-loop plus controller, and
target dynamics (with desired stability properties)

—& = B3 —& = Eg\
M e, PR E ey
—a. — 1I's \-——

O Oz
T
ECc = F A controlled system cc = FoX !
’ m
ec = B(z) + ec t Hy(x) = H(z) + Hy(x)
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Dirac structures & control synthesis

@ Since trajectories are required to be the same

0=FEi(\A=N\)

0H,
= FF (A=)

0= (RyER + RFg) (A —X)
B=Fc(A=N)

At is possible to prove that the open-loop system is mapped into the
desired closed-loop one, for which the Hamiltonian function Hy is

[0,

ox

»

0
\ 8 /

c Im

selected so that “nice” stability properties are satisfied

T
( ?S% \
RfEE -+ ReFE
\

% Asymptotic stability follows as in case of energy-balancing regulators

In a similar manner, this result can be
obtained in the distribute

d-parameter scenario

0 Eg

dHa F; 3
ox — = o, *
_8 Fé
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Dirac structures & control synthesis

@ 1n case of pRLC with the fem of the line, the desired equilibrium is

Ty T . Ty 513:5* e*
e S p— — e — = —
CL Cz LL Lz‘ RL
@ The control synthesis requires to find A, such that
OH, _ T
T = Fs™ A
B=Fc"\

0=FEi\= (R Ej + Fg)A

B(x)

_RL 5

@ A possible choice for H, can be the following:

1) e
Ha(f) — 5 LC RL

; —. e
totic stability is a consequs
il ality

of the energy dissipation inequ



Dirac structures & control synthesis

M In the distributed parameter case, the desired equilibrium is

Ty Lo T wh\ _ o € . €
C'L’CL L) Ry Rp
@ The Dirac structure is similar to the previous case, with the same
domains, and this only noticeable difference:

(00. 0 0 0 0 0 0) A=1,(0,4;R?) x R
e _ |20 0 0 0 0 00 T
ST1lo 0 0 -1 0 -1 0 0
\0 0 1 0 -1 0 0 0 §— O o Ao o Az A Ao )
S e — e — oH, 0H, L
P T Sy Owe Hq(§), €=$¢+RL$Q+/ (g + Rpzg)dz
S SH, OH,
M = Ao = App = Ago = —f8 = 1@ !
q Q qL q0 5~ &fq 83}@ ﬁ(xq, L4, T, xq)) 6’H
- RL)\R—I—)\Q — O
\

1 *
H,(¢) = Lpeqe e
| ~ (g) 2K(§ 5*)2 _ }T‘Sﬂ K >(i/
\‘ \L]_‘




parameter scenario
% Energy-balancing method
% Energy-Casimir method

% Control by state-modulated source

@ Connection between port-Hamiltonian systems and semigroup theory
* Existence of solutions for the open and closed-loop systems
* Stability analysis
™ a Salle’s invariance principle in the distributed-parameter case
* Powerful tool, with some technical difficulties to be applied
* Strong connection with physics, and with the finite dimensional case
A Initial results on nonlinear distributed port-Hamiltonian systems

* The Riemann invariants, or scattering coordinates, as a possible framework
to tackle the problem I
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