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Overview

This lecture is devoted to two main topics 
Modelling of distributed parameter systems 
within the port-Hamiltonian framework 

Energy-based control of a class of distributed 
port-Hamiltonian systems with one dimensional 
spatial domain



Very good…

Now, let’s start with some 
modelling!!



Modelling origins

This part presents the formulation of distributed parameter systems in 
terms of port-Hamiltonian system 

For different examples of physical systems defined on one-
dimensional spatial domains, the Dirac structure and the port-
Hamiltonian formulation arise from the description of distributed 
parameter systems as systems of conservation laws 

Systems of two conservation laws describe two physical domains in 
reversible interaction 

They may be formulated as port-Hamiltonian systems defined on a 
canonical Dirac structure called canonical Stokes-Dirac structure



Modelling origins

Boundary port-Hamiltonian systems that extend the port-Hamiltonian 
formulation from lumped parameter systems 

Dynamic models of distributed parameter systems are defined by 
considering time and space as independent parameters on which the 
physical quantities are defined 

Vibrating strings or plates; 

Transmission lines or electromagnetic fields; 

Mass and heat transfer in tubular reactors or fuel cells 

Distributed parameter systems are now formulated in terms of systems 
of conservation laws



Conservation law and irreversible thermodynamics

Heat diffusion in 1-dimensional medium (e.g., a rod with cylindrical 
symmetry) 

The medium is undeformable (i.e. its deformations are neglected); 

Only the thermal domain and its dynamics are considered 

Write a conservation law of the conserved quantity i.e., the density of 
internal energy, denoted by u(t,z): 
 
 

The heat flux JQ arises from the thermodynamic non-equilibrium and 
is defined by some phenomenological law, for instance defined 
according to Fourier’s law by:
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Conservation law and irreversible thermodynamics

The thermodynamic driving force F(z,t) characterises the non-
equilibrium condition 

Conservation and phenomenological laws should be completed by a 
relation between the driving force F and the conserved quantity u; 

This relation is given by the thermodynamical properties of the medium 
which is characterized by some thermodynamical potential 

The thermodynamical properties are given by Gibbs relation: 
 

s is the entropy of the medium (extensive variable); 

Due to the irreversibility of thermodynamic processes, T is strictly positive, 
in such a way that one may choose equivalently the internal energy or the 
entropy as thermodynamical potential 

Who is the thermodynamic potential?

No exchange of matter and the volume of the medium is constant

du = Tds



Conservation law and irreversible thermodynamics

Choice #1: the internal energy u = u(s). Then, Gibbs relation defines the 
temperature as intensive variable conjugated to the entropy:  
 

This leads to the following entropy balance equation (also called 
conservation law with source term or Jaumann’s entropy balance): 
 
 
with 
 
 

The flux of entropy may be written as a function characterising the 
(irreversible) phenomenon of heat conduction and in terms of the 
generating force:
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Conservation law and irreversible thermodynamics

Choice #2: chose the entropy s = s(u). Then, Gibbs relation defines the 
inverse of the temperature as the intensive variable conjugated to the 
internal energy: 
 

The heat flux is a function of the driving force

1

T
=

ds

du
(u)

JQ = �(T, z)T 2F 0 F 0
✓
1

T

◆
=

@

@z

ds

du
(u)

Usual expression of heat conduction. The 

start is the calorimetric property (assume a 

constant volume): 
 
By direct substitution in the conservation law, 

one obtains the heat equation:  
 
 
Note that this does not retain the structure of 

a conservation law

du = cV (T )dT
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The thermodynamic axioms (near equilibrium) define dynamical systems as conservation laws, completed with the definition of the flux variable by an irreversible phenomenological law, expressing the flux variable as a function of the generating force which is the spatial derivative of the differential of some thermodynamical potential characterising the thermodynamic (or equilibrium) properties of the system
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Reversible physical systems of 2 coupled conservation laws

In order to define a port-Hamiltonian formulation for 
infinite dimensional systems, we shall apply the 
thermodynamic analysis to reversible physical systems 

Electromagnetic or elasto-dynamic systems are 
considered as two physical domain coupled by a 
reversible inter-domain coupling 

In bond graph terms this coupling is represented by a 
gyrator; 

For distributed parameter systems, one may define some 
analogous canonical inter-domain coupling which 
however correspond to an extension of a symplectic 
gyrator 

The thermodynamic perspective for reversible 
physical systems makes appear a canonical Dirac 
structure associated with some canonical inter-
domain coupling



Reversible physical systems of 2 coupled conservation laws

Ideal lossless transmission line: 
 
 

The current and voltage are the flux variables of the conservation laws 
 
 

The flux variable of the electrical domain is identical with the co- 
energy variable of the magnetic domain and vice versa 

This is the canonical inter-domain coupling via a symplectic gyrator 

This relation is the pendant of the phenomenological law for irreversible 
systems, for reversible systems 

It expresses a coupling by a anti-diagonal matrix which has no parameters 

The electro-magnetic energy “is” the thermodynamical potential
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Reversible physical systems of 2 coupled conservation laws

Definition. Consider a functional H defined by  
 
 
for any smooth real function x(z), z ∈ Z. The variational derivative of the 
functional H is denoted by  
 
 
and is the only function that satisfy for every ε ∈ R and smooth real function 
δx(z), z ∈ Z, such that their derivatives satisfy δx(i)(a) = δx(i)(b) = 0, i = 0,...,n: 
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Reversible physical systems of 2 coupled conservation laws

For the transmission line, the co-energy variables are then interpreted 
as the variational derivatives of the total electromagnetic energy  
 

This system is an infinite-dimensional Hamiltonian system defined 
with respect to the matrix differential operator:  
 
 
and generated by the Hamiltonian function H 

One has to check that the matrix differential operator satisfies 
Skew-symmetry; 

Jacobi identities 

Consider two vectors of smooth functions
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Reversible physical systems of 2 coupled conservation laws

Skew-symmetry: 
 
 
 

Jacobi identities: immediate since J is a constant differential operator 

As in the finite-dimensional case, the Hamiltonian structure results in 
an additional conservation law, namely the conservation of energy:
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Reversible physical systems of 2 coupled conservation laws

For functions that are not zero at the boundary, the differential 
operator is no more skew-symmetric and boundary terms appear 

In terms of physical modelling, the energy is not conserved 
 

This suggests to introduce the restriction of the co-energy variables to 
the boundary of the spatial domain as external variables: 
 
 
where
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Reversible physical systems of 2 coupled conservation laws

Space of flow variables:  
 
 

Space of effort variables: 
 
 

Non-degenerated bi-linear product or pairing:
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Reversible physical systems of 2 coupled conservation laws

Proposition. The linear subset D ⊂ F × E defined by: 
 
 
 
 
 
 
is a Dirac structure with respect to the symmetric pairing:
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Reversible physical systems of 2 coupled conservation laws

Definition. A boundary port Hamiltonian system with state variables 
 
 
and port variables 
 

generated by the Hamiltonian functional  
 
 
with respect to the previous Dirac structure is defined by
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Reversible physical systems of 2 coupled conservation laws

Going back to the transmission line equation...
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Reversible physical systems of 2 coupled conservation laws

Vibrating string as a port Hamiltonian system 

State variables: 
 

Total energy, sum of kinetic and elastic energies: 
 
 
 
 

The model is expressed by:
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Reversible physical systems of 2 coupled conservation laws

By looking at the model: 
The first equation is purely kinematic; 

The second equation is Newton’s law; 

The fluxes are expressed as a function of the generating forces by: 
 

Port boundary variables:
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Reversible physical systems of 2 coupled conservation laws

Usually, the model of the vibrating string is expressed in terms of the 
geometric state variables the displacement u and the velocity v 

Total energy: 
 
 

System dynamics: 
 

This is an Hamiltonian system! However: 
The skew-symmetric operator depends on some parameter, and this goes 
against the idea of compositional modelling (energy and inter-domain 
coupling are now coupled with the definition of this matrix) 

The Hamiltonian system is not expressed as a system of conservation laws
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Reversible physical systems of 2 coupled conservation laws

Even if the model look simpler, there is a drawback for the case when 
there is some energy flow through the boundary of the spatial domain 

The variational derivative has to be completed by a boundary term as the 
Hamiltonian functional depends on the spatial derivative of the state:  
 
 
 
 
 

One may introduce the following two boundary variables:
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Bored????

So, it’s time for talking 
about control!!!



Initial remarks

This second part of the lecture deals with the energy-based control of 
distributed port-Hamiltonian systems 

Initially, this task has been accomplished via the energy-Casimir method 
Boundary control 

Application to particular systems (e.g., transmission line, flexible 
structures, fluid dynamics) 

Simple stability 

No analysis of solutions for the open and the closed-loop systems 

Linearity 

There has been the need for a connection with functional analysis, e.g. 
semigroup theory for linear, distributed port-Hamiltonian systems 

Precise formalization of the problem 

Results on the existence of solutions, definition of boundary control systems 
and analysis of interconnected systems 

Stability analysis, at least in the linear case



Initial remarks

The initial work has been then reformulated (and rediscovered) in this 
well-structured framework 

We now know how to prove existence of solutions, and to verify the 
stability properties in closed-loop 

Complete characterisation of the energy-Casimir method in the linear case, 
and for one-dimensional spatial domain 

The stability proofs can take advantage from other tools, the La Salle’s 
invariance principle in particular 

There some evil hypotheses to check 

Physical interpretation of the approach, and of the results 

Nonlinearities and state-dependent (boundary) control actions  

Move the focus to the trajectories, rather than on structural properties only 

Energy-based control beyond the dissipation obstacle 
“Geometric” interpretation of the results 

Simple nonlinear systems



Energy-based control

Let us consider a finite-dimensional port-Hamiltonian system: 
 
 
 
 
 
 
 

Standard approach is to rely on “energy considerations” to obtain and 
prove asymptotic stability of equilibria 

Damping injection 

Energy-shaping 

Standard assumption is H bounded from below

energy balancing



Damping injection

Suppose that H has an isolated minimum at a desired equilibrium 

The idea is to dissipate energy until the minimum is reached 
Asymptotic stability if there is “enough dissipation” 

Zero-state detectability 

La Salle’s Invariance principle 

The control action is



Energy-balancing control

In general, it is necessary to shape the open-loop Hamiltonian to 
introduce a minimum at the desired equilibrium 

From the energy-balance relation we have  
 

The standard formulation of passivity-based control requires to 
determine a control action 
 
such that the closed-loop dynamics satisfies: 
 

Hd is a desired energy function, while dd replaces the natural 
dissipation 

Energy-shaping plus damping injection

new energy balancing



Energy-balancing control

A large class of dynamical systems can be stabilized by requiring that 
the supplied energy is a function of the state of the plant 

We require that along all system trajectories 

The “desired” closed-loop Hamiltonian is then 

The previous PDE provides the class of Ha and the control actions, 
while stability analysis follows from the energy-balance relation 

u’ can be used to add damping



Energy-balancing control

The methodology can be applied to generic nonlinear systems  
 
 

From KYP lemma, passivity is equivalent to the existence of a function 
H(x) such that  
 

Matching equation: 
 
 

At the equilibrium:

supplied power

dissipation 

obstacle



Energy-Casimir method

Let us consider a port-Hamiltonian controller  
 
 
 
 

Closed-loop Hamiltonian:  

How can we select HC to properly shape the closed-loop Hamiltonian 
in the “x-direction”? 

We need to introduce the concept of Casimir function 

We look for, or we generate, a set of functions that are constant 
independently from the Hamiltonians, i.e. for all the possible achievable 
trajectories in closed-loop



Energy-Casimir method

We look for Casimir functions in the form 

In this way, for the closed-loop system we have 

The advantage is that 
There is no need to explicitly deal with the trajectories of the system 

Stability can be analysed by looking at the energy-balance only 

Complete characterisation of all the energy-balancing controllers

The solution is determined by the Dirac structure and independent from the 
resistive relation



Control with state-modulated source

The idea is to compute a state feed-back action 
 
so that the open-loop system is mapped into a new one, but with a 
desired Hamiltonian  
 
 
 

A direct computation leads to  
 

A further generalization leads to the IDA-PBC control technique, 
where we shape 

Hamiltonian 

Interconnection and resistive structure

matching condition



Example: “series” RLC circuit

Port-Hamiltonian model:  
 
 

Equilibrium configuration  

If the controller is an integrator, Casimir function are given by 
 
 

Asymptotic stability with

Same result with 

energy-balancing

Fig. 1. A port-Hamiltonian system.

D ⇢ F ⇥ E such that dimD = dimF and he, fi = 0,
8(f, e) 2 D.

It is clear from the previous definition that the Dirac
structure defines a power-conserving relation on F⇥E . Dirac
structures admit different representations in coordinates, [13].
For example, every Dirac structure D on an n-dimensional
space of flows F can be given in kernel representation as

D =
n

(f, e) 2 F ⇥ E | Ff + Ee = 0
o

(1)

or in image representation as

D =
n

(f, e) 2 F⇥E | f = ET�, e = FT�, � 2 Rn
o

(2)

where F and E are n⇥ n matrices such that

(a) EFT + FET = 0

(b) rank
�

F | E�

= n
(3)

and, in this case, he, fi = eTf .

B. Port-Hamiltonian systems

In case of finite dimensional port-Hamiltonian systems,
once the Dirac structure is given, the dynamics follows from
the port behavior of the energy storing elements. Denote by
X the space of energy variables and by H : X ! R the
energy function. Then, the port behavior is:

f = �ẋ e =
@H
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(4)

and, if the kernel representation (1) for a Dirac structure
is adopted, the associated dynamics is expressed by the
following DAE:

�Fẋ+ E
@H

@x
= 0, x(0) = x0 2 X

Note that, Ḣ = 0, i.e. energy is conserved, which is coherent
with the fact that no external ports and dissipative effects
have been modelled. Moreover, F and E may also depend
on x, and most of the results presented in this paper remain
valid in this situation.

In the general case a port-Hamiltonian system can be
represented as in Fig. 1. The Dirac structure D defines a
power conserving relation between several port variables.
In particular, there are two internal ports S and R, which
correspond to energy-storage and dissipation respectively,
and two external ports C and I, which are devoted to an
exchange of energy with a controller and the environment
respectively.

(a) Series configuration. (b) Parallel configuration.

Fig. 2. RLC circuits.

If (fS , eS) 2 FS ⇥ ES , (fR, eR) 2 FR ⇥ ER, (fC , eC) 2
FC ⇥ EC and (fI , eI) 2 FI ⇥ EI denote the power variables
of the energy-storage, dissipative, control and interaction
ports respectively, in the kernel representation (1) the Dirac
structure D is given by the following subset of F ⇥ E , with
F = FS ⇥ FR ⇥ FC ⇥ FI and E = ES ⇥ ER ⇥ EC ⇥ EI :

D =
n

(fS , fR, fC , fI , eS , eR, eC , eI) 2 F ⇥ E |
FSfS + FRfR + FCfC + FIfI+

+ ESeS + EReR + ECeC + EIeI = 0
o

(5)

where the matrices (Fi, Ei), with i = S, R, C, I , satisfy a
set of conditions similar to (3). If the behavior at the energy
storing port is given as in (4) and the dissipative port satisfies
the (linear) resistive relation

RffR +ReeR = 0 (6)

where Rf and Re are square matrices such that

(a) RfR
T
e = ReR

T
f > 0

(b) rank
�

Rf | Re

�

= dimFR
(7)

then the port-Hamiltonian dynamics results into the follow-
ing set of DAEs:

�FS ẋ+ ES
@H

@x
+ FRfR + EReR+

+FCfC + ECeC + FIfI + EIeI = 0

RffR +ReeR = 0

(8)

with x(0) = x0 2 X . Note that, in this case,

d

dt
H  eTCfC + eTI fI (9)

which means that the variation of internal energy is bounded
by the incoming power flows through the control and interac-
tion ports. In particular cases, it is possible to explicitly get
rid of the algebraic constraints in (8) and write the port-
Hamiltonian dynamics in input-state-output form. In this
paper, this most general formulation of port-Hamiltonian
dynamics is adopted.

Example 2.1 (RLC circuits): The RLC circuit in series
configuration reported in Fig. 2(a) is characterized by a Dirac



Example: “parallel” RLC circuit

Port-Hamiltonian model  
 
 
 

Desired equilibrium configuration  
 

From the matching equation we have that

Fig. 1. A port-Hamiltonian system.

D ⇢ F ⇥ E such that dimD = dimF and he, fi = 0,

8(f, e) 2 D.
It is clear from the previous definition that the Dirac

structure defines a power-conserving relation on F⇥E . Dirac

structures admit different representations in coordinates, [13].

For example, every Dirac structure D on an n-dimensional

space of flows F can be given in kernel representation as

D =
n

(f, e) 2 F ⇥ E | Ff + Ee = 0
o

(1)

or in image representation as

D =
n

(f, e) 2 F⇥E | f = ET�, e = FT�, � 2 Rn
o

(2)

where F and E are n⇥ n matrices such that

(a) EFT + FET = 0

(b) rank
�

F | E
�

= n
(3)

and, in this case, he, fi = eTf .

B. Port-Hamiltonian systems

In case of finite dimensional port-Hamiltonian systems,

once the Dirac structure is given, the dynamics follows from

the port behavior of the energy storing elements. Denote by

X the space of energy variables and by H : X ! R the

energy function. Then, the port behavior is:

f = �ẋ e =
@H

@x
(4)

and, if the kernel representation (1) for a Dirac structure

is adopted, the associated dynamics is expressed by the

following DAE:

�Fẋ+ E
@H

@x
= 0, x(0) = x0 2 X

Note that, Ḣ = 0, i.e. energy is conserved, which is coherent

with the fact that no external ports and dissipative effects

have been modelled. Moreover, F and E may also depend

on x, and most of the results presented in this paper remain

valid in this situation.

In the general case a port-Hamiltonian system can be

represented as in Fig. 1. The Dirac structure D defines a

power conserving relation between several port variables.

In particular, there are two internal ports S and R, which

correspond to energy-storage and dissipation respectively,

and two external ports C and I, which are devoted to an

exchange of energy with a controller and the environment

respectively.

(a) Series configuration. (b) Parallel configuration.

Fig. 2. RLC circuits.

If (fS, eS) 2 FS ⇥ ES , (fR, eR) 2 FR ⇥ ER, (fC , eC) 2

FC ⇥ EC and (fI , eI) 2 FI ⇥ EI denote the power variables

of the energy-storage, dissipative, control and interaction

ports respectively, in the kernel representation (1) the Dirac

structure D is given by the following subset of F ⇥ E , with

F = FS ⇥ FR ⇥ FC ⇥ FI and E = ES ⇥ ER ⇥ EC ⇥ EI :

D =
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(fS, fR, fC , fI , eS, eR
, eC , eI) 2 F ⇥ E |

FSfS + FRfR + FCfC + FIfI+

+ ESeS + EReR + ECeC + EIeI = 0
o

(5)

where the matrices (Fi, Ei), with i = S, R, C, I , satisfy a

set of conditions similar to (3). If the behavior at the energy

storing port is given as in (4) and the dissipative port satisfies

the (linear) resistive relation

RffR +ReeR = 0 (6)

where Rf and Re are square matrices such that

(a) RfR
T
e = ReR

T
f > 0

(b) rank
�

Rf | Re

�

= dimFR

(7)

then the port-Hamiltonian dynamics results into the follow-

ing set of DAEs:

�FSẋ+ ES
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@x
+ FRfR + EReR+

+FCfC + ECeC + FIfI + EIeI = 0

RffR +ReeR = 0

(8)

with x(0) = x0 2 X . Note that, in this case,

d

dt
H  eTCfC + eTI fI

(9)

which means that the variation of internal energy is bounded

by the incoming power flows through the control and interac-

tion ports. In particular cases, it is possible to explicitly get

rid of the algebraic constraints in (8) and write the port-

Hamiltonian dynamics in input-state-output form. In this

paper, this most general formulation of port-Hamiltonian

dynamics is adopted.

Example 2.1 (RLC circuits): The RLC circuit in series

configuration reported in Fig. 2(a) is characterized by a Dirac



Some stability tools

For linear, distributed, port-Hamiltonian systems, it is convenient to 
rely on the semi-group theory for proving 

Existence of solution, also in case of boundary control action 

(Exponential) stability in closed-loop 

On the other hand, the strict connection between port-Hamiltonian 
systems and “physical intuition,” suggests that it could be convenient 
to rely on physical considerations for 

The synthesis of the control law 

(Asymptotic) stability analysis 

Here, we give some of tools for 

Determining when the Hamiltonian has an isolated minimum 

Studying the steady state behaviour of the state trajectories, i.e. an 
extension of La Salle’s invariance principle



Some stability tools

The idea behind the stability of distributed parameter systems remains 
the same of the finite dimensional case, but the positive definiteness 
of the second differential of the Hamiltonian is not, in general, 
sufficient to guarantee asymptotic stability 

When dealing with distributed parameter systems, it is necessary to specify 
the norm associated with the stability argument 

Definition. Denote by x* an equilibrium configuration. Then, x* is said 
to be stable in the sense of Lyapunov with respect to the norm ∥ ∥ if, 
for every ε > 0 there exists δε > 0 such that 

We refer to Arnold’s first and second stability theorems for linear and 
nonlinear infinite dimensional systems 

Here, we speak about Arnold’s first nonlinear stability theorem 

A constructive procedure is now illustrated



Some stability tools

Denote by H a candidate Lyapunov function, i.e. the Hamiltonian 

Show that the equilibrium is an extremum of the Hamiltonian, i.e. 

Introduce the nonlinear functional  
 

Verify if the functional satisfies the following convexity condition with 
respect to a suitable norm, in order to assure its positive definiteness: 
 

If it is the case, the configuration is stable in the sense of the previous 
definition... 

...but can we do something for proving asymptotic stability??

check that b.c.  
are compatible



Some stability tools

To prove asymptotic stability, La Salle’s invariance principle could be 
“too much,” so it is better to rely on other methods, e.g. the energy-
multipliers 

Just take α = 2, and assume that x* = 0 with H(x*) = 0 

Suppose that there exists a function ρ such that 
 
for some Cρ > 0, and a constant ε > 0, supposed “small,” such that 
 
satisfies 
 
 
for some Cε > 0, then x* is an asymptotically stable equilibrium



Some stability tools

In fact, we have that 
 
 
 
 
 
 
 
 
 

Approaches similar to this can be often found in literature 
Z. H. Luo, B. Z. Guo, O. Morgul, Stability and stabilization of infinite 
dimensional systems with applications, Springer–Verlag, London, 1999 

Another way is to rely on La Salle’s arguments

Remark 3.3. By eliminating � and with the image rep-
resentation of the Dirac structure associated with (6) in
mind, the PDE (30) can be equivalently written as

P1
@

@z

✓

�Ha

�x
(x)

◆

+ (P0 �G0)
�Ha

�x
(x) = 0

WRBJ

✓

�Ha

�x
(x)

◆

+ �(x) = 0

(31)

as it can be directly obtained from (21) by equating the
desired closed-loop dynamics

P1
@

@z

✓

�Hd

�x
(x(t, z))

◆

+ (P0 �G0)
�Hd

�x
(x(t, z)) = 0 (32)

with the open-loop one (6). In this way, the first relation
in (31) is obtained. Moreover, due to the fact that the
control action is developed in order to not change the Dirac
structure, from Theorem 2.1, we have that for the closed-
loop system

u0(t) = WRBJ

✓

�Hd

�x
(x(t, z))

◆

(33)

so the second relation in (31) follows from (18). It is
worth noting that (31) can be directly employed in the
determination of the control action in place of (30) for the
particular class of distributed port-Hamiltonian systems
(6). On the other hand, (30) can be applied in more gen-
eral cases than (31), e.g. when is not possible to directly
equate the desired dynamics with the controlled one. Fur-
thermore, (30) holds for all the possible port-Hamiltonian
systems that are characterised by Dirac structures in the
sense of Definition 2.1. This property is strictly related
to the fact that Prop. 3.2 provides a geometrical inter-
pretation of the control methodology, and clarifies what
are the main requirements for the stabilisation problem to
be solved, i.e. same trajectories between target and con-
trolled system, but for a specific resistive relation. In this
way, a direct comparison with Prop. 3.1 that deals with
the energy-balancing control scheme, and also with the
energy-Casimir method, explains why and how the dissi-
pation obstacle is not a problem anymore.

4. A criterion for asymptotic stability

Propositions 3.1 and 3.2 provide two methods for real-
ising the energy-shaping of a port-Hamiltonian system via
full state feedback (18). Stabilisation in a desired equilib-
rium configuration x? 2 X is achieved by properly choos-
ing Ha in (21), to introduce a (possibly) global minimum
in x? for Hd. Then, as discussed in [26], to verify the sta-
bility of x?, it is necessary to show that it is an extremum
of the closed-loop Hamiltonian, i.e. rHd(x?) = 0. More-
over, let �x denote the displacement from the equilibrium
configuration, and let N (�x) = Hd(x? +�x)�Hd(x?) to
be a functional that is proportional to the second variation

of Hd. Then, the configuration x? is Lyapunov stable if
there exist C1, C2, ↵ > 0 such that

C1 k�xk2  N (�x)  C2 k�xk↵ (34)

where k·k is the norm determined by the natural L2-inner
product on X. Such set of conditions has to be “paired”
with an energy-balance relation that follows from the pas-
sivity properties of both open- and closed-loop systems
that usually takes the form Ḣd(x(t))  0 for a proper
choice of � and of u0 in (18), if necessary.

The energy-balance relation, however, is not usually suf-
ficient for proving asymptotic stability of the equilibrium
without relying on La Salle’s arguments, [27]. Under the
hypothesis that the closed-loop system is well-posed (see
e.g., [7, 8, 22, 29] for the linear case, that rely basically
on Theorem 2.1), a simple but useful result, based on the
energy multipliers method [27, 28], to check asymptotic
stability is now presented. More precisely, it can be used
to prove asymptotic stability of equilibria “by itself,” or
in combination with La Salle’s Invariance Principle, as in
Sect. 5, to verify invariance of solutions.

Proposition 4.1. Let us consider a port-Hamiltonian
system with Hamiltonian Hd, and suppose that x? 2 X
is a stable equilibrium in the sense of [26]. Assume that
↵ = 2 in (34) and, without loss of generality, that x? = 0,
and that Hd(x?) = 0. If there exists a function ⇢ : X ! R
such that

|⇢(x)|  C⇢ kxk2 (35)

for some C⇢ > 0, and a constant " > 0, supposed small,
such that function

V (x) = Hd(x) + "⇢(x) (36)

satisfies

dV

dt
(x(t))  �C" kx(t)k2 (37)

for some C" > 0, then x? is an asymptotically (exponen-
tially) stable equilibrium.

Proof. The proof follows a similar result discussed in
[27]. From (34) we have that C1 kxk2  Hd(x)  C2 kxk2,
and from (35) we have that

(C1 � "C⇢) kxk2  V (x)  (C2 + "C⇢) kxk2 (38)

with C1�"C⇢ positive if " is “small.” Then, (37) and (38)
imply that

dV

dt
(x(t))  � C"

C2 + "C⇢
V (x(t))

which means that V (x(t)) ! 0 exponentially, and so
kx(t)k in spite of (38).
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Some stability tools

La Salle’s invariance principle in brief: if in a domain about the 
equilibrium we can find a Lyapunov function whose derivative along 
system trajectories is negative semidefinite, and no trajectory can stay 
identically at point where it is zero except at the equilibrium, then 
this configuration is asymptotically stable 

For a distributed parameter system, with state space X, consider the 
following operator  

Φ(t) is a family of bounded and continuous operators which is called C0-
semi-group on X 

The operator Φ gives the solutions of the associated PDE once initial and 
boundary conditions are specified 

Denote the set of all orbits passing through x by



Some stability tools

Then, define the (possibly empty) ω-limit set of x as 

ω(x) is always positively invariant, i.e. 

and closed 

Theorem. If x ∈ X and γ(x) is pre-compact, then ω(x) is nonempty, 
compact, and connected. Moreover, 
 

La Salle’s invariance principle. Denote by H a continuous Lyapunov 
function, and by B the largest invariant subset of 
 
If γ(x)is pre-compact, then

distance

A set V is pre-compact 
(or, relatively compact) if 

its closure is compact



A class of distributed port-Hamiltonian systems

Linear PDE, with one dimensional domain 

Boundary port: 

Inputs and outputs: 

Important properties: 
This system with input u is a boundary control system 

Existence of a contraction semigroup on X when u(t) = 0 

II. BACKGROUND

A. Dirac structures on Hilbert spaces
Dirac structures on Hilbert spaces have been introduced in

[12], while their kernel and image representations have been
discussed in [13]. Here, for simplicity, we assume that the
space of flows F is an Hilbert space, and that the space of
efforts is E ⌘ F . Denote by h· | ·i the inner product on F .
The Cartesian space F ⇥ E equipped by the inner product

h(f1, e1) | (f2, e2)iF�E = hf1 | f2i+ he1 | e2i

with f1, f2 2 F and e1, e2 2 E , is called the Hilbert space
F�E . Differently, the Cartesian space F⇥E equipped with
the indefinite inner product

⌧ (f1, e1), (f2, e2) �= hf1 | e2i+ hf2 | e1i (1)

is the bond space B. Given a linear space A ⇢ B, its
orthogonal complement with respect to (1) is

A?
=

n

a0 2 B |⌧ a, a0 �= 0, 8a 2 A
o

Similarly to the case in which the bond space is a linear
vector space [11], we give the following definition, [13]:

Definition 2.1: Let F and E be the spaces of efforts and
flows, B the associated bond space, and D a linear subset of
B. We say that D is a Dirac structure on B if D = D?.

In [13], it has been proved that all the Dirac structures on
Hilbert spaces admit a kernel and an image representation. In
fact, denote by ⇤ an Hilbert space isometrically isomorphic
to F ⌘ E . For any Dirac structure D, there exists linear maps
F : F ! ⇤ and E : E ! ⇤ satisfying the conditions

FE⇤
+ EF ⇤

= 0 ran

�

F E
�

= ⇤ (2)

such that

D =

n

(f, e) 2 B | Ff + Ee = 0

o

(3)

where · stands for the closure of an operator, while ·⇤
denotes the adjoint operator, see e.g. [10]. From (2), it
follows that D can be also written as

D =

n

(f, e) 2 B | f = E⇤�, e = F ⇤�, 8� 2 ⇤

o

(4)

The expressions (3) and (4) are the kernel and image repre-
sentations respectively of the Dirac structure D. The image
representation is useful in the control synthesis because it
provides a simple way to parametrize the system trajectories.

B. A class of distributed port-Hamiltonian systems
In this paper, we refer to the class of distributed port-

Hamiltonian systems that have been studied in [15], [16],
i.e. to systems described by the following PDE:
@x

@t
(t, z) = P1

@

@z

�

L(z)x(t, z)
�

+(P0�G0)L(z)x(t, z) (5)

with x 2 Rn and z 2 [a, b]. Moreover, P1 = PT
1 > 0,

P0 = �PT
0 , G0 = GT

0 � 0, and L(·) is a bounded and
continuously differentiable matrix-valued function such that
L(z) = LT

(z) and L(z) � I , with  > 0, for all z 2 [a, b].
For simplicity, L(z)x(t, z) ⌘ (Lx)(t, z). The state space is

X = L2(a, b;Rn
), and is endowed with the inner product

hx1 | x2iL = hx1 | Lx2i and norm kx1k2L = hx1 | x1iL,
where h· | ·i denotes the natural L2-inner product. The se-
lection of this space for the state variable is motivated by
the fact that H(·) =

1/2 k·k2L is the energy function. As a
consequence, X is also called the space of energy variables
and Lx is the co-energy variable.

To define a distributed port-Hamiltonian system, the PDE
(5) has to be “completed” by proper boundary port. More
precisely, given Lx 2 H1

(a, b;Rn
), the boundary port

variables are the vectors f@ , e@ 2 Rn given by
✓

f@
e@

◆

=

1p
2

✓

P1 �P1

I I

◆

| {z }

=R

✓

(Lx)(b)
(Lx)(a)

◆

The boundary port variables are just a linear combination
of the restriction of the boundary variables, and simple
integration by parts shows that ˙H(x(t)) = eT@ (t)f@(t).

The problem of determining the “right” boundary inputs
and outputs for (5) to have a so-called boundary control
system on X , see e.g. [10], has been addressed in [15], [16].

Theorem 2.1: Let W be a n⇥2n real matrix. If W has full
rank and satisfies W⌃WT � 0, being ⌃ =

✓

0 I
I 0

◆

, then

the system (5) with input u(t) = W

✓

f@(t)
e@(t)

◆

is a bounda-

ry control system on X . Furthermore, the operator J x =

P1(@/@z)(Lx) + (P0 �G0)Lx with domain

D(J ) =

⇢

Lx 2 H1
(a, b;Rn

) |
✓

f@
e@

◆

2 KerW

�

generates a contraction semigroup on X . Moreover, let ˜W be
a full rank n⇥2n matrix such that

�

WT
˜WT

�

is invertible
and let P be given by

P =

✓

W⌃WT W⌃

˜WT

˜W⌃WT
˜W⌃

˜WT

◆�1

Define the output as y(t) =

˜W

✓

f@(t)
e@(t)

◆

. Then, for u 2

C2
(0,1;Rn

) and (Lx)(0) 2 H1
(a, b;Rn

), the following
energy balance equation is satisfied:

dH

dt
(x(t))  1

2

✓

u(t)
y(t)

◆T

P

✓

u(t)
y(t)

◆

(6)

In this paper, u and y are chosen in such a way that (5)
is in impedance form, i.e. W⌃WT

=

˜W⌃

˜WT
= 0, and

W⌃

˜WT
= I , so that P = ⌃ and (6) reduces to

dH

dt
(x(t))  yT(t)u(t) (7)

Under these hypotheses, (5) is characterised by a Dirac
structure on the space of flows

F = FS ⇥ FR ⇥ FC (8)

with FS = L2(a, b;Rn
), FR = Rr, and FC = Rn, being

r = rankG0. Here, (fS , eS) represents the energy-storage
port, (fR, eR) the dissipative port, and (fC , eC) ⌘ (y, u)
the control port, that is assumed with effort-in causality

II. BACKGROUND

A. Dirac structures on Hilbert spaces
Dirac structures on Hilbert spaces have been introduced in

[12], while their kernel and image representations have been
discussed in [13]. Here, for simplicity, we assume that the
space of flows F is an Hilbert space, and that the space of
efforts is E ⌘ F . Denote by h· | ·i the inner product on F .
The Cartesian space F ⇥ E equipped by the inner product

h(f1, e1) | (f2, e2)iF�E = hf1 | f2i+ he1 | e2i

with f1, f2 2 F and e1, e2 2 E , is called the Hilbert space
F�E . Differently, the Cartesian space F⇥E equipped with
the indefinite inner product

⌧ (f1, e1), (f2, e2) �= hf1 | e2i+ hf2 | e1i (1)

is the bond space B. Given a linear space A ⇢ B, its
orthogonal complement with respect to (1) is

A?
=

n

a0 2 B |⌧ a, a0 �= 0, 8a 2 A
o

Similarly to the case in which the bond space is a linear
vector space [11], we give the following definition, [13]:

Definition 2.1: Let F and E be the spaces of efforts and
flows, B the associated bond space, and D a linear subset of
B. We say that D is a Dirac structure on B if D = D?.

In [13], it has been proved that all the Dirac structures on
Hilbert spaces admit a kernel and an image representation. In
fact, denote by ⇤ an Hilbert space isometrically isomorphic
to F ⌘ E . For any Dirac structure D, there exists linear maps
F : F ! ⇤ and E : E ! ⇤ satisfying the conditions

FE⇤
+ EF ⇤

= 0 ran

�

F E
�

= ⇤ (2)

such that

D =

n

(f, e) 2 B | Ff + Ee = 0

o

(3)

where · stands for the closure of an operator, while ·⇤
denotes the adjoint operator, see e.g. [10]. From (2), it
follows that D can be also written as

D =

n

(f, e) 2 B | f = E⇤�, e = F ⇤�, 8� 2 ⇤

o

(4)

The expressions (3) and (4) are the kernel and image repre-
sentations respectively of the Dirac structure D. The image
representation is useful in the control synthesis because it
provides a simple way to parametrize the system trajectories.

B. A class of distributed port-Hamiltonian systems
In this paper, we refer to the class of distributed port-

Hamiltonian systems that have been studied in [15], [16],
i.e. to systems described by the following PDE:
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@t
(t, z) = P1

@
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L(z)x(t, z)
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+(P0�G0)L(z)x(t, z) (5)

with x 2 Rn and z 2 [a, b]. Moreover, P1 = PT
1 > 0,
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0 , G0 = GT

0 � 0, and L(·) is a bounded and
continuously differentiable matrix-valued function such that
L(z) = LT

(z) and L(z) � I , with  > 0, for all z 2 [a, b].
For simplicity, L(z)x(t, z) ⌘ (Lx)(t, z). The state space is

X = L2(a, b;Rn
), and is endowed with the inner product

hx1 | x2iL = hx1 | Lx2i and norm kx1k2L = hx1 | x1iL,
where h· | ·i denotes the natural L2-inner product. The se-
lection of this space for the state variable is motivated by
the fact that H(·) =

1/2 k·k2L is the energy function. As a
consequence, X is also called the space of energy variables
and Lx is the co-energy variable.
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integration by parts shows that ˙H(x(t)) = eT@ (t)f@(t).

The problem of determining the “right” boundary inputs
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✓
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✓
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As a consequence, X is also called the space of energy
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defined by
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✓
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The problem of determining the “right” boundary inputs

and outputs for (1) to have a so-called boundary control

system on X, see e.g. Curtain and Zwart [1995],
has been

addressed in Le Gorrec et al. [2005], V
illegas et al. [2

009].

Theorem 1. Let W be a n⇥ 2n real matrix. If W has full

rank and satisfies W⌃WT � 0, being

⌃ =
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then the system (1) with input
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Rn. Furthermore, the operat
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✓
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with C : H1(a, b;Rn) ! Rn. Then, for u 2 C2(0,1;Rn)

and (Lx)(0) 2 H1(a, b;Rn), the following energy balance
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See Le Gorrec et al. [2005].
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INTERCONNECTION

Among all the possible choices for input and output

suggested by Theorem 1, let us assum
e that u and y given

by (8) and (11) are such that P = ⌃. In this way, the
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res that
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T = I (14)

Let us consider
a linear contro
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form, whose most general for
mulation is

(

ẋC = (JC �RC)QCxC + (GC � PC)uC

yC = (GC + PC)
TQCxC + (MC + SC)uC

(15)
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MC = �MT
C , RC = RT

C, and
SC = ST

C, with
this further

condition satisfied:
✓
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Finally, assum
e that QC = QT

C
� 0, so that (15) is a

pas-

sive linear syst
em. For the sake o

f compactness, this s
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can be easily written in standard (AC , BC , CC , DC) form,

being
AC = (JC �RC)QC
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The control sy
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0 �I
I 0

◆

✓

uC

yC

◆

+

✓

u0

0

◆

(18)

where u0 2 Rn is a further contro
l input. This i
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n. The closed-loop system is
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X = L2(a, b;Rn), and is endowed with the inner product
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where h· | ·i denotes the natural L2-inner product. The
selection of this space for the state variable is motivated by
the fact that k·k2L is proportional to the energy function.
As a consequence, X is also called the space of energy
variables and Lx is the co-energy variable. This class is
quite general and includes models of flexible structures,
traveling waves, heat exchangers, and bioreactors among
others (if also dissipative e↵ects are included, see again
Villegas et al. [2009]). The PDE (1) can be also written as

ẋ = J x (2)

where J is the linear operator defined as

J x := P1
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(Lx) + P0Lx (3)
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D(J ) =
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(4)

To define a distributed port-Hamiltonian system, the PDE
(1) has to be “completed” by proper boundary port. More
precisely, given Lx 2 H1(a, b;Rn), the boundary port
variables associated to (1) are the vectors f@ , e@ 2 Rn

defined by
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The boundary port variables are just a linear combination
of the restriction of the boundary variables, and simple
integration by parts shows that
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kx(t)k2L = eT@ (t)f@(t) (6)

The problem of determining the “right” boundary inputs
and outputs for (1) to have a so-called boundary control
system on X, see e.g. Curtain and Zwart [1995], has been
addressed in Le Gorrec et al. [2005], Villegas et al. [2009].

Theorem 1. Let W be a n⇥ 2n real matrix. If W has full
rank and satisfies W⌃WT � 0, being

⌃ =
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(7)

then the system (1) with input

u(t) = W

✓

f@(t)
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=: Bx (8)

is a boundary control system onX, with B : H1(a, b;Rn) !
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generates a contraction semigroup on X. Moreover, let
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=: Cx (11)

with C : H1(a, b;Rn) ! Rn. Then, for u 2 C2(0,1;Rn)
and (Lx)(0) 2 H1(a, b;Rn), the following energy balance
equation is satisfied:
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Proof. See Le Gorrec et al. [2005].

3. POWER-CONSERVING BOUNDARY
INTERCONNECTION

Among all the possible choices for input and output
suggested by Theorem 1, let us assume that u and y given
by (8) and (11) are such that P = ⌃. In this way, the
energy balance relation (12) reduces to
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kx(t)k2L = yT(t)u(t) (13)

From (10), it is easy to see that this requires that

W⌃WT = 0 W̃⌃W̃T = 0 W⌃W̃T = I (14)

Let us consider a linear control system in port-Hamiltonian
form, whose most general formulation is

(
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(15)
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C ,

MC = �MT
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C , with this further

condition satisfied:
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Finally, assume that QC = QT
C � 0, so that (15) is a pas-
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where u0 2 Rn is a further control input. This is the stan-
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rank and satisfies W⌃WT � 0, being

⌃ =
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then the system (1) with input
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=: Bx (8)

is a boundary control sys
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generates a contraction semigroup on X. Moreover, let

W̃ be a full rank n ⇥ 2n matrix such that
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is

invertible and let P be given by

P =
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Define the output as

y(t) = W̃
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f@(t)
e@(t)
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=: Cx (11)

with C : H1(a, b;Rn) ! Rn. Then, for u 2 C2(0,1;Rn)

and (Lx)(0) 2 H1(a, b;Rn), the following energy balance

equation is satisfied:
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C ,
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Finally, assume that QC = QT
C � 0, so that (15) is a pas-

sive linear system. For the sake of compactness, this system

can be easily written in standard (AC , BC , CC , DC) form,

being
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where u0 2 Rn is a further control input. T
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integration by parts shows that
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and outputs for (1) to have a so-called boundary control
system on X, see e.g. Curtain and Zwart [1995], has been
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Theorem 1. Let W be a n⇥ 2n real matrix. If W has full
rank and satisfies W⌃WT � 0, being

⌃ =
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then the system (1) with input
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generates a contraction semigroup on X. Moreover, let
W̃ be a full rank n ⇥ 2n matrix such that
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is
invertible and let P be given by

P =

✓
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Define the output as

y(t) = W̃
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f@(t)
e@(t)
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=: Cx (11)

with C : H1(a, b;Rn) ! Rn. Then, for u 2 C2(0,1;Rn)
and (Lx)(0) 2 H1(a, b;Rn), the following energy balance
equation is satisfied:
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INTERCONNECTION

Among all the possible choices for input and output
suggested by Theorem 1, let us assume that u and y given
by (8) and (11) are such that P = ⌃. In this way, the
energy balance relation (12) reduces to
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d

dt
kx(t)k2L = yT(t)u(t) (13)

From (10), it is easy to see that this requires that

W⌃WT = 0 W̃⌃W̃T = 0 W⌃W̃T = I (14)

Let us consider a linear control system in port-Hamiltonian
form, whose most general formulation is

(

ẋC = (JC �RC)QCxC + (GC � PC)uC

yC = (GC + PC)
T
QCxC + (MC + SC)uC

(15)

where xC 2 RnC and uC , yC 2 Rn, while JC = �JT
C ,

MC = �MT
C , RC = RT

C , and SC = ST
C , with this further

condition satisfied:
✓

RC PC
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� 0 (16)

Finally, assume that QC = QT
C � 0, so that (15) is a pas-

sive linear system. For the sake of compactness, this system
can be easily written in standard (AC , BC , CC , DC) form,
being

AC = (JC �RC)QC BC = GC � PC

CC = (GC + PC)
T
QC DC = MC + SC

(17)

The control system (15) is interconnected to the boundary
of (1) in a power-conserving way through the input u and
y defined in (8) and (11) as follows:
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where u0 2 Rn is a further control input. This is the stan-
dard feedback interconnection. The closed-loop system is
characterized by a total Hamiltonian
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2
kx(t)k2L +

1

2
xT
C(t)QCxC(t)
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and can be compactly written as
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where
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di↵erentiable matrix-valued function such that L(z) =
LT(z) and L(z) � I, with  > 0, for all z 2 [a, b].
For simplicity, L(z)x(t, z) ⌘ (Lx)(t, z). The state space is
X = L2(a, b;Rn), and is endowed with the inner product
hx1 | x2iL = hx1 | Lx2i and norm kx1k2L = hx1 | x1iL,
where h· | ·i denotes the natural L2-inner product. The
selection of this space for the state variable is motivated by
the fact that k·k2L is proportional to the energy function.
As a consequence, X is also called the space of energy
variables and Lx is the co-energy variable. This class is
quite general and includes models of flexible structures,
traveling waves, heat exchangers, and bioreactors among
others (if also dissipative e↵ects are included, see again
Villegas et al. [2009]). The PDE (1) can be also written as

ẋ = J x (2)

where J is the linear operator defined as

J x := P1
@

@z
(Lx) + P0Lx (3)

with domain

D(J ) =
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Lx 2 H1(a, b;Rn)
o

(4)

To define a distributed port-Hamiltonian system, the PDE
(1) has to be “completed” by proper boundary port. More
precisely, given Lx 2 H1(a, b;Rn), the boundary port
variables associated to (1) are the vectors f@ , e@ 2 Rn

defined by
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(5)

The boundary port variables are just a linear combination
of the restriction of the boundary variables, and simple
integration by parts shows that
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d

dt
kx(t)k2L = eT@ (t)f@(t) (6)

The problem of determining the “right” boundary inputs
and outputs for (1) to have a so-called boundary control
system on X, see e.g. Curtain and Zwart [1995], has been
addressed in Le Gorrec et al. [2005], Villegas et al. [2009].

Theorem 1. Let W be a n⇥ 2n real matrix. If W has full
rank and satisfies W⌃WT � 0, being

⌃ =
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✓
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Proof. See Le Gorrec et al. [2005].
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◆

=

✓

0 �I
I 0

◆✓

uC

yC

◆

+

✓

u0

0

◆

(18)

where u0 2 Rn is a further control input. This is the stan-
dard feedback interconnection. The closed-loop system is
characterized by a total Hamiltonian

Hcl(t) =
1

2
kx(t)k2L +

1

2
xT
C(t)QCxC(t)

| {z }

=:HC(t)

(19)

and can be compactly written as

⇠̇ = Jcl⇠

u0 = (B +DCC CC) ⇠ =: B0⇠
(20)

where

⇠ =

✓

x
xC

◆

2 ⌅ :=

✓

X
RnC

◆

(21)

is the state variable of the closed-loop system and Jcl :
⌅! ⌅ is the following linear operator

Jcl⇠ :=

✓

J 0
BCC AC

◆✓

x
xC

◆

(22)

with domain
D(Jcl) = D(J )� RnC (23)

Clearly, on ⌅, the inner product can be defined as

h⇠1 | ⇠2i⌅ = hx1 | x2iL + xT
C,1QCxC,2 (24)

which means that Hcl(⇠) = 1
2 k⇠k

2
⌅. Similarly to Villegas

et al. [2005], it is possible to prove the next proposition
that characterizes the closed-loop dynamics.

Proposition 2. Consider the port-Hamiltonian system re-
sulting from the power-conserving interconnection (18) of
(1) and (15), which results into (20). Then, (20) with Jcl

defined in (22) and domain (23) is a boundary control
system. Moreover, the operator J̄cl given by

J̄cl⇠ :=

✓

J 0
BCC AC

◆✓

x
xC

◆

(25)

with domain

D(J̄cl) =

⇢✓

x
xC

◆

2 ⌅ | x 2 D(J ),

and B0
✓

x
xC

◆

= 0

�

(26)

with B0 defined in (20) generates a contraction semigroup.

Proof. The proof follows the same steps of an analogous
proposition presented in Villegas et al. [2005]. There, it
is proved that there exists a linear operator B0 such that
for all u0 we have that B0u0 2 D(Jcl) and B0B0u0 = u0.
The second step consists in proving that J̄cl generates a
contraction semigroup. At first, it is easy to verify that
given ⇠ 2 D(J̄cl), we have that

⌦

J̄cl⇠ | ⇠
↵

⌅
 0.

⌦

J̄cl⇠ | ⇠
↵

⌅
= hJ x | xiL + (BCCx+ACxC)

T
QCxC

=
1

2

✓

(Lx)(b)
(Lx)(a)

◆T ✓

P1 0
0 �P1

◆✓

(Lx)(b)
(Lx)(a)

◆

+ xT
CA

T
CQCxC + (Cx)TBT

CQCxC

Since
✓

P1 0
0 �P1

◆

= R⌃R (27)

and
Bx+DCCx+ CCxC = 0 (28)

because ⇠ 2 D(J̄cl), from (5), the definitions of input and
output (8) and (11), and (17) we have that
⌦

J̄cl⇠ | ⇠
↵

⌅
= (Cx)TBx+ xT

CA
T
CQCxC + (Cx)TBT

CQCxC

= �
✓

QCxC

Cx

◆T ✓

RC PC

PT
C SC

◆✓

QCxC

Cx

◆

 0

due to (15), and the skew-symmetry of JC and MC .
Finally, it is necessary to prove that the range of (I � J̄cl)

is equal to ⌅ or, equivalently, that for all

✓

f
fC

◆

2 ⌅ it is

possible to find

✓

x
xC

◆

2 D(J̄cl) such that

✓

f
fC

◆

=

✓

I � J 0
�BCC I �AC

◆✓

x
xC

◆

(29)

From (16) and (17) it follows that (I�AC) is non-singular,
and from (28) and (29) that

h

B +
�

CC(I �AC)
�1

BC +DC

�

C
i

x =

= �CC(I �AC)
�1

fC (30)

By following Villegas et al. [2005], there exists B̃ such that
h

B +
�

CC(I �AC)
�1

BC +DC

�

C
i

B̃ = I

that can be employed in the change of coordinates

f̃C = �CC(I �AC)
�1

f

x = x̃+ B̃f̃C

which leads to (I � J )x̃ = f � (I � J )B̃f̃C , and
h

B +
�

CC(I �AC)
�1

BC +DC

�

C
i

x̃ = 0 (31)

In case (31) holds, J generates a contraction semigroup
(see Theorem 1), and then (I � J ) has an inverse and x̃
exists. This completes the final step of the proof.

4. CASIMIR FUNCTIONS AND ENERGY SHAPING

The control by energy shaping relies on the choice of the
controller Hamiltonian HC to properly shape the closed-
loop energy function Hcl given in (19) to introduce a
minimum in the desired equilibrium configuration. Such
minimum can be reached one “su�cient” dissipation has
been introduced, if necessary, into the system through
the control action, i.e. via damping injection. In case of
distributed port-Hamiltonian system, as discussed in Ro-
driguez et al. [2001], Macchelli and Melchiorri [2004, 2005],
the energy shaping has been accomplished by relating the
state variable of the controller to the state variable of the
plant by means of a set of Casimir functions. For the class
of boundary-controlled port-Hamiltonian systems treated
in this paper, a possible definition of Casimir function can
be the following:

Definition 3. Consider the (autonomous) port-Hamilto-
nian system resulting from the power-conserving inter-
connection (18) of (1) and (15), with u0 = 0. A Casimir
function is a function C : X ⇥ RnC ! R, such that Ċ = 0
along the solutions for every possible choice of L(·) and
HC (i.e., QC in the linear case).

In this paper, we will look for linear Casimir functions in
the form

C(x(t), xC(t)) = �
TxC(t) + h | x(t)i

= �TxC(t) +

Z b

a

 T(z)x(t, z)dz
(32)

with � 2 RnC and  2 H1(a, b;Rn). Since this function
is invariant, for every possible choice of the controller
HamiltonianHC , a “structural” algebraic relation between
state of the plant and of the controller is present and can be
exploited to properly shape the closed-loop Hamiltonian.
The characterization of the possible Casimir functions (32)
in closed-loop is given in the following proposition.

Proposition 4. Consider the distributed port-Hamiltonian
system with dynamics expressed by the PDE (1) and input
and output u and y defined in (8) and (11), with W and
W̃ that satisfy (14), the controller (15) with, for simplicity,

is the state variable of the closed-loop system and Jcl :

⌅! ⌅ is the following linear operator

Jcl⇠ :=
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x
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with domain
D(Jcl) = D(J )� RnC (23)

Clearly, on ⌅, the
inner product can

be defined as

h⇠1 | ⇠2i⌅ = hx1 | x2iL + xTC,1QCxC,2
(24)

which means that Hcl(⇠) = 1
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et al. [2005], it is possible to prove the next proposition

that characterizes
the closed-loop dynamics.

Proposition 2. Consider the port-Hamiltonian system re-
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(1) and (15), which results into (20). Then, (20) w
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defined in (22) and domain (23) is a boundary control

system. Moreover, the operator J̄cl given by

J̄cl⇠ :=
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xC
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(25)

with domain

D(J̄cl) =
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✓

x
xC

◆

2 ⌅ | x 2 D(J ),

and B0
✓

x
xC

◆
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�

(26)

with B0 defined in (20) generates a contraction semigroup.
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The proof follows the same steps of an analogous

proposition presented in Villegas et al. [2005]. There,
it
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The second step consists in proving that J̄cl generates
a

contraction semigroup. At first, it is easy to verify that

given ⇠ 2 D(J̄cl), we have that
⌦
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P1 0
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◆

✓

(Lx)(b)
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◆

+ xTCA
T
CQCxC + (Cx)TBT

CQCxC

Since ✓

P1 0
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◆

= R⌃R
(27)

and
Bx+DCCx+ CCxC = 0 (28)

because ⇠ 2 D(J̄cl), from (5), the definitions of inpu
t and

output (8) and (11), and (17) we have that
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T
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due to (15), and the skew-symmetry of JC and MC .

Finally, it is neces
sary to prove that the ran
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✓
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From (16) and (17) it follows that
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x = x̃+ B̃f̃C

which leads to (I � J )x̃ = f � (I � J )B̃f̃C , and

h

B +
�

CC(I �AC)
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In case (31) holds, J generates a contraction semigroup

(see Theorem 1), and then (I � J ) has an inverse and x̃

exists. This completes the final step of the proof.

4. CASIMIR FUNCTIONS AND ENERGY SHAPING

The control by energy shaping relies on the choice of the
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loop energy function Hcl given in (19) to introduce a
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in this paper, a possible definition
of Casimir function can

be the following:

Definition 3. Consider the (autonomous) port-Hamilto-

nian system resulting from the power-conserving
inter-

connection (18) of (1) and (15), with u0 = 0. A Casimir

function is a function C : X ⇥ RnC ! R, such that Ċ = 0

along the solutions for every possible choice of L(·) and

HC (i.e., QC in the linear case).

In this paper, we will look for linear Casimir functions in

the form

C(x(t), xC(t)) = �
TxC(t) + h | x(t)i

= �TxC(t) +

Z b

a

 T(z)x(t, z)dz
(32)

with � 2 RnC and  2 H1(a, b;Rn). Since this function

is invariant, for every possible choice of the controller

HamiltonianHC , a “structu
ral” algebraic rela

tion between

state of the plant a
nd of the controller is

present and can be

exploited to properly shape the closed-loop Hamiltonian.

The characterizati
on of the possible Cas

imir functions (32)

in closed-loop is given in the following proposition.

Proposition 4. Consider the distr
ibuted port-Hamiltonian

system with dynamics expressed by the PDE (1) and input

and output u and y defined in (8) and (11), with W and

W̃ that satisfy (14), the controlle
r (15) with, for sim

plicity,

di↵erentiable matrix-valued function such that L(z) =
LT(z) and L(z) � I, with  > 0, for all z 2 [a, b].
For simplicity, L(z)x(t, z) ⌘ (Lx)(t, z). The state space is
X = L2(a, b;Rn), and is endowed with the inner producthx1 | x2iL = hx1 | Lx2i and norm kx1k2L = hx1 | x1iL,
where h· | ·i denotes the natural L2-inner product. The
selection of this space for the state variable is motivated bythe fact that k·k2L is proportional to the energy function.
As a consequence, X is also called the space of energy
variables and Lx is the co-energy variable. This class is
quite general and includes models of flexible structures,
traveling waves, heat exchangers, and bioreactors among
others (if also dissipative e↵ects are included, see again
Villegas et al. [2009]). The PDE (1) can be also written asẋ = J x

(2)where J is the linear operator defined as
J x := P1

@

@z
(Lx) + P0Lx (3)with domain

D(J ) =
n

Lx 2 H1(a, b;Rn)
o

(4)
To define a distributed port-Hamiltonian system, the PDE
(1) has to be “completed” by proper boundary port. More
precisely, given Lx 2 H1(a, b;Rn), the boundary port
variables associated to (1) are the vectors f@ , e@ 2 Rndefined by

✓

f@
e@

◆

=
1p
2

✓

P1 �P1
I I

◆

|

{

z

}

=:R

✓

(Lx)(b)
(Lx)(a)

◆

(5)

The boundary port variables are just a linear combination
of the restriction of the boundary variables, and simple
integration by parts shows that

1

2
d

dt
kx(t)k2L = eT@ (t)f@(t) (6)

The problem of determining the “right” boundary inputs
and outputs for (1) to have a so-called boundary control
system on X, see e.g. Curtain and Zwart [1995], has been
addressed in Le Gorrec et al. [2005], Villegas et al. [2009].Theorem 1. Let W be a n⇥ 2n real matrix. If W has full
rank and satisfies W⌃WT � 0, being

⌃ =

✓

0 I
I 0

◆

(7)then the system (1) with input

u(t) = W

✓

f@(t)
e@(t)

◆

=: Bx (8)is a boundary control system onX, with B : H1(a, b;Rn) !Rn. Furthermore, the operator J̄ x := P1(@/@z)(Lx)+P0Lxwith domain

D(J̄ ) =

⇢

Lx 2 H1(a, b;Rn) |
✓

f@
e@

◆

2 KerW

�

=
n

Lx 2 H1(a, b;Rn) | Bx = 0
o (9)

generates a contraction semigroup on X. Moreover, letW̃ be a full rank n ⇥ 2n matrix such that
�

WT W̃T
�

is
invertible and let P be given by

P =

✓

W⌃WT W⌃W̃T

W̃⌃WT W̃⌃W̃T

◆�1

(10)

Define the output as

y(t) = W̃

✓

f@(t)
e@(t)

◆

=: Cx (11)with C : H1(a, b;Rn) ! Rn. Then, for u 2 C2(0,1;Rn)
and (Lx)(0) 2 H1(a, b;Rn), the following energy balance
equation is satisfied:

1

2
d

dt
kx(t)k2L =

1

2

✓

u(t)
y(t)

◆T

P

✓

u(t)
y(t)

◆

(12)
P

r

o

o

f

. See Le Gorrec et al. [2005].

3. POWER-CONSERVING BOUNDARYINTERCONNECTION
Among all the possible choices for input and output
suggested by Theorem 1, let us assume that u and y given
by (8) and (11) are such that P = ⌃. In this way, the
energy balance relation (12) reduces to

1

2
d

dt
kx(t)k2L = yT(t)u(t) (13)From (10), it is easy to see that this requires thatW⌃WT = 0 W̃⌃W̃T = 0 W⌃W̃T = I (14)Let us consider a linear control system in port-Hamiltonian

form, whose most general formulation is(

ẋC = (JC �RC)QCxC + (GC � PC)uCyC = (GC + PC)
T
QCxC + (MC + SC)uC

(15)
where xC 2 RnC and uC , yC 2 Rn, while JC = �JT

C ,MC = �MT
C , RC = RT

C , and SC = ST
C , with this further

condition satisfied:
✓

RC PC

PT
C SC

◆

� 0
(16)Finally, assume that QC = QT

C � 0, so that (15) is a pas-
sive linear system. For the sake of compactness, this system
can be easily written in standard (AC , BC , CC , DC) form,
being

AC = (JC �RC)QC BC = GC � PCCC = (GC + PC)
T
QC DC = MC + SC

(17)
The control system (15) is interconnected to the boundary
of (1) in a power-conserving way through the input u and
y defined in (8) and (11) as follows:

✓

u
y

◆

=

✓

0 �I
I 0

◆

✓

uC
yC

◆

+

✓

u0

0

◆

(18)where u0 2 Rn is a further control input. This is the stan-
dard feedback interconnection. The closed-loop system is
characterized by a total Hamiltonian

Hcl(t) =
1

2
kx(t)k2L +

1

2
xT
C (t)QCxC(t)

|

{

z

}

=:HC(t)

(19)

and can be compactly written as
⇠̇ = Jcl⇠
u0 = (B +DCC CC) ⇠ =: B0⇠ (20)where

⇠ =

✓

x
xC

◆

2 ⌅ :=

✓

X
RnC

◆

(21)

The extended system is a 

boundary control system



(Boundary) Energy-Casimir control

The control by energy shaping relies on the choice of the controller 
Hamiltonian to shape the closed-loop energy to introduce a minimum 
in the desired equilibrium configuration 

Such minimum is reached if “sufficient” dissipation has been introduced 

A common way is to relate the state variable of the controller to the state 
variable of the plant by means of a set of Casimir functions 

Definition. Consider the (autonomous) port-Hamiltonian system 
introduced before. A Casimir function is a function C that is constant 
along the solutions for every possible choice of L and HC
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with domain
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Clearly, on ⌅, the inner product can be defined as
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which means that Hcl(⇠) = 1
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⌅. Similarly to Villegas

et al. [2005], it is possible to prove the next proposition
that characterizes the closed-loop dynamics.

Proposition 2. Consider the port-Hamiltonian system re-
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with B0 defined in (20) generates a contraction semigroup.

Proof. The proof follows the same steps of an analogous
proposition presented in Villegas et al. [2005]. There, it
is proved that there exists a linear operator B0 such that
for all u0 we have that B0u0 2 D(Jcl) and B0B0u0 = u0.
The second step consists in proving that J̄cl generates a
contraction semigroup. At first, it is easy to verify that
given ⇠ 2 D(J̄cl), we have that
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From (16) and (17) it follows that (I�AC) is non-singular,
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that can be employed in the change of coordinates
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In case (31) holds, J generates a contraction semigroup
(see Theorem 1), and then (I � J ) has an inverse and x̃
exists. This completes the final step of the proof.
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Definition 3. Consider the (autonomous) port-Hamilto-
nian system resulting from the power-conserving inter-
connection (18) of (1) and (15), with u0 = 0. A Casimir
function is a function C : X ⇥ RnC ! R, such that Ċ = 0
along the solutions for every possible choice of L(·) and
HC (i.e., QC in the linear case).

In this paper, we will look for linear Casimir functions in
the form

C(x(t), xC(t)) = �
TxC(t) + h | x(t)i

= �TxC(t) +

Z b

a

 T(z)x(t, z)dz
(32)

with � 2 RnC and  2 H1(a, b;Rn). Since this function
is invariant, for every possible choice of the controller
HamiltonianHC , a “structural” algebraic relation between
state of the plant and of the controller is present and can be
exploited to properly shape the closed-loop Hamiltonian.
The characterization of the possible Casimir functions (32)
in closed-loop is given in the following proposition.

Proposition 4. Consider the distributed port-Hamiltonian
system with dynamics expressed by the PDE (1) and input
and output u and y defined in (8) and (11), with W and
W̃ that satisfy (14), the controller (15) with, for simplicity,

We establish a constant algebraic 

relation between state of the plant and 

of the controller



The characterisation of the possible Casimir function is given by 
 
 
 
 
 
 
 
 

A “practical” choice is to have

(Boundary) Energy-Casimir control

dissipation obstacle  
(again...)

control action

constraint

RC = 0, PC = 0 and MC = SC = 0, and the power-
conserving interconnection (18), with u0 = 0. Then, (32)
is a Casimir function if and only if:
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Proof. From (1), (18) and (32) we have that
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where the dependence on t and z has been omitted
for simplicity. According to Definition 3, the Casimir
function has to be independent from the Hamiltonian of
the plant and of the controller. On the other hand, the
interconnection introduces a constraint on the possible
Hamiltonians that has to be properly managed. In this
respect, it is convenient to “parametrize” the boundary
variables (f@ , e@) defined in (5) as follows. Given �1, �2 2
Rn, all the possible values of (f@ , e@) can be described by
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since, according to Theorem 1,
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is invertible.
From the set of conditions (14) and the interconnection
(18), we have that

uC = y = W̃
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and that
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All the possible behaviors at (f@ , e@) corresponding to
Hamiltonian dynamics can be obtained by properly vary-
ing HC and �1. Due to (5), this relation provides also
all the values that the co-energy variables can assume
on the boundary for every possible choice of the plant
Hamiltonian, i.e. of L(·) in the linear case. Since
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The integral vanishes for all the L(·) if and only if  
satisfies (33). Moreover, from (27), (5) and (39) we have
that
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since ⌃⌃ = I. Then, substitution in (40) allows to obtain
(34) and (35) by properly grouping all the terms multiplied
by @HC

@xC
and �1, respectively.

Now, let us assume that it is possible to relate all
the state variables of the controller with the state of
the plant through nC independent Casimir functions
Ci(x, xC) in the form (32), and introduce the matrices
�̂ = (�1 · · · �nC ) and  ̂ = ( 1 · · ·  nC ). For control
purposes, a common requirement is to find nC independent
Casimir functions such that �̂ = �I. In this way, in closed-
loop we have that

xC,i(t) = h i | x(t)i =
Z b

a

 T
i (z)x(t, z)dz + i (41)

for i = 1, . . . , nC , being i 2 R a constant that depend
only on the initial conditions. Under this hypothesis, the
Hamiltonian function of the controller is, in fact, a function
on the plant state variable, and it can be directly chosen to
obtain the desired stability property in closed-loop, namely
a (possibly) global minimum at the desired equilibrium
configuration.

5. EXPONENTIAL STABILITY IN CLOSED-LOOP

In this section, a simple tool for the exponential stabil-
ity analysis of the closed-loop system resulting from the
power-conserving interconnection (18) of (1) and (15) is
provided. The idea is to generalize a similar result dis-
cussed in Villegas et al. [2009] and based on Cox and
Zuazua [1995], where exponential stability is checked by
looking only on the amount of energy flowing through (a
part of) the boundary of the distributed port-Hamiltonian
system. Since the closed-loop system is passive, i.e. the
total energy (19) is not increasing along system’s trajecto-
ries, on a su�ciently large time interval there exists an
upper bound on the total energy that depends on the
amount of energy that is flowing through the boundary
of the distributed port-Hamiltonian systems. The result is
summarized by the next proposition.

Proposition 5. Consider the closed-loop system resulting
from the power-conserving interconnection (18) of (1)
and (15), and assume that u0 = 0. Moreover, denote by
H1(t) := 1

2 kx(t)k
2
L the energy (Hamiltonian) of (1). If for

all T1, T2 > 0 such that 0  T2 ⌧ T1 < +1 we have that
Z T1

T2

H1(t)dt 6= 0 (42)

then the energy (19) of the closed-loop system satisfies for
⌧ large enough

Hcl(t)  c(⌧)

Z ⌧

0
k(Lx)(t, b)k2 dt

and Hcl(t)  c(⌧)

Z ⌧

0
k(Lx)(t, a)k2 dt

(43)

These results are valid also when the 
plant is described by a PDE plus ODE



(Boundary) Energy-Casimir control

A simple proof (with G0 = 0)

RC = 0, PC = 0 and MC = SC = 0, and the power-
conserving interconnection (18), with u0 = 0. Then, (32)
is a Casimir function if and only if:
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Proof. From (1), (18) and (32) we have that
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where the dependence on t and z has been omitted
for simplicity. According to Definition 3, the Casimir
function has to be independent from the Hamiltonian of
the plant and of the controller. On the other hand, the
interconnection introduces a constraint on the possible
Hamiltonians that has to be properly managed. In this
respect, it is convenient to “parametrize” the boundary
variables (f@ , e@) defined in (5) as follows. Given �1, �2 2
Rn, all the possible values of (f@ , e@) can be described by
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since, according to Theorem 1,
�

WT W̃T
�

is invertible.
From the set of conditions (14) and the interconnection
(18), we have that

uC = y = W̃
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which implies that
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All the possible behaviors at (f@ , e@) corresponding to
Hamiltonian dynamics can be obtained by properly vary-
ing HC and �1. Due to (5), this relation provides also
all the values that the co-energy variables can assume
on the boundary for every possible choice of the plant
Hamiltonian, i.e. of L(·) in the linear case. Since

 T

✓

P1
@

@z
(Lx) + P0Lx

◆

=

=
@

@z

�

(Lx)TP1 
�

� (Lx)T
✓

P1
@

@z
 + P0 

◆

and in spite of (37) and (39), we have that

d

dt
C = �@THC

@xC
JC�+ �T

1 G
T
C�

�
Z b

a

(Lx)T
✓

P1
@

@z
 + P0 

◆

dz

+

✓

(Lx)(b)
(Lx)(a)

◆T ✓

P1 0
0 �P1

◆✓

 (b)
 (a)

◆

(40)

The integral vanishes for all the L(·) if and only if  
satisfies (33). Moreover, from (27), (5) and (39) we have
that
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since ⌃⌃ = I. Then, substitution in (40) allows to obtain
(34) and (35) by properly grouping all the terms multiplied
by @HC

@xC
and �1, respectively.

Now, let us assume that it is possible to relate all
the state variables of the controller with the state of
the plant through nC independent Casimir functions
Ci(x, xC) in the form (32), and introduce the matrices
�̂ = (�1 · · · �nC ) and  ̂ = ( 1 · · ·  nC ). For control
purposes, a common requirement is to find nC independent
Casimir functions such that �̂ = �I. In this way, in closed-
loop we have that

xC,i(t) = h i | x(t)i =
Z b

a

 T
i (z)x(t, z)dz + i (41)

for i = 1, . . . , nC , being i 2 R a constant that depend
only on the initial conditions. Under this hypothesis, the
Hamiltonian function of the controller is, in fact, a function
on the plant state variable, and it can be directly chosen to
obtain the desired stability property in closed-loop, namely
a (possibly) global minimum at the desired equilibrium
configuration.

5. EXPONENTIAL STABILITY IN CLOSED-LOOP

In this section, a simple tool for the exponential stabil-
ity analysis of the closed-loop system resulting from the
power-conserving interconnection (18) of (1) and (15) is
provided. The idea is to generalize a similar result dis-
cussed in Villegas et al. [2009] and based on Cox and
Zuazua [1995], where exponential stability is checked by
looking only on the amount of energy flowing through (a
part of) the boundary of the distributed port-Hamiltonian
system. Since the closed-loop system is passive, i.e. the
total energy (19) is not increasing along system’s trajecto-
ries, on a su�ciently large time interval there exists an
upper bound on the total energy that depends on the
amount of energy that is flowing through the boundary
of the distributed port-Hamiltonian systems. The result is
summarized by the next proposition.

Proposition 5. Consider the closed-loop system resulting
from the power-conserving interconnection (18) of (1)
and (15), and assume that u0 = 0. Moreover, denote by
H1(t) := 1

2 kx(t)k
2
L the energy (Hamiltonian) of (1). If for

all T1, T2 > 0 such that 0  T2 ⌧ T1 < +1 we have that
Z T1

T2

H1(t)dt 6= 0 (42)

then the energy (19) of the closed-loop system satisfies for
⌧ large enough

Hcl(t)  c(⌧)

Z ⌧

0
k(Lx)(t, b)k2 dt

and Hcl(t)  c(⌧)

Z ⌧

0
k(Lx)(t, a)k2 dt

(43)

RC = 0, PC = 0 and MC = SC = 0, and the power-
conserving interconnection (18), with u0 = 0. Then, (32)
is a Casimir function if and only if:
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Proof. From (1), (18) and (32) we have that
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where the dependence on t and z has been omitted
for simplicity. According to Definition 3, the Casimir
function has to be independent from the Hamiltonian of
the plant and of the controller. On the other hand, the
interconnection introduces a constraint on the possible
Hamiltonians that has to be properly managed. In this
respect, it is convenient to “parametrize” the boundary
variables (f@ , e@) defined in (5) as follows. Given �1, �2 2
Rn, all the possible values of (f@ , e@) can be described by
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since, according to Theorem 1,
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From the set of conditions (14) and the interconnection
(18), we have that
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All the possible behaviors at (f@ , e@) corresponding to
Hamiltonian dynamics can be obtained by properly vary-
ing HC and �1. Due to (5), this relation provides also
all the values that the co-energy variables can assume
on the boundary for every possible choice of the plant
Hamiltonian, i.e. of L(·) in the linear case. Since
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The integral vanishes for all the L(·) if and only if  
satisfies (33). Moreover, from (27), (5) and (39) we have
that
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since ⌃⌃ = I. Then, substitution in (40) allows to obtain
(34) and (35) by properly grouping all the terms multiplied
by @HC

@xC
and �1, respectively.

Now, let us assume that it is possible to relate all
the state variables of the controller with the state of
the plant through nC independent Casimir functions
Ci(x, xC) in the form (32), and introduce the matrices
�̂ = (�1 · · · �nC ) and  ̂ = ( 1 · · ·  nC ). For control
purposes, a common requirement is to find nC independent
Casimir functions such that �̂ = �I. In this way, in closed-
loop we have that

xC,i(t) = h i | x(t)i =
Z b

a

 T
i (z)x(t, z)dz + i (41)

for i = 1, . . . , nC , being i 2 R a constant that depend
only on the initial conditions. Under this hypothesis, the
Hamiltonian function of the controller is, in fact, a function
on the plant state variable, and it can be directly chosen to
obtain the desired stability property in closed-loop, namely
a (possibly) global minimum at the desired equilibrium
configuration.

5. EXPONENTIAL STABILITY IN CLOSED-LOOP

In this section, a simple tool for the exponential stabil-
ity analysis of the closed-loop system resulting from the
power-conserving interconnection (18) of (1) and (15) is
provided. The idea is to generalize a similar result dis-
cussed in Villegas et al. [2009] and based on Cox and
Zuazua [1995], where exponential stability is checked by
looking only on the amount of energy flowing through (a
part of) the boundary of the distributed port-Hamiltonian
system. Since the closed-loop system is passive, i.e. the
total energy (19) is not increasing along system’s trajecto-
ries, on a su�ciently large time interval there exists an
upper bound on the total energy that depends on the
amount of energy that is flowing through the boundary
of the distributed port-Hamiltonian systems. The result is
summarized by the next proposition.

Proposition 5. Consider the closed-loop system resulting
from the power-conserving interconnection (18) of (1)
and (15), and assume that u0 = 0. Moreover, denote by
H1(t) := 1

2 kx(t)k
2
L the energy (Hamiltonian) of (1). If for

all T1, T2 > 0 such that 0  T2 ⌧ T1 < +1 we have that
Z T1
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H1(t)dt 6= 0 (42)

then the energy (19) of the closed-loop system satisfies for
⌧ large enough

Hcl(t)  c(⌧)
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k(Lx)(t, b)k2 dt

and Hcl(t)  c(⌧)

Z ⌧
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(43)

RC = 0, PC = 0 and MC = SC = 0, and the power-
conserving interconnection (18), with u0 = 0. Then, (32)
is a Casimir function if and only if:
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Proof. From (1), (18) and (32) we have that
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where the dependence on t and z has been omitted
for simplicity. According to Definition 3, the Casimir
function has to be independent from the Hamiltonian of
the plant and of the controller. On the other hand, the
interconnection introduces a constraint on the possible
Hamiltonians that has to be properly managed. In this
respect, it is convenient to “parametrize” the boundary
variables (f@ , e@) defined in (5) as follows. Given �1, �2 2
Rn, all the possible values of (f@ , e@) can be described by
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All the possible behaviors at (f@ , e@) corresponding to
Hamiltonian dynamics can be obtained by properly vary-
ing HC and �1. Due to (5), this relation provides also
all the values that the co-energy variables can assume
on the boundary for every possible choice of the plant
Hamiltonian, i.e. of L(·) in the linear case. Since
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The integral vanishes for all the L(·) if and only if  
satisfies (33). Moreover, from (27), (5) and (39) we have
that
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since ⌃⌃ = I. Then, substitution in (40) allows to obtain
(34) and (35) by properly grouping all the terms multiplied
by @HC

@xC
and �1, respectively.

Now, let us assume that it is possible to relate all
the state variables of the controller with the state of
the plant through nC independent Casimir functions
Ci(x, xC) in the form (32), and introduce the matrices
�̂ = (�1 · · · �nC ) and  ̂ = ( 1 · · ·  nC ). For control
purposes, a common requirement is to find nC independent
Casimir functions such that �̂ = �I. In this way, in closed-
loop we have that

xC,i(t) = h i | x(t)i =
Z b

a

 T
i (z)x(t, z)dz + i (41)

for i = 1, . . . , nC , being i 2 R a constant that depend
only on the initial conditions. Under this hypothesis, the
Hamiltonian function of the controller is, in fact, a function
on the plant state variable, and it can be directly chosen to
obtain the desired stability property in closed-loop, namely
a (possibly) global minimum at the desired equilibrium
configuration.

5. EXPONENTIAL STABILITY IN CLOSED-LOOP

In this section, a simple tool for the exponential stabil-
ity analysis of the closed-loop system resulting from the
power-conserving interconnection (18) of (1) and (15) is
provided. The idea is to generalize a similar result dis-
cussed in Villegas et al. [2009] and based on Cox and
Zuazua [1995], where exponential stability is checked by
looking only on the amount of energy flowing through (a
part of) the boundary of the distributed port-Hamiltonian
system. Since the closed-loop system is passive, i.e. the
total energy (19) is not increasing along system’s trajecto-
ries, on a su�ciently large time interval there exists an
upper bound on the total energy that depends on the
amount of energy that is flowing through the boundary
of the distributed port-Hamiltonian systems. The result is
summarized by the next proposition.

Proposition 5. Consider the closed-loop system resulting
from the power-conserving interconnection (18) of (1)
and (15), and assume that u0 = 0. Moreover, denote by
H1(t) := 1

2 kx(t)k
2
L the energy (Hamiltonian) of (1). If for

all T1, T2 > 0 such that 0  T2 ⌧ T1 < +1 we have that
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then the energy (19) of the closed-loop system satisfies for
⌧ large enough
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RC = 0, PC = 0 and MC = SC = 0, and the power-
conserving interconnection (18), with u0 = 0. Then, (32)
is a Casimir function if and only if:
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Proof. From (1), (18) and (32) we have that
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Z b

a

 T @x

@t
dz

= �T
✓

JC
@HC

@xC
+GCuC

◆

+

+

Z b

a

 T

✓

P1
@

@z
(Lx) + P0Lx

◆

dz

where the dependence on t and z has been omitted
for simplicity. According to Definition 3, the Casimir
function has to be independent from the Hamiltonian of
the plant and of the controller. On the other hand, the
interconnection introduces a constraint on the possible
Hamiltonians that has to be properly managed. In this
respect, it is convenient to “parametrize” the boundary
variables (f@ , e@) defined in (5) as follows. Given �1, �2 2
Rn, all the possible values of (f@ , e@) can be described by
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From the set of conditions (14) and the interconnection
(18), we have that

uC = y = W̃

✓

f@
e@

◆

= �1 (37)

and that

GT
C

@HC

@xC
= yC = �u = �W

✓

f@
e@

◆

= ��2 (38)

which implies that
✓

f@
e@

◆

= ⌃

✓

WT�1 � W̃TGT
C

@HC

@xC

◆

(39)

All the possible behaviors at (f@ , e@) corresponding to
Hamiltonian dynamics can be obtained by properly vary-
ing HC and �1. Due to (5), this relation provides also
all the values that the co-energy variables can assume
on the boundary for every possible choice of the plant
Hamiltonian, i.e. of L(·) in the linear case. Since
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The integral vanishes for all the L(·) if and only if  
satisfies (33). Moreover, from (27), (5) and (39) we have
that
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since ⌃⌃ = I. Then, substitution in (40) allows to obtain
(34) and (35) by properly grouping all the terms multiplied
by @HC

@xC
and �1, respectively.

Now, let us assume that it is possible to relate all
the state variables of the controller with the state of
the plant through nC independent Casimir functions
Ci(x, xC) in the form (32), and introduce the matrices
�̂ = (�1 · · · �nC ) and  ̂ = ( 1 · · ·  nC ). For control
purposes, a common requirement is to find nC independent
Casimir functions such that �̂ = �I. In this way, in closed-
loop we have that

xC,i(t) = h i | x(t)i =
Z b

a

 T
i (z)x(t, z)dz + i (41)

for i = 1, . . . , nC , being i 2 R a constant that depend
only on the initial conditions. Under this hypothesis, the
Hamiltonian function of the controller is, in fact, a function
on the plant state variable, and it can be directly chosen to
obtain the desired stability property in closed-loop, namely
a (possibly) global minimum at the desired equilibrium
configuration.

5. EXPONENTIAL STABILITY IN CLOSED-LOOP

In this section, a simple tool for the exponential stabil-
ity analysis of the closed-loop system resulting from the
power-conserving interconnection (18) of (1) and (15) is
provided. The idea is to generalize a similar result dis-
cussed in Villegas et al. [2009] and based on Cox and
Zuazua [1995], where exponential stability is checked by
looking only on the amount of energy flowing through (a
part of) the boundary of the distributed port-Hamiltonian
system. Since the closed-loop system is passive, i.e. the
total energy (19) is not increasing along system’s trajecto-
ries, on a su�ciently large time interval there exists an
upper bound on the total energy that depends on the
amount of energy that is flowing through the boundary
of the distributed port-Hamiltonian systems. The result is
summarized by the next proposition.

Proposition 5. Consider the closed-loop system resulting
from the power-conserving interconnection (18) of (1)
and (15), and assume that u0 = 0. Moreover, denote by
H1(t) := 1

2 kx(t)k
2
L the energy (Hamiltonian) of (1). If for

all T1, T2 > 0 such that 0  T2 ⌧ T1 < +1 we have that
Z T1

T2

H1(t)dt 6= 0 (42)

then the energy (19) of the closed-loop system satisfies for
⌧ large enough
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(43)

RC = 0, PC = 0 and MC = SC = 0, and the power-
conserving interconnection (18), with u0 = 0. Then, (32)
is a Casimir function if and only if:
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Proof. From (1), (18) and (32) we have that
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where the dependence on t and z has been omitted
for simplicity. According to Definition 3, the Casimir
function has to be independent from the Hamiltonian of
the plant and of the controller. On the other hand, the
interconnection introduces a constraint on the possible
Hamiltonians that has to be properly managed. In this
respect, it is convenient to “parametrize” the boundary
variables (f@ , e@) defined in (5) as follows. Given �1, �2 2
Rn, all the possible values of (f@ , e@) can be described by
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since, according to Theorem 1,
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From the set of conditions (14) and the interconnection
(18), we have that
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All the possible behaviors at (f@ , e@) corresponding to
Hamiltonian dynamics can be obtained by properly vary-
ing HC and �1. Due to (5), this relation provides also
all the values that the co-energy variables can assume
on the boundary for every possible choice of the plant
Hamiltonian, i.e. of L(·) in the linear case. Since
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The integral vanishes for all the L(·) if and only if  
satisfies (33). Moreover, from (27), (5) and (39) we have
that
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since ⌃⌃ = I. Then, substitution in (40) allows to obtain
(34) and (35) by properly grouping all the terms multiplied
by @HC

@xC
and �1, respectively.

Now, let us assume that it is possible to relate all
the state variables of the controller with the state of
the plant through nC independent Casimir functions
Ci(x, xC) in the form (32), and introduce the matrices
�̂ = (�1 · · · �nC ) and  ̂ = ( 1 · · ·  nC ). For control
purposes, a common requirement is to find nC independent
Casimir functions such that �̂ = �I. In this way, in closed-
loop we have that

xC,i(t) = h i | x(t)i =
Z b

a

 T
i (z)x(t, z)dz + i (41)

for i = 1, . . . , nC , being i 2 R a constant that depend
only on the initial conditions. Under this hypothesis, the
Hamiltonian function of the controller is, in fact, a function
on the plant state variable, and it can be directly chosen to
obtain the desired stability property in closed-loop, namely
a (possibly) global minimum at the desired equilibrium
configuration.

5. EXPONENTIAL STABILITY IN CLOSED-LOOP

In this section, a simple tool for the exponential stabil-
ity analysis of the closed-loop system resulting from the
power-conserving interconnection (18) of (1) and (15) is
provided. The idea is to generalize a similar result dis-
cussed in Villegas et al. [2009] and based on Cox and
Zuazua [1995], where exponential stability is checked by
looking only on the amount of energy flowing through (a
part of) the boundary of the distributed port-Hamiltonian
system. Since the closed-loop system is passive, i.e. the
total energy (19) is not increasing along system’s trajecto-
ries, on a su�ciently large time interval there exists an
upper bound on the total energy that depends on the
amount of energy that is flowing through the boundary
of the distributed port-Hamiltonian systems. The result is
summarized by the next proposition.

Proposition 5. Consider the closed-loop system resulting
from the power-conserving interconnection (18) of (1)
and (15), and assume that u0 = 0. Moreover, denote by
H1(t) := 1

2 kx(t)k
2
L the energy (Hamiltonian) of (1). If for

all T1, T2 > 0 such that 0  T2 ⌧ T1 < +1 we have that
Z T1

T2

H1(t)dt 6= 0 (42)

then the energy (19) of the closed-loop system satisfies for
⌧ large enough

Hcl(t)  c(⌧)
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and Hcl(t)  c(⌧)

Z ⌧
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(43)

RC = 0, PC = 0 and MC = SC = 0, and the power-
conserving interconnection (18), with u0 = 0. Then, (32)
is a Casimir function if and only if:
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Proof. From (1), (18) and (32) we have that
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where the dependence on t and z has been omitted
for simplicity. According to Definition 3, the Casimir
function has to be independent from the Hamiltonian of
the plant and of the controller. On the other hand, the
interconnection introduces a constraint on the possible
Hamiltonians that has to be properly managed. In this
respect, it is convenient to “parametrize” the boundary
variables (f@ , e@) defined in (5) as follows. Given �1, �2 2
Rn, all the possible values of (f@ , e@) can be described by
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since, according to Theorem 1,
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From the set of conditions (14) and the interconnection
(18), we have that
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All the possible behaviors at (f@ , e@) corresponding to
Hamiltonian dynamics can be obtained by properly vary-
ing HC and �1. Due to (5), this relation provides also
all the values that the co-energy variables can assume
on the boundary for every possible choice of the plant
Hamiltonian, i.e. of L(·) in the linear case. Since
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The integral vanishes for all the L(·) if and only if  
satisfies (33). Moreover, from (27), (5) and (39) we have
that
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since ⌃⌃ = I. Then, substitution in (40) allows to obtain
(34) and (35) by properly grouping all the terms multiplied
by @HC

@xC
and �1, respectively.

Now, let us assume that it is possible to relate all
the state variables of the controller with the state of
the plant through nC independent Casimir functions
Ci(x, xC) in the form (32), and introduce the matrices
�̂ = (�1 · · · �nC ) and  ̂ = ( 1 · · ·  nC ). For control
purposes, a common requirement is to find nC independent
Casimir functions such that �̂ = �I. In this way, in closed-
loop we have that

xC,i(t) = h i | x(t)i =
Z b

a

 T
i (z)x(t, z)dz + i (41)

for i = 1, . . . , nC , being i 2 R a constant that depend
only on the initial conditions. Under this hypothesis, the
Hamiltonian function of the controller is, in fact, a function
on the plant state variable, and it can be directly chosen to
obtain the desired stability property in closed-loop, namely
a (possibly) global minimum at the desired equilibrium
configuration.

5. EXPONENTIAL STABILITY IN CLOSED-LOOP

In this section, a simple tool for the exponential stabil-
ity analysis of the closed-loop system resulting from the
power-conserving interconnection (18) of (1) and (15) is
provided. The idea is to generalize a similar result dis-
cussed in Villegas et al. [2009] and based on Cox and
Zuazua [1995], where exponential stability is checked by
looking only on the amount of energy flowing through (a
part of) the boundary of the distributed port-Hamiltonian
system. Since the closed-loop system is passive, i.e. the
total energy (19) is not increasing along system’s trajecto-
ries, on a su�ciently large time interval there exists an
upper bound on the total energy that depends on the
amount of energy that is flowing through the boundary
of the distributed port-Hamiltonian systems. The result is
summarized by the next proposition.

Proposition 5. Consider the closed-loop system resulting
from the power-conserving interconnection (18) of (1)
and (15), and assume that u0 = 0. Moreover, denote by
H1(t) := 1

2 kx(t)k
2
L the energy (Hamiltonian) of (1). If for

all T1, T2 > 0 such that 0  T2 ⌧ T1 < +1 we have that
Z T1
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H1(t)dt 6= 0 (42)

then the energy (19) of the closed-loop system satisfies for
⌧ large enough
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(43)

RC = 0, PC = 0 and MC = SC = 0, and the power-
conserving interconnection (18), with u0 = 0. Then, (32)
is a Casimir function if and only if:
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Proof. From (1), (18) and (32) we have that
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where the dependence on t and z has been omitted
for simplicity. According to Definition 3, the Casimir
function has to be independent from the Hamiltonian of
the plant and of the controller. On the other hand, the
interconnection introduces a constraint on the possible
Hamiltonians that has to be properly managed. In this
respect, it is convenient to “parametrize” the boundary
variables (f@ , e@) defined in (5) as follows. Given �1, �2 2
Rn, all the possible values of (f@ , e@) can be described by
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since, according to Theorem 1,
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From the set of conditions (14) and the interconnection
(18), we have that
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All the possible behaviors at (f@ , e@) corresponding to
Hamiltonian dynamics can be obtained by properly vary-
ing HC and �1. Due to (5), this relation provides also
all the values that the co-energy variables can assume
on the boundary for every possible choice of the plant
Hamiltonian, i.e. of L(·) in the linear case. Since
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The integral vanishes for all the L(·) if and only if  
satisfies (33). Moreover, from (27), (5) and (39) we have
that
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since ⌃⌃ = I. Then, substitution in (40) allows to obtain
(34) and (35) by properly grouping all the terms multiplied
by @HC

@xC
and �1, respectively.

Now, let us assume that it is possible to relate all
the state variables of the controller with the state of
the plant through nC independent Casimir functions
Ci(x, xC) in the form (32), and introduce the matrices
�̂ = (�1 · · · �nC ) and  ̂ = ( 1 · · ·  nC ). For control
purposes, a common requirement is to find nC independent
Casimir functions such that �̂ = �I. In this way, in closed-
loop we have that

xC,i(t) = h i | x(t)i =
Z b

a

 T
i (z)x(t, z)dz + i (41)

for i = 1, . . . , nC , being i 2 R a constant that depend
only on the initial conditions. Under this hypothesis, the
Hamiltonian function of the controller is, in fact, a function
on the plant state variable, and it can be directly chosen to
obtain the desired stability property in closed-loop, namely
a (possibly) global minimum at the desired equilibrium
configuration.

5. EXPONENTIAL STABILITY IN CLOSED-LOOP

In this section, a simple tool for the exponential stabil-
ity analysis of the closed-loop system resulting from the
power-conserving interconnection (18) of (1) and (15) is
provided. The idea is to generalize a similar result dis-
cussed in Villegas et al. [2009] and based on Cox and
Zuazua [1995], where exponential stability is checked by
looking only on the amount of energy flowing through (a
part of) the boundary of the distributed port-Hamiltonian
system. Since the closed-loop system is passive, i.e. the
total energy (19) is not increasing along system’s trajecto-
ries, on a su�ciently large time interval there exists an
upper bound on the total energy that depends on the
amount of energy that is flowing through the boundary
of the distributed port-Hamiltonian systems. The result is
summarized by the next proposition.

Proposition 5. Consider the closed-loop system resulting
from the power-conserving interconnection (18) of (1)
and (15), and assume that u0 = 0. Moreover, denote by
H1(t) := 1
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L the energy (Hamiltonian) of (1). If for

all T1, T2 > 0 such that 0  T2 ⌧ T1 < +1 we have that
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⌧ large enough
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RC = 0, PC = 0 and MC = SC = 0, and the power-
conserving interconnection (18), with u0 = 0. Then, (32)
is a Casimir function if and only if:
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Proof. From (1), (18) and (32) we have that
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where the dependence on t and z has been omitted
for simplicity. According to Definition 3, the Casimir
function has to be independent from the Hamiltonian of
the plant and of the controller. On the other hand, the
interconnection introduces a constraint on the possible
Hamiltonians that has to be properly managed. In this
respect, it is convenient to “parametrize” the boundary
variables (f@ , e@) defined in (5) as follows. Given �1, �2 2
Rn, all the possible values of (f@ , e@) can be described by

✓

f@
e@

◆

= ⌃
�

WT�1 + W̃T�2
�

(36)

since, according to Theorem 1,
�

WT W̃T
�

is invertible.
From the set of conditions (14) and the interconnection
(18), we have that

uC = y = W̃

✓

f@
e@

◆

= �1 (37)

and that

GT
C

@HC

@xC
= yC = �u = �W

✓

f@
e@

◆

= ��2 (38)

which implies that
✓

f@
e@

◆

= ⌃

✓

WT�1 � W̃TGT
C

@HC

@xC

◆

(39)

All the possible behaviors at (f@ , e@) corresponding to
Hamiltonian dynamics can be obtained by properly vary-
ing HC and �1. Due to (5), this relation provides also
all the values that the co-energy variables can assume
on the boundary for every possible choice of the plant
Hamiltonian, i.e. of L(·) in the linear case. Since

 T

✓

P1
@

@z
(Lx) + P0Lx

◆

=

=
@

@z

�

(Lx)TP1 
�

� (Lx)T
✓

P1
@

@z
 + P0 

◆

and in spite of (37) and (39), we have that

d

dt
C = �@THC

@xC
JC�+ �T

1 G
T
C�

�
Z b

a

(Lx)T
✓

P1
@

@z
 + P0 

◆

dz

+

✓

(Lx)(b)
(Lx)(a)

◆T ✓

P1 0
0 �P1

◆✓

 (b)
 (a)

◆

(40)

The integral vanishes for all the L(·) if and only if  
satisfies (33). Moreover, from (27), (5) and (39) we have
that

✓

(Lx)(b)
(Lx)(a)

◆T ✓

P1 0
0 �P1

◆✓

 (b)
 (a)

◆

=

=

✓

�T
1 W � @THC

@xC
GCW̃

◆

R

✓

 (b)
 (a)

◆

since ⌃⌃ = I. Then, substitution in (40) allows to obtain
(34) and (35) by properly grouping all the terms multiplied
by @HC

@xC
and �1, respectively.

Now, let us assume that it is possible to relate all
the state variables of the controller with the state of
the plant through nC independent Casimir functions
Ci(x, xC) in the form (32), and introduce the matrices
�̂ = (�1 · · · �nC ) and  ̂ = ( 1 · · ·  nC ). For control
purposes, a common requirement is to find nC independent
Casimir functions such that �̂ = �I. In this way, in closed-
loop we have that

xC,i(t) = h i | x(t)i =
Z b

a

 T
i (z)x(t, z)dz + i (41)

for i = 1, . . . , nC , being i 2 R a constant that depend
only on the initial conditions. Under this hypothesis, the
Hamiltonian function of the controller is, in fact, a function
on the plant state variable, and it can be directly chosen to
obtain the desired stability property in closed-loop, namely
a (possibly) global minimum at the desired equilibrium
configuration.

5. EXPONENTIAL STABILITY IN CLOSED-LOOP

In this section, a simple tool for the exponential stabil-
ity analysis of the closed-loop system resulting from the
power-conserving interconnection (18) of (1) and (15) is
provided. The idea is to generalize a similar result dis-
cussed in Villegas et al. [2009] and based on Cox and
Zuazua [1995], where exponential stability is checked by
looking only on the amount of energy flowing through (a
part of) the boundary of the distributed port-Hamiltonian
system. Since the closed-loop system is passive, i.e. the
total energy (19) is not increasing along system’s trajecto-
ries, on a su�ciently large time interval there exists an
upper bound on the total energy that depends on the
amount of energy that is flowing through the boundary
of the distributed port-Hamiltonian systems. The result is
summarized by the next proposition.

Proposition 5. Consider the closed-loop system resulting
from the power-conserving interconnection (18) of (1)
and (15), and assume that u0 = 0. Moreover, denote by
H1(t) := 1

2 kx(t)k
2
L the energy (Hamiltonian) of (1). If for

all T1, T2 > 0 such that 0  T2 ⌧ T1 < +1 we have that
Z T1

T2

H1(t)dt 6= 0 (42)

then the energy (19) of the closed-loop system satisfies for
⌧ large enough

Hcl(t)  c(⌧)

Z ⌧

0
k(Lx)(t, b)k2 dt

and Hcl(t)  c(⌧)

Z ⌧

0
k(Lx)(t, a)k2 dt

(43)



Example: transmission line + sRLC

The distributed port-Hamiltonian formulation of the line is 
 
 
 

RLC load in series configuration:  
 
 
 
 

Boundary interconnection:

is quite strong, and it can be relaxed by requiring that the
control input � is able to map the trajectories of the open-
loop system into the trajectories of another port-Hamiltonian
system with Hamiltonian (19), and characterised by the same
Dirac structure and resistive relation.

From the image representation (4) of a Dirac structure,
with structure matrices (9) and port behaviour (11), as far as
the open-loop dynamics is concerned, for all � in (14) we
have that
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B

@
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C

C
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B
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S

¯GE⇤
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R

F ⇤
C

1

C

C

A

� (21)

in which u is given as in (16). Similarly, as far as the
“desired dynamics” is concerned, since open and closed-loop
systems have the same Dirac structure and port behaviour
(but with different Hamiltonian), the stabilisation problem
can be solved if there exists at least a �0 in (14) such that

0

B

B

@

�@x
@t

�Hd
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0
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1

C
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A

=

0
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B

@

E⇤
S

F ⇤
S

¯GE⇤
R + F ⇤

R

F ⇤
C

1

C

C

A

�0 (22)

Since the trajectories are required to be the same, and in
spite of (16) and (19), from (21) and (22), we can state the
following proposition:

Proposition 4.1: (Control by state-modulated source) Let
us consider a port-Hamiltonian system characterised by a
Dirac structure on the space of flows (8), with matrices F
and E given by (9), and port behaviour at the storage and
resistive ports (11). Then, there exist a state feedback law in
the form (16) that maps the open-loop dynamics (21) into
(22), if it is possible to find �, Ha and � in (14) such that

0

B

B

@

0

�Ha
�x
0

��

1

C

C

A

=

0

B

B

@

E⇤
S

F ⇤
S

¯GE⇤
R + F ⇤

R

F ⇤
C

1

C

C

A

˜� (23)

Remark 4.1: Note that (20) is a particular case of (23),
and similarly, solution of (23) provides both the class of
functions Ha that can be employed in the energy shaping
procedure (19), and the associated control action (16).

V. A CRITERION FOR ASYMPTOTIC STABILITY

Propositions 3.1 and 4.1 provide two methods for realising
the energy-shaping of a port-Hamiltonian system via full
state feedback (16). Stabilisation in a desired equilibrium
configuration x? 2 X is achieved by properly choosing Ha

in (19), to introduce a (possibly) global minimum in x? for
Hd. Then, as discussed in [18], to verify the stability of
x?, it is necessary to show that it is an extremum of the
closed-loop Hamiltonian, i.e. rHd(x

?
) = 0. Moreover, let

�x denote the displacement from the equilibrium configu-
ration, and let N (�x) = Hd(x

?
+ �x) � Hd(x

?
) to be a

functional that is proportional to the second variation of Hd.
Then, the configuration x? is Lyapunov stable if there exist
C1, C2, ↵ > 0 such that

C1 k�xk2  N (�x)  C2 k�xk↵ (24)

where k·k is the norm determined by the natural L2-inner
product on X . Such set of conditions has to be “paired” with
an energy-balance relation that follows from the passivity
properties of both open- and closed-loop systems that usually
takes the form ˙Hd(x(t))  0 for a proper choice of � and
of u0 in (16), if necessary.

The energy-balance relation, however, is not usually suf-
ficient for proving asymptotic stability of the equilibrium
without relying on La Salle’s arguments that are quite
complex to be used in the infinite dimensional case due
to several technical assumptions on the system trajectories
that have to be checked, also in the linear case, [19]. Under
the hypothesis that the closed-loop system is well-posed
(see e.g., [6], [7], [15], [16] for the linear case, that rely
basically on Theorem 2.1), a simple but useful result to check
asymptotic stability is now presented. This results is based
on the energy multipliers method, [19], [20]

Proposition 5.1: Consider a port-Hamiltonian system
with Hamiltonian Hd, and suppose that x? 2 X is a stable
equilibrium in the sense of [18]. Assume that ↵ = 2 in
(24) and, without loss of generality, that x?

= 0, and that
Hd(x

?
) = 0. If there exists a function ⇢ : X ! R such that

|⇢(x)|  C⇢ kxk2 (25)

for some C⇢ > 0, and a constant ✏ > 0, supposed small,
such that function V (x) = Hd(x) + ✏⇢(x) satisfies

dV

dt
(x(t))  �C✏ kx(t)k2 (26)

for some C✏ > 0, then x? is an asymptotically (exponen-
tially) stable equilibrium.

Proof: The proof follows a similar result discussed in
[19]. From (24) we have that C1 kxk2  Hd(x)  C2 kxk2,
and from (25) we have that

(C1 � ✏C⇢) kxk2  V (x)  (C2 + ✏C⇢) kxk2 (27)

with C1 � ✏C⇢ positive if ✏ is “small.” Then, (26) and (27)
imply that

dV

dt
(x(t))  � C✏

C2 + ✏C⇢
V (x(t))

which means that V (x(t)) ! 0 exponentially, and so kx(t)k
in spite of (27).

VI. EXAMPLE: TRANSMISSION LINE WITH RLC LOAD

The port-Hamiltonian formulation of the lossless transmis-
sion line equation is in the form (5) and given by, [1]:
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(t, z)
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�HTL

�xq
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(28)

where z 2 Z ⌘ [0, `], xq and x� are the charge and
magnetic flux densities along the line, and HTL(xq, x�) =

1
2

R `

0

⇣

x2
q

C +

x2
�

L

⌘

dz is the Hamiltonian (energy) function,
with C and L the distributed capacitance and inductance
of the line. The transmission line exchanges power with the

Desired equilibrium 
 

environment (e.g., a load, or a voltage source), through acouple of power ports
(I0, V0) =

⇣

�H
�x�

(

0

), �H
�xq

(

0

)

⌘

, and(I`, V`) =

⇣

� �H
�x�

(`
), �H

�xq
(`
)

⌘

, that are the restriction of thevoltage and current along the line in z
=

0 and in z
= `.Let us interconnect an RLC circuit in series configuration

to the line in z
= `. Its port-Hamiltonian formulation is8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ẋQ =
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@x�

ẋ� = � @HRLC

@xQ
�RL
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@x�
+ V

I
=

@HRLC

@x�

(29)

where xQ and x� are the charge on the capacitor and the
magnetic flux in the inductor, RL is the resistance, V and I
are the (input) voltage and the (output) current, and

HRLC(xQ, x�) =
1

2

 

x2
Q

CL
+

x2
�

LL

!

(30)
is the Hamiltonian, with CL and LL the capacitor and the
inductor. Load and transmission line are interconnected in
power conserving way since

(I`, V`) =
(�I, V

). The control
port is

(I0, V0), and the desired equilibrium is, [3]:✓
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C
,
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L
,
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,
x?
�

LL

◆

=

(e?,
0, e?,

0

) , e? 2 R (31)Note that, in spite of Theorem 2.1, it is easy to prove that
the resulting system is a boundary control system, [7].The associated Dirac structure is defined on the space of
flows (8), with now FS = L2(0, `

;R2
) ⇥ R2, and FR =

FC = R. Moreover, we have that fS =
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,and eS =
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, while the structure matrix are
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Here, ·|0 and ·|` denote the restriction of a function in z
=

0

and in z
= ` respectively. Moreover, the port-Hamiltonian

model is obtained as in (11), with now H
= HTL +HRLC

and the resistive relation eR = �RLfR. Finally, the domain
associated to the Dirac structure in kernel representation is(12), with eS =

�

eq , e�
�T

.

As far as the image representation (4) is concerned,
provided that

⇤

= L2(0, `
;R2

) ⇥ R6, everything is as in
Sect. II-B, with now
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(33)Note the similarities with (13) and (14).The boundary energy-balancing control follows from
Prop. 3.1, with (20) that implies

�� = �� = ��0 = �R =

�Ha

�x�
=

@Ha

@x�
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0

�q = �Q = �qL = �q0 =

�Ha
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= ��The admissible Ha are in the form

Ha(⇠), ⇠
= xQ +

Z L

0
xq dz (34)and the boundary action is �

(xq , xQ) = � @Ha
@⇠ (⇠

). This is
the same result is obtained in [3], and based on the control by
interconnection and energy shaping via Casimir generation.
Asymptotic stability follows by selecting

Ha(⇠)
=

1

2
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)

2

CC
� e?

✓

1

+

CL + C
CC

◆

⇠with CC >
0, and where ⇠? is the value of ⇠ in (34) at the

equilibrium (31). In fact, in the error coordinates
x̃q = xq � x?

q x̃� = x� � x?
�x̃Q = xQ � x?

Q x̃� = x� � x?
�

(35)stability of (31) is equivalent to the stability of
(x̃q , x̃�, x̃Q, x̃�) =

(

0,
0,

0,
0

), which satisfies, together
with the Hamiltonian ˜Hd in the new coordinates, all the
hypotheses of Prop. 5.1. Moreover, from (19), we have that

d
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= �RL
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✓

x̃�
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
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So, energy decreases until in steady state we have that
x̃Q
CL
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x̃q
C
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)

(36)as it can be deduced from (29). Asymptotic stability follows
from Prop. 5.1 by selecting

⇢
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= ✏̄ x̃Q(t)x̃�(t)�
Z `

0

z

`
x̃q(t, z
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)

dzbeing ✏̄ >
0 a small constant, and noting that fot sufficiently

large T >
0, in spite of (36), we have that x̃Q/CL(t) '

x̃q/C
(t, `

), for all t � T .

5. Example: transmission line with RLC load

The port-Hamiltonian formulation of the lossless trans-
mission line equation is in the form (6) and given by, [1]:
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where z 2 Z ⌘ [0, `], xq and x� are the charge and mag-
netic flux densities along the line, and

HTL(xq, x�) =
1

2

Z `

0

 

x2
q

C
+

x2
�

L

!

dz

is the Hamiltonian (energy) function, with C and L the
distributed capacitance and inductance of the line. The
transmission line exchanges power with the environment
(e.g., a load, or a voltage source), through a couple of
power ports

(I0, V0) =
⇣

�H
�x�

(0), �H
�xq

(0)
⌘

(I`, V`) =
⇣

� �H
�x�

(`), �H
�xq

(`)
⌘ (40)

that are the restriction of the voltage and current along
the line in z = 0 and in z = `.

The line is terminated on z = ` on an RLC circuit,
at first in series configuration, and then in the parallel
one. In both the cases, the resulting system is linear, and
can be written as a port-Hamiltonian system with associ-
ated Dirac structure in the form (4) or (5). Moreover, the
system is a boundary control system, as it can be easily
deduced from Theorem 2.1. Refer to [8, 22, 23] for details.

The model of the RLC circuit in series configuration is
8
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ẋQ =
@HRLC

@x�
(xQ, x�)
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where xQ and x� are the charge on the capacitor and the
magnetic flux in the inductor, RL is the resistance, V and
I are the (input) voltage and the (output) current, and

HRLC(xQ, x�) =
1

2
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(42)

is the Hamiltonian, with CL and LL the capacitor and the
inductor. Load and transmission line are interconnected
in power conserving way since (I`, V`) = (�I, V ). The
control port is (I0, V0), and the desired equilibrium is, [3]:
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= (e?, 0, e?, 0) , e? 2 R (43)

The associated Dirac structure is defined on the space
of flows (9), with now FS = L2(0, `;R2) ⇥ R2, and FR =
FC = R. Moreover, we have that
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Here, ·|0 and ·|` denote the restriction of a function in z = 0
and in z = ` respectively. Moreover, the port-Hamiltonian
model is obtained as in (12), with now H = HTL +HRLC,
and resistive relation eR = �RLfR.

As far as the kernel and image representations (4) and
(5) are concerned, for the sake of clarity, we procede in
a slightly di↵erent mode than in Sect. 2.1, since we pre-
fer to adapt the procedure presented in [20]. Clearly, the
result is the same in both the cases. Let us assume that
⇤ = L2(0, `;R2) ⇥ R6, so the hypothesis of having ⇤ iso-
metrically isomorphic to the space of flows F has been
relaxed. This is not strictly necessary from an operative
point of view. In fact, everything is as in Sect. 2.1, with the
minor di↵erence that the domain associated to the Dirac
structure in kernel representation is not (13), but

dom
�

F E
�

=

⇢

(f, e) 2 F ⇥ E | e0S absolutely

continuous, and
@e0S
@z

2 L2(a, b;R2)

�

(45)

with e0S =
�

eq, e�
�T

. We have also that E⇤
C = ET

C and

E⇤
S =

0

B

B

@

0 @z 0 0 0 0 0 0
@z 0 0 0 0 0 0 0
0 0 0 �1 0 0 0 0
0 0 1 0 �1 1 0 0

1

C

C

A

If � = (�q,��,�Q,��,�q`,�R,��0,�q0) we have

dom

✓

E⇤

F ⇤

◆

=

⇢

� 2 ⇤ | �q(0) = �q0, ��(0) = ��0,

�q(`) = �q`, ��(`) = ��

�

(46)
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5. Example: transmission line with RLC load

The port-Hamiltonian formulation of the lossless trans-
mission line equation is in the form (6) and given by, [1]:

8

>

>

<

>

>

:

@xq

@t
(t, z) = � @

@z

�HTL

�x�
(t, z)

@x�

@t
(t, z) = � @

@z

�HTL

�xq
(t, z)

(39)

where z 2 Z ⌘ [0, `], xq and x� are the charge and mag-
netic flux densities along the line, and

HTL(xq, x�) =
1

2

Z `

0

 

x2
q

C
+

x2
�

L

!

dz

is the Hamiltonian (energy) function, with C and L the
distributed capacitance and inductance of the line. The
transmission line exchanges power with the environment
(e.g., a load, or a voltage source), through a couple of
power ports

(I0, V0) =
⇣

�H
�x�

(0), �H
�xq

(0)
⌘

(I`, V`) =
⇣

� �H
�x�

(`), �H
�xq

(`)
⌘ (40)

that are the restriction of the voltage and current along
the line in z = 0 and in z = `.

The line is terminated on z = ` on an RLC circuit,
at first in series configuration, and then in the parallel
one. In both the cases, the resulting system is linear, and
can be written as a port-Hamiltonian system with associ-
ated Dirac structure in the form (4) or (5). Moreover, the
system is a boundary control system, as it can be easily
deduced from Theorem 2.1. Refer to [8, 22, 23] for details.

The model of the RLC circuit in series configuration is
8
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>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

ẋQ =
@HRLC

@x�
(xQ, x�)

ẋ� = �@HRLC

@xQ
(xQ, x�)�

�RL
@HRLC

@x�
(xQ, x�) + V

I =
@HRLC

@x�
(xQ, x�)

(41)

where xQ and x� are the charge on the capacitor and the
magnetic flux in the inductor, RL is the resistance, V and
I are the (input) voltage and the (output) current, and

HRLC(xQ, x�) =
1

2

 

x2
Q

CL
+

x2
�

LL

!

(42)

is the Hamiltonian, with CL and LL the capacitor and the
inductor. Load and transmission line are interconnected
in power conserving way since (I`, V`) = (�I, V ). The
control port is (I0, V0), and the desired equilibrium is, [3]:

✓

x?
q

C
,
x?
�

L
,
x?
Q

CL
,
x?
�

LL

◆

= (e?, 0, e?, 0) , e? 2 R (43)

The associated Dirac structure is defined on the space
of flows (9), with now FS = L2(0, `;R2) ⇥ R2, and FR =
FC = R. Moreover, we have that

fS =
�

fq, f�, fQ, f�
�

eS =
�

eq, e�, eQ, e�
�

while the structure matrix are

FS =

0

B

B

B

B

B

B

B

B

B

B

@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

A

ES =

0

B

B

B

B

B

B

B

B

B

B

@

0 �@z 0 0
�@z 0 0 0
0 0 0 1
·|` 0 �1 0
0 ·|` 0 �1
0 0 0 1

� · |0 0 0 0
0 � · |0 0 0

1

C

C

C

C

C

C

C

C

C

C

A

FR =

0

B

B

B

B

B

B

B

B

B

B

@

0
0
0
0
0
1
0
0

1

C

C

C

C

C

C

C

C

C

C

A

ER =

0

B

B

B

B

B

B

B

B

B

B

@

0
0
0
1
0
0
0
0

1

C

C

C

C

C

C

C

C

C

C

A

FC =

0

B

B

B

B

B

B

B

B

B

B

@

0
0
0
0
0
0
0
1

1

C

C

C

C

C

C

C

C

C

C

A

EC =

0

B

B

B

B

B

B

B

B

B

B

@

0
0
0
0
0
0
1
0

1

C

C

C

C

C

C

C

C

C

C

A

(44)

Here, ·|0 and ·|` denote the restriction of a function in z = 0
and in z = ` respectively. Moreover, the port-Hamiltonian
model is obtained as in (12), with now H = HTL +HRLC,
and resistive relation eR = �RLfR.

As far as the kernel and image representations (4) and
(5) are concerned, for the sake of clarity, we procede in
a slightly di↵erent mode than in Sect. 2.1, since we pre-
fer to adapt the procedure presented in [20]. Clearly, the
result is the same in both the cases. Let us assume that
⇤ = L2(0, `;R2) ⇥ R6, so the hypothesis of having ⇤ iso-
metrically isomorphic to the space of flows F has been
relaxed. This is not strictly necessary from an operative
point of view. In fact, everything is as in Sect. 2.1, with the
minor di↵erence that the domain associated to the Dirac
structure in kernel representation is not (13), but

dom
�

F E
�

=

⇢

(f, e) 2 F ⇥ E | e0S absolutely

continuous, and
@e0S
@z

2 L2(a, b;R2)

�

(45)

with e0S =
�

eq, e�
�T

. We have also that E⇤
C = ET

C and

E⇤
S =

0

B

B

@

0 @z 0 0 0 0 0 0
@z 0 0 0 0 0 0 0
0 0 0 �1 0 0 0 0
0 0 1 0 �1 1 0 0

1

C

C

A

If � = (�q,��,�Q,��,�q`,�R,��0,�q0) we have

dom

✓

E⇤

F ⇤

◆

=

⇢

� 2 ⇤ | �q(0) = �q0, ��(0) = ��0,

�q(`) = �q`, ��(`) = ��

�

(46)
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Fig. 1. A port-Hamiltonian system.

D ⇢ F ⇥ E such that dimD = dimF and he, fi = 0,
8(f, e) 2 D.

It is clear from the previous definition that the Dirac
structure defines a power-conserving relation on F⇥E . Dirac
structures admit different representations in coordinates, [13].
For example, every Dirac structure D on an n-dimensional
space of flows F can be given in kernel representation as

D =
n

(f, e) 2 F ⇥ E | Ff + Ee = 0
o

(1)

or in image representation as

D =
n

(f, e) 2 F⇥E | f = ET�, e = FT�, � 2 Rn
o

(2)

where F and E are n⇥ n matrices such that

(a) EFT + FET = 0
(b) rank

�

F | E�

= n
(3)

and, in this case, he, fi = eTf .

B. Port-Hamiltonian systems
In case of finite dimensional port-Hamiltonian systems,

once the Dirac structure is given, the dynamics follows from
the port behavior of the energy storing elements. Denote by
X the space of energy variables and by H : X ! R the
energy function. Then, the port behavior is:

f = �ẋ e =
@H

@x
(4)

and, if the kernel representation (1) for a Dirac structure
is adopted, the associated dynamics is expressed by the
following DAE:

�Fẋ+ E
@H

@x
= 0, x(0) = x0 2 X

Note that, Ḣ = 0, i.e. energy is conserved, which is coherent
with the fact that no external ports and dissipative effects
have been modelled. Moreover, F and E may also depend
on x, and most of the results presented in this paper remain
valid in this situation.

In the general case a port-Hamiltonian system can be
represented as in Fig. 1. The Dirac structure D defines a
power conserving relation between several port variables.
In particular, there are two internal ports S and R, which
correspond to energy-storage and dissipation respectively,
and two external ports C and I, which are devoted to an
exchange of energy with a controller and the environment
respectively.

(a) Series configuration. (b) Parallel configuration.

Fig. 2. RLC circuits.

If (fS , eS) 2 FS ⇥ ES , (fR, eR) 2 FR ⇥ ER, (fC , eC) 2
FC ⇥ EC and (fI , eI) 2 FI ⇥ EI denote the power variables
of the energy-storage, dissipative, control and interaction
ports respectively, in the kernel representation (1) the Dirac
structure D is given by the following subset of F ⇥ E , with
F = FS ⇥ FR ⇥ FC ⇥ FI and E = ES ⇥ ER ⇥ EC ⇥ EI :

D =
n

(fS , fR, fC , fI , eS , eR, eC , eI) 2 F ⇥ E |
FSfS + FRfR + FCfC + FIfI+

+ ESeS + EReR + ECeC + EIeI = 0
o

(5)

where the matrices (Fi, Ei), with i = S, R, C, I , satisfy a
set of conditions similar to (3). If the behavior at the energy
storing port is given as in (4) and the dissipative port satisfies
the (linear) resistive relation

RffR +ReeR = 0 (6)

where Rf and Re are square matrices such that

(a) RfR
T
e = ReR

T
f > 0

(b) rank
�

Rf | Re

�

= dimFR
(7)

then the port-Hamiltonian dynamics results into the follow-
ing set of DAEs:

�FS ẋ+ ES
@H

@x
+ FRfR + EReR+

+FCfC + ECeC + FIfI + EIeI = 0

RffR +ReeR = 0

(8)

with x(0) = x0 2 X . Note that, in this case,

d

dt
H  eTCfC + eTI fI (9)

which means that the variation of internal energy is bounded
by the incoming power flows through the control and interac-
tion ports. In particular cases, it is possible to explicitly get
rid of the algebraic constraints in (8) and write the port-
Hamiltonian dynamics in input-state-output form. In this
paper, this most general formulation of port-Hamiltonian
dynamics is adopted.

Example 2.1 (RLC circuits): The RLC circuit in series
configuration reported in Fig. 2(a) is characterized by a Dirac



Example: transmission line + sRLC

Let us fix the port-Hamiltonian controller as follows 
 
 

It is possible to prove that one Casimir function is present 
 
 
 
 

Stability can be easily achieved by selecting

control action

Physical interpretation???



Example: transmission line + sRLC

Asymptotic stability follows from La Salle’s arguments 
We add damping through the further input u’ 

Coordinate change (move to 0 the equilibrium)

The admissible Ha are in the form

Ha(⇠), ⇠ = xQ +

Z `

0
xq dz (40)

and the boundary action is �(xq, xQ) = �@Ha
@⇠ (⇠). This

is the same result is obtained in [3], and based on the
control by interconnection and energy shaping via Casimir
generation. This is clearly in accordance with Remark 3.1.
Asymptotic stability follows by selecting

Ha(⇠) =
1

2
KC(⇠ � ⇠?)� e? [1 +KC (CL + C)] ⇠

with KC > 0, and where ⇠? is the value of ⇠ in (40) at the
equilibrium (36). In fact, in the error coordinates

x̃q = xq � x?
q x̃� = x� � x?

�

x̃Q = xQ � x?
Q x̃� = x� � x?

�

(41)

stability of (36) is equivalent to the stability of
(x̃q, x̃�, x̃Q, x̃�) = (0, 0, 0, 0). Note that, with this choice
for Ha, (36) is a stable equilibrium in the sense of [24].
Asymptotic stability is enforced by adding further dis-

sipation at the control port, i.e. by imposing that

u0(t) = �KDy0(t), KD > 0 (42)

in (18). After the coordinate change (41), and due to the
fact that the control action � properly shapes the open-
loop Hamiltonian, from (33) we have that

u0(t) =
�H̃d

�x̃q
(t, 0) =

x̃q(t, 0)

C
+KC ⇠̃(t)

y0(t) =
�H̃d

�x̃�
(t, 0) =

x̃�(t, 0)

L

(43)

since the preliminary feedback preserves the Dirac struc-
ture of the transmission line, and acts on H only; ⇠̃ is the
value of ⇠ in (40) in the new coordinates.

Under the assumptions of existence of solutions, and of
pre-compactness of the orbits, asymptotic stability is a
consequence of La Salle’s Invariance Principle, [25]. For
the closed-loop system, the energy balance relation is

dH̃d

dt
= �RL

✓

x̃�

LL

◆2

�KD

✓

x̃�(0)

L

◆2

So, energy decreases until in steady state we have that
x̃� = x̃�(`) = x̃�(0) = 0, where the interconnection
constraint in z = ` has been taken into account. More-
over, from (34), we have that x̃Q becomes constant, and
x̃Q

CL
= x̃q(`)

C . Finally, it is easy to verify that also ⇠̃ is con-

stant in steady state and, from (43), that xq(0)
C = �KC ⇠̃.

Due to the fact that in steady state ˙̃Hd = 0, it immedi-
ately follows that (32) is constant. Consequently, the only
invariant solution compatible with constant stored energy,
voltages and currents in z = 0 and in z = `, is with x̃q

and x̃� constant on [0, `], which implies ⇠̃ = 0 in spite of
(40). This proves that the only invariant solution compat-

ible with ˙̃Hd = 0 is (x̃q, x̃�, x̃Q, x̃�) = (0, 0, 0, 0), and
then (36) is an asymptotically stable equilibrium.

As in the finite dimensional case [10], the methodology
discussed in Sect. 3 fails when the desired equilibrium re-
quires an infinite amount of energy from the controller. In
particular, when the load is an RLC circuit in parallel con-
figuration, the PDE (24) cannot be solved. In this case,
the load is described by the port-Hamiltonian system
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>

>

:

ẋQ = � 1

RL

@HRLC

@xQ
(xQ, x�) +

@HRLC

@x�
(xQ, x�)

ẋ� = �@HRLC

@xQ
(xQ, x�) + V

I =
@HRLC

@x�
(xQ, x�)

(44)

with Hamiltonian given by (35), and interconnected to (31)
by imposing (I`, V`) = (�I, V ), as in the previous case.
For this system, the desired equilibrium configuration is

✓

x?
q

C
,
x?
�

L
,
x?
Q

CL
,
x?
�

LL

◆

=

✓

e?,
e?

RL
, e?,

e?

RL

◆

(45)

As far as the associated Dirac structure is concerned, the
matrices FS , FC and EC remain the same as in (37), while
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@
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The domains of the operators associated to both the kernel
and image representation remain the same as before, i.e.
(38) and (39) respectively, with the only di↵erence that

E⇤
S =

0

B

B

@

0 @z 0 0 0 0 0 0
@z 0 0 0 0 0 0 0
0 0 0 �1 0 �1 0 0
0 0 1 0 �1 0 0 0

1

C

C

A

with also F ⇤
R = FT

R and E⇤
R = ET

R.
Simple calculations show that (24) cannot be solved.

However, a boundary state-modulated source is able to
properly shape the open-loop Hamiltonian and enforce
asymptotic stability of (45). The solution of the PDE (29)
in Prop. 4.1 shows that the admissible Ha are in the form

Ha(⇠), ⇠ = x� +RLxQ +

Z `

0
(x� +RLxq) dz (46)

and the control action is �(xq, x�, xQ, x�) = �RL
@Ha
@⇠ (⇠).

Note the similarities with case in which the transmission
line is not present, [10]. A possible choice for Ha is

Ha(⇠) =
1

2
KL(⇠ � ⇠?)2 � e?

RL
⇠, KL > 0
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The admissible Ha are in the form

Ha(⇠), ⇠ = xQ +

Z `

0
xq dz (40)

and the boundary action is �(xq, xQ) = �@Ha
@⇠ (⇠). This

is the same result is obtained in [3], and based on the
control by interconnection and energy shaping via Casimir
generation. This is clearly in accordance with Remark 3.1.
Asymptotic stability follows by selecting

Ha(⇠) =
1

2
KC(⇠ � ⇠?)� e? [1 +KC (CL + C)] ⇠

with KC > 0, and where ⇠? is the value of ⇠ in (40) at the
equilibrium (36). In fact, in the error coordinates

x̃q = xq � x?
q x̃� = x� � x?

�

x̃Q = xQ � x?
Q x̃� = x� � x?

�

(41)

stability of (36) is equivalent to the stability of
(x̃q, x̃�, x̃Q, x̃�) = (0, 0, 0, 0). Note that, with this choice
for Ha, (36) is a stable equilibrium in the sense of [24].
Asymptotic stability is enforced by adding further dis-

sipation at the control port, i.e. by imposing that

u0(t) = �KDy0(t), KD > 0 (42)

in (18). After the coordinate change (41), and due to the
fact that the control action � properly shapes the open-
loop Hamiltonian, from (33) we have that

u0(t) =
�H̃d

�x̃q
(t, 0) =

x̃q(t, 0)

C
+KC ⇠̃(t)

y0(t) =
�H̃d

�x̃�
(t, 0) =

x̃�(t, 0)

L

(43)

since the preliminary feedback preserves the Dirac struc-
ture of the transmission line, and acts on H only; ⇠̃ is the
value of ⇠ in (40) in the new coordinates.

Under the assumptions of existence of solutions, and of
pre-compactness of the orbits, asymptotic stability is a
consequence of La Salle’s Invariance Principle, [25]. For
the closed-loop system, the energy balance relation is

dH̃d

dt
= �RL

✓

x̃�

LL

◆2

�KD

✓

x̃�(0)

L

◆2

So, energy decreases until in steady state we have that
x̃� = x̃�(`) = x̃�(0) = 0, where the interconnection
constraint in z = ` has been taken into account. More-
over, from (34), we have that x̃Q becomes constant, and
x̃Q

CL
= x̃q(`)

C . Finally, it is easy to verify that also ⇠̃ is con-

stant in steady state and, from (43), that xq(0)
C = �KC ⇠̃.

Due to the fact that in steady state ˙̃Hd = 0, it immedi-
ately follows that (32) is constant. Consequently, the only
invariant solution compatible with constant stored energy,
voltages and currents in z = 0 and in z = `, is with x̃q

and x̃� constant on [0, `], which implies ⇠̃ = 0 in spite of
(40). This proves that the only invariant solution compat-

ible with ˙̃Hd = 0 is (x̃q, x̃�, x̃Q, x̃�) = (0, 0, 0, 0), and
then (36) is an asymptotically stable equilibrium.

As in the finite dimensional case [10], the methodology
discussed in Sect. 3 fails when the desired equilibrium re-
quires an infinite amount of energy from the controller. In
particular, when the load is an RLC circuit in parallel con-
figuration, the PDE (24) cannot be solved. In this case,
the load is described by the port-Hamiltonian system
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@HRLC
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(44)

with Hamiltonian given by (35), and interconnected to (31)
by imposing (I`, V`) = (�I, V ), as in the previous case.
For this system, the desired equilibrium configuration is
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As far as the associated Dirac structure is concerned, the
matrices FS , FC and EC remain the same as in (37), while
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The domains of the operators associated to both the kernel
and image representation remain the same as before, i.e.
(38) and (39) respectively, with the only di↵erence that
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with also F ⇤
R = FT

R and E⇤
R = ET

R.
Simple calculations show that (24) cannot be solved.

However, a boundary state-modulated source is able to
properly shape the open-loop Hamiltonian and enforce
asymptotic stability of (45). The solution of the PDE (29)
in Prop. 4.1 shows that the admissible Ha are in the form

Ha(⇠), ⇠ = x� +RLxQ +

Z `

0
(x� +RLxq) dz (46)

and the control action is �(xq, x�, xQ, x�) = �RL
@Ha
@⇠ (⇠).

Note the similarities with case in which the transmission
line is not present, [10]. A possible choice for Ha is

Ha(⇠) =
1

2
KL(⇠ � ⇠?)2 � e?

RL
⇠, KL > 0

7

The admissible Ha are in the form

Ha(⇠), ⇠ = xQ +

Z `

0
xq dz (40)

and the boundary action is �(xq, xQ) = �@Ha
@⇠ (⇠). This

is the same result is obtained in [3], and based on the
control by interconnection and energy shaping via Casimir
generation. This is clearly in accordance with Remark 3.1.
Asymptotic stability follows by selecting

Ha(⇠) =
1

2
KC(⇠ � ⇠?)� e? [1 +KC (CL + C)] ⇠

with KC > 0, and where ⇠? is the value of ⇠ in (40) at the
equilibrium (36). In fact, in the error coordinates

x̃q = xq � x?
q x̃� = x� � x?

�

x̃Q = xQ � x?
Q x̃� = x� � x?

�

(41)

stability of (36) is equivalent to the stability of
(x̃q, x̃�, x̃Q, x̃�) = (0, 0, 0, 0). Note that, with this choice
for Ha, (36) is a stable equilibrium in the sense of [24].
Asymptotic stability is enforced by adding further dis-

sipation at the control port, i.e. by imposing that

u0(t) = �KDy0(t), KD > 0 (42)

in (18). After the coordinate change (41), and due to the
fact that the control action � properly shapes the open-
loop Hamiltonian, from (33) we have that

u0(t) =
�H̃d

�x̃q
(t, 0) =

x̃q(t, 0)

C
+KC ⇠̃(t)

y0(t) =
�H̃d

�x̃�
(t, 0) =

x̃�(t, 0)

L

(43)

since the preliminary feedback preserves the Dirac struc-
ture of the transmission line, and acts on H only; ⇠̃ is the
value of ⇠ in (40) in the new coordinates.

Under the assumptions of existence of solutions, and of
pre-compactness of the orbits, asymptotic stability is a
consequence of La Salle’s Invariance Principle, [25]. For
the closed-loop system, the energy balance relation is

dH̃d

dt
= �RL

✓

x̃�

LL

◆2

�KD

✓

x̃�(0)

L

◆2

So, energy decreases until in steady state we have that
x̃� = x̃�(`) = x̃�(0) = 0, where the interconnection
constraint in z = ` has been taken into account. More-
over, from (34), we have that x̃Q becomes constant, and
x̃Q

CL
= x̃q(`)

C . Finally, it is easy to verify that also ⇠̃ is con-

stant in steady state and, from (43), that xq(0)
C = �KC ⇠̃.

Due to the fact that in steady state ˙̃Hd = 0, it immedi-
ately follows that (32) is constant. Consequently, the only
invariant solution compatible with constant stored energy,
voltages and currents in z = 0 and in z = `, is with x̃q

and x̃� constant on [0, `], which implies ⇠̃ = 0 in spite of
(40). This proves that the only invariant solution compat-

ible with ˙̃Hd = 0 is (x̃q, x̃�, x̃Q, x̃�) = (0, 0, 0, 0), and
then (36) is an asymptotically stable equilibrium.

As in the finite dimensional case [10], the methodology
discussed in Sect. 3 fails when the desired equilibrium re-
quires an infinite amount of energy from the controller. In
particular, when the load is an RLC circuit in parallel con-
figuration, the PDE (24) cannot be solved. In this case,
the load is described by the port-Hamiltonian system
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ẋQ = � 1
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(xQ, x�)

ẋ� = �@HRLC

@xQ
(xQ, x�) + V

I =
@HRLC

@x�
(xQ, x�)

(44)

with Hamiltonian given by (35), and interconnected to (31)
by imposing (I`, V`) = (�I, V ), as in the previous case.
For this system, the desired equilibrium configuration is

✓

x?
q

C
,
x?
�

L
,
x?
Q

CL
,
x?
�

LL

◆

=

✓

e?,
e?

RL
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e?

RL

◆

(45)

As far as the associated Dirac structure is concerned, the
matrices FS , FC and EC remain the same as in (37), while

ES =
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The domains of the operators associated to both the kernel
and image representation remain the same as before, i.e.
(38) and (39) respectively, with the only di↵erence that

E⇤
S =

0

B

B

@

0 @z 0 0 0 0 0 0
@z 0 0 0 0 0 0 0
0 0 0 �1 0 �1 0 0
0 0 1 0 �1 0 0 0

1

C

C

A

with also F ⇤
R = FT

R and E⇤
R = ET

R.
Simple calculations show that (24) cannot be solved.

However, a boundary state-modulated source is able to
properly shape the open-loop Hamiltonian and enforce
asymptotic stability of (45). The solution of the PDE (29)
in Prop. 4.1 shows that the admissible Ha are in the form

Ha(⇠), ⇠ = x� +RLxQ +

Z `

0
(x� +RLxq) dz (46)

and the control action is �(xq, x�, xQ, x�) = �RL
@Ha
@⇠ (⇠).

Note the similarities with case in which the transmission
line is not present, [10]. A possible choice for Ha is

Ha(⇠) =
1

2
KL(⇠ � ⇠?)2 � e?

RL
⇠, KL > 0
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The admissible Ha are in the form

Ha(⇠), ⇠ = xQ +

Z `

0
xq dz (40)

and the boundary action is �(xq, xQ) = �@Ha
@⇠ (⇠). This

is the same result is obtained in [3], and based on the
control by interconnection and energy shaping via Casimir
generation. This is clearly in accordance with Remark 3.1.
Asymptotic stability follows by selecting

Ha(⇠) =
1

2
KC(⇠ � ⇠?)� e? [1 +KC (CL + C)] ⇠

with KC > 0, and where ⇠? is the value of ⇠ in (40) at the
equilibrium (36). In fact, in the error coordinates

x̃q = xq � x?
q x̃� = x� � x?

�

x̃Q = xQ � x?
Q x̃� = x� � x?

�

(41)

stability of (36) is equivalent to the stability of
(x̃q, x̃�, x̃Q, x̃�) = (0, 0, 0, 0). Note that, with this choice
for Ha, (36) is a stable equilibrium in the sense of [24].
Asymptotic stability is enforced by adding further dis-

sipation at the control port, i.e. by imposing that

u0(t) = �KDy0(t), KD > 0 (42)

in (18). After the coordinate change (41), and due to the
fact that the control action � properly shapes the open-
loop Hamiltonian, from (33) we have that

u0(t) =
�H̃d

�x̃q
(t, 0) =

x̃q(t, 0)

C
+KC ⇠̃(t)

y0(t) =
�H̃d

�x̃�
(t, 0) =

x̃�(t, 0)

L

(43)

since the preliminary feedback preserves the Dirac struc-
ture of the transmission line, and acts on H only; ⇠̃ is the
value of ⇠ in (40) in the new coordinates.

Under the assumptions of existence of solutions, and of
pre-compactness of the orbits, asymptotic stability is a
consequence of La Salle’s Invariance Principle, [25]. For
the closed-loop system, the energy balance relation is

dH̃d

dt
= �RL

✓

x̃�

LL

◆2

�KD

✓

x̃�(0)

L

◆2

So, energy decreases until in steady state we have that
x̃� = x̃�(`) = x̃�(0) = 0, where the interconnection
constraint in z = ` has been taken into account. More-
over, from (34), we have that x̃Q becomes constant, and
x̃Q

CL
= x̃q(`)

C . Finally, it is easy to verify that also ⇠̃ is con-

stant in steady state and, from (43), that xq(0)
C = �KC ⇠̃.

Due to the fact that in steady state ˙̃Hd = 0, it immedi-
ately follows that (32) is constant. Consequently, the only
invariant solution compatible with constant stored energy,
voltages and currents in z = 0 and in z = `, is with x̃q

and x̃� constant on [0, `], which implies ⇠̃ = 0 in spite of
(40). This proves that the only invariant solution compat-

ible with ˙̃Hd = 0 is (x̃q, x̃�, x̃Q, x̃�) = (0, 0, 0, 0), and
then (36) is an asymptotically stable equilibrium.

As in the finite dimensional case [10], the methodology
discussed in Sect. 3 fails when the desired equilibrium re-
quires an infinite amount of energy from the controller. In
particular, when the load is an RLC circuit in parallel con-
figuration, the PDE (24) cannot be solved. In this case,
the load is described by the port-Hamiltonian system
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@HRLC

@xQ
(xQ, x�) +
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@x�
(xQ, x�)

ẋ� = �@HRLC

@xQ
(xQ, x�) + V

I =
@HRLC

@x�
(xQ, x�)

(44)

with Hamiltonian given by (35), and interconnected to (31)
by imposing (I`, V`) = (�I, V ), as in the previous case.
For this system, the desired equilibrium configuration is
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(45)

As far as the associated Dirac structure is concerned, the
matrices FS , FC and EC remain the same as in (37), while
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The domains of the operators associated to both the kernel
and image representation remain the same as before, i.e.
(38) and (39) respectively, with the only di↵erence that

E⇤
S =

0
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0 @z 0 0 0 0 0 0
@z 0 0 0 0 0 0 0
0 0 0 �1 0 �1 0 0
0 0 1 0 �1 0 0 0
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with also F ⇤
R = FT

R and E⇤
R = ET

R.
Simple calculations show that (24) cannot be solved.

However, a boundary state-modulated source is able to
properly shape the open-loop Hamiltonian and enforce
asymptotic stability of (45). The solution of the PDE (29)
in Prop. 4.1 shows that the admissible Ha are in the form

Ha(⇠), ⇠ = x� +RLxQ +

Z `

0
(x� +RLxq) dz (46)

and the control action is �(xq, x�, xQ, x�) = �RL
@Ha
@⇠ (⇠).

Note the similarities with case in which the transmission
line is not present, [10]. A possible choice for Ha is

Ha(⇠) =
1

2
KL(⇠ � ⇠?)2 � e?

RL
⇠, KL > 0

7

In steady state we have that xQ, xΦ and ξ are 
constant, with Hd constant, which implies that the 
energy stored in the line is constant, and the line 
as constant applied voltages and currents

The only invariant solution is 

with constant voltage and 

current in the line

energy balancing



Boundary d-pH systems and damping injection

What happens when boundary control by damping injection is 
applied to a boundary control system in port-Hamiltonian form? 

See e.g. the previous situation with transmission line and sRLC 

What about the existence of solutions, i.e. associated C0-semigroup? 

Given the class of linear, distributed port-Hamiltonian systems, a 
contraction C0-semigroup is generated when 
 

If the system is in impedance form, we have that 

Let’s introduce damping



Example: transmission line + pRLC

RLC load in parallel configuration:  
 
 
 
 
 

It is easy to check that there are no Casimir functions in closed-loop 
This is coherent with the fact that the supplied power at the equilibrium 
must be in general different from 0 

The energy-Casimir method fails, as all the possible energy-balancing 
controller

Desired equilibrium

(24) has a solution. With reference to (24), it is necessary to

find � = (�1, �2, �3)
T , possibly dependent on x, such that

�@Ha

@x
= FS

T�

� = FC
T�

0 = ET
S � = ET

R� = FT
R� = ET

C�

(32)

Let assume �1 = (�1,2, . . . , �1,4)
T , �2 = (�2,1,�2,2)

T and

�3 = (�3,1, . . . , �3,2(N�1))
T . Then, with simple calcula-

tions, from the last set of relations in (32), it follows that

�1,2 = �1,3 = �2,1 = �3,1 = �3,2i�1 = 0

�1,1 = ��1,4 = �2,2 = �3,2i

with i = 1, . . . , N � 1. Since

�@Ha

@xQ

= �@Ha

@xiq
= �1,1

� = �2,2 = �1,1

�@Ha

@x�
= �@Ha

@xi�
= �1,2 = 0

we have that

Ha(x) = Ha(⇠)
�

�

�

⇠=xQ+
PN

i=1 xi
q

�(x) = � @Ha

@⇠

�

�

�

�

⇠=xQ+
PN

i=1 xi
q

(33)

A possible choice for Ha is the following:

Ha(⇠) =
1

2

⇠2

CC

� e?

 

1 +
CL

CC

+
N
X

i=1

Ci

CC

!

⇠ + 

where CC > 0 is a design parameter and  a constant. This

is the same result obtained in [7], where the controller has

been developed by generating Casimir functions in closed-

loop. The constant  can be selected to have the closed-loop

Hamiltonian (22) quadratic in the increments, i.e.:

Hd(x) =
1

2
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B

B

B

B

B

B

B

B

B

B

B

B

B

B

@
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q
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...
xN
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x�
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1
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C

C

C

C

C

C

C

C

C

C

C

C

C

A

T
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B
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B

B

B

B

B

B

B

B

B

@
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x1
q
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xN
q
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� e?

x�

x1�
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xN�

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(34)

with

Hd =

0

B

B

B

B

B

B

B

B

B

@

C2
L

CC
+ CL · · · CLCN

CC
0 · · · 0

... . . .
...

...
. . .

...

CLCN

CC
· · · C2

N

CC
+ CN 0 · · · 0

0 · · · 0
1
LL

· · · 0

... . . .
...

...
. . .

...

0 · · · 0 0 · · · 1
LN

1

C

C

C

C

C

C

C

C

C

A

Stability easily follows from (25) and from the fact that (34)

is bounded from below. Asymptotic stability is proved by

checking that under the closed-loop dynamics, the largest

invariant solution contained in (26) equals the desired equi-

librium. In fact, when Ḣd = eTRfR = 0, we have that x� = 0

and xQ = x̄Q constant, to be determined later on. From the

system dynamics we obtain that

↵ẋN� +
xNq
CN

=
x̄Q

CL

↵ẋNq +
xN�
LN

= 0

The only invariant solution compatible with Ḣd = 0 is xN� =

0 and
xN
q

CN
=

x̄Q

CL
, and the iteration of this procedure for all

the elements of the transmission line leads to xi� = 0 and

xi
q

Ci
=

x̄Q

CL
, with i = 1, . . . , N . From (33) the value assumed

by the control action � in this steady state configuration can

be computed, and then it follows that x̄Q

CL
= e?, and this

completes the proof.

In case the load interconnected to the transmission line

is the RLC circuit in parallel configuration, the resulting

port-Hamiltonian model is characterised by a Dirac structure

defined by (5), where the matrices FS , FR, FC , ES , ER, and

EC are the same as in (28), but with FS,s, ES,s, FR,s, and

ER,s replaced by FS,p, ES,p, FR,p, and ER,p defined in (11).

Moreover, the port variables are defined in (29), the resistive

relation (13) holds, and state variable and Hamiltonian are

given by (30) and (31), respectively. The desired equilibrium

configuration is

x?Q
CL

=
xi,?q
Ci

= e?
x?�
LL

=
x
i,?
�

Li

=
e?

RL

(35)

with i = 1, . . . , N , which means constant voltage e? and

current e?

RL
along the transmission line and on the load.

As in the situation in which there is no transmission line,

an energy-balancing passivity-based controller is not able to

stabilise the system, [2]. In other words, the PDE (23) or,

equivalently, (24) does not admit a solution Ha that is able to

shape the closed-loop Hamiltonian to introduce a minimum

at the desired equilibrium (35). For space limitations, this

step is not reported in this paper. Then, it is preferable to

rely on the method discussed in Sect. III-B, and look for

solutions of the PDE (27), i.e. to find � = (�1, �2, �3)
T

such that

�@Ha

@x
= FS

T�

� = FC
T�

0 = ET
S � = (RLE

T
R + FT

R )�

(36)

As in the previous example, from the last set of relations in

(36), it follows that

�1,2 = �1,3 = �2,1 = �3,2i�1

�1,1 = ��1,4 = �2,2 = �3,2i

�RL�1,2 + �1,1 = 0 (37)

Fig. 1. A port-Hamiltonian system.

D ⇢ F ⇥ E such that dimD = dimF and he, fi = 0,8(f, e) 2 D.
It is clear from the previous definition that the Diracstructure defines a power-conserving relation on F⇥E . Diracstructures admit different representations in coordinates, [13].For example, every Dirac structure D on an n-dimensionalspace of flows F can be given in kernel representation as

D =
n

(f, e) 2 F ⇥ E | Ff + Ee = 0
o

(1)
or in image representation as
D =

n

(f, e) 2 F⇥E | f = ET�, e = FT�, � 2 Rn
o

(2)
where F and E are n⇥ n matrices such that

(a) EFT + FET = 0
(b) rank

�

F | E�

= n (3)
and, in this case, he, fi = eTf .
B. Port-Hamiltonian systems

In case of finite dimensional port-Hamiltonian systems,once the Dirac structure is given, the dynamics follows fromthe port behavior of the energy storing elements. Denote byX the space of energy variables and by H : X ! R theenergy function. Then, the port behavior is:

f = �ẋ e =
@H

@x (4)
and, if the kernel representation (1) for a Dirac structureis adopted, the associated dynamics is expressed by thefollowing DAE:

�Fẋ+ E
@H

@x
= 0, x(0) = x0 2 X

Note that, Ḣ = 0, i.e. energy is conserved, which is coherentwith the fact that no external ports and dissipative effectshave been modelled. Moreover, F and E may also dependon x, and most of the results presented in this paper remainvalid in this situation.
In the general case a port-Hamiltonian system can berepresented as in Fig. 1. The Dirac structure D defines apower conserving relation between several port variables.In particular, there are two internal ports S and R, whichcorrespond to energy-storage and dissipation respectively,and two external ports C and I, which are devoted to anexchange of energy with a controller and the environmentrespectively.

(a) Series configuration. (b) Parallel configuration.
Fig. 2. RLC circuits.

If (fS , eS) 2 FS ⇥ ES , (fR, eR) 2 FR ⇥ ER, (fC , eC) 2FC ⇥ EC and (fI , eI) 2 FI ⇥ EI denote the power variablesof the energy-storage, dissipative, control and interactionports respectively, in the kernel representation (1) the Diracstructure D is given by the following subset of F ⇥ E , withF = FS ⇥ FR ⇥ FC ⇥ FI and E = ES ⇥ ER ⇥ EC ⇥ EI :

D =
n

(fS , fR, fC , fI , eS , eR, eC , eI) 2 F ⇥ E |
FSfS + FRfR + FCfC + FIfI+
+ ESeS + EReR + ECeC + EIeI = 0

o

(5)

where the matrices (Fi, Ei), with i = S, R, C, I , satisfy aset of conditions similar to (3). If the behavior at the energystoring port is given as in (4) and the dissipative port satisfiesthe (linear) resistive relation

RffR +ReeR = 0 (6)
where Rf and Re are square matrices such that

(a) RfRT
e = ReRT

f > 0
(b) rank

�

Rf | Re

�

= dimFR
(7)

then the port-Hamiltonian dynamics results into the follow-ing set of DAEs:

�FS ẋ+ ES
@H

@x
+ FRfR + EReR+

+FCfC + ECeC + FIfI + EIeI = 0
RffR +ReeR = 0

(8)

with x(0) = x0 2 X . Note that, in this case,

d

dt
H  eTCfC + eTI fI (9)

which means that the variation of internal energy is boundedby the incoming power flows through the control and interac-tion ports. In particular cases, it is possible to explicitly getrid of the algebraic constraints in (8) and write the port-Hamiltonian dynamics in input-state-output form. In thispaper, this most general formulation of port-Hamiltoniandynamics is adopted.
Example 2.1 (RLC circuits): The RLC circuit in seriesconfiguration reported in Fig. 2(a) is characterized by a Dirac



(Boundary) Energy-shaping control

Let us consider the next PDE, with the “usual” choice of u and y 

Is the classical energy-balance control applicable?

II. BACKGROUND

A. Dirac structures on Hilbert spaces
Dirac structures on Hilbert spaces have been introduced in

[12], while their kernel and image representations have been
discussed in [13]. Here, for simplicity, we assume that the
space of flows F is an Hilbert space, and that the space of
efforts is E ⌘ F . Denote by h· | ·i the inner product on F .
The Cartesian space F ⇥ E equipped by the inner product
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Similarly to the case in which the bond space is a linear
vector space [11], we give the following definition, [13]:
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F E
�
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where · stands for the closure of an operator, while ·⇤
denotes the adjoint operator, see e.g. [10]. From (2), it
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The expressions (3) and (4) are the kernel and image repre-
sentations respectively of the Dirac structure D. The image
representation is useful in the control synthesis because it
provides a simple way to parametrize the system trajectories.

B. A class of distributed port-Hamiltonian systems
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Hamiltonian systems that have been studied in [15], [16],
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1 > 0,

P0 = �PT
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0 � 0, and L(·) is a bounded and
continuously differentiable matrix-valued function such that
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(z) and L(z) � I , with  > 0, for all z 2 [a, b].
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), and is endowed with the inner product
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where h· | ·i denotes the natural L2-inner product. The se-
lection of this space for the state variable is motivated by
the fact that H(·) =

1/2 k·k2L is the energy function. As a
consequence, X is also called the space of energy variables
and Lx is the co-energy variable.
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The boundary port variables are just a linear combination
of the restriction of the boundary variables, and simple
integration by parts shows that ˙H(x(t)) = eT@ (t)f@(t).

The problem of determining the “right” boundary inputs
and outputs for (5) to have a so-called boundary control
system on X , see e.g. [10], has been addressed in [15], [16].
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the system (5) with input u(t) = W
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ry control system on X . Furthermore, the operator J x =
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) |
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generates a contraction semigroup on X . Moreover, let ˜W be
a full rank n⇥2n matrix such that
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WT
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�

is invertible
and let P be given by
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. Then, for u 2
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), the following
energy balance equation is satisfied:

dH

dt
(x(t))  1

2
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u(t)
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(6)

In this paper, u and y are chosen in such a way that (5)
is in impedance form, i.e. W⌃WT

=

˜W⌃

˜WT
= 0, and

W⌃

˜WT
= I , so that P = ⌃ and (6) reduces to

dH

dt
(x(t))  yT(t)u(t) (7)

Under these hypotheses, (5) is characterised by a Dirac
structure on the space of flows

F = FS ⇥ FR ⇥ FC (8)

with FS = L2(a, b;Rn
), FR = Rr, and FC = Rn, being

r = rankG0. Here, (fS , eS) represents the energy-storage
port, (fR, eR) the dissipative port, and (fC , eC) ⌘ (y, u)
the control port, that is assumed with effort-in causality
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with  2 R some constant, [10], [12], [23]. Clearly, (18) is a particular case of (17). In this respect, let us write the “desired”
closed-loop Hamiltonian as follows:

Hd(x) = H(x) +Ha(x) (19)

Given a desired equilibrium configuration x?, the idea is to select Ha in such a way that Hd has a minimum in x?, that is
made asymptotically stable by damping injection.

With some abuse in notation, differentiation with respect to time of (18) leads to

��T(x(t))y(t) =
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@t
(t, z) dz

where � denotes the variational derivative, [1], [2]. In spite of (1) and (11), it is then necessary to find Ha and � such that
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Using integration by parts, (20) can be equivalently written as follows:
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From (21), a sufficient condition for the solution of the energy-balancing passivity-based control problem is to find Ha and �
such that
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Note that, since
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from (14), condition (23) can be equivalently rewritten as
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(25)

in which the first relation provides the feedback law, while the second one, together with (22), imposes some constraints
on the admissible functions Ha that can be employed in the energy-shaping procedure. These results are quite general and,
with minor modifications, are valid also in the non-linear case. For a more precise and rigorous analysis of the closed-loop
system, it is convenient to restrict ourselves to the linear case, and to suppose that the control action � is the output of a linear
port-Hamiltonian system that is interconnected in power-conserving way to the boundary of the distributed port-Hamiltonian
system (1). Roughly speaking, the energy-shaping procedure then requires to chose the controller Hamiltonian in a proper way,
i.e. as did for Ha here. This topic is addressed in the next section.

IV. ENERGY-BALANCING THROUGH INTERCONNECTION AND CASIMIR GENERATION

In this section, we suppose that a finite-dimensional, linear port-Hamiltonian system is interconnected to the boundary of the
distributed port-Hamiltonian system (1), and the resulting closed-loop system is characterised by a Hamiltonian which is the sum
of the two. In this way, it is possible to shape the closed-loop energy function by acting on the controller Hamiltonian. As in the
finite dimensional case [10], [12], [23], this procedure is facilitated once a proper set of invariants, namely Casimir functions,
have been introduced by choosing the controller structure so that the state variable of the plant is robustly related to the state
variable of the controller. The idea is to determine under which conditions the boundary port-Hamiltonian controller is able to
generate the control action given in the first relation in (25), with associated function to be employed in the energy-shaping step
that satisfies (22) and the second equation in (25). In this way, it is possible to rely on the control by interconnection paradigm
to check the existence of solutions in closed-loop, and the asymptotic stability of equilibria. In this respect, the existence of
solutions of the closed-loop dynamics is studied in Sect. IV-A, while conditions for the existence of Casimir functions are
given in Sect. IV-B. Finally, some tools required to analyse the (exponential) stability of the closed-loop system are reported in
Sect. IV-C. Due to the established equivalence between energy-Casimir and energy-balancing methodologies, this will imply
the asymptotic stability of the closed-loop system under the effect of the control action obtained in (25).
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in which the first relation provides the feedback law, while the second one, together with (22), imposes some constraints
on the admissible functions Ha that can be employed in the energy-shaping procedure. These results are quite general and,
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system, it is convenient to restrict ourselves to the linear case, and to suppose that the control action � is the output of a linear
port-Hamiltonian system that is interconnected in power-conserving way to the boundary of the distributed port-Hamiltonian
system (1). Roughly speaking, the energy-shaping procedure then requires to chose the controller Hamiltonian in a proper way,
i.e. as did for Ha here. This topic is addressed in the next section.
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In this section, we suppose that a finite-dimensional, linear port-Hamiltonian system is interconnected to the boundary of the
distributed port-Hamiltonian system (1), and the resulting closed-loop system is characterised by a Hamiltonian which is the sum
of the two. In this way, it is possible to shape the closed-loop energy function by acting on the controller Hamiltonian. As in the
finite dimensional case [10], [12], [23], this procedure is facilitated once a proper set of invariants, namely Casimir functions,
have been introduced by choosing the controller structure so that the state variable of the plant is robustly related to the state
variable of the controller. The idea is to determine under which conditions the boundary port-Hamiltonian controller is able to
generate the control action given in the first relation in (25), with associated function to be employed in the energy-shaping step
that satisfies (22) and the second equation in (25). In this way, it is possible to rely on the control by interconnection paradigm
to check the existence of solutions in closed-loop, and the asymptotic stability of equilibria. In this respect, the existence of
solutions of the closed-loop dynamics is studied in Sect. IV-A, while conditions for the existence of Casimir functions are
given in Sect. IV-B. Finally, some tools required to analyse the (exponential) stability of the closed-loop system are reported in
Sect. IV-C. Due to the established equivalence between energy-Casimir and energy-balancing methodologies, this will imply
the asymptotic stability of the closed-loop system under the effect of the control action obtained in (25).
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The idea is to see under which conditions the energy-balance control 
law can be obtained from the energy-Casimir method 

All the results about existence of solutions, stability, and so on can be used
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shape the closed-loop Hamiltonian. The characterization of the possible Casimir functions (42) in closed-loop is given in the
following proposition.

Proposition 2: Consider the distributed port-Hamiltonian system with dynamics expressed by the PDE (1) and input and
output u and y defined in (8) and (11), with W and W̃ that satisfy (14), the controller (26) with, for simplicity, RC = 0,
PC = 0 and MC = SC = 0, and the power-conserving interconnection (29), with u0 = 0. Then, (42) is a Casimir function if
and only if:

P1
@

@z
 (z) + P0 (z) = 0 (43)

JC�+GCW̃R

✓

 (b)
 (a)

◆

= 0 (44)

GT
C�+WR

✓

 (b)
 (a)

◆

= 0 (45)
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where the dependence on t and z has been omitted for simplicity. According to Definition 1, the Casimir function has to
be independent from the Hamiltonian of the plant and of the controller. On the other hand, the interconnection introduces a
constraint on the possible Hamiltonians that has to be properly managed. In this respect, it is convenient to “parametrize” the
boundary variables (f@ , e@) defined in (5) as follows. Given �1, �2 2 Rn, all the possible values of (f@ , e@) can be described
by
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All the possible behaviors at (f@ , e@) corresponding to Hamiltonian dynamics can be obtained by properly varying HC and
�1. Due to (5), this relation provides also all the values that the co-energy variables can assume on the boundary for every
possible choice of the plant Hamiltonian, i.e. of L(·) in the linear case. Since
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The integral vanishes for all the L(·) if and only if  satisfies (43). Moreover, from (24), (5) and (49) we have that
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since ⌃⌃ = I . Then, substitution in (50) allows to obtain (44) and (45) by properly grouping all the terms multiplied by @HC
@xC

and �1, respectively.

6Proof: The proof follows the same steps of an analogous proposition presented in [19]. There, it is proved that there exists

a linear operator B 0 such that for all u0 we have that B 0u0 2 D(Jcl) and B0B 0u0 = u0. The second step consists in proving

that J̄cl generates a contraction semigroup. At first, it is easy to verify that given ⇠ 2 D(J̄cl), we have that
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because ⇠ 2 D(J̄cl), from (5), the definitions of input and output (8) and (11), and (28) we have that
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From (27) and (28) it follows that (I �AC) is non-singular, and from (38) and (39) that
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By following [19], there exists B̃ such that
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In case (41) holds, J generates a contraction semigroup (see Theorem 1), and then (I �J ) has an inverse and x̃ exists. This

completes the final step of the proof.

B. Casimir functions and energy shapingThe control by energy shaping relies on the choice of the controller Hamiltonian HC to properly shape the closed-loop energy

function Hcl given in (30) to introduce a minimum in the desired equilibrium configuration. Such minimum can be reached

one “sufficient” dissipation has been introduced, if necessary, into the system through the control action, i.e. via damping

injection. In case of distributed port-Hamiltonian system, as discussed in [3]–[5], the energy shaping has been accomplished

by relating the state variable of the controller to the state variable of the plant by means of a set of Casimir functions. For the

class of boundary-controlled port-Hamiltonian systems treated in this paper, a possible definition of Casimir function can be

the following:
Definition 1: Consider the (autonomous) port-Hamiltonian system resulting from the power-conserving interconnection (29)

of (1) and (26), with u0 = 0. A Casimir function is a function C : X ⇥ RnC ! R, such that Ċ = 0 along the solutions for

every possible choice of L(·) and HC (i.e., QC in the linear case).
In this paper, we will look for linear Casimir functions in the form

C(x(t), xC(t)) = �TxC(t) + h | x(t)i
= �TxC(t) +

Z b
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 T(z)x(t, z)dz (42)with � 2 RnC and  2 H1(a, b;Rn). Since this function is invariant, for every possible choice of the controller Hamiltonian

HC , a “structural” algebraic relation between state of the plant and of the controller is present and can be exploited to properly
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Now, let us assume that it is possible to relate all the state variables of the controller with the state of the plant through
nC independent Casimir functions Ci(x, xC) in the form (42), and introduce the matrices �̂ =
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and  ̂ =
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. For control purposes, a common requirement is to find nC independent Casimir functions such that �̂ = �I .
In this way, in closed-loop we have that
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for i = 1, . . . , nC , being i 2 R a constant that depend only on the initial conditions. Under this hypothesis, the Hamiltonian
function of the controller is, in fact, a function of the plant state variable, and it can be directly chosen to obtain the desired
stability property in closed-loop, namely a (possibly) global minimum at the desired equilibrium configuration.

Furthermore, let us assume that in (26) JC = 0 and GC = I , which means that the regulator is a simple integrator in case
HC is quadratic. From (51), the controller Hamiltonian can be explicitly written in terms of the state variable of the plant,
which means that HC(xC(t)) ⌘ HC
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Note that these relations are completely equivalent to (22) and (25).

C. Exponential stability in closed-loop
In this section, a simple tool for the exponential stability analysis of the closed-loop system resulting from the power-

conserving interconnection (29) of (1) and (26) is provided. The idea is to generalize a similar result discussed in [20] and
based on [25], where exponential stability is checked by looking only on the amount of energy flowing through (a part of)
the boundary of the distributed port-Hamiltonian system. Since the closed-loop system is passive, i.e. the total energy (30) is
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2
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T2
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of (1) is not in the minimum of the energy function, i.e. the energy of the plant is different from zero. This is coherent with
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function of the controller is, in fact, a function of the plant state variable, and it can be directly chosen to obtain the desired
stability property in closed-loop, namely a (possibly) global minimum at the desired equilibrium configuration.
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⌘

. The control action is then given by

yC =
@HC

@xC
= �WR

✓

�HC
�x (b)

�HC
�x (a)

◆

since (45) holds, while from (43) and (44) we deduce that HC must satisfy the following conditions:

P1
@

@z

✓

�HC

�x

◆

+ P0

✓

�HC

�x

◆

= 0 W̃R

✓

�HC
�x (b)

�HC
�x (a)

◆

= 0
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admissible  
energy-shaping

The relation is much clearer if analysed from a 

“geometric” point of view, as in finite dimensions



Example: transmission line + sRLC (2)

The stabilisation can be alternatively performed by relying directly on 
energy-balancing considerations 

The class of functions Ha is given by 
 

The control action is then given by 
 
 

Clearly, the result is the same, provided that HC = Ha

Fig. 1. A port-Hamiltonian system.

D ⇢ F ⇥ E such that dimD = dimF and he, fi = 0,8(f, e) 2 D.
It is clear from the previous definition that the Diracstructure defines a power-conserving relation on F⇥E . Diracstructures admit different representations in coordinates, [13].For example, every Dirac structure D on an n-dimensionalspace of flows F can be given in kernel representation asD =

n

(f, e) 2 F ⇥ E | Ff + Ee = 0
o

(1)or in image representation as
D =

n

(f, e) 2 F⇥E | f = ET�, e = FT�, � 2 Rn
o

(2)where F and E are n⇥ n matrices such that
(a) EFT + FET = 0(b) rank

�

F | E�

= n (3)
and, in this case, he, fi = eTf .
B. Port-Hamiltonian systems

In case of finite dimensional port-Hamiltonian systems,once the Dirac structure is given, the dynamics follows fromthe port behavior of the energy storing elements. Denote byX the space of energy variables and by H : X ! R theenergy function. Then, the port behavior is:
f = �ẋ e =

@H

@x (4)and, if the kernel representation (1) for a Dirac structureis adopted, the associated dynamics is expressed by thefollowing DAE:

�Fẋ+ E
@H

@x
= 0, x(0) = x0 2 X

Note that, Ḣ = 0, i.e. energy is conserved, which is coherentwith the fact that no external ports and dissipative effectshave been modelled. Moreover, F and E may also dependon x, and most of the results presented in this paper remainvalid in this situation.
In the general case a port-Hamiltonian system can berepresented as in Fig. 1. The Dirac structure D defines apower conserving relation between several port variables.In particular, there are two internal ports S and R, whichcorrespond to energy-storage and dissipation respectively,and two external ports C and I, which are devoted to anexchange of energy with a controller and the environmentrespectively.

(a) Series configuration. (b) Parallel configuration.
Fig. 2. RLC circuits.

If (fS , eS) 2 FS ⇥ ES , (fR, eR) 2 FR ⇥ ER, (fC , eC) 2FC ⇥ EC and (fI , eI) 2 FI ⇥ EI denote the power variablesof the energy-storage, dissipative, control and interactionports respectively, in the kernel representation (1) the Diracstructure D is given by the following subset of F ⇥ E , withF = FS ⇥ FR ⇥ FC ⇥ FI and E = ES ⇥ ER ⇥ EC ⇥ EI :
D =

n

(fS , fR, fC , fI , eS , eR, eC , eI) 2 F ⇥ E |
FSfS + FRfR + FCfC + FIfI+
+ ESeS + EReR + ECeC + EIeI = 0

o

(5)
where the matrices (Fi, Ei), with i = S, R, C, I , satisfy aset of conditions similar to (3). If the behavior at the energystoring port is given as in (4) and the dissipative port satisfiesthe (linear) resistive relation

RffR +ReeR = 0 (6)
where Rf and Re are square matrices such that

(a) RfRT
e = ReRT

f > 0(b) rank
�

Rf | Re

�

= dimFR
(7)

then the port-Hamiltonian dynamics results into the follow-ing set of DAEs:

�FS ẋ+ ES
@H

@x
+ FRfR + EReR+

+FCfC + ECeC + FIfI + EIeI = 0
RffR +ReeR = 0

(8)

with x(0) = x0 2 X . Note that, in this case,

d

dt
H  eTCfC + eTI fI (9)

which means that the variation of internal energy is boundedby the incoming power flows through the control and interac-tion ports. In particular cases, it is possible to explicitly getrid of the algebraic constraints in (8) and write the port-Hamiltonian dynamics in input-state-output form. In thispaper, this most general formulation of port-Hamiltoniandynamics is adopted.
Example 2.1 (RLC circuits): The RLC circuit in seriesconfiguration reported in Fig. 2(a) is characterized by a Dirac

The admissible Ha are in the form

Ha(⇠), ⇠ = xQ +

Z `

0
xq dz (40)

and the boundary action is �(xq, xQ) = �@Ha
@⇠ (⇠). This

is the same result is obtained in [3], and based on the
control by interconnection and energy shaping via Casimir
generation. This is clearly in accordance with Remark 3.1.
Asymptotic stability follows by selecting

Ha(⇠) =
1

2
KC(⇠ � ⇠?)� e? [1 +KC (CL + C)] ⇠

with KC > 0, and where ⇠? is the value of ⇠ in (40) at the
equilibrium (36). In fact, in the error coordinates

x̃q = xq � x?
q x̃� = x� � x?

�

x̃Q = xQ � x?
Q x̃� = x� � x?

�

(41)

stability of (36) is equivalent to the stability of
(x̃q, x̃�, x̃Q, x̃�) = (0, 0, 0, 0). Note that, with this choice
for Ha, (36) is a stable equilibrium in the sense of [24].
Asymptotic stability is enforced by adding further dis-

sipation at the control port, i.e. by imposing that

u0(t) = �KDy0(t), KD > 0 (42)

in (18). After the coordinate change (41), and due to the
fact that the control action � properly shapes the open-
loop Hamiltonian, from (33) we have that

u0(t) =
�H̃d

�x̃q
(t, 0) =

x̃q(t, 0)

C
+KC ⇠̃(t)

y0(t) =
�H̃d

�x̃�
(t, 0) =

x̃�(t, 0)

L

(43)

since the preliminary feedback preserves the Dirac struc-
ture of the transmission line, and acts on H only; ⇠̃ is the
value of ⇠ in (40) in the new coordinates.

Under the assumptions of existence of solutions, and of
pre-compactness of the orbits, asymptotic stability is a
consequence of La Salle’s Invariance Principle, [25]. For
the closed-loop system, the energy balance relation is

dH̃d

dt
= �RL

✓

x̃�

LL

◆2

�KD

✓

x̃�(0)

L

◆2

So, energy decreases until in steady state we have that
x̃� = x̃�(`) = x̃�(0) = 0, where the interconnection
constraint in z = ` has been taken into account. More-
over, from (34), we have that x̃Q becomes constant, and
x̃Q

CL
= x̃q(`)

C . Finally, it is easy to verify that also ⇠̃ is con-

stant in steady state and, from (43), that xq(0)
C = �KC ⇠̃.

Due to the fact that in steady state ˙̃Hd = 0, it immedi-
ately follows that (32) is constant. Consequently, the only
invariant solution compatible with constant stored energy,
voltages and currents in z = 0 and in z = `, is with x̃q

and x̃� constant on [0, `], which implies ⇠̃ = 0 in spite of
(40). This proves that the only invariant solution compat-

ible with ˙̃Hd = 0 is (x̃q, x̃�, x̃Q, x̃�) = (0, 0, 0, 0), and
then (36) is an asymptotically stable equilibrium.

As in the finite dimensional case [10], the methodology
discussed in Sect. 3 fails when the desired equilibrium re-
quires an infinite amount of energy from the controller. In
particular, when the load is an RLC circuit in parallel con-
figuration, the PDE (24) cannot be solved. In this case,
the load is described by the port-Hamiltonian system
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>

>

>

>

>

>

<

>

>

>

>

>

>

:

ẋQ = � 1

RL

@HRLC

@xQ
(xQ, x�) +

@HRLC

@x�
(xQ, x�)

ẋ� = �@HRLC

@xQ
(xQ, x�) + V

I =
@HRLC

@x�
(xQ, x�)

(44)

with Hamiltonian given by (35), and interconnected to (31)
by imposing (I`, V`) = (�I, V ), as in the previous case.
For this system, the desired equilibrium configuration is

✓

x?
q

C
,
x?
�

L
,
x?
Q

CL
,
x?
�

LL

◆

=

✓

e?,
e?

RL
, e?,

e?

RL

◆

(45)

As far as the associated Dirac structure is concerned, the
matrices FS , FC and EC remain the same as in (37), while

ES =

0

B

B

B

B

B

B

B

B

B

B

@

0 �@z 0 0
�@z 0 0 0
0 0 0 1
·|` 0 �1 0
0 ·|` 0 �1
0 0 �1 0

� · |0 0 0 0
0 � · |0 0 0

1

C

C

C

C

C

C

C

C

C

C

A

FR =

0

B

B

B

B

B

B

B

B

B

B

@

0
0
1
0
0
0
0
0

1

C

C

C

C

C

C

C

C

C

C

A

ER =

0

B

B

B

B

B

B

B

B

B

B

@

0
0
0
0
0
1
0
0

1

C

C

C

C

C

C

C

C

C

C

A

The domains of the operators associated to both the kernel
and image representation remain the same as before, i.e.
(38) and (39) respectively, with the only di↵erence that

E⇤
S =

0

B

B

@

0 @z 0 0 0 0 0 0
@z 0 0 0 0 0 0 0
0 0 0 �1 0 �1 0 0
0 0 1 0 �1 0 0 0

1

C

C

A

with also F ⇤
R = FT

R and E⇤
R = ET

R.
Simple calculations show that (24) cannot be solved.

However, a boundary state-modulated source is able to
properly shape the open-loop Hamiltonian and enforce
asymptotic stability of (45). The solution of the PDE (29)
in Prop. 4.1 shows that the admissible Ha are in the form

Ha(⇠), ⇠ = x� +RLxQ +

Z `

0
(x� +RLxq) dz (46)

and the control action is �(xq, x�, xQ, x�) = �RL
@Ha
@⇠ (⇠).

Note the similarities with case in which the transmission
line is not present, [10]. A possible choice for Ha is

Ha(⇠) =
1

2
KL(⇠ � ⇠?)2 � e?

RL
⇠, KL > 0
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State-modulated boundary control

Energy-Casimir method fails because we look for Ha (or HC) functions 
that are independent from the Hamiltonian and from the dissipative 
structure 

If you restrict the dynamics of the closed-loop system on the invariant, in 
finite dimensions it is immediate to see that the feedback action maps the 
open-loop system into a “desired” one 

Is it the same in the infinite dimensional scenario???? 

Why don’t we try to do the same for a specific system dynamics, as in 
the control with state-modulated source, here applied to the 
boundary of the domain????



State-modulated boundary control

Open-loop system (H is not necessarily quadratic) 
 

Target (or desired) dynamics  
 

Matching conditions

same state evolution!!

An energy-balancing controller satisfies these 
conditions, but the inverse implication is not true



Example: transmission line + pRLC

The distributed port-Hamiltonian formulation of the line is 
 
 
 

RLC load in parallel configuration:  
 
 
 
 

Boundary interconnection

Fig. 1. A port-Hamiltonian system.

D ⇢ F ⇥ E such that dimD = dimF and he, fi = 0,

8(f, e) 2 D.
It is clear from the previous definition that the Dirac

structure defines a power-conserving relation on F⇥E . Dirac

structures admit different representations in coordinates, [13].

For example, every Dirac structure D on an n-dimensional

space of flows F can be given in kernel representation as

D =
n

(f, e) 2 F ⇥ E | Ff + Ee = 0
o

(1)

or in image representation as

D =
n

(f, e) 2 F⇥E | f = ET�, e = FT�, � 2 Rn
o

(2)

where F and E are n⇥ n matrices such that

(a) EFT + FET = 0

(b) rank
�

F | E
�

= n
(3)

and, in this case, he, fi = eTf .

B. Port-Hamiltonian systems

In case of finite dimensional port-Hamiltonian systems,

once the Dirac structure is given, the dynamics follows from

the port behavior of the energy storing elements. Denote by

X the space of energy variables and by H : X ! R the

energy function. Then, the port behavior is:

f = �ẋ e =
@H

@x
(4)

and, if the kernel representation (1) for a Dirac structure

is adopted, the associated dynamics is expressed by the

following DAE:

�Fẋ+ E
@H

@x
= 0, x(0) = x0 2 X

Note that, Ḣ = 0, i.e. energy is conserved, which is coherent

with the fact that no external ports and dissipative effects

have been modelled. Moreover, F and E may also depend

on x, and most of the results presented in this paper remain

valid in this situation.

In the general case a port-Hamiltonian system can be

represented as in Fig. 1. The Dirac structure D defines a

power conserving relation between several port variables.

In particular, there are two internal ports S and R, which

correspond to energy-storage and dissipation respectively,

and two external ports C and I, which are devoted to an

exchange of energy with a controller and the environment

respectively.

(a) Series configuration. (b) Parallel configuration.

Fig. 2. RLC circuits.

If (fS, eS) 2 FS ⇥ ES , (fR, eR) 2 FR ⇥ ER, (fC , eC) 2

FC ⇥ EC and (fI , eI) 2 FI ⇥ EI denote the power variables

of the energy-storage, dissipative, control and interaction

ports respectively, in the kernel representation (1) the Dirac

structure D is given by the following subset of F ⇥ E , with

F = FS ⇥ FR ⇥ FC ⇥ FI and E = ES ⇥ ER ⇥ EC ⇥ EI :

D =
n

(fS, fR, fC , fI , eS, eR
, eC , eI) 2 F ⇥ E |

FSfS + FRfR + FCfC + FIfI+

+ ESeS + EReR + ECeC + EIeI = 0
o

(5)

where the matrices (Fi, Ei), with i = S, R, C, I , satisfy a

set of conditions similar to (3). If the behavior at the energy

storing port is given as in (4) and the dissipative port satisfies

the (linear) resistive relation

RffR +ReeR = 0 (6)

where Rf and Re are square matrices such that

(a) RfR
T
e = ReR

T
f > 0

(b) rank
�

Rf | Re

�

= dimFR

(7)

then the port-Hamiltonian dynamics results into the follow-

ing set of DAEs:

�FSẋ+ ES
@H

@x
+ FRfR + EReR+

+FCfC + ECeC + FIfI + EIeI = 0

RffR +ReeR = 0

(8)

with x(0) = x0 2 X . Note that, in this case,

d

dt
H  eTCfC + eTI fI

(9)

which means that the variation of internal energy is bounded

by the incoming power flows through the control and interac-

tion ports. In particular cases, it is possible to explicitly get

rid of the algebraic constraints in (8) and write the port-

Hamiltonian dynamics in input-state-output form. In this

paper, this most general formulation of port-Hamiltonian

dynamics is adopted.

Example 2.1 (RLC circuits): The RLC circuit in series

configuration reported in Fig. 2(a) is characterized by a Dirac

is quite strong, and it can be relaxed by requiring that the
control input � is able to map the trajectories of the open-
loop system into the trajectories of another port-Hamiltonian
system with Hamiltonian (19), and characterised by the same
Dirac structure and resistive relation.

From the image representation (4) of a Dirac structure,
with structure matrices (9) and port behaviour (11), as far as
the open-loop dynamics is concerned, for all � in (14) we
have that

0

B

B

@

�@x
@t

�H
�x
0

u

1

C

C

A

=

0

B

B

@

E⇤
S

F ⇤
S

¯GE⇤
R + F ⇤

R

F ⇤
C

1

C

C

A

� (21)

in which u is given as in (16). Similarly, as far as the
“desired dynamics” is concerned, since open and closed-loop
systems have the same Dirac structure and port behaviour
(but with different Hamiltonian), the stabilisation problem
can be solved if there exists at least a �0 in (14) such that

0

B

B

@

�@x
@t

�Hd
�x
0

u0

1

C

C

A

=

0

B

B

@

E⇤
S

F ⇤
S

¯GE⇤
R + F ⇤

R

F ⇤
C

1

C

C

A

�0 (22)

Since the trajectories are required to be the same, and in
spite of (16) and (19), from (21) and (22), we can state the
following proposition:

Proposition 4.1: (Control by state-modulated source) Let
us consider a port-Hamiltonian system characterised by a
Dirac structure on the space of flows (8), with matrices F
and E given by (9), and port behaviour at the storage and
resistive ports (11). Then, there exist a state feedback law in
the form (16) that maps the open-loop dynamics (21) into
(22), if it is possible to find �, Ha and � in (14) such that

0

B

B

@

0

�Ha
�x
0

��

1

C

C

A

=

0

B

B

@

E⇤
S

F ⇤
S

¯GE⇤
R + F ⇤

R

F ⇤
C

1

C

C

A

˜� (23)

Remark 4.1: Note that (20) is a particular case of (23),
and similarly, solution of (23) provides both the class of
functions Ha that can be employed in the energy shaping
procedure (19), and the associated control action (16).

V. A CRITERION FOR ASYMPTOTIC STABILITY

Propositions 3.1 and 4.1 provide two methods for realising
the energy-shaping of a port-Hamiltonian system via full
state feedback (16). Stabilisation in a desired equilibrium
configuration x? 2 X is achieved by properly choosing Ha

in (19), to introduce a (possibly) global minimum in x? for
Hd. Then, as discussed in [18], to verify the stability of
x?, it is necessary to show that it is an extremum of the
closed-loop Hamiltonian, i.e. rHd(x

?
) = 0. Moreover, let

�x denote the displacement from the equilibrium configu-
ration, and let N (�x) = Hd(x

?
+ �x) � Hd(x

?
) to be a

functional that is proportional to the second variation of Hd.
Then, the configuration x? is Lyapunov stable if there exist
C1, C2, ↵ > 0 such that

C1 k�xk2  N (�x)  C2 k�xk↵ (24)

where k·k is the norm determined by the natural L2-inner
product on X . Such set of conditions has to be “paired” with
an energy-balance relation that follows from the passivity
properties of both open- and closed-loop systems that usually
takes the form ˙Hd(x(t))  0 for a proper choice of � and
of u0 in (16), if necessary.

The energy-balance relation, however, is not usually suf-
ficient for proving asymptotic stability of the equilibrium
without relying on La Salle’s arguments that are quite
complex to be used in the infinite dimensional case due
to several technical assumptions on the system trajectories
that have to be checked, also in the linear case, [19]. Under
the hypothesis that the closed-loop system is well-posed
(see e.g., [6], [7], [15], [16] for the linear case, that rely
basically on Theorem 2.1), a simple but useful result to check
asymptotic stability is now presented. This results is based
on the energy multipliers method, [19], [20]

Proposition 5.1: Consider a port-Hamiltonian system
with Hamiltonian Hd, and suppose that x? 2 X is a stable
equilibrium in the sense of [18]. Assume that ↵ = 2 in
(24) and, without loss of generality, that x?

= 0, and that
Hd(x

?
) = 0. If there exists a function ⇢ : X ! R such that

|⇢(x)|  C⇢ kxk2 (25)

for some C⇢ > 0, and a constant ✏ > 0, supposed small,
such that function V (x) = Hd(x) + ✏⇢(x) satisfies

dV

dt
(x(t))  �C✏ kx(t)k2 (26)

for some C✏ > 0, then x? is an asymptotically (exponen-
tially) stable equilibrium.

Proof: The proof follows a similar result discussed in
[19]. From (24) we have that C1 kxk2  Hd(x)  C2 kxk2,
and from (25) we have that

(C1 � ✏C⇢) kxk2  V (x)  (C2 + ✏C⇢) kxk2 (27)

with C1 � ✏C⇢ positive if ✏ is “small.” Then, (26) and (27)
imply that

dV

dt
(x(t))  � C✏

C2 + ✏C⇢
V (x(t))

which means that V (x(t)) ! 0 exponentially, and so kx(t)k
in spite of (27).

VI. EXAMPLE: TRANSMISSION LINE WITH RLC LOAD

The port-Hamiltonian formulation of the lossless transmis-
sion line equation is in the form (5) and given by, [1]:
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>

>

<

>

>

:

@xq

@t
(t, z) = � @

@z

�HTL

�x�
(t, z)

@x�

@t
(t, z) = � @

@z

�HTL

�xq
(t, z)

(28)

where z 2 Z ⌘ [0, `], xq and x� are the charge and
magnetic flux densities along the line, and HTL(xq, x�) =

1
2

R `

0

⇣

x2
q

C +

x2
�

L

⌘

dz is the Hamiltonian (energy) function,
with C and L the distributed capacitance and inductance
of the line. The transmission line exchanges power with the

5. Example: transmission line with RLC load

The port-Hamiltonian formulation of the lossless trans-
mission line equation is in the form (6) and given by, [1]:

8

>

>

<

>

>

:

@xq

@t
(t, z) = � @

@z

�HTL

�x�
(t, z)

@x�

@t
(t, z) = � @

@z

�HTL

�xq
(t, z)

(39)

where z 2 Z ⌘ [0, `], xq and x� are the charge and mag-
netic flux densities along the line, and

HTL(xq, x�) =
1

2

Z `

0

 

x2
q

C
+

x2
�

L

!

dz

is the Hamiltonian (energy) function, with C and L the
distributed capacitance and inductance of the line. The
transmission line exchanges power with the environment
(e.g., a load, or a voltage source), through a couple of
power ports

(I0, V0) =
⇣

�H
�x�

(0), �H
�xq

(0)
⌘

(I`, V`) =
⇣

� �H
�x�

(`), �H
�xq

(`)
⌘ (40)

that are the restriction of the voltage and current along
the line in z = 0 and in z = `.

The line is terminated on z = ` on an RLC circuit,
at first in series configuration, and then in the parallel
one. In both the cases, the resulting system is linear, and
can be written as a port-Hamiltonian system with associ-
ated Dirac structure in the form (4) or (5). Moreover, the
system is a boundary control system, as it can be easily
deduced from Theorem 2.1. Refer to [8, 22, 23] for details.

The model of the RLC circuit in series configuration is
8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

ẋQ =
@HRLC

@x�
(xQ, x�)

ẋ� = �@HRLC

@xQ
(xQ, x�)�

�RL
@HRLC

@x�
(xQ, x�) + V

I =
@HRLC

@x�
(xQ, x�)

(41)

where xQ and x� are the charge on the capacitor and the
magnetic flux in the inductor, RL is the resistance, V and
I are the (input) voltage and the (output) current, and

HRLC(xQ, x�) =
1

2

 

x2
Q

CL
+

x2
�

LL

!

(42)

is the Hamiltonian, with CL and LL the capacitor and the
inductor. Load and transmission line are interconnected
in power conserving way since (I`, V`) = (�I, V ). The
control port is (I0, V0), and the desired equilibrium is, [3]:

✓

x?
q

C
,
x?
�

L
,
x?
Q

CL
,
x?
�

LL

◆

= (e?, 0, e?, 0) , e? 2 R (43)

The associated Dirac structure is defined on the space
of flows (9), with now FS = L2(0, `;R2) ⇥ R2, and FR =
FC = R. Moreover, we have that

fS =
�

fq, f�, fQ, f�
�

eS =
�

eq, e�, eQ, e�
�

while the structure matrix are

FS =

0

B

B

B

B

B

B

B

B

B

B

@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

A

ES =

0

B

B

B

B

B

B

B

B

B

B

@

0 �@z 0 0
�@z 0 0 0
0 0 0 1
·|` 0 �1 0
0 ·|` 0 �1
0 0 0 1

� · |0 0 0 0
0 � · |0 0 0

1

C

C

C

C

C

C

C

C

C

C

A

FR =

0

B

B

B

B

B

B

B

B

B

B

@

0
0
0
0
0
1
0
0

1

C

C

C

C

C

C

C

C

C

C

A
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0

B
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B

B

B

B

B

B

B

B

@

0
0
0
1
0
0
0
0

1

C

C

C

C

C

C

C

C

C

C

A

FC =

0

B

B

B

B

B

B

B

B

B

B

@

0
0
0
0
0
0
0
1

1

C

C

C

C

C

C

C

C

C

C

A

EC =

0

B

B

B

B

B

B

B

B

B

B

@

0
0
0
0
0
0
1
0

1

C

C

C

C

C

C

C

C

C

C

A

(44)

Here, ·|0 and ·|` denote the restriction of a function in z = 0
and in z = ` respectively. Moreover, the port-Hamiltonian
model is obtained as in (12), with now H = HTL +HRLC,
and resistive relation eR = �RLfR.

As far as the kernel and image representations (4) and
(5) are concerned, for the sake of clarity, we procede in
a slightly di↵erent mode than in Sect. 2.1, since we pre-
fer to adapt the procedure presented in [20]. Clearly, the
result is the same in both the cases. Let us assume that
⇤ = L2(0, `;R2) ⇥ R6, so the hypothesis of having ⇤ iso-
metrically isomorphic to the space of flows F has been
relaxed. This is not strictly necessary from an operative
point of view. In fact, everything is as in Sect. 2.1, with the
minor di↵erence that the domain associated to the Dirac
structure in kernel representation is not (13), but

dom
�

F E
�

=

⇢

(f, e) 2 F ⇥ E | e0S absolutely

continuous, and
@e0S
@z

2 L2(a, b;R2)

�

(45)

with e0S =
�

eq, e�
�T

. We have also that E⇤
C = ET

C and

E⇤
S =

0

B

B

@

0 @z 0 0 0 0 0 0
@z 0 0 0 0 0 0 0
0 0 0 �1 0 0 0 0
0 0 1 0 �1 1 0 0

1

C

C

A

If � = (�q,��,�Q,��,�q`,�R,��0,�q0) we have

dom

✓

E⇤

F ⇤

◆

=

⇢

� 2 ⇤ | �q(0) = �q0, ��(0) = ��0,

�q(`) = �q`, ��(`) = ��

�

(46)
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5. Example: transmission line with RLC load

The port-Hamiltonian formulation of the lossless trans-
mission line equation is in the form (6) and given by, [1]:
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>

>

<

>

>

:

@xq

@t
(t, z) = � @

@z

�HTL

�x�
(t, z)

@x�

@t
(t, z) = � @

@z

�HTL

�xq
(t, z)

(39)

where z 2 Z ⌘ [0, `], xq and x� are the charge and mag-
netic flux densities along the line, and

HTL(xq, x�) =
1

2

Z `

0

 

x2
q

C
+

x2
�

L

!

dz

is the Hamiltonian (energy) function, with C and L the
distributed capacitance and inductance of the line. The
transmission line exchanges power with the environment
(e.g., a load, or a voltage source), through a couple of
power ports

(I0, V0) =
⇣

�H
�x�

(0), �H
�xq

(0)
⌘

(I`, V`) =
⇣

� �H
�x�

(`), �H
�xq

(`)
⌘ (40)

that are the restriction of the voltage and current along
the line in z = 0 and in z = `.

The line is terminated on z = ` on an RLC circuit,
at first in series configuration, and then in the parallel
one. In both the cases, the resulting system is linear, and
can be written as a port-Hamiltonian system with associ-
ated Dirac structure in the form (4) or (5). Moreover, the
system is a boundary control system, as it can be easily
deduced from Theorem 2.1. Refer to [8, 22, 23] for details.

The model of the RLC circuit in series configuration is
8
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>

:

ẋQ =
@HRLC

@x�
(xQ, x�)

ẋ� = �@HRLC

@xQ
(xQ, x�)�

�RL
@HRLC

@x�
(xQ, x�) + V

I =
@HRLC

@x�
(xQ, x�)

(41)

where xQ and x� are the charge on the capacitor and the
magnetic flux in the inductor, RL is the resistance, V and
I are the (input) voltage and the (output) current, and

HRLC(xQ, x�) =
1

2

 

x2
Q

CL
+

x2
�

LL

!

(42)

is the Hamiltonian, with CL and LL the capacitor and the
inductor. Load and transmission line are interconnected
in power conserving way since (I`, V`) = (�I, V ). The
control port is (I0, V0), and the desired equilibrium is, [3]:
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L
,
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Q
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,
x?
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LL

◆

= (e?, 0, e?, 0) , e? 2 R (43)

The associated Dirac structure is defined on the space
of flows (9), with now FS = L2(0, `;R2) ⇥ R2, and FR =
FC = R. Moreover, we have that

fS =
�

fq, f�, fQ, f�
�

eS =
�

eq, e�, eQ, e�
�

while the structure matrix are
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(44)

Here, ·|0 and ·|` denote the restriction of a function in z = 0
and in z = ` respectively. Moreover, the port-Hamiltonian
model is obtained as in (12), with now H = HTL +HRLC,
and resistive relation eR = �RLfR.

As far as the kernel and image representations (4) and
(5) are concerned, for the sake of clarity, we procede in
a slightly di↵erent mode than in Sect. 2.1, since we pre-
fer to adapt the procedure presented in [20]. Clearly, the
result is the same in both the cases. Let us assume that
⇤ = L2(0, `;R2) ⇥ R6, so the hypothesis of having ⇤ iso-
metrically isomorphic to the space of flows F has been
relaxed. This is not strictly necessary from an operative
point of view. In fact, everything is as in Sect. 2.1, with the
minor di↵erence that the domain associated to the Dirac
structure in kernel representation is not (13), but
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(f, e) 2 F ⇥ E | e0S absolutely

continuous, and
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with e0S =
�

eq, e�
�T

. We have also that E⇤
C = ET

C and
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If � = (�q,��,�Q,��,�q`,�R,��0,�q0) we have

dom
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F ⇤
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=

⇢

� 2 ⇤ | �q(0) = �q0, ��(0) = ��0,

�q(`) = �q`, ��(`) = ��

�

(46)
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Desired equilibrium 

The admissible Ha are in the form

Ha(⇠), ⇠ = xQ +
Z `

0
xq dz (40)

and the boundary action is �(xq , xQ) = � @Ha
@⇠ (⇠). Thisis the same result is obtained in [3], and based on the

control by interconnection and energy shaping via Casimir
generation. This is clearly in accordance with Remark 3.1.
Asymptotic stability follows by selecting

Ha(⇠) =
1

2
KC(⇠ � ⇠?)� e? [1 +KC (CL + C)] ⇠

with KC > 0, and where ⇠? is the value of ⇠ in (40) at the
equilibrium (36). In fact, in the error coordinates

x̃q = xq � x?
q x̃� = x� � x?

�x̃Q = xQ � x?
Q x̃� = x� � x?

�
(41)

stability of (36) is equivalent to the stability of
(x̃q , x̃�, x̃Q, x̃�) = (0, 0, 0, 0). Note that, with this choice
for Ha, (36) is a stable equilibrium in the sense of [24].Asymptotic stability is enforced by adding further dis-
sipation at the control port, i.e. by imposing that

u0(t) = �KDy0(t), KD > 0 (42)in (18). After the coordinate change (41), and due to the
fact that the control action � properly shapes the open-
loop Hamiltonian, from (33) we have that

u0(t) = �H̃d

�x̃q
(t, 0) =

x̃q(t, 0)
C

+KC ⇠̃(t)

y0(t) = �H̃d

�x̃�
(t, 0) =

x̃�(t, 0)
L

(43)

since the preliminary feedback preserves the Dirac struc-
ture of the transmission line, and acts on H only; ⇠̃ is the
value of ⇠ in (40) in the new coordinates.Under the assumptions of existence of solutions, and of
pre-compactness of the orbits, asymptotic stability is a
consequence of La Salle’s Invariance Principle, [25]. For
the closed-loop system, the energy balance relation is

dH̃d

dt
= �RL

✓

x̃�
LL

◆2

�KD

✓

x̃�(0)
L

◆2

So, energy decreases until in steady state we have that
x̃� = x̃�(`) = x̃�(0) = 0, where the interconnection
constraint in z = ` has been taken into account. More-
over, from (34), we have that x̃Q becomes constant, and
x̃Q

CL
= x̃q(`)

C . Finally, it is easy to verify that also ⇠̃ is con-stant in steady state and, from (43), that xq(0)
C = �KC ⇠̃.Due to the fact that in steady state ˙̃Hd = 0, it immedi-

ately follows that (32) is constant. Consequently, the only
invariant solution compatible with constant stored energy,
voltages and currents in z = 0 and in z = `, is with x̃q

and x̃� constant on [0, `], which implies ⇠̃ = 0 in spite of
(40). This proves that the only invariant solution compat-ible with ˙̃Hd = 0 is (x̃q , x̃�, x̃Q, x̃�) = (0, 0, 0, 0), and
then (36) is an asymptotically stable equilibrium.As in the finite dimensional case [10], the methodology
discussed in Sect. 3 fails when the desired equilibrium re-
quires an infinite amount of energy from the controller. In
particular, when the load is an RLC circuit in parallel con-
figuration, the PDE (24) cannot be solved. In this case,
the load is described by the port-Hamiltonian system8
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(44)

with Hamiltonian given by (35), and interconnected to (31)
by imposing (I`, V`) = (�I, V ), as in the previous case.
For this system, the desired equilibrium configuration is✓
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(45)
As far as the associated Dirac structure is concerned, the
matrices FS , FC and EC remain the same as in (37), while
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The domains of the operators associated to both the kernel
and image representation remain the same as before, i.e.
(38) and (39) respectively, with the only di↵erence that

E⇤
S =

0

B

B

@

0 @z 0 0 0 0 0 0@z 0 0 0 0 0 0 00 0 0 �1 0 �1 0 00 0 1 0 �1 0 0 0

1
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with also F ⇤
R = FT

R and E⇤
R = ET

R .Simple calculations show that (24) cannot be solved.
However, a boundary state-modulated source is able to
properly shape the open-loop Hamiltonian and enforce
asymptotic stability of (45). The solution of the PDE (29)
in Prop. 4.1 shows that the admissible Ha are in the form

Ha(⇠), ⇠ = x� +RLxQ +
Z `

0
(x� +RLxq) dz (46)

and the control action is �(xq , x�, xQ, x�) = �RL
@Ha
@⇠ (⇠).

Note the similarities with case in which the transmission
line is not present, [10]. A possible choice for Ha is

Ha(⇠) =
1

2
KL(⇠ � ⇠?)2 � e?

RL
⇠, KL > 0

7



Example: transmission line + pRLC

Complete model of the plant:  
 
 
 
 
 
 
 

A similar expression is valid for the desired dynamics, but with a 
different Hamiltonian 

Open-loop and target systems have the same “interconnection structure,” 
and resistive relation 

Only the Hamiltonian is changed thanks to the control action

boundary control action



Example: transmission line + pRLC

We obtain that

The admissible Ha are in the form

Ha(⇠), ⇠ = xQ +

Z `

0

xq dz
(40)

and the boundary action is �(xq, xQ) = �@Ha

@⇠
(⇠). This

is the same result is obtained in [3], and based on the

control by interconnection and energy shaping via Casimir

generation. This is
clearly in accordance with Remark 3.1.

Asymptotic stability follows by selecting

Ha(⇠) =
1

2
KC(⇠ � ⇠?)� e? [1 +KC (CL + C)] ⇠

with KC > 0, and where ⇠? is the value of ⇠ in (40) at the

equilibrium (36). In fact, in the error coordinates

x̃q = xq � x?q x̃� = x� � x?�

x̃Q = xQ � x?Q x̃� = x� � x?�

(41)

stability of (36) is equivalent to the stability of

(x̃q, x̃�, x̃Q, x̃�) = (0, 0, 0, 0). Note th
at, with this choice

for Ha, (36) is a stable equilibrium in the sense of [24].

Asymptotic stability is enforced by adding further dis-

sipation at the control port, i.e. by
imposing that

u0(t) = �KDy0(t), KD > 0 (42)

in (18). After the coordinate change (41), and due to the

fact that the control action � properly shapes the open-

loop Hamiltonian, from (33) we have that

u0(t) =
�H̃d

�x̃q

(t, 0) =
x̃q(t, 0)

C
+KC ⇠̃(t)

y0(t) =
�H̃d

�x̃�

(t, 0) =
x̃�(t, 0)

L

(43)

since the preliminary feedback preserves the Dirac struc-

ture of the transmission line, and acts on H only; ⇠̃ is the

value of ⇠ in (40) in the new coordinates.

Under the assumptions of existence
of solutions, and of

pre-compactness of the orbits, asymptotic stability is a

consequence of La Salle’s Invariance Principle, [25]. For

the closed-loop system, the energy balance relation is

dH̃d

dt
= �RL

✓

x̃�

LL

◆2

�KD

✓

x̃�(0)

L

◆2

So, energy decreases until in steady state we have that

x̃� = x̃�(`) = x̃�(0) = 0, where the interconnection

constraint in z = ` has been taken into account. More-

over, from (34), we have that x̃Q becomes constant, and

x̃Q

CL
=

x̃q(`)
C

. Finally, it is easy
to verify that also ⇠̃ is con-

stant in steady state and, from (43), that
xq(0)
C

= �KC ⇠̃.

Due to the fact that in steady state
˙̃
Hd = 0, it immedi-

ately follows that (32) is
constant. Consequ

ently, the only

invariant solution compatible with constant stored energy,

voltages and currents in z = 0 and in z = `, is with x̃q

and x̃� constant on [0, `], which implies ⇠̃ = 0 in spite of

(40). This proves t
hat the only invariant solution compat-

ible with
˙̃
Hd = 0 is (x̃q, x̃�, x̃Q, x̃�) = (0, 0, 0, 0), and

then (36) is an asymptotically stable equilibrium.

As in the finite dimensional case [10], the methodology

discussed in Sect. 3 fails when the desired equilibrium re-

quires an infinite amount of energy from the controller. In

particular, when the load is an RLC circuit in parallel con-

figuration, the PDE (24) cannot be solved. In this case,

the load is described by the port-Hamiltonian system

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:
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(44)

with Hamiltonian given by (35), and interconnected to (31)

by imposing (I`, V`) = (�I, V ), as in the previous case.

For this system, the desired equilibrium configuration is
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As far as the associated Dirac structure is concerned, the

matrices FS, FC and EC remain the same as in (37), while
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The domains of the operator
s associated to both the kernel

and image representation remain the same as before, i.e.

(38) and (39) respectively, w
ith the only di↵erence that

E⇤
S =

0
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with also F⇤
R = FT

R and E⇤
R = ET

R.

Simple calculations show that (24) cannot be solved.

However, a boundary state-modulated source is able to

properly shape the open-loop Hamiltonian and enforce

asymptotic stability of (45). The solutio
n of the PDE (29)

in Prop. 4.1 shows that the admissible Ha are in the form

Ha(⇠), ⇠ = x� +RLxQ +

Z `

0

(x� +RLxq) dz (46)

and the control action is �(xq, x�, xQ, x�) = �RL
@Ha

@⇠
(⇠).

Note the similarities with case in which the transmission

line is not present, [10].
A possible choice for Ha is

Ha(⇠) =
1

2
KL(⇠ � ⇠?)2 �

e?

RL

⇠, KL > 0
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The admissible Ha are in the form

Ha(⇠), ⇠ = xQ +

Z `

0
xq dz (40)

and the boundary action is �(xq, xQ) = �@Ha
@⇠ (⇠). This

is the same result is obtained in [3], and based on the
control by interconnection and energy shaping via Casimir
generation. This is clearly in accordance with Remark 3.1.
Asymptotic stability follows by selecting

Ha(⇠) =
1

2
KC(⇠ � ⇠?)� e? [1 +KC (CL + C)] ⇠

with KC > 0, and where ⇠? is the value of ⇠ in (40) at the
equilibrium (36). In fact, in the error coordinates

x̃q = xq � x?
q x̃� = x� � x?

�

x̃Q = xQ � x?
Q x̃� = x� � x?

�

(41)

stability of (36) is equivalent to the stability of
(x̃q, x̃�, x̃Q, x̃�) = (0, 0, 0, 0). Note that, with this choice
for Ha, (36) is a stable equilibrium in the sense of [24].
Asymptotic stability is enforced by adding further dis-

sipation at the control port, i.e. by imposing that

u0(t) = �KDy0(t), KD > 0 (42)

in (18). After the coordinate change (41), and due to the
fact that the control action � properly shapes the open-
loop Hamiltonian, from (33) we have that

u0(t) =
�H̃d

�x̃q
(t, 0) =

x̃q(t, 0)

C
+KC ⇠̃(t)

y0(t) =
�H̃d

�x̃�
(t, 0) =

x̃�(t, 0)

L

(43)

since the preliminary feedback preserves the Dirac struc-
ture of the transmission line, and acts on H only; ⇠̃ is the
value of ⇠ in (40) in the new coordinates.

Under the assumptions of existence of solutions, and of
pre-compactness of the orbits, asymptotic stability is a
consequence of La Salle’s Invariance Principle, [25]. For
the closed-loop system, the energy balance relation is

dH̃d

dt
= �RL

✓

x̃�

LL

◆2

�KD

✓

x̃�(0)

L

◆2

So, energy decreases until in steady state we have that
x̃� = x̃�(`) = x̃�(0) = 0, where the interconnection
constraint in z = ` has been taken into account. More-
over, from (34), we have that x̃Q becomes constant, and
x̃Q

CL
= x̃q(`)

C . Finally, it is easy to verify that also ⇠̃ is con-

stant in steady state and, from (43), that xq(0)
C = �KC ⇠̃.

Due to the fact that in steady state ˙̃Hd = 0, it immedi-
ately follows that (32) is constant. Consequently, the only
invariant solution compatible with constant stored energy,
voltages and currents in z = 0 and in z = `, is with x̃q

and x̃� constant on [0, `], which implies ⇠̃ = 0 in spite of
(40). This proves that the only invariant solution compat-

ible with ˙̃Hd = 0 is (x̃q, x̃�, x̃Q, x̃�) = (0, 0, 0, 0), and
then (36) is an asymptotically stable equilibrium.

As in the finite dimensional case [10], the methodology
discussed in Sect. 3 fails when the desired equilibrium re-
quires an infinite amount of energy from the controller. In
particular, when the load is an RLC circuit in parallel con-
figuration, the PDE (24) cannot be solved. In this case,
the load is described by the port-Hamiltonian system

8
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I =
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@x�
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(44)

with Hamiltonian given by (35), and interconnected to (31)
by imposing (I`, V`) = (�I, V ), as in the previous case.
For this system, the desired equilibrium configuration is
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As far as the associated Dirac structure is concerned, the
matrices FS , FC and EC remain the same as in (37), while
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The domains of the operators associated to both the kernel
and image representation remain the same as before, i.e.
(38) and (39) respectively, with the only di↵erence that

E⇤
S =

0

B
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with also F ⇤
R = FT

R and E⇤
R = ET

R.
Simple calculations show that (24) cannot be solved.

However, a boundary state-modulated source is able to
properly shape the open-loop Hamiltonian and enforce
asymptotic stability of (45). The solution of the PDE (29)
in Prop. 4.1 shows that the admissible Ha are in the form

Ha(⇠), ⇠ = x� +RLxQ +

Z `

0
(x� +RLxq) dz (46)

and the control action is �(xq, x�, xQ, x�) = �RL
@Ha
@⇠ (⇠).

Note the similarities with case in which the transmission
line is not present, [10]. A possible choice for Ha is

Ha(⇠) =
1

2
KL(⇠ � ⇠?)2 � e?

RL
⇠, KL > 0
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Example: transmission line + pRLC

Stability follows from La Salle’s arguments, once further dissipation is 
introduced in z = 0 

The starting point is the energy-balance relation:

The admissible Ha are in the form

Ha(⇠), ⇠ = xQ +

Z `

0
xq dz (40)

and the boundary action is �(xq, xQ) = �@Ha
@⇠ (⇠). This

is the same result is obtained in [3], and based on the
control by interconnection and energy shaping via Casimir
generation. This is clearly in accordance with Remark 3.1.
Asymptotic stability follows by selecting

Ha(⇠) =
1

2
KC(⇠ � ⇠?)� e? [1 +KC (CL + C)] ⇠

with KC > 0, and where ⇠? is the value of ⇠ in (40) at the
equilibrium (36). In fact, in the error coordinates

x̃q = xq � x?
q x̃� = x� � x?

�

x̃Q = xQ � x?
Q x̃� = x� � x?

�

(41)

stability of (36) is equivalent to the stability of
(x̃q, x̃�, x̃Q, x̃�) = (0, 0, 0, 0). Note that, with this choice
for Ha, (36) is a stable equilibrium in the sense of [24].
Asymptotic stability is enforced by adding further dis-

sipation at the control port, i.e. by imposing that

u0(t) = �KDy0(t), KD > 0 (42)

in (18). After the coordinate change (41), and due to the
fact that the control action � properly shapes the open-
loop Hamiltonian, from (33) we have that

u0(t) =
�H̃d

�x̃q
(t, 0) =

x̃q(t, 0)

C
+KC ⇠̃(t)

y0(t) =
�H̃d

�x̃�
(t, 0) =

x̃�(t, 0)

L

(43)

since the preliminary feedback preserves the Dirac struc-
ture of the transmission line, and acts on H only; ⇠̃ is the
value of ⇠ in (40) in the new coordinates.

Under the assumptions of existence of solutions, and of
pre-compactness of the orbits, asymptotic stability is a
consequence of La Salle’s Invariance Principle, [25]. For
the closed-loop system, the energy balance relation is

dH̃d

dt
= �RL

✓

x̃�

LL

◆2

�KD

✓

x̃�(0)

L

◆2

So, energy decreases until in steady state we have that
x̃� = x̃�(`) = x̃�(0) = 0, where the interconnection
constraint in z = ` has been taken into account. More-
over, from (34), we have that x̃Q becomes constant, and
x̃Q

CL
= x̃q(`)

C . Finally, it is easy to verify that also ⇠̃ is con-

stant in steady state and, from (43), that xq(0)
C = �KC ⇠̃.

Due to the fact that in steady state ˙̃Hd = 0, it immedi-
ately follows that (32) is constant. Consequently, the only
invariant solution compatible with constant stored energy,
voltages and currents in z = 0 and in z = `, is with x̃q

and x̃� constant on [0, `], which implies ⇠̃ = 0 in spite of
(40). This proves that the only invariant solution compat-

ible with ˙̃Hd = 0 is (x̃q, x̃�, x̃Q, x̃�) = (0, 0, 0, 0), and
then (36) is an asymptotically stable equilibrium.

As in the finite dimensional case [10], the methodology
discussed in Sect. 3 fails when the desired equilibrium re-
quires an infinite amount of energy from the controller. In
particular, when the load is an RLC circuit in parallel con-
figuration, the PDE (24) cannot be solved. In this case,
the load is described by the port-Hamiltonian system
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(44)

with Hamiltonian given by (35), and interconnected to (31)
by imposing (I`, V`) = (�I, V ), as in the previous case.
For this system, the desired equilibrium configuration is
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As far as the associated Dirac structure is concerned, the
matrices FS , FC and EC remain the same as in (37), while
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The domains of the operators associated to both the kernel
and image representation remain the same as before, i.e.
(38) and (39) respectively, with the only di↵erence that

E⇤
S =

0

B

B

@

0 @z 0 0 0 0 0 0
@z 0 0 0 0 0 0 0
0 0 0 �1 0 �1 0 0
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with also F ⇤
R = FT

R and E⇤
R = ET

R.
Simple calculations show that (24) cannot be solved.

However, a boundary state-modulated source is able to
properly shape the open-loop Hamiltonian and enforce
asymptotic stability of (45). The solution of the PDE (29)
in Prop. 4.1 shows that the admissible Ha are in the form

Ha(⇠), ⇠ = x� +RLxQ +

Z `

0
(x� +RLxq) dz (46)

and the control action is �(xq, x�, xQ, x�) = �RL
@Ha
@⇠ (⇠).

Note the similarities with case in which the transmission
line is not present, [10]. A possible choice for Ha is

Ha(⇠) =
1

2
KL(⇠ � ⇠?)2 � e?

RL
⇠, KL > 0

7

with ⇠? the value of ⇠ in (46) at the equilibrium (45). Asin the previous case, asymptotic stability follows from LaSalle’s Invariance Principle, and it is achieved thanks to(42), where u0 and y0 are given by

u0(t) = �H̃d

�x̃q
(t, 0) =

x̃q(t, 0)
C

+KLRL⇠̃(t)

y0(t) = �H̃d

�x̃�
(t, 0) =

x̃�(t, 0)
L

+KL⇠̃(t)
(47)

As before, ⇠̃ is the value of ⇠ in (46) in the new coordinates.From (42), the energy-balance relation is
dH̃d

dt
= � 1

RL

✓

x̃Q
CL

+KRL⇠̃

◆2

�KD

✓

x̃�(0)
L

+KL⇠̃

◆2

so energy decreases until in steady state
x̃Q
CL

= �KRL⇠̃ =
x̃q(0)
C

= RL
x̃�(0)
L (48)

Time derivative of the first equality in (48) leads to
x̃Q

CL
= RL

x̃�
LL

in steady state, and then from (44) to x̃Q,x̃�, and ⇠̃ being constant, with the further property that
x̃Q

CL
= x̃q(`)

C = RL
x̃�(`)
L . Since in steady state ˙̃Hd = 0, itimmediately follows that (32) is constant. Then, the onlyinvariant solution is with x̃q and x̃� constant on [0, `],which implies ⇠̃ = 0 in spite of (48). This proves thatthe only invariant solution compatible with ˙̃Hd = 0 is(x̃q , x̃�, x̃Q, x̃�) = (0, 0, 0, 0), which proves the asymp-totic stability of (45).
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In this paper, it has been shown how to take advan-tage of the geometric properties of a distributed port-Hamiltonian system, i.e. of its Dirac structure, in thedevelopment of energy-based boundary control laws. Stan-dard energy-balancing control schemes have been re-discovered without relying on the existence of Casimirfunctions in closed-loop, and novel boundary controllersbased on state modulated sources have been developedfor infinite dimensional port-Hamiltonian systems to over-come the dissipation obstacle. The theoretical results havebeen discussed with the help of a simple but illustrativeexample, i.e. a transmission line with RLC load in bothserial and parallel configurations, and asymptotic stabilityhas been proved thanks to La Salle’s arguments.
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The admissible Ha are in the form

Ha(⇠), ⇠ = xQ +

Z `

0

xq dz (40)

and the boundary action is �(xq, xQ) = �@Ha

@⇠
(⇠). This

is the same result is obtained in [3], and based on the

control by interconnection and energy shaping via Casimir

generation. This is clearly
in accordance with Remark 3.1.

Asymptotic stability follows by selecting

Ha(⇠) =
1

2
KC(⇠ � ⇠?)� e? [1 +KC (CL + C)] ⇠

with KC > 0, and where ⇠? is the value of ⇠ in (40) at the

equilibrium (36). In fact, in the error coordinates

x̃q = xq � x?q x̃� = x� � x?�

x̃Q = xQ � x?Q x̃� = x� � x?�
(41)

stability of (36) is equivalent to the stability of

(x̃q, x̃�, x̃Q, x̃�) = (0, 0, 0, 0). Note that, wit
h this choice

for Ha, (36) is a stable equilibrium in the sense of [24].

Asymptotic stability is enforced by adding further dis-

sipation at the control port, i.e. by imposing that

u0(t) = �KDy0(t), KD > 0 (42)

in (18). After the coordinate change (41), and due to the

fact that the control action � properly shapes the open-

loop Hamiltonian, from (33) we have that

u0(t) =
�H̃d

�x̃q
(t, 0) =

x̃q(t, 0)

C
+KC ⇠̃(t)

y0(t) =
�H̃d

�x̃�
(t, 0) =

x̃�(t, 0)

L

(43)

since the preliminary feedback preserves the Dirac struc-

ture of the transmission line, and acts on H only; ⇠̃ is the

value of ⇠ in (40) in the new coordinates.

Under the assumptions of existence of solutions, and of

pre-compactness of the orbits, asymptotic stability is a

consequence of La Salle’s Invariance Principle, [25]. For

the closed-loop system, the energy balance relation is

dH̃d

dt
= �RL

✓

x̃�

LL

◆2

�KD

✓

x̃�(0)

L

◆2

So, energy decreases until in steady state we have that

x̃� = x̃�(`) = x̃�(0) = 0, where the interconnection

constraint in z = ` has been taken into account. More-

over, from (34), we have that x̃Q becomes constant, and

x̃Q

CL
=

x̃q(`)
C

. Finally, it is easy to verify that also ⇠̃ is con-

stant in steady state and, from (43), that
xq(0)
C

= �KC ⇠̃.

Due to the fact that in steady state
˙̃
Hd = 0, it immedi-

ately follows that (32) is constan
t. Consequently, the only

invariant solution compatible with constant stored energy,

voltages and currents in z = 0 and in z = `, is with x̃q

and x̃� constant on [0, `], which implies ⇠̃ = 0 in spite of

(40). This proves that the
only invariant solution compat-

ible with
˙̃
Hd = 0 is (x̃q, x̃�, x̃Q, x̃�) = (0, 0, 0, 0), and

then (36) is an asymptotically stable equilibrium.

As in the finite dimensional case [10], the methodology

discussed in Sect. 3 fails when the desired equilibrium re-

quires an infinite amount of energy from the controller. In

particular, when the load is an RLC circuit in parallel con-

figuration, the PDE (24) cannot be solved. In this case,

the load is described by the port-Hamiltonian system
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>

>

<

>

>

>

>

>

>

:

ẋQ = �
1

RL

@HRLC

@xQ

(xQ, x�) +
@HRLC

@x�
(xQ, x�)

ẋ� = �
@HRLC

@xQ

(xQ, x�) + V

I =
@HRLC

@x�
(xQ, x�)

(44)

with Hamiltonian given by (35), and interconnected to (31)

by imposing (I`, V`) = (�I, V ), as in the previous case.

For this system, the desired equilibrium configuration is

✓

x?q
C
,
x?�
L
,
x?Q
CL

,
x?�
LL

◆

=

✓

e?,
e?

RL
, e?,

e?

RL

◆

(45)

As far as the associated Dirac structure is concerned, the

matrices FS, FC and EC remain the same as in (37), while

ES =

0
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The domains of the operators associ
ated to both the kernel

and image representation remain the same as before, i.e.

(38) and (39) respectively, with the only di↵erence that

E⇤
S =

0

B

B

@

0 @z 0 0 0 0 0 0

@z 0 0 0 0 0 0 0

0 0 0 �1 0 �1 0 0

0 0 1 0 �1 0 0 0

1

C

C

A

with also F⇤
R = FT

R and E⇤
R = ET

R.

Simple calculations show that (24) cannot be solved.

However, a boundary state-modulated source is able to

properly shape the open-loop Hamiltonian and enforce

asymptotic stability of (45). The solution of the PDE (29)

in Prop. 4.1 shows that the admissible Ha are in the form

Ha(⇠), ⇠ = x� +RLxQ +

Z `

0

(x� +RLxq) dz (46)

and the control action is �(xq, x�, xQ, x�) = �RL
@Ha

@⇠
(⇠).

Note the similarities with case in which the transmission

line is not present, [10]. A possible choice for Ha is

Ha(⇠) =
1

2
KL(⇠ � ⇠?)2 �

e?

RL
⇠, KL > 0

7

with ⇠? the value of ⇠ in (46) at the equilibrium (45). As
in the previous case, asymptotic stability follows from La
Salle’s Invariance Principle, and it is achieved thanks to
(42), where u0 and y0 are given by

u0(t) =
�H̃d

�x̃q
(t, 0) =

x̃q(t, 0)

C
+KLRL⇠̃(t)

y0(t) =
�H̃d

�x̃�
(t, 0) =

x̃�(t, 0)

L
+KL⇠̃(t)

(47)

As before, ⇠̃ is the value of ⇠ in (46) in the new coordinates.
From (42), the energy-balance relation is

dH̃d

dt
= � 1

RL

✓

x̃Q

CL
+KRL⇠̃

◆2

�KD

✓

x̃�(0)

L
+KL⇠̃

◆2

so energy decreases until in steady state

x̃Q

CL
= �KRL⇠̃ =

x̃q(0)

C
= RL

x̃�(0)

L
(48)

Time derivative of the first equality in (48) leads to
x̃Q

CL
= RL

x̃�
LL

in steady state, and then from (44) to x̃Q,

x̃�, and ⇠̃ being constant, with the further property that
x̃Q

CL
= x̃q(`)

C = RL
x̃�(`)
L . Since in steady state ˙̃Hd = 0, it

immediately follows that (32) is constant. Then, the only
invariant solution is with x̃q and x̃� constant on [0, `],
which implies ⇠̃ = 0 in spite of (48). This proves that

the only invariant solution compatible with ˙̃Hd = 0 is
(x̃q, x̃�, x̃Q, x̃�) = (0, 0, 0, 0), which proves the asymp-
totic stability of (45).

6. Conclusions

In this paper, it has been shown how to take advan-
tage of the geometric properties of a distributed port-
Hamiltonian system, i.e. of its Dirac structure, in the
development of energy-based boundary control laws. Stan-
dard energy-balancing control schemes have been re-
discovered without relying on the existence of Casimir
functions in closed-loop, and novel boundary controllers
based on state modulated sources have been developed
for infinite dimensional port-Hamiltonian systems to over-
come the dissipation obstacle. The theoretical results have
been discussed with the help of a simple but illustrative
example, i.e. a transmission line with RLC load in both
serial and parallel configurations, and asymptotic stability
has been proved thanks to La Salle’s arguments.
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in the previous case, asymptotic stability follows from La
Salle’s Invariance Principle, and it is achieved thanks to
(42), where u0 and y0 are given by
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(t, 0) =
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L
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As before, ⇠̃ is the value of ⇠ in (46) in the new coordinates.
From (42), the energy-balance relation is

dH̃d

dt
= � 1

RL

✓

x̃Q
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◆2

�KD

✓
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L
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◆2

so energy decreases until in steady state

x̃Q
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= �KRL⇠̃ =
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C
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L
(48)

Time derivative of the first equality in (48) leads to
x̃Q

CL
= RL

x̃�
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in steady state, and then from (44) to x̃Q,

x̃�, and ⇠̃ being constant, with the further property that
x̃Q

CL
= x̃q(`)

C = RL
x̃�(`)
L . Since in steady state ˙̃Hd = 0, it

immediately follows that (32) is constant. Then, the only
invariant solution is with x̃q and x̃� constant on [0, `],
which implies ⇠̃ = 0 in spite of (48). This proves that

the only invariant solution compatible with ˙̃Hd = 0 is
(x̃q, x̃�, x̃Q, x̃�) = (0, 0, 0, 0), which proves the asymp-
totic stability of (45).

6. Conclusions

In this paper, it has been shown how to take advan-
tage of the geometric properties of a distributed port-
Hamiltonian system, i.e. of its Dirac structure, in the
development of energy-based boundary control laws. Stan-
dard energy-balancing control schemes have been re-
discovered without relying on the existence of Casimir
functions in closed-loop, and novel boundary controllers
based on state modulated sources have been developed
for infinite dimensional port-Hamiltonian systems to over-
come the dissipation obstacle. The theoretical results have
been discussed with the help of a simple but illustrative
example, i.e. a transmission line with RLC load in both
serial and parallel configurations, and asymptotic stability
has been proved thanks to La Salle’s arguments.
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2013). Proceedings of, Zürich, Switzerland, 2013, (Accepted).

[15] G. Golo, V. Talasila, A. J. van der Schaft, B. M. Maschke,
Hamiltonian discretization of boundary control systems, Auto-
matica 40 (5) (2004) 757–771.

[16] A. Macchelli, C. Melchiorri, Control by interconnection of dis-
tributed port-Hamiltonian systems based on finite elements ap-
proximation, in: Decision and Control, 2009 held jointly with
the 2009 28th Chinese Control Conference (CDC/CCC 2009).
Proceedings of the 48th IEEE Conference on, Shanghai, P. R.
of China, 2009, pp. 5133–5138.

[17] A. Macchelli, C. Melchiorri, Passivity-based control of spatially
discretized port-Hamiltonian system, in: Nonlinear Control Sys-
tems (NOLCOS 2010). Proceedings of the 8th IFAC Symposium
on, Bologna, Italy, 2010.

[18] A. Macchelli, Energy shaping of distributed-parameter port-
Hamiltonian systems based on finite-element approximation,
Systems & Control Letters 60 (8) (2011) 579–589.

[19] O. V. Iftime, A. Sandovici, G. Golo, Tools for analysis of dirac
structures on banach spaces, in: Decision and Control and Eu-
ropean Control Conference (CDC-ECC 2005). Proceedings of
the 44th IEEE Conference on, 2005, pp. 3856–3861.

[20] O. V. Iftime, A. Sandovici, Interconnection of Dirac structures
via kernel/image representation, in: American Control Confer-
ence (ACC 2011). Proceedings of the, San Francisco, CA, USA,
2011, pp. 3571–3576.

[21] Y. Le Gorrec, H. Zwart, B. M. Maschke, Dirac structures and
boundary control systems associated with skew-symmetric dif-

8

In steady state we have that xQ, xΦ and ξ are 

constant, with Hd constant, which implies that the 

energy stored in the line is constant, and the line as 

constant applied voltages and currents

The only invariant solution is with constant voltage and current in the line



“Almost linear” d-pH systems

The motivating problem has been the stability analysis of a nonlinear 
flexible link, with one-dimensional spatial domain 
 
 
 
 

“Natural” boundary ports  
 
 

The system has a nonlinearity in the algebraic skew-symmetric term 
Existence of solutions with algebraic boundary control 

Stability analysis

Fig. 1. Flexible link in the deformed and unstressed

configurations, M
acchelli et al. [200

7, 2009].

closed-loop, toget
her with local asymptotic stability of the

unstressed configuration. Once mapped to the link model

in impedance form, the stabilising relation is imposing

nothing else than full boundary dissipation at one side

of the link. In this respect, this is a generalisation to the

nonlinear case of V
illegas et al. [2009

], Macchelli [2012b,a]

that are valid in the linear scenario. Finally,
it is worth

nothing that with this paper it is sh
own that Riemann in-

variants and scattering represe
ntation of port-Hamiltonian

systems could be a valuable tool
for tackling nonlin

earities.

The next step is to deal with distributed port-Hamiltonian

systems characterised not only by a nonlinear Dirac struc-

ture, but also by a nonlinear energy
function.

The paper is organised as follows. The nonlinear model

of the flexible link in port-Hamiltonian form is briefly

recalled in Sect. 2. Then, in
Sect. 3, the class of nonlinear

distributed port-Hamiltonian systems is introduced, and

the main results about the existence of solution and

stability analysis are provided. Such results are applied to

the boundary stabilisation of the flexible beam in Sect. 4,

while in Sect. 5 conclusions and idead for future research
es

are given.

2. FLEXIBLE LINK MODEL

In Macchelli et al. [2007, 2009], t
he following model of a

flexible beam in port-Hamiltonian form has been intro-

duced: 8
>><

>>:

@q

@t
=

@

@z

�H

�p
+ ad(q+n̂)

�H

�p

@p

@t
=

@

@z

�H

�q
� ad⇤(q+n̂)

�H

�q
+ p ^

�H

�p

(1)

As reported in Fig. 1, if L is the length of the link, for

all z 2 Z ⌘ [0, L] position and orientation of the cross

section with respect to an inertial reference
E0 is given by

h0b(z) 2 SE(3), where the subscript “b” denotes the body

reference Eb attached to the cross-section, Simo [1985].

The unstressed configuration, wh
ich is not required to be

a straight line, is de
noted by ĥ0b(z).
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b(z).

In (1), q(t, z) and p(t, z) denote the infinitesimal deforma-
tion and momentum of the cross-section, that are math-
ematically described by C1 functions from Z to se(3)
and se⇤(3), respectively. Moreover, given z 2 Z, n̂(z)
represents the “direction” along which the unstressed con-
figuration “evolves.” All these quantities are expressed in
body frame, i.e. Eb(z). The function H is the Hamiltonian
(energy) function given by the integration on Z of the

sum of a kinetic energy density K(p) = 1/2 hp | piY , and a
potential elastic energy density W(q) = 1/2 hq | qiC�1 :

H(q, p) =
1

2

Z

Z

⇣
hp | piY + hq | qiC�1

⌘
dz (2)

Here, Y denotes the inverse of the inertia tensor I⇢ of
the cross-section, i.e. Y = I�1

⇢ , which defines a quadratic
form on se⇤(3), while C is the compliance tensor describing
the (supposed linear) elastic behaviour of the link, whose
inverse C�1 defines a quadratic form on se(3). Moreover,
h· | ·i is the inner product defined by a proper metric, i.e.
by Y on se⇤(3) and by C�1 on se(3). In (1), � denotes
the variational derivative (see van der Schaft and Maschke
[2002]), p ^ �H/�p ⌘ ad⇤�pHp (see Stramigioli [2001]), while

n̂(z) =
⇣
ĥ0
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unstressed configuration. Once mapped to the link model
in impedance form, the stabilising relation is imposing
nothing else than full boundary dissipation at one side
of the link. In this respect, this is a generalisation to the
nonlinear case of Villegas et al. [2009], Macchelli [2012b,a]
that are valid in the linear scenario. Finally, it is worth
nothing that with this paper it is shown that Riemann in-
variants and scattering representation of port-Hamiltonian
systems could be a valuable tool for tackling nonlinearities.
The next step is to deal with distributed port-Hamiltonian
systems characterised not only by a nonlinear Dirac struc-
ture, but also by a nonlinear energy function.
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ĥ0
b(z)

⌘�1 @ĥ0
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distributed parameter system. Clearly T0, TL 2 se(3) and
W0,WL 2 se⇤(3). Since no dissipative e↵ect is considered,
(1) satisfies the following energy balance condition:

dH

dt
(t) = hWL(t), TL(t)i+ hW0(t), T0(t)i (4)

where h·, ·i is the dual product on se(3)⇥ se⇤(3).
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operations is adopted, the distributed port-Hamiltonian
system (1) with boundary conditions (3) belongs to the
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1 > 0, and

P0(·, ·) = �PT
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di↵erentiable matrix-valued function such that L(z) =
LT(z) and L(z) � I, with  > 0 for all z 2 Z. For
simplicity, L(z)x(t, z) ⌘ (Lx)(t, z). Note that the entries
in P0 can be non-linear.

Di↵erently from Le Gorrec et al. [2005] where the state
space is L2([a, b];Rn), we assume that the state space
is X = C1([a, b];Rn). This hypothesis is necessary since
we want to rely directly on Prieur et al. [2008] as far
as the existence of solutions and their stability analysis
is concerned, i.e. on Theorem 3.1. The distributed port-
Hamiltonian system (5) is characterised by the following
Hamiltonian function
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closed-loop, together with local asymptotic stability of the
unstressed configuration. Once mapped to the link model
in impedance form, the stabilising relation is imposing
nothing else than full boundary dissipation at one side
of the link. In this respect, this is a generalisation to the
nonlinear case of Villegas et al. [2009], Macchelli [2012b,a]
that are valid in the linear scenario. Finally, it is worth
nothing that with this paper it is shown that Riemann in-
variants and scattering representation of port-Hamiltonian
systems could be a valuable tool for tackling nonlinearities.
The next step is to deal with distributed port-Hamiltonian
systems characterised not only by a nonlinear Dirac struc-
ture, but also by a nonlinear energy function.

The paper is organised as follows. The nonlinear model
of the flexible link in port-Hamiltonian form is briefly
recalled in Sect. 2. Then, in Sect. 3, the class of nonlinear
distributed port-Hamiltonian systems is introduced, and
the main results about the existence of solution and
stability analysis are provided. Such results are applied to
the boundary stabilisation of the flexible beam in Sect. 4,
while in Sect. 5 conclusions and idead for future researches
are given.

2. FLEXIBLE LINK MODEL

In Macchelli et al. [2007, 2009], the following model of a
flexible beam in port-Hamiltonian form has been intro-
duced: 8
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in impedance form, the stabilising relation is imposing
nothing else than full boundary dissipation at one side
of the link. In this respect, this is a generalisation to the
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that are valid in the linear scenario. Finally, it is worth
nothing that with this paper it is shown that Riemann in-
variants and scattering representation of port-Hamiltonian
systems could be a valuable tool for tackling nonlinearities.
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systems characterised not only by a nonlinear Dirac struc-
ture, but also by a nonlinear energy function.
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These quantities are expressed in body frame, i.e. in Eb(0)
and Eb(L), and represent the boundary conditions of the
distributed parameter system. Clearly T0, TL 2 se(3) and
W0,WL 2 se⇤(3). Since no dissipative e↵ect is considered,
(1) satisfies the following energy balance condition:
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in impedance form, the stabilising relation is imposing
nothing else than full boundary dissipation at one side
of the link. In this respect, this is a generalisation to the
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that are valid in the linear scenario. Finally, it is worth
nothing that with this paper it is shown that Riemann in-
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systems characterised not only by a nonlinear Dirac struc-
ture, but also by a nonlinear energy function.
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II. BACKGROUND

A. Dirac structures on Hilbert spaces
Dirac structures on Hilbert spaces have been introduced in

[12], while their kernel and image representations have been
discussed in [13]. Here, for simplicity, we assume that the
space of flows F is an Hilbert space, and that the space of
efforts is E ⌘ F . Denote by h· | ·i the inner product on F .
The Cartesian space F ⇥ E equipped by the inner product

h(f1, e1) | (f2, e2)iF�E = hf1 | f2i+ he1 | e2i

with f1, f2 2 F and e1, e2 2 E , is called the Hilbert space
F�E . Differently, the Cartesian space F⇥E equipped with
the indefinite inner product

⌧ (f1, e1), (f2, e2) �= hf1 | e2i+ hf2 | e1i (1)

is the bond space B. Given a linear space A ⇢ B, its
orthogonal complement with respect to (1) is

A?
=

n

a0 2 B |⌧ a, a0 �= 0, 8a 2 A
o

Similarly to the case in which the bond space is a linear
vector space [11], we give the following definition, [13]:

Definition 2.1: Let F and E be the spaces of efforts and
flows, B the associated bond space, and D a linear subset of
B. We say that D is a Dirac structure on B if D = D?.

In [13], it has been proved that all the Dirac structures on
Hilbert spaces admit a kernel and an image representation. In
fact, denote by ⇤ an Hilbert space isometrically isomorphic
to F ⌘ E . For any Dirac structure D, there exists linear maps
F : F ! ⇤ and E : E ! ⇤ satisfying the conditions

FE⇤
+ EF ⇤

= 0 ran

�

F E
�

= ⇤ (2)

such that

D =

n

(f, e) 2 B | Ff + Ee = 0

o

(3)

where · stands for the closure of an operator, while ·⇤
denotes the adjoint operator, see e.g. [10]. From (2), it
follows that D can be also written as

D =

n

(f, e) 2 B | f = E⇤�, e = F ⇤�, 8� 2 ⇤

o

(4)

The expressions (3) and (4) are the kernel and image repre-
sentations respectively of the Dirac structure D. The image
representation is useful in the control synthesis because it
provides a simple way to parametrize the system trajectories.

B. A class of distributed port-Hamiltonian systems
In this paper, we refer to the class of distributed port-

Hamiltonian systems that have been studied in [15], [16],
i.e. to systems described by the following PDE:
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+(P0�G0)L(z)x(t, z) (5)

with x 2 Rn and z 2 [a, b]. Moreover, P1 = PT
1 > 0,

P0 = �PT
0 , G0 = GT

0 � 0, and L(·) is a bounded and
continuously differentiable matrix-valued function such that
L(z) = LT

(z) and L(z) � I , with  > 0, for all z 2 [a, b].
For simplicity, L(z)x(t, z) ⌘ (Lx)(t, z). The state space is

X = L2(a, b;Rn
), and is endowed with the inner product

hx1 | x2iL = hx1 | Lx2i and norm kx1k2L = hx1 | x1iL,
where h· | ·i denotes the natural L2-inner product. The se-
lection of this space for the state variable is motivated by
the fact that H(·) =

1/2 k·k2L is the energy function. As a
consequence, X is also called the space of energy variables
and Lx is the co-energy variable.

To define a distributed port-Hamiltonian system, the PDE
(5) has to be “completed” by proper boundary port. More
precisely, given Lx 2 H1

(a, b;Rn
), the boundary port

variables are the vectors f@ , e@ 2 Rn given by
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The boundary port variables are just a linear combination
of the restriction of the boundary variables, and simple
integration by parts shows that ˙H(x(t)) = eT@ (t)f@(t).

The problem of determining the “right” boundary inputs
and outputs for (5) to have a so-called boundary control
system on X , see e.g. [10], has been addressed in [15], [16].

Theorem 2.1: Let W be a n⇥2n real matrix. If W has full
rank and satisfies W⌃WT � 0, being ⌃ =
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, then
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generates a contraction semigroup on X . Moreover, let ˜W be
a full rank n⇥2n matrix such that

�

WT
˜WT

�

is invertible
and let P be given by
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), the following
energy balance equation is satisfied:
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In this paper, u and y are chosen in such a way that (5)
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Similarly to the finite dimensional case, X is also called
the space of energy variables, and Lx is the co-energy
variable. This class is quite general and includes models
of flexible structures, traveling waves, heat exchangers,
and bioreactors among others (if also dissipative e↵ects
are included, Villegas et al. [2009]).
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The boundary port variables are just a linear combination
of the restriction on the boundary of the spatial domain
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Inputs and outputs have to be defined in order to have
a so-called boundary control system, Curtain and Zwart
[1995]. From Le Gorrec et al. [2005], a simple procedure
to have system (5) in impedance form is the following. Let
Ŵ and W̃ a pair of n ⇥ 2n full rank real matrices, such
that
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and it is easy to prove that the following energy balance
equation is satisfied:
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dt
H(t) = yT(t)u(t) (11)

Proposition 3.1. There always exists a coordinate change
that puts (5) in the following form:
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(t, z) +M(⇠, z)⇠(t, z) (12)

where ⇤(z) is diagonal, and the vector function M(⇠, z)⇠
that groups the nonlinear terms is of class C1([a, b];Rn).

Proof. Denote by
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L(z) the symmetric square root of

L(z), i.e. L =
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L, and by �(z) the unitary matrix,

i.e. ��T = I, that diagonalizes the symmetric matrixp
LP1
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L. This means that
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where
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In (14), we can chose � is such a way that ⇤� contains
the positive eigenvalues of ⇤, while �⇤+ the negative ones.

Clearly, the entries of both ⇤� and ⇤+ are positive. Then,
simple computations show that

⇠(t, z) = �(z)
p
L(z)x(t, z) (15)

is the coordinate change that maps the PDE (5) into (12).

Remark 3.1. From (15), the total energy can be written
as

H̄(t) =
1

2

Z b
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⇠T(t, z)⇠(t, z) dz (16)

Moreover, let us now write ⇠ = (⇠�, ⇠+) with the di-
mensions chosen having the block partition of ⇤ in (14)
in mind. Then, (12) satisfies the following energy-balance
relation:
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dt
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The quantity ⇠+ is associated to an amount of power
“flowing” from z = a to z = b, while ⇠� is going in the
opposite directions. It is then natural to define this new
set of boundary terms�

s+,a(t), s�,a(t)
�
=

�
⇠+(t, a), ⇠�(t, a)

�
�
s+,b(t), s�,b(t)

�
=

�
⇠+(t, b), ⇠�(t, b)

� (18)

that realises the scattering decomposition of the boundary
port (f@ , e@), see Macchelli et al. [2002]. In this respect,
(12) provides the dynamics in term of the scattering
variables.

Remark 3.2. In the context of quasi-linear hyperbolic
PDEs, (12) is the dynamics in terms of the Riemann
invariants or coordinates, Ta-Tsien [1994]. Note that, if
M(⇠, z) = 0, then (12) is equivalent to the following set of
PDEs:
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(t, z) = �i(z)
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(t, z), i = 1, . . . , n (19)

Moreover, it is easy to prove that ⇠̇i(t, z(t)) = 0, i.e. each
⇠i is constant, along the “line” ż(t)+�i(z(t)) = 0. Clearly,
z is increasing if �i < 0, decreasing if �i > 0. This explains
why ⇠+ is related to some amount of power flowing in the
positive direction of the spatial domain, while ⇠� to power
travelling in the opposite direction. In case M(⇠, z) 6= 0,
this property is lost, but it is still important in the study
of the existence of solutions of (12), and in the stability
analysis under the hypothesis that this term is bounded in
a neighbourhood of the equilibrium. See Theorem 3.1 for
more details.

Remark 3.3. Assume that L and P0 in (5) do not depend
on z. Then, it is possible to recover for (12) a port-
Hamiltonian representation, where now the state variables
are precisely the scattering variables:
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with P̄0 =
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L�TP0�

p
L. It turns out that the constant

symmetric and positive definite matrix L is the metric that
is employed in the scattering decomposition of the Stokes–
Dirac structure of the distributed port-Hamiltonian sys-
tem (5), see Stramigioli et al. [2002], van der Schaft
[2009]. For this linear port-Hamiltonian system, a “phys-
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Ŵ and W̃ a pair of n ⇥ 2n full rank real matrices, such
that

�
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Ŵ⌃ŴT = 0 Ŵ⌃W̃T = I W̃⌃W̃T = 0 (8)

being

⌃ =

✓
0 I
I 0

◆
(9)

The (boundary) input u and output y can be defined as

u(t) = Ŵ
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set of boundary terms�

s+,a(t), s�,a(t)
�
=

�
⇠+(t, a), ⇠�(t, a)

�
�
s+,b(t), s�,b(t)

�
=

�
⇠+(t, b), ⇠�(t, b)

� (18)

that realises the scattering decomposition of the boundary
port (f@ , e@), see Macchelli et al. [2002]. In this respect,
(12) provides the dynamics in term of the scattering
variables.

Remark 3.2. In the context of quasi-linear hyperbolic
PDEs, (12) is the dynamics in terms of the Riemann
invariants or coordinates, Ta-Tsien [1994]. Note that, if
M(⇠, z) = 0, then (12) is equivalent to the following set of
PDEs:
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@z

(t, z), i = 1, . . . , n (19)

Moreover, it is easy to prove that ⇠̇i(t, z(t)) = 0, i.e. each
⇠i is constant, along the “line” ż(t)+�i(z(t)) = 0. Clearly,
z is increasing if �i < 0, decreasing if �i > 0. This explains
why ⇠+ is related to some amount of power flowing in the
positive direction of the spatial domain, while ⇠� to power
travelling in the opposite direction. In case M(⇠, z) 6= 0,
this property is lost, but it is still important in the study
of the existence of solutions of (12), and in the stability
analysis under the hypothesis that this term is bounded in
a neighbourhood of the equilibrium. See Theorem 3.1 for
more details.

Remark 3.3. Assume that L and P0 in (5) do not depend
on z. Then, it is possible to recover for (12) a port-
Hamiltonian representation, where now the state variables
are precisely the scattering variables:
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with P̄0 =
p
L�TP0�

p
L. It turns out that the constant

symmetric and positive definite matrix L is the metric that
is employed in the scattering decomposition of the Stokes–
Dirac structure of the distributed port-Hamiltonian sys-
tem (5), see Stramigioli et al. [2002], van der Schaft
[2009]. For this linear port-Hamiltonian system, a “phys-

Similarly to the finite dimensional case, X is also calledthe space of energy variables, and Lx is the co-energyvariable. This class is quite general and includes modelsof flexible structures, traveling waves, heat exchangers,and bioreactors among others (if also dissipative e↵ectsare included, Villegas et al. [2009]).
To define a distributed port-Hamiltonian system, the PDE(5) has to be “completed” by a boundary port. Moreprecisely, given Lx 2 C1([a, b];Rn), the boundary portvariables associated to (5) are the vectors f@ , e@ 2 Rndefined by
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(7)Inputs and outputs have to be defined in order to havea so-called boundary control system, Curtain and Zwart[1995]. From Le Gorrec et al. [2005], a simple procedureto have system (5) in impedance form is the following. LetŴ and W̃ a pair of n ⇥ 2n full rank real matrices, suchthat
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H(t) = yT(t)u(t) (11)Proposition 3.1. There always exists a coordinate changethat puts (5) in the following form:
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In (14), we can chose � is such a way that ⇤� containsthe positive eigenvalues of ⇤, while �⇤+ the negative ones.

Clearly, the entries of both ⇤� and ⇤+ are positive. Then,simple computations show that
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L(z)x(t, z) (15)is the coordinate change that maps the PDE (5) into (12).Remark 3.1. From (15), the total energy can be writtenas
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Moreover, let us now write ⇠ = (⇠�, ⇠+) with the di-mensions chosen having the block partition of ⇤ in (14)in mind. Then, (12) satisfies the following energy-balancerelation:
d

dt
H̄ =

1

2

h
⇠T�(b)⇤�(b)⇠�(b)� ⇠T+(b)⇤+(b)⇠+(b)

⇤
+

+
1

2

h
⇠T+(a)⇤+(a)⇠+(a)� ⇠T�(a)⇤�(a)⇠�(a)

i
(17)The quantity ⇠+ is associated to an amount of power“flowing” from z = a to z = b, while ⇠� is going in theopposite directions. It is then natural to define this newset of boundary terms�
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that realises the scattering decomposition of the boundaryport (f@ , e@), see Macchelli et al. [2002]. In this respect,(12) provides the dynamics in term of the scatteringvariables.
Remark 3.2. In the context of quasi-linear hyperbolicPDEs, (12) is the dynamics in terms of the Riemanninvariants or coordinates, Ta-Tsien [1994]. Note that, ifM(⇠, z) = 0, then (12) is equivalent to the following set ofPDEs:
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Moreover, it is easy to prove that ⇠̇i(t, z(t)) = 0, i.e. each⇠i is constant, along the “line” ż(t)+�i(z(t)) = 0. Clearly,z is increasing if �i < 0, decreasing if �i > 0. This explainswhy ⇠+ is related to some amount of power flowing in thepositive direction of the spatial domain, while ⇠� to powertravelling in the opposite direction. In case M(⇠, z) 6= 0,this property is lost, but it is still important in the studyof the existence of solutions of (12), and in the stabilityanalysis under the hypothesis that this term is bounded ina neighbourhood of the equilibrium. See Theorem 3.1 formore details.

Remark 3.3. Assume that L and P0 in (5) do not dependon z. Then, it is possible to recover for (12) a port-Hamiltonian representation, where now the state variablesare precisely the scattering variables:
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with P̄0 =
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L. It turns out that the constantsymmetric and positive definite matrix L is the metric thatis employed in the scattering decomposition of the Stokes–Dirac structure of the distributed port-Hamiltonian sys-tem (5), see Stramigioli et al. [2002], van der Schaft[2009]. For this linear port-Hamiltonian system, a “phys-

Similarly to the finite dimensional case, X is also called
the space of energy variables, and Lx is the co-energy
variable. This class is quite general and includes models
of flexible structures, traveling waves, heat exchangers,
and bioreactors among others (if also dissipative e↵ects
are included, Villegas et al. [2009]).

To define a distributed port-Hamiltonian system, the PDE
(5) has to be “completed” by a boundary port. More
precisely, given Lx 2 C1([a, b];Rn), the boundary port
variables associated to (5) are the vectors f@ , e@ 2 Rn

defined by
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The boundary port variables are just a linear combination
of the restriction on the boundary of the spatial domain
of the co-energy variables, and simple integration by parts
shows that
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= eT@ (t)f@(t)
(7)

Inputs and outputs have to be defined in order to have
a so-called boundary control system, Curtain and Zwart
[1995]. From Le Gorrec et al. [2005], a simple procedure
to have system (5) in impedance form is the following. Let
Ŵ and W̃ a pair of n ⇥ 2n full rank real matrices, such
that
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is invertible, and

Ŵ⌃ŴT = 0 Ŵ⌃W̃T = I W̃⌃W̃T = 0 (8)
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The (boundary) input u and output y can be defined as

u(t) = Ŵ
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f@(t)
e@(t)

◆
y(t) = W̃
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(10)

and it is easy to prove that the following energy balance
equation is satisfied:

d

dt
H(t) = yT(t)u(t) (11)

Proposition 3.1. There always exists a coordinate change
that puts (5) in the following form:
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(t, z) = ⇤(z)
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(t, z) +M(⇠, z)⇠(t, z) (12)

where ⇤(z) is diagonal, and the vector function M(⇠, z)⇠
that groups the nonlinear terms is of class C1([a, b];Rn).
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In (14), we can chose � is such a way that ⇤� contains
the positive eigenvalues of ⇤, while �⇤+ the negative ones.

Clearly, the entries of both ⇤� and ⇤+ are positive. Then,
simple computations show that

⇠(t, z) = �(z)
p
L(z)x(t, z) (15)

is the coordinate change that maps the PDE (5) into (12).

Remark 3.1. From (15), the total energy can be written
as
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⇠T(t, z)⇠(t, z) dz (16)

Moreover, let us now write ⇠ = (⇠�, ⇠+) with the di-
mensions chosen having the block partition of ⇤ in (14)
in mind. Then, (12) satisfies the following energy-balance
relation:

d

dt
H̄ =

1

2

h
⇠T�(b)⇤�(b)⇠�(b)� ⇠T+(b)⇤+(b)⇠+(b)

⇤
+

+
1

2

h
⇠T+(a)⇤+(a)⇠+(a)� ⇠T�(a)⇤�(a)⇠�(a)

i
(17)

The quantity ⇠+ is associated to an amount of power
“flowing” from z = a to z = b, while ⇠� is going in the
opposite directions. It is then natural to define this new
set of boundary terms�

s+,a(t), s�,a(t)
�
=

�
⇠+(t, a), ⇠�(t, a)

�
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s+,b(t), s�,b(t)
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that realises the scattering decomposition of the boundary
port (f@ , e@), see Macchelli et al. [2002]. In this respect,
(12) provides the dynamics in term of the scattering
variables.

Remark 3.2. In the context of quasi-linear hyperbolic
PDEs, (12) is the dynamics in terms of the Riemann
invariants or coordinates, Ta-Tsien [1994]. Note that, if
M(⇠, z) = 0, then (12) is equivalent to the following set of
PDEs:
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(t, z), i = 1, . . . , n (19)

Moreover, it is easy to prove that ⇠̇i(t, z(t)) = 0, i.e. each
⇠i is constant, along the “line” ż(t)+�i(z(t)) = 0. Clearly,
z is increasing if �i < 0, decreasing if �i > 0. This explains
why ⇠+ is related to some amount of power flowing in the
positive direction of the spatial domain, while ⇠� to power
travelling in the opposite direction. In case M(⇠, z) 6= 0,
this property is lost, but it is still important in the study
of the existence of solutions of (12), and in the stability
analysis under the hypothesis that this term is bounded in
a neighbourhood of the equilibrium. See Theorem 3.1 for
more details.

Remark 3.3. Assume that L and P0 in (5) do not depend
on z. Then, it is possible to recover for (12) a port-
Hamiltonian representation, where now the state variables
are precisely the scattering variables:
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with P̄0 =
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symmetric and positive definite matrix L is the metric that
is employed in the scattering decomposition of the Stokes–
Dirac structure of the distributed port-Hamiltonian sys-
tem (5), see Stramigioli et al. [2002], van der Schaft
[2009]. For this linear port-Hamiltonian system, a “phys-

Similarly to the finite dimensional case, X is also called
the space of energy variables, and Lx is the co-energy
variable. This class is quite general and includes models
of flexible structures, traveling waves, heat exchangers,
and bioreactors among others (if also dissipative e↵ects
are included, Villegas et al. [2009]).

To define a distributed port-Hamiltonian system, the PDE
(5) has to be “completed” by a boundary port. More
precisely, given Lx 2 C1([a, b];Rn), the boundary port
variables associated to (5) are the vectors f@ , e@ 2 Rn

defined by
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The boundary port variables are just a linear combination
of the restriction on the boundary of the spatial domain
of the co-energy variables, and simple integration by parts
shows that
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Inputs and outputs have to be defined in order to have
a so-called boundary control system, Curtain and Zwart
[1995]. From Le Gorrec et al. [2005], a simple procedure
to have system (5) in impedance form is the following. Let
Ŵ and W̃ a pair of n ⇥ 2n full rank real matrices, such
that

�
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and it is easy to prove that the following energy balance
equation is satisfied:
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dt
H(t) = yT(t)u(t) (11)

Proposition 3.1. There always exists a coordinate change
that puts (5) in the following form:
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where ⇤(z) is diagonal, and the vector function M(⇠, z)⇠
that groups the nonlinear terms is of class C1([a, b];Rn).
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In (14), we can chose � is such a way that ⇤� contains
the positive eigenvalues of ⇤, while �⇤+ the negative ones.

Clearly, the entries of both ⇤� and ⇤+ are positive. Then,
simple computations show that
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is the coordinate change that maps the PDE (5) into (12).

Remark 3.1. From (15), the total energy can be written
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The quantity ⇠+ is associated to an amount of power
“flowing” from z = a to z = b, while ⇠� is going in the
opposite directions. It is then natural to define this new
set of boundary terms�
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that realises the scattering decomposition of the boundary
port (f@ , e@), see Macchelli et al. [2002]. In this respect,
(12) provides the dynamics in term of the scattering
variables.

Remark 3.2. In the context of quasi-linear hyperbolic
PDEs, (12) is the dynamics in terms of the Riemann
invariants or coordinates, Ta-Tsien [1994]. Note that, if
M(⇠, z) = 0, then (12) is equivalent to the following set of
PDEs:
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Moreover, it is easy to prove that ⇠̇i(t, z(t)) = 0, i.e. each
⇠i is constant, along the “line” ż(t)+�i(z(t)) = 0. Clearly,
z is increasing if �i < 0, decreasing if �i > 0. This explains
why ⇠+ is related to some amount of power flowing in the
positive direction of the spatial domain, while ⇠� to power
travelling in the opposite direction. In case M(⇠, z) 6= 0,
this property is lost, but it is still important in the study
of the existence of solutions of (12), and in the stability
analysis under the hypothesis that this term is bounded in
a neighbourhood of the equilibrium. See Theorem 3.1 for
more details.
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Denote by
p
L(z) the symmetric square root of

L(z), i.e. L =
p
L
p
L, and by �(z) the unitary matrix,

i.e. ��T = I, that diagonalizes the symmetric matrix

p
LP1

p
L. This means that

p
L(z)P1

p
L(z) = �T(z)⇤(z)�(z)

(13)

where

⇤(z) =

✓
⇤�(z) 0

0 �⇤+(z)

◆
(14)

In (14), we can chose � is such a way that ⇤� contains

the positive eigenva
lues of ⇤, while �⇤+ the negative ones.

Clearly, the entries
of both ⇤� and ⇤+ are positive. Then,

simple computations show that

⇠(t, z) = �(z)
p
L(z)x(t, z) (15)

is the coordinate ch
ange that maps the PDE (5) into (12).

Remark 3.1. From (15), the total energy can be written

as

H̄(t) =
1

2

Z b

a

⇠T(t, z)⇠(t, z) dz
(16)

Moreover, let us now write ⇠ = (⇠�, ⇠+) with the di-

mensions chosen having the block partition of ⇤ in (14)

in mind. Then, (12) sat
isfies the following energy-balance

relation:

d

dt
H̄ =

1

2

h
⇠T�(b)⇤�(b)⇠�(b)� ⇠T+(b)⇤+(b)⇠+(b)

⇤
+

+
1

2

h
⇠T+(a)⇤+(a)⇠+(a)� ⇠T�(a)⇤�(a)⇠�(a)

i
(17)

The quantity ⇠+ is associated to an amount of power

“flowing” from z = a to z = b, while ⇠� is going in the

opposite directions. It is then natural to define this new

set of boundary terms
�
s+,a(t), s�,a(t)

�
=
�
⇠+(t, a), ⇠�(t, a

)
�

�
s+,b(t), s�,b(t)

�
=
�
⇠+(t, b), ⇠�(t, b

)
� (18)

that realises the sc
attering decomposition of the boundary

port (f@, e@), see Macchelli et al. [2002]. In this respect,

(12) provides the dynamics in term of the scattering

variables.

Remark 3.2. In the context of quasi-linear hyperbolic

PDEs, (12) is the dynamics in terms of the Riemann

invariants or coordinates, Ta-Ts
ien [1994]. Note that, if

M(⇠, z) = 0, then (12) is equivalent t
o the following set of

PDEs:
@⇠i

@t
(t, z) = �i(z)

@⇠i

@z
(t, z), i = 1, . . . , n (19)

Moreover, it is easy
to prove that ⇠̇i(t, z(t)) = 0, i.e. each

⇠i is constant,
along the “line” ż(t)+�i(z(t)) = 0. Clearly,

z is increasing if �i < 0, decreasing if �i > 0. This explains

why ⇠+ is related to some amount of power flow
ing in the

positive direction of the spatial domain, while ⇠� to power

travelling in the opposite direction. In case M(⇠, z) 6= 0,

this property is lost, but it is sti
ll important in the study

of the existence of solutions of (12), and in the stability

analysis under the
hypothesis that thi

s term is bounded in

a neighbourhood of the equilibrium. See Theorem 3.1 for

more details.

Remark 3.3. Assume that L and P0 in (5) do not depend

on z. Then, it is possible to recover for (12) a port-

Hamiltonian representation, wh
ere now the state variables

are precisely the scattering variables:

@

@t

✓
⇠�(t, z)
⇠+(t, z)

◆
=
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◆
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◆
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⇠+(t, z)

◆
(20)

with P̄0 =
p
L�TP0�

p
L. It turns out that the constant

symmetric and positive definite matrix L is the metric that

is employed in the scattering decomposition of the Stokes–

Dirac structure of the distributed port-Hamiltonian sys-

tem (5), see Stramigioli et al. [2002], van der Schaft

[2009]. For this linear port-Hamiltonian system, a “phys-
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If P0 and L do not depend on z, we have

Similarly to the finite dimensional case, X is also called
the space of energy variables, and Lx is the co-energy
variable. This class is quite general and includes models
of flexible structures, traveling waves, heat exchangers,
and bioreactors among others (if also dissipative e↵ects
are included, Villegas et al. [2009]).

To define a distributed port-Hamiltonian system, the PDE
(5) has to be “completed” by a boundary port. More
precisely, given Lx 2 C1([a, b];Rn), the boundary port
variables associated to (5) are the vectors f@ , e@ 2 Rn

defined by
✓
f@
e@

◆
=

1p
2

✓
P1 �P1

I I

◆✓
(Lx)(b)
(Lx)(a)

◆
(6)

The boundary port variables are just a linear combination
of the restriction on the boundary of the spatial domain
of the co-energy variables, and simple integration by parts
shows that

dH
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(x(t)) =
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(Lx)(t, a)
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P1 0
0 �P1
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(Lx)(t, b)
(Lx)(t, a)

◆

= eT@ (t)f@(t)
(7)

Inputs and outputs have to be defined in order to have
a so-called boundary control system, Curtain and Zwart
[1995]. From Le Gorrec et al. [2005], a simple procedure
to have system (5) in impedance form is the following. Let
Ŵ and W̃ a pair of n ⇥ 2n full rank real matrices, such
that

�
ŴT W̃T

�
is invertible, and

Ŵ⌃ŴT = 0 Ŵ⌃W̃T = I W̃⌃W̃T = 0 (8)

being

⌃ =
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0 I
I 0

◆
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The (boundary) input u and output y can be defined as

u(t) = Ŵ

✓
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◆
y(t) = W̃

✓
f@(t)
e@(t)

◆
(10)

and it is easy to prove that the following energy balance
equation is satisfied:

d

dt
H(t) = yT(t)u(t) (11)

Proposition 3.1. There always exists a coordinate change
that puts (5) in the following form:
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(t, z) = ⇤(z)
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(t, z) +M(⇠, z)⇠(t, z) (12)

where ⇤(z) is diagonal, and the vector function M(⇠, z)⇠
that groups the nonlinear terms is of class C1([a, b];Rn).

Proof. Denote by
p
L(z) the symmetric square root of

L(z), i.e. L =
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L
p
L, and by �(z) the unitary matrix,

i.e. ��T = I, that diagonalizes the symmetric matrixp
LP1
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L. This means that
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L(z) = �T(z)⇤(z)�(z) (13)

where

⇤(z) =
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⇤�(z) 0

0 �⇤+(z)
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(14)

In (14), we can chose � is such a way that ⇤� contains
the positive eigenvalues of ⇤, while �⇤+ the negative ones.

Clearly, the entries of both ⇤� and ⇤+ are positive. Then,
simple computations show that

⇠(t, z) = �(z)
p
L(z)x(t, z) (15)

is the coordinate change that maps the PDE (5) into (12).

Remark 3.1. From (15), the total energy can be written
as

H̄(t) =
1

2

Z b

a

⇠T(t, z)⇠(t, z) dz (16)

Moreover, let us now write ⇠ = (⇠�, ⇠+) with the di-
mensions chosen having the block partition of ⇤ in (14)
in mind. Then, (12) satisfies the following energy-balance
relation:

d
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The quantity ⇠+ is associated to an amount of power
“flowing” from z = a to z = b, while ⇠� is going in the
opposite directions. It is then natural to define this new
set of boundary terms�

s+,a(t), s�,a(t)
�
=

�
⇠+(t, a), ⇠�(t, a)

�
�
s+,b(t), s�,b(t)

�
=

�
⇠+(t, b), ⇠�(t, b)

� (18)

that realises the scattering decomposition of the boundary
port (f@ , e@), see Macchelli et al. [2002]. In this respect,
(12) provides the dynamics in term of the scattering
variables.

Remark 3.2. In the context of quasi-linear hyperbolic
PDEs, (12) is the dynamics in terms of the Riemann
invariants or coordinates, Ta-Tsien [1994]. Note that, if
M(⇠, z) = 0, then (12) is equivalent to the following set of
PDEs:
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(t, z) = �i(z)
@⇠i
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(t, z), i = 1, . . . , n (19)

Moreover, it is easy to prove that ⇠̇i(t, z(t)) = 0, i.e. each
⇠i is constant, along the “line” ż(t)+�i(z(t)) = 0. Clearly,
z is increasing if �i < 0, decreasing if �i > 0. This explains
why ⇠+ is related to some amount of power flowing in the
positive direction of the spatial domain, while ⇠� to power
travelling in the opposite direction. In case M(⇠, z) 6= 0,
this property is lost, but it is still important in the study
of the existence of solutions of (12), and in the stability
analysis under the hypothesis that this term is bounded in
a neighbourhood of the equilibrium. See Theorem 3.1 for
more details.

Remark 3.3. Assume that L and P0 in (5) do not depend
on z. Then, it is possible to recover for (12) a port-
Hamiltonian representation, where now the state variables
are precisely the scattering variables:
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⇠�(t, z)
⇠+(t, z)

◆
=

✓
⇤� 0
0 �⇤+

◆
@

@z

✓
⇠�(t, z)
⇠+(t, z)

◆

+ P̄0(⇠�(t, z), ⇠+(t, z))
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⇠�(t, z)
⇠+(t, z)

◆
(20)

with P̄0 =
p
L�TP0�

p
L. It turns out that the constant

symmetric and positive definite matrix L is the metric that
is employed in the scattering decomposition of the Stokes–
Dirac structure of the distributed port-Hamiltonian sys-
tem (5), see Stramigioli et al. [2002], van der Schaft
[2009]. For this linear port-Hamiltonian system, a “phys-
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where g is a continuously differentiable function defined on a neighborhood of
the origin, and satisfying g(0) = 0. Its Jacobian matrix at ξ ∈ IRn is denoted
by ∇g(ξ).

This form of the BC is illustrated in Figure 2 and can be interpreted as
follows. The characteristic solution ξ+j (or ξ−i) that ”leaves” the boundary
at x = 0 (or at x = L) is a function of the characteristic solutions that
”arrive” at the boundaries at the same instant. This form of the BC will be
further motivated in the next section.

In order to state our main result, we need the following compatibility
condition between the system (1) and the BC (5).

Definition 1 A function ξ# ∈ C1(0, L; IRn) satisfies the compatibility con-
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where g is a continuously differentiable function defined on a neighborhood of
the origin, and satisfying g(0) = 0. Its Jacobian matrix at ξ ∈ IRn is denoted
by ∇g(ξ).

This form of the BC is illustrated in Figure 2 and can be interpreted as
follows. The characteristic solution ξ+j (or ξ−i) that ”leaves” the boundary
at x = 0 (or at x = L) is a function of the characteristic solutions that
”arrive” at the boundaries at the same instant. This form of the BC will be
further motivated in the next section.

In order to state our main result, we need the following compatibility
condition between the system (1) and the BC (5).

Definition 1 A function ξ# ∈ C1(0, L; IRn) satisfies the compatibility con-
dition C if (

ξ#
− (L)

ξ#
+ (0)

)
= g

(
ξ#
− (0)

ξ#
+ (L)

)
,

Boundary conditions

Similarly to the finite dimensional case, X is also called
the space of energy variables, and Lx is the co-energy
variable. This class is quite general and includes models
of flexible structures, traveling waves, heat exchangers,
and bioreactors among others (if also dissipative e↵ects
are included, Villegas et al. [2009]).

To define a distributed port-Hamiltonian system, the PDE
(5) has to be “completed” by a boundary port. More
precisely, given Lx 2 C1([a, b];Rn), the boundary port
variables associated to (5) are the vectors f@ , e@ 2 Rn

defined by
✓
f@
e@

◆
=

1p
2

✓
P1 �P1

I I

◆✓
(Lx)(b)
(Lx)(a)

◆
(6)

The boundary port variables are just a linear combination
of the restriction on the boundary of the spatial domain
of the co-energy variables, and simple integration by parts
shows that

dH

dt
(x(t)) =

1

2

✓
(Lx)(t, b)
(Lx)(t, a)

◆T ✓
P1 0
0 �P1

◆✓
(Lx)(t, b)
(Lx)(t, a)

◆

= eT@ (t)f@(t)
(7)

Inputs and outputs have to be defined in order to have
a so-called boundary control system, Curtain and Zwart
[1995]. From Le Gorrec et al. [2005], a simple procedure
to have system (5) in impedance form is the following. Let
Ŵ and W̃ a pair of n ⇥ 2n full rank real matrices, such
that

�
ŴT W̃T

�
is invertible, and

Ŵ⌃ŴT = 0 Ŵ⌃W̃T = I W̃⌃W̃T = 0 (8)

being

⌃ =

✓
0 I
I 0

◆
(9)

The (boundary) input u and output y can be defined as

u(t) = Ŵ

✓
f@(t)
e@(t)

◆
y(t) = W̃

✓
f@(t)
e@(t)

◆
(10)

and it is easy to prove that the following energy balance
equation is satisfied:

d

dt
H(t) = yT(t)u(t) (11)

Proposition 3.1. There always exists a coordinate change
that puts (5) in the following form:

@⇠

@t
(t, z) = ⇤(z)

@⇠

@z
(t, z) +M(⇠, z)⇠(t, z) (12)

where ⇤(z) is diagonal, and the vector function M(⇠, z)⇠
that groups the nonlinear terms is of class C1([a, b];Rn).

Proof. Denote by
p
L(z) the symmetric square root of

L(z), i.e. L =
p
L
p
L, and by �(z) the unitary matrix,

i.e. ��T = I, that diagonalizes the symmetric matrixp
LP1

p
L. This means that

p
L(z)P1

p
L(z) = �T(z)⇤(z)�(z) (13)

where

⇤(z) =

✓
⇤�(z) 0

0 �⇤+(z)

◆
(14)

In (14), we can chose � is such a way that ⇤� contains
the positive eigenvalues of ⇤, while �⇤+ the negative ones.

Clearly, the entries of both ⇤� and ⇤+ are positive. Then,
simple computations show that

⇠(t, z) = �(z)
p
L(z)x(t, z) (15)

is the coordinate change that maps the PDE (5) into (12).

Remark 3.1. From (15), the total energy can be written
as

H̄(t) =
1

2

Z b

a

⇠T(t, z)⇠(t, z) dz (16)

Moreover, let us now write ⇠ = (⇠�, ⇠+) with the di-
mensions chosen having the block partition of ⇤ in (14)
in mind. Then, (12) satisfies the following energy-balance
relation:

d

dt
H̄ =

1

2

h
⇠T�(b)⇤�(b)⇠�(b)� ⇠T+(b)⇤+(b)⇠+(b)

⇤
+

+
1

2

h
⇠T+(a)⇤+(a)⇠+(a)� ⇠T�(a)⇤�(a)⇠�(a)

i
(17)

The quantity ⇠+ is associated to an amount of power
“flowing” from z = a to z = b, while ⇠� is going in the
opposite directions. It is then natural to define this new
set of boundary terms�

s+,a(t), s�,a(t)
�
=

�
⇠+(t, a), ⇠�(t, a)

�
�
s+,b(t), s�,b(t)

�
=

�
⇠+(t, b), ⇠�(t, b)

� (18)

that realises the scattering decomposition of the boundary
port (f@ , e@), see Macchelli et al. [2002]. In this respect,
(12) provides the dynamics in term of the scattering
variables.

Remark 3.2. In the context of quasi-linear hyperbolic
PDEs, (12) is the dynamics in terms of the Riemann
invariants or coordinates, Ta-Tsien [1994]. Note that, if
M(⇠, z) = 0, then (12) is equivalent to the following set of
PDEs:

@⇠i
@t

(t, z) = �i(z)
@⇠i
@z

(t, z), i = 1, . . . , n (19)

Moreover, it is easy to prove that ⇠̇i(t, z(t)) = 0, i.e. each
⇠i is constant, along the “line” ż(t)+�i(z(t)) = 0. Clearly,
z is increasing if �i < 0, decreasing if �i > 0. This explains
why ⇠+ is related to some amount of power flowing in the
positive direction of the spatial domain, while ⇠� to power
travelling in the opposite direction. In case M(⇠, z) 6= 0,
this property is lost, but it is still important in the study
of the existence of solutions of (12), and in the stability
analysis under the hypothesis that this term is bounded in
a neighbourhood of the equilibrium. See Theorem 3.1 for
more details.

Remark 3.3. Assume that L and P0 in (5) do not depend
on z. Then, it is possible to recover for (12) a port-
Hamiltonian representation, where now the state variables
are precisely the scattering variables:

@

@t

✓
⇠�(t, z)
⇠+(t, z)

◆
=

✓
⇤� 0
0 �⇤+

◆
@

@z

✓
⇠�(t, z)
⇠+(t, z)

◆

+ P̄0(⇠�(t, z), ⇠+(t, z))

✓
⇠�(t, z)
⇠+(t, z)

◆
(20)

with P̄0 =
p
L�TP0�

p
L. It turns out that the constant

symmetric and positive definite matrix L is the metric that
is employed in the scattering decomposition of the Stokes–
Dirac structure of the distributed port-Hamiltonian sys-
tem (5), see Stramigioli et al. [2002], van der Schaft
[2009]. For this linear port-Hamiltonian system, a “phys-

ical” choice for boundary inputs and outputs can be the
following:

u⇠(t) =

✓
s�,b(t)
s+,a(t)

◆
y⇠(t) =

✓
s�,a(t)
s+,b(t)

◆
(21)

The input u is associated to the “incoming” power flow,
while the output y to the outgoing one. Under mild as-
sumptions, the distributed port-Hamiltonian system (20)
or, equivalently, (5) turns out to be a boundary control
system in the sense of Curtain and Zwart [1995], as it
can be verified by applying the techniques presented in Le
Gorrec et al. [2005].

Inputs and outputs have to be specified also in the pro-
posed almost linear scenario (12) or (5), and in spite of
Remark 3.2 and (17) the choice (21) is still valid. Simple
computations show that for (5)

✓
u⇠

y⇠

◆
=

0

B@

I 0 0 0
0 0 0 I
0 0 I 0
0 I 0 0

1

CA⇥

⇥

0
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⇣
�
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L�1

⌘
(b) 0

0
⇣
�
p
L�1

⌘
(a)

1

A
✓
(Lx)(b)
(Lx)(a)

◆
(22)

and, from (22), it is it easy to verify that there exists
an invertible mapping between (u⇠, y⇠) and (u, y) defined
in (10), so particular choices in the boundary conditions
in the scattering representation can be mapped into the
impedance description, and vice-versa.

With the choice (21), existence of solutions together with
some considerations on the stability of the zero equilibrium
for (12) are discussed later, with reference to Prieur et al.
[2008]. In this respect, assume that the following static
relation holds:

u⇠(t) = g(y⇠(t)) (23)
Let us assume that the function g is continuously di↵eren-
tiable, is defined is a neighbourhood of the origin, and sat-
isfies g(0) = 0. The first step is to investigate under which
hypotheses, given an initial condition ⇠] 2 C1([a, b];Rn)
that satisfies the compatibility conditions✓

⇠]�(b)
⇠]+(a)

◆
= g

✓
⇠]�(a)
⇠]+(b)

◆

0

BB@
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@⇠]�
@z

(b) +M�(⇠
](b), b)⇠](b)
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1

CCA

system (12) admits a solution. A second important point
is when the zero equilibrium is asymptotically stable, at
least locally. Moreover, from Proposition 3.1 and (22), it is
clear that (23) can be transformed into a relation involving
u and y defined in (10), and vice-versa: consequently, the
results dealing with the existence of solutions and stability
are also valid for the initial distributed port-Hamiltonian
system (5).

Before stating the main result, some further definitions are
necessary, see Prieur et al. [2008]:

• Given ⇠ 2 Rn, we define
|⇠| := max(|⇠i|, i = 1, . . . , n)

and we denote by B(✏) the ball centered in 0 2 Rn

and radius ✏ > 0.
• Given f0 2 C0([a, b];Rn) and f1 2 C1([a, b];Rn), we

denote
|f0|C0(a,b) = max

z2[a, b]
|f0(z)|

|f1|C1(a,b) = |f1|C0(a,b) + |f 0
1|C0(a,b)

• BC(✏) denotes the set of functions ⇠] 2 C1([a, b];Rn)
that satisfy the compatibility conditions (24), and
such that |⇠]|C1(a,b)  ✏.

• Given a matrix A = (aij), ⇢(A) denotes its spectral
radius, and abs(A) = (|aij |).

Theorem 3.1. (Prieur et al. [2008]). Let us consider (12),
with boundary input and output given by (21), and such
that (23) holds. Given ✏0 > 0 and M > 0, if

⇢ (abs (rg(0))) < 1 (25)
and ��r (M(⇠)⇠)

��
⇠=0

 M (26)

then there exists 0 < ✏1 < ✏0, µ > 0 and C > 0 such
that, for all continuously di↵erentiable ⇠] 2 BC(✏1), there
exists an unique function ⇠ 2 C1([0, L] ⇥ [0, +1];Rn)
satisfying (12), the boundary conditions (23), and the
initial condition ⇠(0, z) = ⇠](z), 8z 2 [0, L]. Moreover,
this function satisfies

|⇠(·, t)|C1(0,L)  Ce�µt|⇠]|C1(0,L), 8t � 0 (27)

As discussed in the next section, condition (25) is equiva-
lent to have full boundary dissipation at least on one side
of the domain, in accordance with Villegas et al. [2009],
Macchelli [2012a,b] in the linear scenario.
Proposition 3.2. Under the hypothese of Theorem 3.1, the
0 equilibrium of (12) is asymptotically stable if

u⇠ =

✓
0 kb
ka 0

◆
y⇠ (28)

with ka, kb 2 R and |kakb| < 1.

Proof. Relation (28) means that
s+,a = ka s�,a s�,b = kb s+,b (29)

The results follows since from (29):

⇢(abs(rg(0))) =
p

|kakb|
Remark 3.4. Relation (29), together with the condition
|kakb| < 1, means that the power flowing into the system
is lower than the one flowing outside. The meaning of
(29) in terms of the inputs and outputs (10), i.e. when
the distributed port-Hamiltonian system is considered in
impedance form, will be clear in the next section. The
extension to the case in which ka and kb are replaced by
e.g. symmetric matrices Ka and Kb is trivial.

4. APPLICATION TO THE NON-LINEAR FLEXIBLE
BEAM EQUATION

The PDE (1) can be written in coordinates by assuming
that q and p are vectors in R6, Stramigioli [2001]. Then,
with (5) in mind, we have that

x(t, z) =

✓
q(t, z)
p(t, z)

◆
L =

✓
C�1 0
0 I�1

⇢

◆
P1 =

✓
0 I
I 0

◆

(30)

ical” choice for boundary inputs and outputs can be the
following:

u⇠(t) =

✓
s�,b(t)
s+,a(t)

◆
y⇠(t) =

✓
s�,a(t)
s+,b(t)

◆
(21)

The input u is associated to the “incoming” power flow,
while the output y to the outgoing one. Under mild as-
sumptions, the distributed port-Hamiltonian system (20)
or, equivalently, (5) turns out to be a boundary control
system in the sense of Curtain and Zwart [1995], as it
can be verified by applying the techniques presented in Le
Gorrec et al. [2005].

Inputs and outputs have to be specified also in the pro-
posed almost linear scenario (12) or (5), and in spite of
Remark 3.2 and (17) the choice (21) is still valid. Simple
computations show that for (5)
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(22)

and, from (22), it is it easy to verify that there exists
an invertible mapping between (u⇠, y⇠) and (u, y) defined
in (10), so particular choices in the boundary conditions
in the scattering representation can be mapped into the
impedance description, and vice-versa.

With the choice (21), existence of solutions together with
some considerations on the stability of the zero equilibrium
for (12) are discussed later, with reference to Prieur et al.
[2008]. In this respect, assume that the following static
relation holds:

u⇠(t) = g(y⇠(t)) (23)
Let us assume that the function g is continuously di↵eren-
tiable, is defined is a neighbourhood of the origin, and sat-
isfies g(0) = 0. The first step is to investigate under which
hypotheses, given an initial condition ⇠] 2 C1([a, b];Rn)
that satisfies the compatibility conditions✓

⇠]�(b)
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system (12) admits a solution. A second important point
is when the zero equilibrium is asymptotically stable, at
least locally. Moreover, from Proposition 3.1 and (22), it is
clear that (23) can be transformed into a relation involving
u and y defined in (10), and vice-versa: consequently, the
results dealing with the existence of solutions and stability
are also valid for the initial distributed port-Hamiltonian
system (5).

Before stating the main result, some further definitions are
necessary, see Prieur et al. [2008]:

• Given ⇠ 2 Rn, we define
|⇠| := max(|⇠i|, i = 1, . . . , n)

and we denote by B(✏) the ball centered in 0 2 Rn

and radius ✏ > 0.
• Given f0 2 C0([a, b];Rn) and f1 2 C1([a, b];Rn), we

denote
|f0|C0(a,b) = max

z2[a, b]
|f0(z)|

|f1|C1(a,b) = |f1|C0(a,b) + |f 0
1|C0(a,b)

• BC(✏) denotes the set of functions ⇠] 2 C1([a, b];Rn)
that satisfy the compatibility conditions (24), and
such that |⇠]|C1(a,b)  ✏.

• Given a matrix A = (aij), ⇢(A) denotes its spectral
radius, and abs(A) = (|aij |).

Theorem 3.1. (Prieur et al. [2008]). Let us consider (12),
with boundary input and output given by (21), and such
that (23) holds. Given ✏0 > 0 and M > 0, if

⇢ (abs (rg(0))) < 1 (25)
and ��r (M(⇠)⇠)

��
⇠=0

 M (26)

then there exists 0 < ✏1 < ✏0, µ > 0 and C > 0 such
that, for all continuously di↵erentiable ⇠] 2 BC(✏1), there
exists an unique function ⇠ 2 C1([0, L] ⇥ [0, +1];Rn)
satisfying (12), the boundary conditions (23), and the
initial condition ⇠(0, z) = ⇠](z), 8z 2 [0, L]. Moreover,
this function satisfies

|⇠(·, t)|C1(0,L)  Ce�µt|⇠]|C1(0,L), 8t � 0 (27)

As discussed in the next section, condition (25) is equiva-
lent to have full boundary dissipation at least on one side
of the domain, in accordance with Villegas et al. [2009],
Macchelli [2012a,b] in the linear scenario.
Proposition 3.2. Under the hypothese of Theorem 3.1, the
0 equilibrium of (12) is asymptotically stable if

u⇠ =

✓
0 kb
ka 0

◆
y⇠ (28)

with ka, kb 2 R and |kakb| < 1.

Proof. Relation (28) means that
s+,a = ka s�,a s�,b = kb s+,b (29)

The results follows since from (29):

⇢(abs(rg(0))) =
p

|kakb|
Remark 3.4. Relation (29), together with the condition
|kakb| < 1, means that the power flowing into the system
is lower than the one flowing outside. The meaning of
(29) in terms of the inputs and outputs (10), i.e. when
the distributed port-Hamiltonian system is considered in
impedance form, will be clear in the next section. The
extension to the case in which ka and kb are replaced by
e.g. symmetric matrices Ka and Kb is trivial.

4. APPLICATION TO THE NON-LINEAR FLEXIBLE
BEAM EQUATION

The PDE (1) can be written in coordinates by assuming
that q and p are vectors in R6, Stramigioli [2001]. Then,
with (5) in mind, we have that

x(t, z) =

✓
q(t, z)
p(t, z)

◆
L =

✓
C�1 0
0 I�1

⇢

◆
P1 =

✓
0 I
I 0

◆

(30)

Similarly to the finite dimensional case, X is also called
the space of energy variables, and Lx is the co-energy
variable. This class is quite general and includes models
of flexible structures, traveling waves, heat exchangers,
and bioreactors among others (if also dissipative e↵ects
are included, Villegas et al. [2009]).To define a distributed port-Hamiltonian system, the PDE
(5) has to be “completed” by a boundary port. More
precisely, given Lx 2 C1([a, b];Rn), the boundary port
variables associated to (5) are the vectors f@ , e@ 2 Rn
defined by

✓
f@
e@

◆
=

1p
2

✓
P1 �P1
I I

◆✓
(Lx)(b)
(Lx)(a)

◆

(6)The boundary port variables are just a linear combination
of the restriction on the boundary of the spatial domain
of the co-energy variables, and simple integration by parts
shows that

dH

dt
(x(t)) =

1

2

✓
(Lx)(t, b)
(Lx)(t, a)

◆T ✓
P1 0
0 �P1

◆✓
(Lx)(t, b)
(Lx)(t, a)

◆

= eT@ (t)f@(t)

(7)Inputs and outputs have to be defined in order to have
a so-called boundary control system, Curtain and Zwart
[1995]. From Le Gorrec et al. [2005], a simple procedure
to have system (5) in impedance form is the following. Let
Ŵ and W̃ a pair of n ⇥ 2n full rank real matrices, such
that

�
Ŵ T

W̃ T
�
is invertible, and

Ŵ⌃Ŵ T = 0 Ŵ⌃W̃ T = I W̃⌃W̃ T = 0 (8)
being

⌃ =
✓
0 I
I 0

◆

(9)The (boundary) input u and output y can be defined asu(t) = Ŵ

✓
f@(t)
e@(t)

◆
y(t) = W̃

✓
f@(t)
e@(t)

◆
(10)and it is easy to prove that the following energy balance

equation is satisfied:

d

dt
H(t) = yT(t)u(t)

(11)Proposition 3.1. There always exists a coordinate change
that puts (5) in the following form:@⇠

@t
(t, z) = ⇤(z)

@⇠

@z
(t, z) +M(⇠, z)⇠(t, z) (12)where ⇤(z) is diagonal, and the vector function M(⇠, z)⇠

that groups the nonlinear terms is of class C1([a, b];Rn).
P

r

o

o

f

. Denote by
p
L(z) the symmetric square root of

L(z), i.e. L =
p
L
p
L, and by �(z) the unitary matrix,

i.e. ��T = I, that diagonalizes the symmetric matrix

p
LP1

p
L. This means thatp

L(z)P1

p
L(z) = �T(z)⇤(z)�(z) (13)

where

⇤(z) =
✓
⇤�(z) 0
0 �⇤+(z)

◆

(14)In (14), we can chose � is such a way that ⇤� contains
the positive eigenvalues of ⇤, while �⇤+ the negative ones.

Clearly, the entries of both ⇤� and ⇤+ are positive. Then,
simple computations show that

⇠(t, z) = �(z)
p
L(z)x(t, z) (15)

is the coordinate change that maps the PDE (5) into (12).
Remark 3.1. From (15), the total energy can be written
as

H̄(t) =
1

2

Z b

a
⇠T(t, z)⇠(t, z) dz (16)Moreover, let us now write ⇠ = (⇠�, ⇠+) with the di-

mensions chosen having the block partition of ⇤ in (14)
in mind. Then, (12) satisfies the following energy-balance
relation:

d

dt
H̄ =

1

2

h
⇠T�(b)⇤�(b)⇠�(b)� ⇠T+(b)⇤+(b)⇠+(b)

⇤
+

+
1

2

h
⇠T+(a)⇤+(a)⇠+(a)� ⇠T�(a)⇤�(a)⇠�(a)

i
(17)The quantity ⇠+ is associated to an amount of power

“flowing” from z = a to z = b, while ⇠� is going in the
opposite directions. It is then natural to define this new
set of boundary terms�

s+,a(t), s�,a(t)
�
=

�
⇠+(t, a), ⇠�(t, a)

��
s+,b(t), s�,b(t)

�
=

�
⇠+(t, b), ⇠�(t, b)

� (18)that realises the scattering decomposition of the boundary
port (f@ , e@), see Macchelli et al. [2002]. In this respect,
(12) provides the dynamics in term of the scattering
variables.
Remark 3.2. In the context of quasi-linear hyperbolic
PDEs, (12) is the dynamics in terms of the Riemann
invariants or coordinates, Ta-Tsien [1994]. Note that, if
M(⇠, z) = 0, then (12) is equivalent to the following set of
PDEs:

@⇠i
@t

(t, z) = �i(z)
@⇠i
@z

(t, z), i = 1, . . . , n (19)Moreover, it is easy to prove that ⇠̇i(t, z(t)) = 0, i.e. each
⇠i is constant, along the “line” ż(t)+�i(z(t)) = 0. Clearly,
z is increasing if �i < 0, decreasing if �i > 0. This explains
why ⇠+ is related to some amount of power flowing in the
positive direction of the spatial domain, while ⇠� to power
travelling in the opposite direction. In case M(⇠, z) 6= 0,
this property is lost, but it is still important in the study
of the existence of solutions of (12), and in the stability
analysis under the hypothesis that this term is bounded in
a neighbourhood of the equilibrium. See Theorem 3.1 for
more details.
Remark 3.3. Assume that L and P0 in (5) do not depend
on z. Then, it is possible to recover for (12) a port-
Hamiltonian representation, where now the state variables
are precisely the scattering variables:@

@t

✓
⇠�(t, z)
⇠+(t, z)

◆
=

✓
⇤� 0
0 �⇤+

◆
@

@z

✓
⇠�(t, z)
⇠+(t, z)

◆

+ P̄0(⇠�(t, z), ⇠+(t, z))

✓
⇠�(t, z)
⇠+(t, z)

◆
(20)with P̄0 =

p
L�TP0�

p
L. It turns out that the constant

symmetric and positive definite matrix L is the metric that
is employed in the scattering decomposition of the Stokes–
Dirac structure of the distributed port-Hamiltonian sys-
tem (5), see Stramigioli et al. [2002], van der Schaft
[2009]. For this linear port-Hamiltonian system, a “phys-

port-Hamiltonian system scattering variables
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ical” choice for boundary inputs and outputs can be the
following:

u⇠(t) =

✓
s�,b(t)
s+,a(t)

◆
y⇠(t) =

✓
s�,a(t)
s+,b(t)

◆
(21)

The input u is associated to the “incoming” power flow,
while the output y to the outgoing one. Under mild as-
sumptions, the distributed port-Hamiltonian system (20)
or, equivalently, (5) turns out to be a boundary control
system in the sense of Curtain and Zwart [1995], as it
can be verified by applying the techniques presented in Le
Gorrec et al. [2005].

Inputs and outputs have to be specified also in the pro-
posed almost linear scenario (12) or (5), and in spite of
Remark 3.2 and (17) the choice (21) is still valid. Simple
computations show that for (5)
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and, from (22), it is it easy to verify that there exists
an invertible mapping between (u⇠, y⇠) and (u, y) defined
in (10), so particular choices in the boundary conditions
in the scattering representation can be mapped into the
impedance description, and vice-versa.

With the choice (21), existence of solutions together with
some considerations on the stability of the zero equilibrium
for (12) are discussed later, with reference to Prieur et al.
[2008]. In this respect, assume that the following static
relation holds:

u⇠(t) = g(y⇠(t)) (23)
Let us assume that the function g is continuously di↵eren-
tiable, is defined is a neighbourhood of the origin, and sat-
isfies g(0) = 0. The first step is to investigate under which
hypotheses, given an initial condition ⇠] 2 C1([a, b];Rn)
that satisfies the compatibility conditions✓

⇠]�(b)
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= g
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system (12) admits a solution. A second important point
is when the zero equilibrium is asymptotically stable, at
least locally. Moreover, from Proposition 3.1 and (22), it is
clear that (23) can be transformed into a relation involving
u and y defined in (10), and vice-versa: consequently, the
results dealing with the existence of solutions and stability
are also valid for the initial distributed port-Hamiltonian
system (5).

Before stating the main result, some further definitions are
necessary, see Prieur et al. [2008]:

• Given ⇠ 2 Rn, we define
|⇠| := max(|⇠i|, i = 1, . . . , n)

and we denote by B(✏) the ball centered in 0 2 Rn

and radius ✏ > 0.
• Given f0 2 C0([a, b];Rn) and f1 2 C1([a, b];Rn), we

denote
|f0|C0(a,b) = max

z2[a, b]
|f0(z)|

|f1|C1(a,b) = |f1|C0(a,b) + |f 0
1|C0(a,b)

• BC(✏) denotes the set of functions ⇠] 2 C1([a, b];Rn)
that satisfy the compatibility conditions (24), and
such that |⇠]|C1(a,b)  ✏.

• Given a matrix A = (aij), ⇢(A) denotes its spectral
radius, and abs(A) = (|aij |).

Theorem 3.1. (Prieur et al. [2008]). Let us consider (12),
with boundary input and output given by (21), and such
that (23) holds. Given ✏0 > 0 and M > 0, if

⇢ (abs (rg(0))) < 1 (25)
and ��r (M(⇠)⇠)

��
⇠=0

 M (26)

then there exists 0 < ✏1 < ✏0, µ > 0 and C > 0 such
that, for all continuously di↵erentiable ⇠] 2 BC(✏1), there
exists an unique function ⇠ 2 C1([0, L] ⇥ [0, +1];Rn)
satisfying (12), the boundary conditions (23), and the
initial condition ⇠(0, z) = ⇠](z), 8z 2 [0, L]. Moreover,
this function satisfies

|⇠(·, t)|C1(0,L)  Ce�µt|⇠]|C1(0,L), 8t � 0 (27)

As discussed in the next section, condition (25) is equiva-
lent to have full boundary dissipation at least on one side
of the domain, in accordance with Villegas et al. [2009],
Macchelli [2012a,b] in the linear scenario.
Proposition 3.2. Under the hypothese of Theorem 3.1, the
0 equilibrium of (12) is asymptotically stable if

u⇠ =

✓
0 kb
ka 0

◆
y⇠ (28)

with ka, kb 2 R and |kakb| < 1.

Proof. Relation (28) means that
s+,a = ka s�,a s�,b = kb s+,b (29)

The results follows since from (29):

⇢(abs(rg(0))) =
p

|kakb|
Remark 3.4. Relation (29), together with the condition
|kakb| < 1, means that the power flowing into the system
is lower than the one flowing outside. The meaning of
(29) in terms of the inputs and outputs (10), i.e. when
the distributed port-Hamiltonian system is considered in
impedance form, will be clear in the next section. The
extension to the case in which ka and kb are replaced by
e.g. symmetric matrices Ka and Kb is trivial.

4. APPLICATION TO THE NON-LINEAR FLEXIBLE
BEAM EQUATION

The PDE (1) can be written in coordinates by assuming
that q and p are vectors in R6, Stramigioli [2001]. Then,
with (5) in mind, we have that

x(t, z) =

✓
q(t, z)
p(t, z)

◆
L =

✓
C�1 0
0 I�1

⇢
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P1 =
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(30)

ical” choice for boundary inputs and outputs can be the
following:

u⇠(t) =

✓
s�,b(t)
s+,a(t)

◆
y⇠(t) =

✓
s�,a(t)
s+,b(t)

◆
(21)

The input u is associated to the “incoming” power flow,
while the output y to the outgoing one. Under mild as-
sumptions, the distributed port-Hamiltonian system (20)
or, equivalently, (5) turns out to be a boundary control
system in the sense of Curtain and Zwart [1995], as it
can be verified by applying the techniques presented in Le
Gorrec et al. [2005].

Inputs and outputs have to be specified also in the pro-
posed almost linear scenario (12) or (5), and in spite of
Remark 3.2 and (17) the choice (21) is still valid. Simple
computations show that for (5)
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and, from (22), it is it easy to verify that there exists
an invertible mapping between (u⇠, y⇠) and (u, y) defined
in (10), so particular choices in the boundary conditions
in the scattering representation can be mapped into the
impedance description, and vice-versa.

With the choice (21), existence of solutions together with
some considerations on the stability of the zero equilibrium
for (12) are discussed later, with reference to Prieur et al.
[2008]. In this respect, assume that the following static
relation holds:

u⇠(t) = g(y⇠(t)) (23)
Let us assume that the function g is continuously di↵eren-
tiable, is defined is a neighbourhood of the origin, and sat-
isfies g(0) = 0. The first step is to investigate under which
hypotheses, given an initial condition ⇠] 2 C1([a, b];Rn)
that satisfies the compatibility conditions✓
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system (12) admits a solution. A second important point
is when the zero equilibrium is asymptotically stable, at
least locally. Moreover, from Proposition 3.1 and (22), it is
clear that (23) can be transformed into a relation involving
u and y defined in (10), and vice-versa: consequently, the
results dealing with the existence of solutions and stability
are also valid for the initial distributed port-Hamiltonian
system (5).

Before stating the main result, some further definitions are
necessary, see Prieur et al. [2008]:

• Given ⇠ 2 Rn, we define
|⇠| := max(|⇠i|, i = 1, . . . , n)

and we denote by B(✏) the ball centered in 0 2 Rn

and radius ✏ > 0.
• Given f0 2 C0([a, b];Rn) and f1 2 C1([a, b];Rn), we

denote
|f0|C0(a,b) = max

z2[a, b]
|f0(z)|

|f1|C1(a,b) = |f1|C0(a,b) + |f 0
1|C0(a,b)

• BC(✏) denotes the set of functions ⇠] 2 C1([a, b];Rn)
that satisfy the compatibility conditions (24), and
such that |⇠]|C1(a,b)  ✏.

• Given a matrix A = (aij), ⇢(A) denotes its spectral
radius, and abs(A) = (|aij |).

Theorem 3.1. (Prieur et al. [2008]). Let us consider (12),
with boundary input and output given by (21), and such
that (23) holds. Given ✏0 > 0 and M > 0, if

⇢ (abs (rg(0))) < 1 (25)
and ��r (M(⇠)⇠)

��
⇠=0

 M (26)

then there exists 0 < ✏1 < ✏0, µ > 0 and C > 0 such
that, for all continuously di↵erentiable ⇠] 2 BC(✏1), there
exists an unique function ⇠ 2 C1([0, L] ⇥ [0, +1];Rn)
satisfying (12), the boundary conditions (23), and the
initial condition ⇠(0, z) = ⇠](z), 8z 2 [0, L]. Moreover,
this function satisfies

|⇠(·, t)|C1(0,L)  Ce�µt|⇠]|C1(0,L), 8t � 0 (27)

As discussed in the next section, condition (25) is equiva-
lent to have full boundary dissipation at least on one side
of the domain, in accordance with Villegas et al. [2009],
Macchelli [2012a,b] in the linear scenario.
Proposition 3.2. Under the hypothese of Theorem 3.1, the
0 equilibrium of (12) is asymptotically stable if

u⇠ =

✓
0 kb
ka 0

◆
y⇠ (28)

with ka, kb 2 R and |kakb| < 1.

Proof. Relation (28) means that
s+,a = ka s�,a s�,b = kb s+,b (29)

The results follows since from (29):

⇢(abs(rg(0))) =
p

|kakb|
Remark 3.4. Relation (29), together with the condition
|kakb| < 1, means that the power flowing into the system
is lower than the one flowing outside. The meaning of
(29) in terms of the inputs and outputs (10), i.e. when
the distributed port-Hamiltonian system is considered in
impedance form, will be clear in the next section. The
extension to the case in which ka and kb are replaced by
e.g. symmetric matrices Ka and Kb is trivial.

4. APPLICATION TO THE NON-LINEAR FLEXIBLE
BEAM EQUATION

The PDE (1) can be written in coordinates by assuming
that q and p are vectors in R6, Stramigioli [2001]. Then,
with (5) in mind, we have that

x(t, z) =

✓
q(t, z)
p(t, z)
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L =
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control action

ical” choice for boundary inputs and outputs can be the
following:

u⇠(t) =

✓
s�,b(t)
s+,a(t)

◆
y⇠(t) =

✓
s�,a(t)
s+,b(t)

◆
(21)

The input u is associated to the “incoming” power flow,
while the output y to the outgoing one. Under mild as-
sumptions, the distributed port-Hamiltonian system (20)
or, equivalently, (5) turns out to be a boundary control
system in the sense of Curtain and Zwart [1995], as it
can be verified by applying the techniques presented in Le
Gorrec et al. [2005].

Inputs and outputs have to be specified also in the pro-
posed almost linear scenario (12) or (5), and in spite of
Remark 3.2 and (17) the choice (21) is still valid. Simple
computations show that for (5)
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and, from (22), it is it easy to verify that there exists
an invertible mapping between (u⇠, y⇠) and (u, y) defined
in (10), so particular choices in the boundary conditions
in the scattering representation can be mapped into the
impedance description, and vice-versa.

With the choice (21), existence of solutions together with
some considerations on the stability of the zero equilibrium
for (12) are discussed later, with reference to Prieur et al.
[2008]. In this respect, assume that the following static
relation holds:

u⇠(t) = g(y⇠(t)) (23)
Let us assume that the function g is continuously di↵eren-
tiable, is defined is a neighbourhood of the origin, and sat-
isfies g(0) = 0. The first step is to investigate under which
hypotheses, given an initial condition ⇠] 2 C1([a, b];Rn)
that satisfies the compatibility conditions✓
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system (12) admits a solution. A second important point
is when the zero equilibrium is asymptotically stable, at
least locally. Moreover, from Proposition 3.1 and (22), it is
clear that (23) can be transformed into a relation involving
u and y defined in (10), and vice-versa: consequently, the
results dealing with the existence of solutions and stability
are also valid for the initial distributed port-Hamiltonian
system (5).

Before stating the main result, some further definitions are
necessary, see Prieur et al. [2008]:

• Given ⇠ 2 Rn, we define
|⇠| := max(|⇠i|, i = 1, . . . , n)

and we denote by B(✏) the ball centered in 0 2 Rn

and radius ✏ > 0.
• Given f0 2 C0([a, b];Rn) and f1 2 C1([a, b];Rn), we

denote
|f0|C0(a,b) = max

z2[a, b]
|f0(z)|

|f1|C1(a,b) = |f1|C0(a,b) + |f 0
1|C0(a,b)

• BC(✏) denotes the set of functions ⇠] 2 C1([a, b];Rn)
that satisfy the compatibility conditions (24), and
such that |⇠]|C1(a,b)  ✏.

• Given a matrix A = (aij), ⇢(A) denotes its spectral
radius, and abs(A) = (|aij |).

Theorem 3.1. (Prieur et al. [2008]). Let us consider (12),
with boundary input and output given by (21), and such
that (23) holds. Given ✏0 > 0 and M > 0, if

⇢ (abs (rg(0))) < 1 (25)
and ��r (M(⇠)⇠)

��
⇠=0

 M (26)

then there exists 0 < ✏1 < ✏0, µ > 0 and C > 0 such
that, for all continuously di↵erentiable ⇠] 2 BC(✏1), there
exists an unique function ⇠ 2 C1([0, L] ⇥ [0, +1];Rn)
satisfying (12), the boundary conditions (23), and the
initial condition ⇠(0, z) = ⇠](z), 8z 2 [0, L]. Moreover,
this function satisfies

|⇠(·, t)|C1(0,L)  Ce�µt|⇠]|C1(0,L), 8t � 0 (27)

As discussed in the next section, condition (25) is equiva-
lent to have full boundary dissipation at least on one side
of the domain, in accordance with Villegas et al. [2009],
Macchelli [2012a,b] in the linear scenario.
Proposition 3.2. Under the hypothese of Theorem 3.1, the
0 equilibrium of (12) is asymptotically stable if

u⇠ =

✓
0 kb
ka 0

◆
y⇠ (28)

with ka, kb 2 R and |kakb| < 1.

Proof. Relation (28) means that
s+,a = ka s�,a s�,b = kb s+,b (29)

The results follows since from (29):

⇢(abs(rg(0))) =
p

|kakb|
Remark 3.4. Relation (29), together with the condition
|kakb| < 1, means that the power flowing into the system
is lower than the one flowing outside. The meaning of
(29) in terms of the inputs and outputs (10), i.e. when
the distributed port-Hamiltonian system is considered in
impedance form, will be clear in the next section. The
extension to the case in which ka and kb are replaced by
e.g. symmetric matrices Ka and Kb is trivial.

4. APPLICATION TO THE NON-LINEAR FLEXIBLE
BEAM EQUATION

The PDE (1) can be written in coordinates by assuming
that q and p are vectors in R6, Stramigioli [2001]. Then,
with (5) in mind, we have that

x(t, z) =

✓
q(t, z)
p(t, z)

◆
L =

✓
C�1 0
0 I�1
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ical” choice for boundary inputs and outputs can be the
following:

u⇠(t) =
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s�,b(t)
s+,a(t)

◆
y⇠(t) =
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s�,a(t)
s+,b(t)

◆
(21)

The input u is associated to the “incoming” power flow,
while the output y to the outgoing one. Under mild as-
sumptions, the distributed port-Hamiltonian system (20)
or, equivalently, (5) turns out to be a boundary control
system in the sense of Curtain and Zwart [1995], as it
can be verified by applying the techniques presented in Le
Gorrec et al. [2005].

Inputs and outputs have to be specified also in the pro-
posed almost linear scenario (12) or (5), and in spite of
Remark 3.2 and (17) the choice (21) is still valid. Simple
computations show that for (5)
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and, from (22), it is it easy to verify that there exists
an invertible mapping between (u⇠, y⇠) and (u, y) defined
in (10), so particular choices in the boundary conditions
in the scattering representation can be mapped into the
impedance description, and vice-versa.

With the choice (21), existence of solutions together with
some considerations on the stability of the zero equilibrium
for (12) are discussed later, with reference to Prieur et al.
[2008]. In this respect, assume that the following static
relation holds:

u⇠(t) = g(y⇠(t)) (23)
Let us assume that the function g is continuously di↵eren-
tiable, is defined is a neighbourhood of the origin, and sat-
isfies g(0) = 0. The first step is to investigate under which
hypotheses, given an initial condition ⇠] 2 C1([a, b];Rn)
that satisfies the compatibility conditions✓
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system (12) admits a solution. A second important point
is when the zero equilibrium is asymptotically stable, at
least locally. Moreover, from Proposition 3.1 and (22), it is
clear that (23) can be transformed into a relation involving
u and y defined in (10), and vice-versa: consequently, the
results dealing with the existence of solutions and stability
are also valid for the initial distributed port-Hamiltonian
system (5).

Before stating the main result, some further definitions are
necessary, see Prieur et al. [2008]:

• Given ⇠ 2 Rn, we define
|⇠| := max(|⇠i|, i = 1, . . . , n)

and we denote by B(✏) the ball centered in 0 2 Rn

and radius ✏ > 0.
• Given f0 2 C0([a, b];Rn) and f1 2 C1([a, b];Rn), we

denote
|f0|C0(a,b) = max

z2[a, b]
|f0(z)|

|f1|C1(a,b) = |f1|C0(a,b) + |f 0
1|C0(a,b)

• BC(✏) denotes the set of functions ⇠] 2 C1([a, b];Rn)
that satisfy the compatibility conditions (24), and
such that |⇠]|C1(a,b)  ✏.

• Given a matrix A = (aij), ⇢(A) denotes its spectral
radius, and abs(A) = (|aij |).

Theorem 3.1. (Prieur et al. [2008]). Let us consider (12),
with boundary input and output given by (21), and such
that (23) holds. Given ✏0 > 0 and M > 0, if

⇢ (abs (rg(0))) < 1 (25)
and ��r (M(⇠)⇠)

��
⇠=0

 M (26)

then there exists 0 < ✏1 < ✏0, µ > 0 and C > 0 such
that, for all continuously di↵erentiable ⇠] 2 BC(✏1), there
exists an unique function ⇠ 2 C1([0, L] ⇥ [0, +1];Rn)
satisfying (12), the boundary conditions (23), and the
initial condition ⇠(0, z) = ⇠](z), 8z 2 [0, L]. Moreover,
this function satisfies

|⇠(·, t)|C1(0,L)  Ce�µt|⇠]|C1(0,L), 8t � 0 (27)

As discussed in the next section, condition (25) is equiva-
lent to have full boundary dissipation at least on one side
of the domain, in accordance with Villegas et al. [2009],
Macchelli [2012a,b] in the linear scenario.
Proposition 3.2. Under the hypothese of Theorem 3.1, the
0 equilibrium of (12) is asymptotically stable if

u⇠ =

✓
0 kb
ka 0

◆
y⇠ (28)

with ka, kb 2 R and |kakb| < 1.

Proof. Relation (28) means that
s+,a = ka s�,a s�,b = kb s+,b (29)

The results follows since from (29):

⇢(abs(rg(0))) =
p

|kakb|
Remark 3.4. Relation (29), together with the condition
|kakb| < 1, means that the power flowing into the system
is lower than the one flowing outside. The meaning of
(29) in terms of the inputs and outputs (10), i.e. when
the distributed port-Hamiltonian system is considered in
impedance form, will be clear in the next section. The
extension to the case in which ka and kb are replaced by
e.g. symmetric matrices Ka and Kb is trivial.

4. APPLICATION TO THE NON-LINEAR FLEXIBLE
BEAM EQUATION

The PDE (1) can be written in coordinates by assuming
that q and p are vectors in R6, Stramigioli [2001]. Then,
with (5) in mind, we have that

x(t, z) =

✓
q(t, z)
p(t, z)

◆
L =

✓
C�1 0
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“Almost linear” d-pH systems

Theorem (Prieur et al. [2008]). Let us consider the “almost linear” 
port-Hamiltonian system, with the boundary control introduced 
before. Given ε0 > 0 and M > 0, if 
 
and 
 
then there exists 0 < ε1 < ε0, μ > 0 and C > 0 such that, for all 
continuously differentiable initial conditions ξ♯ ∈ BC(ε1), there exists 

an unique solution for the PDE, and the solution satisfies  

Note that asymptotic stability is obtained e.g. if

ical” choice for boundary inputs and outputs can be the
following:

u⇠(t) =
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s�,b(t)
s+,a(t)

◆
y⇠(t) =

✓
s�,a(t)
s+,b(t)

◆
(21)

The input u is associated to the “incoming” power flow,
while the output y to the outgoing one. Under mild as-
sumptions, the distributed port-Hamiltonian system (20)
or, equivalently, (5) turns out to be a boundary control
system in the sense of Curtain and Zwart [1995], as it
can be verified by applying the techniques presented in Le
Gorrec et al. [2005].

Inputs and outputs have to be specified also in the pro-
posed almost linear scenario (12) or (5), and in spite of
Remark 3.2 and (17) the choice (21) is still valid. Simple
computations show that for (5)
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and, from (22), it is it easy to verify that there exists
an invertible mapping between (u⇠, y⇠) and (u, y) defined
in (10), so particular choices in the boundary conditions
in the scattering representation can be mapped into the
impedance description, and vice-versa.

With the choice (21), existence of solutions together with
some considerations on the stability of the zero equilibrium
for (12) are discussed later, with reference to Prieur et al.
[2008]. In this respect, assume that the following static
relation holds:

u⇠(t) = g(y⇠(t)) (23)
Let us assume that the function g is continuously di↵eren-
tiable, is defined is a neighbourhood of the origin, and sat-
isfies g(0) = 0. The first step is to investigate under which
hypotheses, given an initial condition ⇠] 2 C1([a, b];Rn)
that satisfies the compatibility conditions✓
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system (12) admits a solution. A second important point
is when the zero equilibrium is asymptotically stable, at
least locally. Moreover, from Proposition 3.1 and (22), it is
clear that (23) can be transformed into a relation involving
u and y defined in (10), and vice-versa: consequently, the
results dealing with the existence of solutions and stability
are also valid for the initial distributed port-Hamiltonian
system (5).

Before stating the main result, some further definitions are
necessary, see Prieur et al. [2008]:

• Given ⇠ 2 Rn, we define
|⇠| := max(|⇠i|, i = 1, . . . , n)

and we denote by B(✏) the ball centered in 0 2 Rn

and radius ✏ > 0.
• Given f0 2 C0([a, b];Rn) and f1 2 C1([a, b];Rn), we

denote
|f0|C0(a,b) = max

z2[a, b]
|f0(z)|

|f1|C1(a,b) = |f1|C0(a,b) + |f 0
1|C0(a,b)

• BC(✏) denotes the set of functions ⇠] 2 C1([a, b];Rn)
that satisfy the compatibility conditions (24), and
such that |⇠]|C1(a,b)  ✏.

• Given a matrix A = (aij), ⇢(A) denotes its spectral
radius, and abs(A) = (|aij |).

Theorem 3.1. (Prieur et al. [2008]). Let us consider (12),
with boundary input and output given by (21), and such
that (23) holds. Given ✏0 > 0 and M > 0, if

⇢ (abs (rg(0))) < 1 (25)
and ��r (M(⇠)⇠)

��
⇠=0

 M (26)

then there exists 0 < ✏1 < ✏0, µ > 0 and C > 0 such
that, for all continuously di↵erentiable ⇠] 2 BC(✏1), there
exists an unique function ⇠ 2 C1([0, L] ⇥ [0, +1];Rn)
satisfying (12), the boundary conditions (23), and the
initial condition ⇠(0, z) = ⇠](z), 8z 2 [0, L]. Moreover,
this function satisfies

|⇠(·, t)|C1(0,L)  Ce�µt|⇠]|C1(0,L), 8t � 0 (27)

As discussed in the next section, condition (25) is equiva-
lent to have full boundary dissipation at least on one side
of the domain, in accordance with Villegas et al. [2009],
Macchelli [2012a,b] in the linear scenario.
Proposition 3.2. Under the hypothese of Theorem 3.1, the
0 equilibrium of (12) is asymptotically stable if

u⇠ =

✓
0 kb
ka 0

◆
y⇠ (28)

with ka, kb 2 R and |kakb| < 1.

Proof. Relation (28) means that
s+,a = ka s�,a s�,b = kb s+,b (29)

The results follows since from (29):

⇢(abs(rg(0))) =
p

|kakb|
Remark 3.4. Relation (29), together with the condition
|kakb| < 1, means that the power flowing into the system
is lower than the one flowing outside. The meaning of
(29) in terms of the inputs and outputs (10), i.e. when
the distributed port-Hamiltonian system is considered in
impedance form, will be clear in the next section. The
extension to the case in which ka and kb are replaced by
e.g. symmetric matrices Ka and Kb is trivial.

4. APPLICATION TO THE NON-LINEAR FLEXIBLE
BEAM EQUATION

The PDE (1) can be written in coordinates by assuming
that q and p are vectors in R6, Stramigioli [2001]. Then,
with (5) in mind, we have that

x(t, z) =

✓
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p(t, z)
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ical” choice for boundary inputs and outputs can be the
following:

u⇠(t) =

✓
s�,b(t)
s+,a(t)

◆
y⇠(t) =

✓
s�,a(t)
s+,b(t)

◆
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The input u is associated to the “incoming” power flow,
while the output y to the outgoing one. Under mild as-
sumptions, the distributed port-Hamiltonian system (20)
or, equivalently, (5) turns out to be a boundary control
system in the sense of Curtain and Zwart [1995], as it
can be verified by applying the techniques presented in Le
Gorrec et al. [2005].

Inputs and outputs have to be specified also in the pro-
posed almost linear scenario (12) or (5), and in spite of
Remark 3.2 and (17) the choice (21) is still valid. Simple
computations show that for (5)
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and, from (22), it is it easy to verify that there exists
an invertible mapping between (u⇠, y⇠) and (u, y) defined
in (10), so particular choices in the boundary conditions
in the scattering representation can be mapped into the
impedance description, and vice-versa.

With the choice (21), existence of solutions together with
some considerations on the stability of the zero equilibrium
for (12) are discussed later, with reference to Prieur et al.
[2008]. In this respect, assume that the following static
relation holds:

u⇠(t) = g(y⇠(t)) (23)
Let us assume that the function g is continuously di↵eren-
tiable, is defined is a neighbourhood of the origin, and sat-
isfies g(0) = 0. The first step is to investigate under which
hypotheses, given an initial condition ⇠] 2 C1([a, b];Rn)
that satisfies the compatibility conditions✓
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system (12) admits a solution. A second important point
is when the zero equilibrium is asymptotically stable, at
least locally. Moreover, from Proposition 3.1 and (22), it is
clear that (23) can be transformed into a relation involving
u and y defined in (10), and vice-versa: consequently, the
results dealing with the existence of solutions and stability
are also valid for the initial distributed port-Hamiltonian
system (5).

Before stating the main result, some further definitions are
necessary, see Prieur et al. [2008]:

• Given ⇠ 2 Rn, we define
|⇠| := max(|⇠i|, i = 1, . . . , n)

and we denote by B(✏) the ball centered in 0 2 Rn

and radius ✏ > 0.
• Given f0 2 C0([a, b];Rn) and f1 2 C1([a, b];Rn), we

denote
|f0|C0(a,b) = max

z2[a, b]
|f0(z)|

|f1|C1(a,b) = |f1|C0(a,b) + |f 0
1|C0(a,b)

• BC(✏) denotes the set of functions ⇠] 2 C1([a, b];Rn)
that satisfy the compatibility conditions (24), and
such that |⇠]|C1(a,b)  ✏.

• Given a matrix A = (aij), ⇢(A) denotes its spectral
radius, and abs(A) = (|aij |).

Theorem 3.1. (Prieur et al. [2008]). Let us consider (12),
with boundary input and output given by (21), and such
that (23) holds. Given ✏0 > 0 and M > 0, if

⇢ (abs (rg(0))) < 1 (25)
and ��r (M(⇠)⇠)

��
⇠=0

 M (26)

then there exists 0 < ✏1 < ✏0, µ > 0 and C > 0 such
that, for all continuously di↵erentiable ⇠] 2 BC(✏1), there
exists an unique function ⇠ 2 C1([0, L] ⇥ [0, +1];Rn)
satisfying (12), the boundary conditions (23), and the
initial condition ⇠(0, z) = ⇠](z), 8z 2 [0, L]. Moreover,
this function satisfies

|⇠(·, t)|C1(0,L)  Ce�µt|⇠]|C1(0,L), 8t � 0 (27)

As discussed in the next section, condition (25) is equiva-
lent to have full boundary dissipation at least on one side
of the domain, in accordance with Villegas et al. [2009],
Macchelli [2012a,b] in the linear scenario.
Proposition 3.2. Under the hypothese of Theorem 3.1, the
0 equilibrium of (12) is asymptotically stable if

u⇠ =

✓
0 kb
ka 0

◆
y⇠ (28)

with ka, kb 2 R and |kakb| < 1.

Proof. Relation (28) means that
s+,a = ka s�,a s�,b = kb s+,b (29)

The results follows since from (29):

⇢(abs(rg(0))) =
p

|kakb|
Remark 3.4. Relation (29), together with the condition
|kakb| < 1, means that the power flowing into the system
is lower than the one flowing outside. The meaning of
(29) in terms of the inputs and outputs (10), i.e. when
the distributed port-Hamiltonian system is considered in
impedance form, will be clear in the next section. The
extension to the case in which ka and kb are replaced by
e.g. symmetric matrices Ka and Kb is trivial.

4. APPLICATION TO THE NON-LINEAR FLEXIBLE
BEAM EQUATION

The PDE (1) can be written in coordinates by assuming
that q and p are vectors in R6, Stramigioli [2001]. Then,
with (5) in mind, we have that
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ical” choice for boundary inputs and outputs can be the
following:

u⇠(t) =

✓
s�,b(t)
s+,a(t)
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y⇠(t) =
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◆
(21)

The input u is associated to the “incoming” power flow,
while the output y to the outgoing one. Under mild as-
sumptions, the distributed port-Hamiltonian system (20)
or, equivalently, (5) turns out to be a boundary control
system in the sense of Curtain and Zwart [1995], as it
can be verified by applying the techniques presented in Le
Gorrec et al. [2005].

Inputs and outputs have to be specified also in the pro-
posed almost linear scenario (12) or (5), and in spite of
Remark 3.2 and (17) the choice (21) is still valid. Simple
computations show that for (5)
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and, from (22), it is it easy to verify that there exists
an invertible mapping between (u⇠, y⇠) and (u, y) defined
in (10), so particular choices in the boundary conditions
in the scattering representation can be mapped into the
impedance description, and vice-versa.

With the choice (21), existence of solutions together with
some considerations on the stability of the zero equilibrium
for (12) are discussed later, with reference to Prieur et al.
[2008]. In this respect, assume that the following static
relation holds:

u⇠(t) = g(y⇠(t)) (23)
Let us assume that the function g is continuously di↵eren-
tiable, is defined is a neighbourhood of the origin, and sat-
isfies g(0) = 0. The first step is to investigate under which
hypotheses, given an initial condition ⇠] 2 C1([a, b];Rn)
that satisfies the compatibility conditions✓
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system (12) admits a solution. A second important point
is when the zero equilibrium is asymptotically stable, at
least locally. Moreover, from Proposition 3.1 and (22), it is
clear that (23) can be transformed into a relation involving
u and y defined in (10), and vice-versa: consequently, the
results dealing with the existence of solutions and stability
are also valid for the initial distributed port-Hamiltonian
system (5).

Before stating the main result, some further definitions are
necessary, see Prieur et al. [2008]:

• Given ⇠ 2 Rn, we define
|⇠| := max(|⇠i|, i = 1, . . . , n)

and we denote by B(✏) the ball centered in 0 2 Rn

and radius ✏ > 0.
• Given f0 2 C0([a, b];Rn) and f1 2 C1([a, b];Rn), we

denote
|f0|C0(a,b) = max

z2[a, b]
|f0(z)|

|f1|C1(a,b) = |f1|C0(a,b) + |f 0
1|C0(a,b)

• BC(✏) denotes the set of functions ⇠] 2 C1([a, b];Rn)
that satisfy the compatibility conditions (24), and
such that |⇠]|C1(a,b)  ✏.

• Given a matrix A = (aij), ⇢(A) denotes its spectral
radius, and abs(A) = (|aij |).

Theorem 3.1. (Prieur et al. [2008]). Let us consider (12),
with boundary input and output given by (21), and such
that (23) holds. Given ✏0 > 0 and M > 0, if

⇢ (abs (rg(0))) < 1 (25)
and ��r (M(⇠)⇠)

��
⇠=0

 M (26)

then there exists 0 < ✏1 < ✏0, µ > 0 and C > 0 such
that, for all continuously di↵erentiable ⇠] 2 BC(✏1), there
exists an unique function ⇠ 2 C1([0, L] ⇥ [0, +1];Rn)
satisfying (12), the boundary conditions (23), and the
initial condition ⇠(0, z) = ⇠](z), 8z 2 [0, L]. Moreover,
this function satisfies

|⇠(·, t)|C1(0,L)  Ce�µt|⇠]|C1(0,L), 8t � 0 (27)

As discussed in the next section, condition (25) is equiva-
lent to have full boundary dissipation at least on one side
of the domain, in accordance with Villegas et al. [2009],
Macchelli [2012a,b] in the linear scenario.
Proposition 3.2. Under the hypothese of Theorem 3.1, the
0 equilibrium of (12) is asymptotically stable if

u⇠ =

✓
0 kb
ka 0

◆
y⇠ (28)

with ka, kb 2 R and |kakb| < 1.

Proof. Relation (28) means that
s+,a = ka s�,a s�,b = kb s+,b (29)

The results follows since from (29):

⇢(abs(rg(0))) =
p

|kakb|
Remark 3.4. Relation (29), together with the condition
|kakb| < 1, means that the power flowing into the system
is lower than the one flowing outside. The meaning of
(29) in terms of the inputs and outputs (10), i.e. when
the distributed port-Hamiltonian system is considered in
impedance form, will be clear in the next section. The
extension to the case in which ka and kb are replaced by
e.g. symmetric matrices Ka and Kb is trivial.

4. APPLICATION TO THE NON-LINEAR FLEXIBLE
BEAM EQUATION

The PDE (1) can be written in coordinates by assuming
that q and p are vectors in R6, Stramigioli [2001]. Then,
with (5) in mind, we have that

x(t, z) =

✓
q(t, z)
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ical” choice for boundary inputs and outputs can be the
following:
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◆
(21)

The input u is associated to the “incoming” power flow,
while the output y to the outgoing one. Under mild as-
sumptions, the distributed port-Hamiltonian system (20)
or, equivalently, (5) turns out to be a boundary control
system in the sense of Curtain and Zwart [1995], as it
can be verified by applying the techniques presented in Le
Gorrec et al. [2005].

Inputs and outputs have to be specified also in the pro-
posed almost linear scenario (12) or (5), and in spite of
Remark 3.2 and (17) the choice (21) is still valid. Simple
computations show that for (5)
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and, from (22), it is it easy to verify that there exists
an invertible mapping between (u⇠, y⇠) and (u, y) defined
in (10), so particular choices in the boundary conditions
in the scattering representation can be mapped into the
impedance description, and vice-versa.

With the choice (21), existence of solutions together with
some considerations on the stability of the zero equilibrium
for (12) are discussed later, with reference to Prieur et al.
[2008]. In this respect, assume that the following static
relation holds:

u⇠(t) = g(y⇠(t)) (23)
Let us assume that the function g is continuously di↵eren-
tiable, is defined is a neighbourhood of the origin, and sat-
isfies g(0) = 0. The first step is to investigate under which
hypotheses, given an initial condition ⇠] 2 C1([a, b];Rn)
that satisfies the compatibility conditions✓
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system (12) admits a solution. A second important point
is when the zero equilibrium is asymptotically stable, at
least locally. Moreover, from Proposition 3.1 and (22), it is
clear that (23) can be transformed into a relation involving
u and y defined in (10), and vice-versa: consequently, the
results dealing with the existence of solutions and stability
are also valid for the initial distributed port-Hamiltonian
system (5).

Before stating the main result, some further definitions are
necessary, see Prieur et al. [2008]:

• Given ⇠ 2 Rn, we define
|⇠| := max(|⇠i|, i = 1, . . . , n)

and we denote by B(✏) the ball centered in 0 2 Rn

and radius ✏ > 0.
• Given f0 2 C0([a, b];Rn) and f1 2 C1([a, b];Rn), we

denote
|f0|C0(a,b) = max

z2[a, b]
|f0(z)|

|f1|C1(a,b) = |f1|C0(a,b) + |f 0
1|C0(a,b)

• BC(✏) denotes the set of functions ⇠] 2 C1([a, b];Rn)
that satisfy the compatibility conditions (24), and
such that |⇠]|C1(a,b)  ✏.

• Given a matrix A = (aij), ⇢(A) denotes its spectral
radius, and abs(A) = (|aij |).

Theorem 3.1. (Prieur et al. [2008]). Let us consider (12),
with boundary input and output given by (21), and such
that (23) holds. Given ✏0 > 0 and M > 0, if

⇢ (abs (rg(0))) < 1 (25)
and ��r (M(⇠)⇠)
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⇠=0

 M (26)

then there exists 0 < ✏1 < ✏0, µ > 0 and C > 0 such
that, for all continuously di↵erentiable ⇠] 2 BC(✏1), there
exists an unique function ⇠ 2 C1([0, L] ⇥ [0, +1];Rn)
satisfying (12), the boundary conditions (23), and the
initial condition ⇠(0, z) = ⇠](z), 8z 2 [0, L]. Moreover,
this function satisfies

|⇠(·, t)|C1(0,L)  Ce�µt|⇠]|C1(0,L), 8t � 0 (27)

As discussed in the next section, condition (25) is equiva-
lent to have full boundary dissipation at least on one side
of the domain, in accordance with Villegas et al. [2009],
Macchelli [2012a,b] in the linear scenario.
Proposition 3.2. Under the hypothese of Theorem 3.1, the
0 equilibrium of (12) is asymptotically stable if

u⇠ =

✓
0 kb
ka 0

◆
y⇠ (28)

with ka, kb 2 R and |kakb| < 1.

Proof. Relation (28) means that
s+,a = ka s�,a s�,b = kb s+,b (29)

The results follows since from (29):

⇢(abs(rg(0))) =
p

|kakb|
Remark 3.4. Relation (29), together with the condition
|kakb| < 1, means that the power flowing into the system
is lower than the one flowing outside. The meaning of
(29) in terms of the inputs and outputs (10), i.e. when
the distributed port-Hamiltonian system is considered in
impedance form, will be clear in the next section. The
extension to the case in which ka and kb are replaced by
e.g. symmetric matrices Ka and Kb is trivial.

4. APPLICATION TO THE NON-LINEAR FLEXIBLE
BEAM EQUATION

The PDE (1) can be written in coordinates by assuming
that q and p are vectors in R6, Stramigioli [2001]. Then,
with (5) in mind, we have that
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The input u is associated to the “incoming” power flow,
while the output y to the outgoing one. Under mild as-
sumptions, the distributed port-Hamiltonian system (20)
or, equivalently, (5) turns out to be a boundary control
system in the sense of Curtain and Zwart [1995], as it
can be verified by applying the techniques presented in Le
Gorrec et al. [2005].

Inputs and outputs have to be specified also in the pro-
posed almost linear scenario (12) or (5), and in spite of
Remark 3.2 and (17) the choice (21) is still valid. Simple
computations show that for (5)

✓
u⇠

y⇠

◆
=

0

B@

I 0 0 0
0 0 0 I
0 0 I 0
0 I 0 0

1

CA⇥

⇥

0

@

⇣
�
p
L�1

⌘
(b) 0

0
⇣
�
p
L�1

⌘
(a)

1

A
✓
(Lx)(b)
(Lx)(a)

◆
(22)

and, from (22), it is it easy to verify that there exists
an invertible mapping between (u⇠, y⇠) and (u, y) defined
in (10), so particular choices in the boundary conditions
in the scattering representation can be mapped into the
impedance description, and vice-versa.

With the choice (21), existence of solutions together with
some considerations on the stability of the zero equilibrium
for (12) are discussed later, with reference to Prieur et al.
[2008]. In this respect, assume that the following static
relation holds:

u⇠(t) = g(y⇠(t)) (23)
Let us assume that the function g is continuously di↵eren-
tiable, is defined is a neighbourhood of the origin, and sat-
isfies g(0) = 0. The first step is to investigate under which
hypotheses, given an initial condition ⇠] 2 C1([a, b];Rn)
that satisfies the compatibility conditions✓
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system (12) admits a solution. A second important point
is when the zero equilibrium is asymptotically stable, at
least locally. Moreover, from Proposition 3.1 and (22), it is
clear that (23) can be transformed into a relation involving
u and y defined in (10), and vice-versa: consequently, the
results dealing with the existence of solutions and stability
are also valid for the initial distributed port-Hamiltonian
system (5).

Before stating the main result, some further definitions are
necessary, see Prieur et al. [2008]:

• Given ⇠ 2 Rn, we define
|⇠| := max(|⇠i|, i = 1, . . . , n)

and we denote by B(✏) the ball centered in 0 2 Rn

and radius ✏ > 0.
• Given f0 2 C0([a, b];Rn) and f1 2 C1([a, b];Rn), we

denote
|f0|C0(a,b) = max

z2[a, b]
|f0(z)|

|f1|C1(a,b) = |f1|C0(a,b) + |f 0
1|C0(a,b)

• BC(✏) denotes the set of functions ⇠] 2 C1([a, b];Rn)
that satisfy the compatibility conditions (24), and
such that |⇠]|C1(a,b)  ✏.

• Given a matrix A = (aij), ⇢(A) denotes its spectral
radius, and abs(A) = (|aij |).

Theorem 3.1. (Prieur et al. [2008]). Let us consider (12),
with boundary input and output given by (21), and such
that (23) holds. Given ✏0 > 0 and M > 0, if

⇢ (abs (rg(0))) < 1 (25)
and ��r (M(⇠)⇠)
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⇠=0

 M (26)

then there exists 0 < ✏1 < ✏0, µ > 0 and C > 0 such
that, for all continuously di↵erentiable ⇠] 2 BC(✏1), there
exists an unique function ⇠ 2 C1([0, L] ⇥ [0, +1];Rn)
satisfying (12), the boundary conditions (23), and the
initial condition ⇠(0, z) = ⇠](z), 8z 2 [0, L]. Moreover,
this function satisfies

|⇠(·, t)|C1(0,L)  Ce�µt|⇠]|C1(0,L), 8t � 0 (27)

As discussed in the next section, condition (25) is equiva-
lent to have full boundary dissipation at least on one side
of the domain, in accordance with Villegas et al. [2009],
Macchelli [2012a,b] in the linear scenario.
Proposition 3.2. Under the hypothese of Theorem 3.1, the
0 equilibrium of (12) is asymptotically stable if

u⇠ =

✓
0 kb
ka 0

◆
y⇠ (28)

with ka, kb 2 R and |kakb| < 1.

Proof. Relation (28) means that
s+,a = ka s�,a s�,b = kb s+,b (29)

The results follows since from (29):

⇢(abs(rg(0))) =
p

|kakb|
Remark 3.4. Relation (29), together with the condition
|kakb| < 1, means that the power flowing into the system
is lower than the one flowing outside. The meaning of
(29) in terms of the inputs and outputs (10), i.e. when
the distributed port-Hamiltonian system is considered in
impedance form, will be clear in the next section. The
extension to the case in which ka and kb are replaced by
e.g. symmetric matrices Ka and Kb is trivial.

4. APPLICATION TO THE NON-LINEAR FLEXIBLE
BEAM EQUATION

The PDE (1) can be written in coordinates by assuming
that q and p are vectors in R6, Stramigioli [2001]. Then,
with (5) in mind, we have that

x(t, z) =

✓
q(t, z)
p(t, z)

◆
L =

✓
C�1 0
0 I�1

⇢

◆
P1 =

✓
0 I
I 0

◆

(30)

This is equivalent to have full 

boundary dissipation at least on one 

side of the domain



Stabilization of a nonlinear flexible beam

Let’s apply the previous result to the nonlinear beam equation 
 
 
 
 

For the boundary input and output, we proceed as before

ical” choice for boundary inputs and outputs can be the
following:
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◆
(21)

The input u is associated to the “incoming” power flow,
while the output y to the outgoing one. Under mild as-
sumptions, the distributed port-Hamiltonian system (20)
or, equivalently, (5) turns out to be a boundary control
system in the sense of Curtain and Zwart [1995], as it
can be verified by applying the techniques presented in Le
Gorrec et al. [2005].

Inputs and outputs have to be specified also in the pro-
posed almost linear scenario (12) or (5), and in spite of
Remark 3.2 and (17) the choice (21) is still valid. Simple
computations show that for (5)
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and, from (22), it is it easy to verify that there exists
an invertible mapping between (u⇠, y⇠) and (u, y) defined
in (10), so particular choices in the boundary conditions
in the scattering representation can be mapped into the
impedance description, and vice-versa.

With the choice (21), existence of solutions together with
some considerations on the stability of the zero equilibrium
for (12) are discussed later, with reference to Prieur et al.
[2008]. In this respect, assume that the following static
relation holds:

u⇠(t) = g(y⇠(t)) (23)
Let us assume that the function g is continuously di↵eren-
tiable, is defined is a neighbourhood of the origin, and sat-
isfies g(0) = 0. The first step is to investigate under which
hypotheses, given an initial condition ⇠] 2 C1([a, b];Rn)
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system (12) admits a solution. A second important point
is when the zero equilibrium is asymptotically stable, at
least locally. Moreover, from Proposition 3.1 and (22), it is
clear that (23) can be transformed into a relation involving
u and y defined in (10), and vice-versa: consequently, the
results dealing with the existence of solutions and stability
are also valid for the initial distributed port-Hamiltonian
system (5).

Before stating the main result, some further definitions are
necessary, see Prieur et al. [2008]:

• Given ⇠ 2 Rn, we define
|⇠| := max(|⇠i|, i = 1, . . . , n)

and we denote by B(✏) the ball centered in 0 2 Rn

and radius ✏ > 0.
• Given f0 2 C0([a, b];Rn) and f1 2 C1([a, b];Rn), we

denote
|f0|C0(a,b) = max

z2[a, b]
|f0(z)|

|f1|C1(a,b) = |f1|C0(a,b) + |f 0
1|C0(a,b)

• BC(✏) denotes the set of functions ⇠] 2 C1([a, b];Rn)
that satisfy the compatibility conditions (24), and
such that |⇠]|C1(a,b)  ✏.

• Given a matrix A = (aij), ⇢(A) denotes its spectral
radius, and abs(A) = (|aij |).

Theorem 3.1. (Prieur et al. [2008]). Let us consider (12),
with boundary input and output given by (21), and such
that (23) holds. Given ✏0 > 0 and M > 0, if

⇢ (abs (rg(0))) < 1 (25)
and ��r (M(⇠)⇠)

��
⇠=0

 M (26)

then there exists 0 < ✏1 < ✏0, µ > 0 and C > 0 such
that, for all continuously di↵erentiable ⇠] 2 BC(✏1), there
exists an unique function ⇠ 2 C1([0, L] ⇥ [0, +1];Rn)
satisfying (12), the boundary conditions (23), and the
initial condition ⇠(0, z) = ⇠](z), 8z 2 [0, L]. Moreover,
this function satisfies

|⇠(·, t)|C1(0,L)  Ce�µt|⇠]|C1(0,L), 8t � 0 (27)

As discussed in the next section, condition (25) is equiva-
lent to have full boundary dissipation at least on one side
of the domain, in accordance with Villegas et al. [2009],
Macchelli [2012a,b] in the linear scenario.
Proposition 3.2. Under the hypothese of Theorem 3.1, the
0 equilibrium of (12) is asymptotically stable if

u⇠ =

✓
0 kb
ka 0

◆
y⇠ (28)

with ka, kb 2 R and |kakb| < 1.

Proof. Relation (28) means that
s+,a = ka s�,a s�,b = kb s+,b (29)

The results follows since from (29):

⇢(abs(rg(0))) =
p

|kakb|
Remark 3.4. Relation (29), together with the condition
|kakb| < 1, means that the power flowing into the system
is lower than the one flowing outside. The meaning of
(29) in terms of the inputs and outputs (10), i.e. when
the distributed port-Hamiltonian system is considered in
impedance form, will be clear in the next section. The
extension to the case in which ka and kb are replaced by
e.g. symmetric matrices Ka and Kb is trivial.

4. APPLICATION TO THE NON-LINEAR FLEXIBLE
BEAM EQUATION

The PDE (1) can be written in coordinates by assuming
that q and p are vectors in R6, Stramigioli [2001]. Then,
with (5) in mind, we have that

x(t, z) =

✓
q(t, z)
p(t, z)

◆
L =

✓
C�1 0
0 I�1

⇢

◆
P1 =

✓
0 I
I 0

◆

(30)

where, with some abuse in notation, C and I⇢ are the
matrix formulation of the compliance and of the inertia
tensors respectively. Clearly, in accordance with (3), for
all z 2 [0, L], we have that

(Lx)(t, z) =
✓
C�1q(t, z)
I�1
⇢ p(t, z)

◆
=

✓
W (t, z)
T (t, z)

◆
(31)

defines a pair twist and wrench along the spatial domain
of the link; T is the twist (i.e., linear and angular velocity),
of the cross section, while W the applied wrench (i.e., force
and torque), due to deformation, both expressed in body
frame Eb. From (3) and (6), we have that

f@ =
1p
2

✓
TL � T0

WL +W0

◆
e@ =

1p
2

✓
WL �W0

TL + T0

◆
(32)

which means that, to have the system in impedance form
and with e↵ort-in causality at both sides it is necessary to
have

Ŵ =

p
2

2

✓
0 I 0 �I
0 I 0 I

◆
W̃ =

p
2

2

✓
�I 0 I 0
I 0 I 0

◆
(33)

which leads to

u =

✓
W0

WL

◆
y =

✓
T0

TL

◆
(34)

as desired.

Now, denote by � the (positive) eigenvalues of
p
C�1

q
I�1
⇢ ,

and by  a coordinate change such that
p
C�1

q
I�1
⇢ =  T� 

with   T = I. Then,

⇤ =

✓
� 0
0 ��

◆
(35)

and the coordinate change (15) is given by

⇠�(t, z) =
1p
2
 

✓p
C�1q(t, z) +

q
I�1
⇢ p(t, z)

◆

⇠+(t, z) =
1p
2
 

✓p
C�1q(t, z)�

q
I�1
⇢ p(t, z)

◆ (36)

From (31), relations (36) can be equivalently written as

⇠�(t, z) =
1p
2
 
⇣p

CW (t, z) +
p
I⇢T (t, z)

⌘

⇠+(t, z) =
1p
2
 
⇣p

CW (t, z)�
p
I⇢T (t, z)

⌘ (37)

that clearly shows that the ⇠ variables are nothing else
than the scattering variable associated to the Stokes-Dirac
structure, once the metric defined by the total energy of
the system is used to perform the decomposition. Finally,
from (37), it easily follows that

(s+,0, s�,0) =
� p
2

⇣p
CW0 +

p
I⇢T0,

p
CW0 �

p
I⇢T0

⌘

(s+,L, s�,L) =
 p
2

⇣p
CWL �

p
I⇢TL,

p
CWL +

p
I⇢TL

⌘

(38)
which gives the “new” inputs and outputs in the scattering
formulation (20). Note that, with the help of (22), the
mapping between input and output in the scattering and
impedance formulation can be immediately computed.

Let us assume that z = L is the free-end. The unstressed
configuration q(t, z) = 0 and p(t, z) = 0 can be made

locally asymptotically stable by introducing a full bound-
ary dissipation at z = 0. In other words, the unstressed
configuration is asymptotically stable if

u =

✓
W0

WL

◆
= �

✓
KD 0
0 0

◆✓
T0

TL

◆

| {z }
=y

(39)

with KD = KT
D > 0. In terms of the scattering variables

at the extremities of the domain, the boundary conditions
(39) can be written as

s+,0 =
⇣p

CKD �
p
I⇢

⌘⇣p
CKD +

p
I⇢

⌘�1
s�,0

s�,L = �s+,L

(40)

This relation is in the form (28), and satisfies condition
(25) provided that KD > 0.

Under the hypothesis of Theorem 3.1, which basically
means that q and p are C1 functions, the proof of the
existence of solution is a straightforward consequence
of the same theorem. On the other hand, asymptotic
stability follows from Proposition 3.2. Note that condition
(26) is satisfied since the term M(⇠)⇠ is quadratic in
the ⇠ variables. Finally, it is not di�cult to prove that
this result generalises Macchelli [2012a], i.e. the case in
which a constant force is applied at one extremity and
full-boundary dissipation is present at the other side, to
the nonlinear scenario, since it can be verified that the
linearization of (1) around the unstressed configuration
provides the Timoshenko beam equation.

5. CONCLUSIONS AND FUTURE WORK

In this paper, the class of “almost linear” hyperbolic port-
Hamiltonian systems is presented as a simple extension to
the nonlinear scenario of the theory of linear, distributed
port-Hamiltonian systems. Having in mind a nonlinear
flexible link model that belongs to this class, it is shown
that such systems can be written in terms of the scattering
variables, that are nothing else than the Riemann invari-
ants appearing in the theory of quasi-linear hyperbolic
systems. By relying on established results in this field, con-
ditions for the existence of solutions for this novel class of
infinite dimensional port-Hamiltonian systems are given,
together with a simple tool for studying and achieving
asymptotic stability (at least, locally) of constant equi-
librium configurations. Such results have been applied to
the nonlinear model of the flexible beam.

Future work deals with the extension of these results to
more complex situations, namely the case in which the
Hamiltonian is no longer quadratic in the energy variables,
as discussed e.g. in Prieur et al. [2008], but also in De
Halleux et al. [2003] and related works. An important goal
is also the generalisation to the nonlinear case of energy-
based control techniques (e.g., the control by interconnec-
tion and energy shaping via Casimir generation, or control
by state-modulated source), already successfully applied in
the linear case, see e.g. Macchelli [2013].
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co-energy variables

where, with some abuse in notation, C and I⇢ are the
matrix formulation of the compliance and of the inertia
tensors respectively. Clearly, in accordance with (3), for
all z 2 [0, L], we have that

(Lx)(t, z) =
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C�1q(t, z)
I�1
⇢ p(t, z)

◆
=

✓
W (t, z)
T (t, z)

◆
(31)

defines a pair twist and wrench along the spatial domain
of the link; T is the twist (i.e., linear and angular velocity),
of the cross section, while W the applied wrench (i.e., force
and torque), due to deformation, both expressed in body
frame Eb. From (3) and (6), we have that
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TL � T0

WL +W0

◆
e@ =
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2

✓
WL �W0

TL + T0
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(32)

which means that, to have the system in impedance form
and with e↵ort-in causality at both sides it is necessary to
have

Ŵ =
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2

2

✓
0 I 0 �I
0 I 0 I

◆
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�I 0 I 0
I 0 I 0
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(33)

which leads to

u =

✓
W0

WL

◆
y =

✓
T0

TL

◆
(34)

as desired.

Now, denote by � the (positive) eigenvalues of
p
C�1

q
I�1
⇢ ,

and by  a coordinate change such that
p
C�1

q
I�1
⇢ =  T� 

with   T = I. Then,

⇤ =

✓
� 0
0 ��

◆
(35)

and the coordinate change (15) is given by

⇠�(t, z) =
1p
2
 

✓p
C�1q(t, z) +

q
I�1
⇢ p(t, z)

◆

⇠+(t, z) =
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2
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From (31), relations (36) can be equivalently written as

⇠�(t, z) =
1p
2
 
⇣p

CW (t, z) +
p
I⇢T (t, z)

⌘

⇠+(t, z) =
1p
2
 
⇣p

CW (t, z)�
p
I⇢T (t, z)

⌘ (37)

that clearly shows that the ⇠ variables are nothing else
than the scattering variable associated to the Stokes-Dirac
structure, once the metric defined by the total energy of
the system is used to perform the decomposition. Finally,
from (37), it easily follows that

(s+,0, s�,0) =
� p
2

⇣p
CW0 +

p
I⇢T0,

p
CW0 �

p
I⇢T0

⌘

(s+,L, s�,L) =
 p
2

⇣p
CWL �

p
I⇢TL,

p
CWL +

p
I⇢TL

⌘

(38)
which gives the “new” inputs and outputs in the scattering
formulation (20). Note that, with the help of (22), the
mapping between input and output in the scattering and
impedance formulation can be immediately computed.

Let us assume that z = L is the free-end. The unstressed
configuration q(t, z) = 0 and p(t, z) = 0 can be made

locally asymptotically stable by introducing a full bound-
ary dissipation at z = 0. In other words, the unstressed
configuration is asymptotically stable if

u =

✓
W0

WL

◆
= �

✓
KD 0
0 0

◆✓
T0

TL

◆

| {z }
=y

(39)

with KD = KT
D > 0. In terms of the scattering variables

at the extremities of the domain, the boundary conditions
(39) can be written as

s+,0 =
⇣p

CKD �
p
I⇢

⌘⇣p
CKD +

p
I⇢

⌘�1
s�,0

s�,L = �s+,L

(40)

This relation is in the form (28), and satisfies condition
(25) provided that KD > 0.

Under the hypothesis of Theorem 3.1, which basically
means that q and p are C1 functions, the proof of the
existence of solution is a straightforward consequence
of the same theorem. On the other hand, asymptotic
stability follows from Proposition 3.2. Note that condition
(26) is satisfied since the term M(⇠)⇠ is quadratic in
the ⇠ variables. Finally, it is not di�cult to prove that
this result generalises Macchelli [2012a], i.e. the case in
which a constant force is applied at one extremity and
full-boundary dissipation is present at the other side, to
the nonlinear scenario, since it can be verified that the
linearization of (1) around the unstressed configuration
provides the Timoshenko beam equation.

5. CONCLUSIONS AND FUTURE WORK

In this paper, the class of “almost linear” hyperbolic port-
Hamiltonian systems is presented as a simple extension to
the nonlinear scenario of the theory of linear, distributed
port-Hamiltonian systems. Having in mind a nonlinear
flexible link model that belongs to this class, it is shown
that such systems can be written in terms of the scattering
variables, that are nothing else than the Riemann invari-
ants appearing in the theory of quasi-linear hyperbolic
systems. By relying on established results in this field, con-
ditions for the existence of solutions for this novel class of
infinite dimensional port-Hamiltonian systems are given,
together with a simple tool for studying and achieving
asymptotic stability (at least, locally) of constant equi-
librium configurations. Such results have been applied to
the nonlinear model of the flexible beam.

Future work deals with the extension of these results to
more complex situations, namely the case in which the
Hamiltonian is no longer quadratic in the energy variables,
as discussed e.g. in Prieur et al. [2008], but also in De
Halleux et al. [2003] and related works. An important goal
is also the generalisation to the nonlinear case of energy-
based control techniques (e.g., the control by interconnec-
tion and energy shaping via Casimir generation, or control
by state-modulated source), already successfully applied in
the linear case, see e.g. Macchelli [2013].

REFERENCES

R. F. Curtain and H. J. Zwart. An introduction to infinite
dimensional linear systems theory. Springer–Verlag,
New York, 1995.

where, with some abuse in notation, C and I⇢ are the
matrix formulation of the compliance and of the inertia
tensors respectively. Clearly, in accordance with (3), for
all z 2 [0, L], we have that
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defines a pair twist and wrench along the spatial domain
of the link; T is the twist (i.e., linear and angular velocity),
of the cross section, while W the applied wrench (i.e., force
and torque), due to deformation, both expressed in body
frame Eb. From (3) and (6), we have that
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which means that, to have the system in impedance form
and with e↵ort-in causality at both sides it is necessary to
have

Ŵ =

p
2

2

✓
0 I 0 �I
0 I 0 I

◆
W̃ =

p
2

2

✓
�I 0 I 0
I 0 I 0

◆
(33)

which leads to
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◆
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as desired.

Now, denote by � the (positive) eigenvalues of
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and by  a coordinate change such that
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with   T = I. Then,
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and the coordinate change (15) is given by
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From (31), relations (36) can be equivalently written as
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⌘
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⌘ (37)

that clearly shows that the ⇠ variables are nothing else
than the scattering variable associated to the Stokes-Dirac
structure, once the metric defined by the total energy of
the system is used to perform the decomposition. Finally,
from (37), it easily follows that

(s+,0, s�,0) =
� p
2

⇣p
CW0 +

p
I⇢T0,

p
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p
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⌘

(38)
which gives the “new” inputs and outputs in the scattering
formulation (20). Note that, with the help of (22), the
mapping between input and output in the scattering and
impedance formulation can be immediately computed.

Let us assume that z = L is the free-end. The unstressed
configuration q(t, z) = 0 and p(t, z) = 0 can be made

locally asymptotically stable by introducing a full bound-
ary dissipation at z = 0. In other words, the unstressed
configuration is asymptotically stable if
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with KD = KT
D > 0. In terms of the scattering variables

at the extremities of the domain, the boundary conditions
(39) can be written as
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⌘�1
s�,0
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This relation is in the form (28), and satisfies condition
(25) provided that KD > 0.

Under the hypothesis of Theorem 3.1, which basically
means that q and p are C1 functions, the proof of the
existence of solution is a straightforward consequence
of the same theorem. On the other hand, asymptotic
stability follows from Proposition 3.2. Note that condition
(26) is satisfied since the term M(⇠)⇠ is quadratic in
the ⇠ variables. Finally, it is not di�cult to prove that
this result generalises Macchelli [2012a], i.e. the case in
which a constant force is applied at one extremity and
full-boundary dissipation is present at the other side, to
the nonlinear scenario, since it can be verified that the
linearization of (1) around the unstressed configuration
provides the Timoshenko beam equation.

5. CONCLUSIONS AND FUTURE WORK

In this paper, the class of “almost linear” hyperbolic port-
Hamiltonian systems is presented as a simple extension to
the nonlinear scenario of the theory of linear, distributed
port-Hamiltonian systems. Having in mind a nonlinear
flexible link model that belongs to this class, it is shown
that such systems can be written in terms of the scattering
variables, that are nothing else than the Riemann invari-
ants appearing in the theory of quasi-linear hyperbolic
systems. By relying on established results in this field, con-
ditions for the existence of solutions for this novel class of
infinite dimensional port-Hamiltonian systems are given,
together with a simple tool for studying and achieving
asymptotic stability (at least, locally) of constant equi-
librium configurations. Such results have been applied to
the nonlinear model of the flexible beam.

Future work deals with the extension of these results to
more complex situations, namely the case in which the
Hamiltonian is no longer quadratic in the energy variables,
as discussed e.g. in Prieur et al. [2008], but also in De
Halleux et al. [2003] and related works. An important goal
is also the generalisation to the nonlinear case of energy-
based control techniques (e.g., the control by interconnec-
tion and energy shaping via Casimir generation, or control
by state-modulated source), already successfully applied in
the linear case, see e.g. Macchelli [2013].
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where, with some abuse in notation, C and I⇢ are the
matrix formulation of the compliance and of the inertia
tensors respectively. Clearly, in accordance with (3), for
all z 2 [0, L], we have that
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defines a pair twist and wrench along the spatial domain
of the link; T is the twist (i.e., linear and angular velocity),
of the cross section, while W the applied wrench (i.e., force
and torque), due to deformation, both expressed in body
frame Eb. From (3) and (6), we have that
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which means that, to have the system in impedance form
and with e↵ort-in causality at both sides it is necessary to
have
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which leads to

u =

✓
W0

WL

◆
y =

✓
T0

TL

◆
(34)

as desired.

Now, denote by � the (positive) eigenvalues of
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and by  a coordinate change such that
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From (31), relations (36) can be equivalently written as
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that clearly shows that the ⇠ variables are nothing else
than the scattering variable associated to the Stokes-Dirac
structure, once the metric defined by the total energy of
the system is used to perform the decomposition. Finally,
from (37), it easily follows that

(s+,0, s�,0) =
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p
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(38)
which gives the “new” inputs and outputs in the scattering
formulation (20). Note that, with the help of (22), the
mapping between input and output in the scattering and
impedance formulation can be immediately computed.

Let us assume that z = L is the free-end. The unstressed
configuration q(t, z) = 0 and p(t, z) = 0 can be made

locally asymptotically stable by introducing a full bound-
ary dissipation at z = 0. In other words, the unstressed
configuration is asymptotically stable if

u =
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◆
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✓
KD 0
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◆✓
T0
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| {z }
=y
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with KD = KT
D > 0. In terms of the scattering variables

at the extremities of the domain, the boundary conditions
(39) can be written as
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p
I⇢

⌘⇣p
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p
I⇢

⌘�1
s�,0

s�,L = �s+,L
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This relation is in the form (28), and satisfies condition
(25) provided that KD > 0.

Under the hypothesis of Theorem 3.1, which basically
means that q and p are C1 functions, the proof of the
existence of solution is a straightforward consequence
of the same theorem. On the other hand, asymptotic
stability follows from Proposition 3.2. Note that condition
(26) is satisfied since the term M(⇠)⇠ is quadratic in
the ⇠ variables. Finally, it is not di�cult to prove that
this result generalises Macchelli [2012a], i.e. the case in
which a constant force is applied at one extremity and
full-boundary dissipation is present at the other side, to
the nonlinear scenario, since it can be verified that the
linearization of (1) around the unstressed configuration
provides the Timoshenko beam equation.

5. CONCLUSIONS AND FUTURE WORK

In this paper, the class of “almost linear” hyperbolic port-
Hamiltonian systems is presented as a simple extension to
the nonlinear scenario of the theory of linear, distributed
port-Hamiltonian systems. Having in mind a nonlinear
flexible link model that belongs to this class, it is shown
that such systems can be written in terms of the scattering
variables, that are nothing else than the Riemann invari-
ants appearing in the theory of quasi-linear hyperbolic
systems. By relying on established results in this field, con-
ditions for the existence of solutions for this novel class of
infinite dimensional port-Hamiltonian systems are given,
together with a simple tool for studying and achieving
asymptotic stability (at least, locally) of constant equi-
librium configurations. Such results have been applied to
the nonlinear model of the flexible beam.

Future work deals with the extension of these results to
more complex situations, namely the case in which the
Hamiltonian is no longer quadratic in the energy variables,
as discussed e.g. in Prieur et al. [2008], but also in De
Halleux et al. [2003] and related works. An important goal
is also the generalisation to the nonlinear case of energy-
based control techniques (e.g., the control by interconnec-
tion and energy shaping via Casimir generation, or control
by state-modulated source), already successfully applied in
the linear case, see e.g. Macchelli [2013].
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system in impedance form



Stabilization of a nonlinear flexible beam

Scattering decomposition:  

After the coordinate change...  
 
 

...and on the boundary  
 
 

In case of free-end in z = L, and control action in z = 0, we have

where, with some abuse in notation, C and I⇢ are the
matrix formulation of the compliance and of the inertia
tensors respectively. Clearly, in accordance with (3), for
all z 2 [0, L], we have that
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defines a pair twist and wrench along the spatial domain
of the link; T is the twist (i.e., linear and angular velocity),
of the cross section, while W the applied wrench (i.e., force
and torque), due to deformation, both expressed in body
frame Eb. From (3) and (6), we have that
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that clearly shows that the ⇠ variables are nothing else
than the scattering variable associated to the Stokes-Dirac
structure, once the metric defined by the total energy of
the system is used to perform the decomposition. Finally,
from (37), it easily follows that
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which gives the “new” inputs and outputs in the scattering
formulation (20). Note that, with the help of (22), the
mapping between input and output in the scattering and
impedance formulation can be immediately computed.

Let us assume that z = L is the free-end. The unstressed
configuration q(t, z) = 0 and p(t, z) = 0 can be made

locally asymptotically stable by introducing a full bound-
ary dissipation at z = 0. In other words, the unstressed
configuration is asymptotically stable if

u =

✓
W0

WL

◆
= �

✓
KD 0
0 0

◆✓
T0

TL

◆

| {z }
=y

(39)

with KD = KT
D > 0. In terms of the scattering variables
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This relation is in the form (28), and satisfies condition
(25) provided that KD > 0.

Under the hypothesis of Theorem 3.1, which basically
means that q and p are C1 functions, the proof of the
existence of solution is a straightforward consequence
of the same theorem. On the other hand, asymptotic
stability follows from Proposition 3.2. Note that condition
(26) is satisfied since the term M(⇠)⇠ is quadratic in
the ⇠ variables. Finally, it is not di�cult to prove that
this result generalises Macchelli [2012a], i.e. the case in
which a constant force is applied at one extremity and
full-boundary dissipation is present at the other side, to
the nonlinear scenario, since it can be verified that the
linearization of (1) around the unstressed configuration
provides the Timoshenko beam equation.

5. CONCLUSIONS AND FUTURE WORK

In this paper, the class of “almost linear” hyperbolic port-
Hamiltonian systems is presented as a simple extension to
the nonlinear scenario of the theory of linear, distributed
port-Hamiltonian systems. Having in mind a nonlinear
flexible link model that belongs to this class, it is shown
that such systems can be written in terms of the scattering
variables, that are nothing else than the Riemann invari-
ants appearing in the theory of quasi-linear hyperbolic
systems. By relying on established results in this field, con-
ditions for the existence of solutions for this novel class of
infinite dimensional port-Hamiltonian systems are given,
together with a simple tool for studying and achieving
asymptotic stability (at least, locally) of constant equi-
librium configurations. Such results have been applied to
the nonlinear model of the flexible beam.

Future work deals with the extension of these results to
more complex situations, namely the case in which the
Hamiltonian is no longer quadratic in the energy variables,
as discussed e.g. in Prieur et al. [2008], but also in De
Halleux et al. [2003] and related works. An important goal
is also the generalisation to the nonlinear case of energy-
based control techniques (e.g., the control by interconnec-
tion and energy shaping via Casimir generation, or control
by state-modulated source), already successfully applied in
the linear case, see e.g. Macchelli [2013].
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where, with some abuse in notation, C and I⇢ are the
matrix formulation of the compliance and of the inertia
tensors respectively. Clearly, in accordance with (3), for
all z 2 [0, L], we have that
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defines a pair twist and wrench along the spatial domain
of the link; T is the twist (i.e., linear and angular velocity),
of the cross section, while W the applied wrench (i.e., force
and torque), due to deformation, both expressed in body
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that clearly shows that the ⇠ variables are nothing else
than the scattering variable associated to the Stokes-Dirac
structure, once the metric defined by the total energy of
the system is used to perform the decomposition. Finally,
from (37), it easily follows that
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Let us assume that z = L is the free-end. The unstressed
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locally asymptotically stable by introducing a full bound-
ary dissipation at z = 0. In other words, the unstressed
configuration is asymptotically stable if
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with KD = KT
D > 0. In terms of the scattering variables
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This relation is in the form (28), and satisfies condition
(25) provided that KD > 0.

Under the hypothesis of Theorem 3.1, which basically
means that q and p are C1 functions, the proof of the
existence of solution is a straightforward consequence
of the same theorem. On the other hand, asymptotic
stability follows from Proposition 3.2. Note that condition
(26) is satisfied since the term M(⇠)⇠ is quadratic in
the ⇠ variables. Finally, it is not di�cult to prove that
this result generalises Macchelli [2012a], i.e. the case in
which a constant force is applied at one extremity and
full-boundary dissipation is present at the other side, to
the nonlinear scenario, since it can be verified that the
linearization of (1) around the unstressed configuration
provides the Timoshenko beam equation.
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In this paper, the class of “almost linear” hyperbolic port-
Hamiltonian systems is presented as a simple extension to
the nonlinear scenario of the theory of linear, distributed
port-Hamiltonian systems. Having in mind a nonlinear
flexible link model that belongs to this class, it is shown
that such systems can be written in terms of the scattering
variables, that are nothing else than the Riemann invari-
ants appearing in the theory of quasi-linear hyperbolic
systems. By relying on established results in this field, con-
ditions for the existence of solutions for this novel class of
infinite dimensional port-Hamiltonian systems are given,
together with a simple tool for studying and achieving
asymptotic stability (at least, locally) of constant equi-
librium configurations. Such results have been applied to
the nonlinear model of the flexible beam.

Future work deals with the extension of these results to
more complex situations, namely the case in which the
Hamiltonian is no longer quadratic in the energy variables,
as discussed e.g. in Prieur et al. [2008], but also in De
Halleux et al. [2003] and related works. An important goal
is also the generalisation to the nonlinear case of energy-
based control techniques (e.g., the control by interconnec-
tion and energy shaping via Casimir generation, or control
by state-modulated source), already successfully applied in
the linear case, see e.g. Macchelli [2013].
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where, with some abuse in notation, C and I⇢ are the
matrix formulation of the compliance and of the inertia
tensors respectively. Clearly, in accordance with (3), for
all z 2 [0, L], we have that
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defines a pair twist and wrench along the spatial domain
of the link; T is the twist (i.e., linear and angular velocity),
of the cross section, while W the applied wrench (i.e., force
and torque), due to deformation, both expressed in body
frame Eb. From (3) and (6), we have that
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as desired.
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that clearly shows that the ⇠ variables are nothing else
than the scattering variable associated to the Stokes-Dirac
structure, once the metric defined by the total energy of
the system is used to perform the decomposition. Finally,
from (37), it easily follows that
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locally asymptotically stable by introducing a full bound-
ary dissipation at z = 0. In other words, the unstressed
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with KD = KT
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This relation is in the form (28), and satisfies condition
(25) provided that KD > 0.

Under the hypothesis of Theorem 3.1, which basically
means that q and p are C1 functions, the proof of the
existence of solution is a straightforward consequence
of the same theorem. On the other hand, asymptotic
stability follows from Proposition 3.2. Note that condition
(26) is satisfied since the term M(⇠)⇠ is quadratic in
the ⇠ variables. Finally, it is not di�cult to prove that
this result generalises Macchelli [2012a], i.e. the case in
which a constant force is applied at one extremity and
full-boundary dissipation is present at the other side, to
the nonlinear scenario, since it can be verified that the
linearization of (1) around the unstressed configuration
provides the Timoshenko beam equation.

5. CONCLUSIONS AND FUTURE WORK

In this paper, the class of “almost linear” hyperbolic port-
Hamiltonian systems is presented as a simple extension to
the nonlinear scenario of the theory of linear, distributed
port-Hamiltonian systems. Having in mind a nonlinear
flexible link model that belongs to this class, it is shown
that such systems can be written in terms of the scattering
variables, that are nothing else than the Riemann invari-
ants appearing in the theory of quasi-linear hyperbolic
systems. By relying on established results in this field, con-
ditions for the existence of solutions for this novel class of
infinite dimensional port-Hamiltonian systems are given,
together with a simple tool for studying and achieving
asymptotic stability (at least, locally) of constant equi-
librium configurations. Such results have been applied to
the nonlinear model of the flexible beam.

Future work deals with the extension of these results to
more complex situations, namely the case in which the
Hamiltonian is no longer quadratic in the energy variables,
as discussed e.g. in Prieur et al. [2008], but also in De
Halleux et al. [2003] and related works. An important goal
is also the generalisation to the nonlinear case of energy-
based control techniques (e.g., the control by interconnec-
tion and energy shaping via Casimir generation, or control
by state-modulated source), already successfully applied in
the linear case, see e.g. Macchelli [2013].
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where, with some abuse in notation, C and I⇢ are the
matrix formulation of the compliance and of the inertia
tensors respectively. Clearly, in accordance with (3), for
all z 2 [0, L], we have that
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defines a pair twist and wrench along the spatial domain
of the link; T is the twist (i.e., linear and angular velocity),
of the cross section, while W the applied wrench (i.e., force
and torque), due to deformation, both expressed in body
frame Eb. From (3) and (6), we have that
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as desired.
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that clearly shows that the ⇠ variables are nothing else
than the scattering variable associated to the Stokes-Dirac
structure, once the metric defined by the total energy of
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which gives the “new” inputs and outputs in the scattering
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mapping between input and output in the scattering and
impedance formulation can be immediately computed.
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This relation is in the form (28), and satisfies condition
(25) provided that KD > 0.

Under the hypothesis of Theorem 3.1, which basically
means that q and p are C1 functions, the proof of the
existence of solution is a straightforward consequence
of the same theorem. On the other hand, asymptotic
stability follows from Proposition 3.2. Note that condition
(26) is satisfied since the term M(⇠)⇠ is quadratic in
the ⇠ variables. Finally, it is not di�cult to prove that
this result generalises Macchelli [2012a], i.e. the case in
which a constant force is applied at one extremity and
full-boundary dissipation is present at the other side, to
the nonlinear scenario, since it can be verified that the
linearization of (1) around the unstressed configuration
provides the Timoshenko beam equation.

5. CONCLUSIONS AND FUTURE WORK

In this paper, the class of “almost linear” hyperbolic port-
Hamiltonian systems is presented as a simple extension to
the nonlinear scenario of the theory of linear, distributed
port-Hamiltonian systems. Having in mind a nonlinear
flexible link model that belongs to this class, it is shown
that such systems can be written in terms of the scattering
variables, that are nothing else than the Riemann invari-
ants appearing in the theory of quasi-linear hyperbolic
systems. By relying on established results in this field, con-
ditions for the existence of solutions for this novel class of
infinite dimensional port-Hamiltonian systems are given,
together with a simple tool for studying and achieving
asymptotic stability (at least, locally) of constant equi-
librium configurations. Such results have been applied to
the nonlinear model of the flexible beam.

Future work deals with the extension of these results to
more complex situations, namely the case in which the
Hamiltonian is no longer quadratic in the energy variables,
as discussed e.g. in Prieur et al. [2008], but also in De
Halleux et al. [2003] and related works. An important goal
is also the generalisation to the nonlinear case of energy-
based control techniques (e.g., the control by interconnec-
tion and energy shaping via Casimir generation, or control
by state-modulated source), already successfully applied in
the linear case, see e.g. Macchelli [2013].
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defines a pair twist and wrench along the spatial domain
of the link; T is the twist (i.e., linear and angular velocity),
of the cross section, while W the applied wrench (i.e., force
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frame Eb. From (3) and (6), we have that

f@ =
1p
2

✓
TL � T0

WL +W0

◆
e@ =

1p
2

✓
WL �W0

TL + T0

◆
(32)

which means that, to have the system in impedance form
and with e↵ort-in causality at both sides it is necessary to
have
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Coordinate representations:

Passivity-based Control of Implicit Port-Hamiltonian Systems

Alessandro Macchelli

Abstract— The main contribution of this paper is the gener-
alisation of well-known energy-based control techniques (i.e.,
energy-balancing passivity-based control and passivity-based
control with state modulated source), to the case in which the
plant is a port-Hamiltonian system in implicit form. A typical
situation is when (part of) the system is obtained from the spa-
tial discretization of an infinite dimensional port-Hamiltonian
system: in this case, the dynamics is not given in standard
input-state-output form, but as a set of DAEs. Consequently,
the control by energy-shaping has to be extended to deal with
dynamical systems with constraints. The general methodology
is discussed with the help of a simple but illustrative example,
i.e. a transmission line interconnected with an RLC circuit.

I. INTRODUCTION

This paper deals with the extension of classical energy
based control techniques (energy-balancing passivity-based
control and passivity-based control with state-modulated
source, [1], [2]) to port-Hamiltonian systems [3] in implicit
form, i.e. not written in standard input-state-output form but
as a set of DAEs, [4], [5]. The motivating application is when
the port-Hamiltonian dynamics follows from the spatial dis-
cretization of a distributed port-Hamiltonian system carried
out according to the technique proposed in [6].

In a recent work [7], the control by interconnection and
energy shaping via Casimir generation [2], [5], [8] has been
extended to this scenario, and the stabilization of the system
in a non-zero equilibrium is accomplished by looking or
generating a set of Casimir functions in the closed-loop
system that robustly (i.e. independently from the Hamiltonian
function) relates the state of the infinite dimensional port
Hamiltonian system with the state of the controller. The
shape of the energy function of the closed-loop system can
be changed by properly choosing the Hamiltonian function
of the controller in order to introduce a (possibly global)
minimum in a desired configuration. This approach has
shown its potentialities in the stabilisation of finite-element
models of distributed port-Hamiltonian systems, [7], [9].

In this paper, energy-balancing passivity-based control
and passivity-based control via state-modulated source are
extended to implicit port-Hamiltonian systems, with the final
goal of being applied to a finite element approximation
of the distributed parameter plant. In this way, standard
tools for studying the stability of finite dimensional port
Hamiltonian systems can be used to prove the validity of
the boundary controller. Implicit port-Hamiltonian systems
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have been introduced at the very beginning of the port-
Hamiltonian theory, but not so many results have been pre-
sented as far as their control is concerned, with the noticeable
exceptions of [10], where the energy-shaping control via
Casimir generation has been approached by starting from
the properties of the Dirac structure of the plant both in
the finite and infinite dimensional case, and of [11]–[13]. In
case of input-state-output port-Hamiltonian systems, a state-
modulated source is the simplest way for dealing with the
stabilisation of equilibria that require an infinite amount of
supplied energy, i.e. with the so-called dissipation obstacle
that limits the applicability of the control by interconnection
via Casimir generation and of energy-balancing passivity-
based control. The general methodology is illustrated with
reference to a particular example, i.e. a trasmission line with
RLC load, both in the series and parallel configuration.

The paper is organized as follows. In Sect. II, Dirac struc-
tures and associated port-Hamiltonian systems are briefly
presented. Then, Sect. III contains the main theoretical
contributions. More precisely, in Sect. III-A, the energy-
balancing passivity-based control, and in Sect. III-B, the
control with state-modulated source are extended to im-
plicit port-Hamiltonian systems. The examples is reported
in Sect. IV, while conclusions and a discussion about future
activities are in Sect. V.

II. BACKGROUND

A. Dirac structures
A Dirac structure is a linear space which describes internal

power flows and the power exchange between the system
and the environment. Denote by F ⇥ E the space of power
variables, with F an n-dimensional linear space, the space
of flows (e.g. velocities and currents) and E ⌘ F⇤ its dual,
the space of efforts (e.g. forces and voltages), and by he, fi
the power associated to the port (f, e) 2 F ⇥ E , where h·, ·i
is the dual product between f and e.

Definition 2.1: Consider the space of power variables F⇥
E . A (constant) Dirac structure on F is a linear subspace
D ⇢ F ⇥ E such that dimD = dimF and he, fi = 0,
8(f, e) 2 D.

A Dirac structure defines a power-conserving relation
on F ⇥ E , and different representations in coordinates are
possible, [14]. For example, every Dirac structure D can be
given in kernel representation as

D =
n

(f, e) 2 F ⇥ E | Ff + Ee = 0
o

(1)

or in image representation as

D =
n

(f, e) 2 F⇥E | f = ET�, e = FT�, � 2 Rn
o

(2)
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of the distributed parameter plant. In this way, standard
tools for studying the stability of finite dimensional port
Hamiltonian systems can be used to prove the validity of
the boundary controller. Implicit port-Hamiltonian systems
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have been introduced at the very beginning of the port-
Hamiltonian theory, but not so many results have been pre-
sented as far as their control is concerned, with the noticeable
exceptions of [10], where the energy-shaping control via
Casimir generation has been approached by starting from
the properties of the Dirac structure of the plant both in
the finite and infinite dimensional case, and of [11]–[13]. In
case of input-state-output port-Hamiltonian systems, a state-
modulated source is the simplest way for dealing with the
stabilisation of equilibria that require an infinite amount of
supplied energy, i.e. with the so-called dissipation obstacle
that limits the applicability of the control by interconnection
via Casimir generation and of energy-balancing passivity-
based control. The general methodology is illustrated with
reference to a particular example, i.e. a trasmission line with
RLC load, both in the series and parallel configuration.

The paper is organized as follows. In Sect. II, Dirac struc-
tures and associated port-Hamiltonian systems are briefly
presented. Then, Sect. III contains the main theoretical
contributions. More precisely, in Sect. III-A, the energy-
balancing passivity-based control, and in Sect. III-B, the
control with state-modulated source are extended to im-
plicit port-Hamiltonian systems. The examples is reported
in Sect. IV, while conclusions and a discussion about future
activities are in Sect. V.

II. BACKGROUND

A. Dirac structures
A Dirac structure is a linear space which describes internal

power flows and the power exchange between the system
and the environment. Denote by F ⇥ E the space of power
variables, with F an n-dimensional linear space, the space
of flows (e.g. velocities and currents) and E ⌘ F⇤ its dual,
the space of efforts (e.g. forces and voltages), and by he, fi
the power associated to the port (f, e) 2 F ⇥ E , where h·, ·i
is the dual product between f and e.

Definition 2.1: Consider the space of power variables F⇥
E . A (constant) Dirac structure on F is a linear subspace
D ⇢ F ⇥ E such that dimD = dimF and he, fi = 0,
8(f, e) 2 D.

A Dirac structure defines a power-conserving relation
on F ⇥ E , and different representations in coordinates are
possible, [14]. For example, every Dirac structure D can be
given in kernel representation as

D =
n

(f, e) 2 F ⇥ E | Ff + Ee = 0
o

(1)

or in image representation as

D =
n

(f, e) 2 F⇥E | f = ET�, e = FT�, � 2 Rn
o

(2)

where F and E are n⇥ n matrices such thatEF T + FET = 0 rank
�

F | E �= n (3)
and, in this case, he, fi = eTf .B. Port-Hamiltonian systemsIn case of finite dimensional port-Hamiltonian systems,

once the Dirac structure is given, the dynamics follows from

the port behavior of the energy storing elements. Denote by

X the space of energy variables and by H : X ! R the

energy function. Then, the port behavior is:
f = �ẋ

e = @H

@x (4)
and, if the kernel representation (1) is adopted, the associated

dynamics is expressed by �Fẋ + E @H
@x = 0, with x(0) =

x0 2 X . Note that, Ḣ = 0, i.e. energy is conserved, which is

coherent with the fact that no external ports and dissipative

effects have been modelled.In the general case, the Dirac structure D associated to

the port-Hamiltonian system defines a power conserving

relation between several port variables, e.g. two internal

ports S and R, which correspond to energy-storage and

dissipation respectively, and two external ports C and I,

which are devoted to an exchange of energy with a controller

and the environment respectively. If (fS , eS) 2 FS ⇥ ES ,

(fR, eR) 2 FR ⇥ ER, (fC , eC ) 2 FC ⇥ EC and (fI , eI ) 2
FI ⇥ EI denote the power variables of the energy-storage,

dissipative, control and interaction ports respectively, in the

kernel representation (1) the Dirac structure D is given by

the following subset of F⇥E , with F = FS⇥FR⇥FC⇥FI

and E = ES ⇥ ER ⇥ EC ⇥ EI :D =
n

(fS , fR, fC , fI , eS , eR, eC , eI ) 2 F ⇥ E |FSfS + FRfR + FCfC + FIfI++ ESeS + EReR + ECeC + EIeI = 0
o

(5)
where the matrices (Fi, Ei), with i = S, R, C, I , satisfy a

set of conditions similar to (3). If the behavior at the energy

storing port is given as in (4) and the dissipative port satisfies

the (linear) resistive relation
Rf fR +ReeR = 0

(6)
where Rf and Re are square matrices such that RfRT

e =

ReRT
f > 0, and rank(Rf | Re) = dimFR, then the port-

Hamiltonian dynamics results into the following set of DAEs:
�FS ẋ+ ES

@H

@x
+ FRfR + EReR+

+FCfC + ECeC + FIfI + EIeI = 0
Rf fR +ReeR = 0

(7)with x(0) = x0 2 X . Note that, in this case,d

dt
H  eTCfC + eTI fI

(8)
which means that the variation of internal energy is bounded

by the incoming power flows through the control and inter-

action ports.

(a) Series configuration.
(b) Parallel configuration.Fig. 1. RLC circuits.

Example 2.1 (RLC circuits): The series RLC circuit of

Fig. 1a is characterised by the Dirac structure
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On the other hand, the Dirac stricture of the RLC circuit in

parallel configuration of Fig. 1b is defined by
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In both cases, the Hamiltonian is given by
HL(xQ, x�) = 1

2

 

x2
Q

CL
+ x2

�

LL

!

(11)where xQ and x� are the charge in the capacitor and the

magnetic field in the inductor, respectively. Moreover, the

resistive relation (6) takes the form
RLfR + eR = 0

(12)
Finally, the dynamics follows from (4), that now reads fQ =

�ẋQ, f� = �ẋ�, eQ = @HL
@xQ

, and e� = @HL
@x�

.
Example 2.2 (Trasmission line): The distributed port-

Hamiltonian description of the lossless transmission line

has been given in [15], but in this paper its finite element

approximation discussed in [6] is adopted for control

purposes. It is beyond the scope of this paper to provide a

detailed description on how this approximation is obtained.

Roughly speaking, the spatial domain Z = [0, L] of

the trasmission line is divided into N segments, and

on each segment the dynamics is approximated by a
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�
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On the other hand, the Dirac stricture of the RLC circuit in

parallel configuration of Fig. 1b is defined by
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�ẋQ, f� = �ẋ�, eQ = @HL
@xQ

, and e� = @HL
@x�

.
Example 2.2 (Trasmission line): The distributed port-

Hamiltonian description of the lossless transmission line

has been given in [15], but in this paper its finite element

approximation discussed in [6] is adopted for control
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Fig. 1. A port-Hamiltonian system.

D ⇢ F ⇥ E such that dimD = dimF and he, fi = 0,
8(f, e) 2 D.

It is clear from the previous definition that the Dirac
structure defines a power-conserving relation on F⇥E . Dirac
structures admit different representations in coordinates, [13].
For example, every Dirac structure D on an n-dimensional
space of flows F can be given in kernel representation as

D =
n

(f, e) 2 F ⇥ E | Ff + Ee = 0
o

(1)

or in image representation as

D =
n

(f, e) 2 F⇥E | f = ET�, e = FT�, � 2 Rn
o

(2)

where F and E are n⇥ n matrices such that

(a) EFT + FET = 0
(b) rank

�

F | E�

= n
(3)

and, in this case, he, fi = eTf .

B. Port-Hamiltonian systems
In case of finite dimensional port-Hamiltonian systems,

once the Dirac structure is given, the dynamics follows from
the port behavior of the energy storing elements. Denote by
X the space of energy variables and by H : X ! R the
energy function. Then, the port behavior is:

f = �ẋ e =
@H

@x
(4)

and, if the kernel representation (1) for a Dirac structure
is adopted, the associated dynamics is expressed by the
following DAE:

�Fẋ+ E
@H

@x
= 0, x(0) = x0 2 X

Note that, Ḣ = 0, i.e. energy is conserved, which is coherent
with the fact that no external ports and dissipative effects
have been modelled. Moreover, F and E may also depend
on x, and most of the results presented in this paper remain
valid in this situation.

In the general case a port-Hamiltonian system can be
represented as in Fig. 1. The Dirac structure D defines a
power conserving relation between several port variables.
In particular, there are two internal ports S and R, which
correspond to energy-storage and dissipation respectively,
and two external ports C and I, which are devoted to an
exchange of energy with a controller and the environment
respectively.

(a) Series configuration. (b) Parallel configuration.

Fig. 2. RLC circuits.

If (fS , eS) 2 FS ⇥ ES , (fR, eR) 2 FR ⇥ ER, (fC , eC) 2
FC ⇥ EC and (fI , eI) 2 FI ⇥ EI denote the power variables
of the energy-storage, dissipative, control and interaction
ports respectively, in the kernel representation (1) the Dirac
structure D is given by the following subset of F ⇥ E , with
F = FS ⇥ FR ⇥ FC ⇥ FI and E = ES ⇥ ER ⇥ EC ⇥ EI :

D =
n

(fS , fR, fC , fI , eS , eR, eC , eI) 2 F ⇥ E |
FSfS + FRfR + FCfC + FIfI+

+ ESeS + EReR + ECeC + EIeI = 0
o

(5)

where the matrices (Fi, Ei), with i = S, R, C, I , satisfy a
set of conditions similar to (3). If the behavior at the energy
storing port is given as in (4) and the dissipative port satisfies
the (linear) resistive relation

RffR +ReeR = 0 (6)

where Rf and Re are square matrices such that

(a) RfR
T
e = ReR

T
f > 0

(b) rank
�

Rf | Re

�

= dimFR
(7)

then the port-Hamiltonian dynamics results into the follow-
ing set of DAEs:

�FS ẋ+ ES
@H

@x
+ FRfR + EReR+

+FCfC + ECeC + FIfI + EIeI = 0

RffR +ReeR = 0

(8)

with x(0) = x0 2 X . Note that, in this case,

d

dt
H  eTCfC + eTI fI (9)

which means that the variation of internal energy is bounded
by the incoming power flows through the control and interac-
tion ports. In particular cases, it is possible to explicitly get
rid of the algebraic constraints in (8) and write the port-
Hamiltonian dynamics in input-state-output form. In this
paper, this most general formulation of port-Hamiltonian
dynamics is adopted.

Example 2.1 (RLC circuits): The RLC circuit in series
configuration reported in Fig. 2(a) is characterized by a Dirac

Fig. 1. A port-Hamiltonian system.
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Note that, Ḣ = 0, i.e. energy is conserved, which is coherentwith the fact that no external ports and dissipative effectshave been modelled. Moreover, F and E may also dependon x, and most of the results presented in this paper remainvalid in this situation.
In the general case a port-Hamiltonian system can berepresented as in Fig. 1. The Dirac structure D defines apower conserving relation between several port variables.In particular, there are two internal ports S and R, whichcorrespond to energy-storage and dissipation respectively,and two external ports C and I, which are devoted to anexchange of energy with a controller and the environmentrespectively.

(a) Series configuration. (b) Parallel configuration.

Fig. 2. RLC circuits.

If (fS , eS) 2 FS ⇥ ES , (fR, eR) 2 FR ⇥ ER, (fC , eC) 2FC ⇥ EC and (fI , eI) 2 FI ⇥ EI denote the power variablesof the energy-storage, dissipative, control and interactionports respectively, in the kernel representation (1) the Diracstructure D is given by the following subset of F ⇥ E , withF = FS ⇥ FR ⇥ FC ⇥ FI and E = ES ⇥ ER ⇥ EC ⇥ EI :

D =
n

(fS , fR, fC , fI , eS , eR, eC , eI) 2 F ⇥ E |
FSfS + FRfR + FCfC + FIfI+

+ ESeS + EReR + ECeC + EIeI = 0
o

(5)

where the matrices (Fi, Ei), with i = S, R, C, I , satisfy aset of conditions similar to (3). If the behavior at the energystoring port is given as in (4) and the dissipative port satisfiesthe (linear) resistive relation

RffR +ReeR = 0 (6)

where Rf and Re are square matrices such that

(a) RfRT
e = ReRT

f > 0
(b) rank

�

Rf | Re

�

= dimFR
(7)

then the port-Hamiltonian dynamics results into the follow-ing set of DAEs:

�FS ẋ+ ES
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spatial discretisation of a distributed 
parameter systems is in this form
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Example: the RLC circuit

Fig. 3. Finite element model of a lossless transmission line.

structure defined by the following relation:
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On the other hand, the Dirac stricture of the RLC circuit in
parallel configuration of Fig. 2(b) is defined by the following
relation:
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In both cases, the Hamiltonian is given by
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where xQ and x� are the charge in the capacitor and the
magnetic field in the inductor, respectively. Moreover, the
resistive relation (6) takes the form

RLfR + eR = 0 (13)

Finally, the dynamics follows from (4), that now reads

fQ = �ẋQ f� = �ẋ� eQ =
@HL

@xQ
e� =

@HL

@x�
Example 2.2 (Trasmission line): The distributed port-

Hamiltonian description of the lossless transmission line
has been given in [14], but in this paper its finite element
approximation discussed in [6] is adopted for control
purposes. It is beyond the scope of this paper to provide a
detailed description on how this approximation is obtained.

Roughly speaking, the spatial domain Z = [0, L] of
the trasmission line is divided into N segments, and
on each segment the dynamics is approximated by a
finite dimensional port-Hamiltonian system. Denote by
Zi = [li, ri], with i = 1, . . . , N , one segment. Clearly,
ri = li+1 for i = 1, . . . , N � 1, and l1 = 0 and rN = L.
Then, it is possible to verify that a port-Hamiltonian system
that approximates the infinite dimensional dynamics on
Zi is characterized by a Dirac structure describe by the
following set of equations, that show the effect on the
internal “energy port” of the boundary conditions in z = li:

eil = eiq + (1� ↵)f i
� f i

l = �ei� � (1� ↵)f i
q (14)

and in z = ri:

eir = eiq � ↵f i
� f i

r = �↵f i
q + ei� (15)

where 0 < ↵ < 1 is a free parameter. With reference to
Fig. 3, in (14) and (15), f i

q and f i
� represent (minus) the

currents flowing through the capacitor Ci and the inductor
Li that approximate the dynamics of electrical and magnetic
fields on Zi, while eiq and ei� are the voltages at the same
components. Moreover, (f i

l , e
i
l) and (f i

r, e
i
r) define a pair

of ports that are the discrete counterpart of the boundary
conditions for the spatial domain Zi. The complete Dirac
structure of the trasmission line is obtained by interconnect-
ing in power-conserving way all the Dirac structure defined
on each Zi, by imposing that f i

r = �f i+1
l and eir = ei+1

l ,
for i = 1, . . . , N � 1. The result is a Dirac structure in the
form (5) with FR = ;, defined by the following relation:
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Fig. 3. Finite element model of a lossless transmission line.
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On the other hand, the Dirac stricture of the RLC circuit in
parallel configuration of Fig. 2(b) is defined by the following
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where xQ and x� are the charge in the capacitor and the
magnetic field in the inductor, respectively. Moreover, the
resistive relation (6) takes the form
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Finally, the dynamics follows from (4), that now reads
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Hamiltonian description of the lossless transmission line
has been given in [14], but in this paper its finite element
approximation discussed in [6] is adopted for control
purposes. It is beyond the scope of this paper to provide a
detailed description on how this approximation is obtained.

Roughly speaking, the spatial domain Z = [0, L] of
the trasmission line is divided into N segments, and
on each segment the dynamics is approximated by a
finite dimensional port-Hamiltonian system. Denote by
Zi = [li, ri], with i = 1, . . . , N , one segment. Clearly,
ri = li+1 for i = 1, . . . , N � 1, and l1 = 0 and rN = L.
Then, it is possible to verify that a port-Hamiltonian system
that approximates the infinite dimensional dynamics on
Zi is characterized by a Dirac structure describe by the
following set of equations, that show the effect on the
internal “energy port” of the boundary conditions in z = li:
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where 0 < ↵ < 1 is a free parameter. With reference to
Fig. 3, in (14) and (15), f i
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� represent (minus) the

currents flowing through the capacitor Ci and the inductor
Li that approximate the dynamics of electrical and magnetic
fields on Zi, while eiq and ei� are the voltages at the same
components. Moreover, (f i

l , e
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l) and (f i

r, e
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r) define a pair

of ports that are the discrete counterpart of the boundary
conditions for the spatial domain Zi. The complete Dirac
structure of the trasmission line is obtained by interconnect-
ing in power-conserving way all the Dirac structure defined
on each Zi, by imposing that f i

r = �f i+1
l and eir = ei+1

l ,
for i = 1, . . . , N � 1. The result is a Dirac structure in the
form (5) with FR = ;, defined by the following relation:
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Fig. 1. A port-Hamiltonian system.

D ⇢ F ⇥ E such that dimD = dimF and he, fi = 0,

8(f, e) 2 D.

It is clear from the previous definition that the Dirac

structure defines a power-conserving relation on F⇥E . Dirac

structures admit different representations in coordinates, [13].

For example, every Dirac structure D on an n-dimensional

space of flows F can be given in kernel representation as

D =
n

(f, e) 2 F ⇥ E | Ff + Ee = 0
o

(1)

or in image representation as

D =
n

(f, e) 2 F⇥E | f = ET�, e = FT�, � 2 Rn
o

(2)

where F and E are n⇥ n matrices such that

(a) EFT + FET = 0

(b) rank
�

F | E
�

= n

(3)

and, in this case, he, fi = eTf .

B. Port-Hamiltonian systems

In case of finite dimensional port-Hamiltonian systems,

once the Dirac structure is given, the dynamics follows from

the port behavior of the energy storing elements. Denote by

X the space of energy variables and by H : X ! R the

energy function. Then, the port behavior is:

f = �ẋ
e =

@H

@x

(4)

and, if the kernel representation (1) for a Dirac structure

is adopted, the associated dynamics is expressed by the

following DAE:

�Fẋ+ E
@H

@x
= 0, x(0) = x0 2 X

Note that, Ḣ = 0, i.e. energy is conserved, which is coherent

with the fact that no external ports and dissipative effects

have been modelled. Moreover, F and E may also depend

on x, and most of the results presented in this paper remain

valid in this situation.

In the general case a port-Hamiltonian system can be

represented as in Fig. 1. The Dirac structure D defines a

power conserving relation between several port variables.

In particular, there are two internal ports S and R, which

correspond to energy-storage and dissipation respectively,

and two external ports C and I, which are devoted to an

exchange of energy with a controller and the environment

respectively.

(a) Series configuration. (b) Parallel configuration.

Fig. 2. RLC circuits.

If (fS, eS) 2 FS ⇥ ES, (fR, eR) 2 FR ⇥ ER, (fC , eC) 2

FC ⇥ EC and (fI , eI) 2 FI ⇥ EI denote the power variables

of the energy-storage, dissipative, control and interaction

ports respectively, in the kernel representation (1) the Dirac

structure D is given by the following subset of F ⇥ E , with

F = FS ⇥ FR ⇥ FC ⇥ FI and E = ES ⇥ ER ⇥ EC ⇥ EI :

D =
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+ ESeS + EReR + ECeC + EIeI = 0
o

(5)

where the matrices (Fi, Ei), with i = S, R, C, I , satisfy a

set of conditions similar to (3). If the behavior at the energy

storing port is given as in (4) and the dissipative port satisfies

the (linear) resistive relation

RffR +ReeR = 0
(6)

where Rf and Re are square matrices such that

(a) RfR
T
e = ReR

T
f
> 0
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= dimFR

(7)

then the port-Hamiltonian dynamics results into the follow-

ing set of DAEs:
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+ FRfR + EReR+

+FCfC + ECeC + FIfI + EIeI = 0

RffR +ReeR = 0

(8)

with x(0) = x0 2 X . Note that, in this case,

d

dt
H  eTCfC + eTI fI

(9)

which means that the variation of internal energy is bounded

by the incoming power flows through the control and interac-

tion ports. In particular cases, it is possible to explicitly get

rid of the algebraic constraints in (8) and write the port-

Hamiltonian dynamics in input-state-output form. In this

paper, this most general formulation of port-Hamiltonian

dynamics is adopted.

Example 2.1 (RLC circuits): The RLC circuit in series

configuration reported in Fig. 2(a) is characterized by a Dirac

Fig. 1. A port-Hamiltonian system.

D ⇢ F ⇥ E such that dimD = dimF and he, fi = 0,
8(f, e) 2 D.

It is clear from the previous definition that the Dirac
structure defines a power-conserving relation on F⇥E . Dirac
structures admit different representations in coordinates, [13].
For example, every Dirac structure D on an n-dimensional
space of flows F can be given in kernel representation asD =

n

(f, e) 2 F ⇥ E | Ff + Ee = 0
o
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In particular, there are two internal ports S and R, which
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and two external ports C and I, which are devoted to an
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where the matrices (Fi, Ei), with i = S, R, C, I , satisfy a
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which means that the variation of internal energy is bounded
by the incoming power flows through the control and interac-
tion ports. In particular cases, it is possible to explicitly get
rid of the algebraic constraints in (8) and write the port-
Hamiltonian dynamics in input-state-output form. In this
paper, this most general formulation of port-Hamiltonian
dynamics is adopted.

Example 2.1 (RLC circuits): The RLC circuit in series
configuration reported in Fig. 2(a) is characterized by a Dirac

Fig. 3. Finite element model of a lossless transmission line.
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On the other hand, the Dirac stricture of the RLC circuit in
parallel configuration of Fig. 2(b) is defined by the following
relation:
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where xQ and x� are the charge in the capacitor and the
magnetic field in the inductor, respectively. Moreover, the
resistive relation (6) takes the form

RLfR + eR = 0 (13)

Finally, the dynamics follows from (4), that now reads
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Example 2.2 (Trasmission line): The distributed port-

Hamiltonian description of the lossless transmission line
has been given in [14], but in this paper its finite element
approximation discussed in [6] is adopted for control
purposes. It is beyond the scope of this paper to provide a
detailed description on how this approximation is obtained.

Roughly speaking, the spatial domain Z = [0, L] of
the trasmission line is divided into N segments, and
on each segment the dynamics is approximated by a
finite dimensional port-Hamiltonian system. Denote by
Zi = [li, ri], with i = 1, . . . , N , one segment. Clearly,
ri = li+1 for i = 1, . . . , N � 1, and l1 = 0 and rN = L.
Then, it is possible to verify that a port-Hamiltonian system
that approximates the infinite dimensional dynamics on
Zi is characterized by a Dirac structure describe by the
following set of equations, that show the effect on the
internal “energy port” of the boundary conditions in z = li:

eil = eiq + (1� ↵)f i
� f i

l = �ei� � (1� ↵)f i
q (14)

and in z = ri:

eir = eiq � ↵f i
� f i

r = �↵f i
q + ei� (15)

where 0 < ↵ < 1 is a free parameter. With reference to
Fig. 3, in (14) and (15), f i

q and f i
� represent (minus) the

currents flowing through the capacitor Ci and the inductor
Li that approximate the dynamics of electrical and magnetic
fields on Zi, while eiq and ei� are the voltages at the same
components. Moreover, (f i

l , e
i
l) and (f i

r, e
i
r) define a pair

of ports that are the discrete counterpart of the boundary
conditions for the spatial domain Zi. The complete Dirac
structure of the trasmission line is obtained by interconnect-
ing in power-conserving way all the Dirac structure defined
on each Zi, by imposing that f i

r = �f i+1
l and eir = ei+1

l ,
for i = 1, . . . , N � 1. The result is a Dirac structure in the
form (5) with FR = ;, defined by the following relation:
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1

C

A

Fig. 3. Finite element model of a lossless transmission line.
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In both cases, the Hamiltonian is given by
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where xQ and x� are the charge in the capacitor and the
magnetic field in the inductor, respectively. Moreover, the
resistive relation (6) takes the form

RLfR + eR = 0 (13)
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Example 2.2 (Trasmission line): The distributed port-
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Dirac structures & control synthesis

In a similar manner for Dirac structures on Hilbert spaces 

Assume that the space of flows F ≡ E is an Hilbert space, and denote 
by ⟨· | ·⟩ the inner product on F 

The Cartesian space F × E is an Hilbert space with the inner product 

The bond space B is F × E with the indefinite product 

 Given a linear space A ⊂ B, its orthogonal complement is  

Definition. D is a Dirac structure on B if

II. BACKGROUND

A. Dirac structures on Hilbert spaces
Dirac structures on Hilbert spaces have been introduced in

[12], while their kernel and image representations have been
discussed in [13]. Here, for simplicity, we assume that the
space of flows F is an Hilbert space, and that the space of
efforts is E ⌘ F . Denote by h· | ·i the inner product on F .
The Cartesian space F ⇥ E equipped by the inner product

h(f1, e1) | (f2, e2)iF�E = hf1 | f2i+ he1 | e2i

with f1, f2 2 F and e1, e2 2 E , is called the Hilbert space
F�E . Differently, the Cartesian space F⇥E equipped with
the indefinite inner product

⌧ (f1, e1), (f2, e2) �= hf1 | e2i+ hf2 | e1i (1)

is the bond space B. Given a linear space A ⇢ B, its
orthogonal complement with respect to (1) is

A?
=

n

a0 2 B |⌧ a, a0 �= 0, 8a 2 A
o

Similarly to the case in which the bond space is a linear
vector space [11], we give the following definition, [13]:

Definition 2.1: Let F and E be the spaces of efforts and
flows, B the associated bond space, and D a linear subset of
B. We say that D is a Dirac structure on B if D = D?.

In [13], it has been proved that all the Dirac structures on
Hilbert spaces admit a kernel and an image representation. In
fact, denote by ⇤ an Hilbert space isometrically isomorphic
to F ⌘ E . For any Dirac structure D, there exists linear maps
F : F ! ⇤ and E : E ! ⇤ satisfying the conditions

FE⇤
+ EF ⇤

= 0 ran

�

F E
�

= ⇤ (2)

such that

D =

n

(f, e) 2 B | Ff + Ee = 0

o

(3)

where · stands for the closure of an operator, while ·⇤
denotes the adjoint operator, see e.g. [10]. From (2), it
follows that D can be also written as

D =

n

(f, e) 2 B | f = E⇤�, e = F ⇤�, 8� 2 ⇤

o

(4)

The expressions (3) and (4) are the kernel and image repre-
sentations respectively of the Dirac structure D. The image
representation is useful in the control synthesis because it
provides a simple way to parametrize the system trajectories.

B. A class of distributed port-Hamiltonian systems
In this paper, we refer to the class of distributed port-

Hamiltonian systems that have been studied in [15], [16],
i.e. to systems described by the following PDE:
@x

@t
(t, z) = P1

@

@z

�

L(z)x(t, z)
�

+(P0�G0)L(z)x(t, z) (5)

with x 2 Rn and z 2 [a, b]. Moreover, P1 = PT
1 > 0,

P0 = �PT
0 , G0 = GT

0 � 0, and L(·) is a bounded and
continuously differentiable matrix-valued function such that
L(z) = LT

(z) and L(z) � I , with  > 0, for all z 2 [a, b].
For simplicity, L(z)x(t, z) ⌘ (Lx)(t, z). The state space is

X = L2(a, b;Rn
), and is endowed with the inner product

hx1 | x2iL = hx1 | Lx2i and norm kx1k2L = hx1 | x1iL,
where h· | ·i denotes the natural L2-inner product. The se-
lection of this space for the state variable is motivated by
the fact that H(·) =

1/2 k·k2L is the energy function. As a
consequence, X is also called the space of energy variables
and Lx is the co-energy variable.

To define a distributed port-Hamiltonian system, the PDE
(5) has to be “completed” by proper boundary port. More
precisely, given Lx 2 H1

(a, b;Rn
), the boundary port

variables are the vectors f@ , e@ 2 Rn given by
✓

f@
e@

◆

=

1p
2

✓

P1 �P1

I I

◆

| {z }

=R

✓

(Lx)(b)
(Lx)(a)

◆

The boundary port variables are just a linear combination
of the restriction of the boundary variables, and simple
integration by parts shows that ˙H(x(t)) = eT@ (t)f@(t).

The problem of determining the “right” boundary inputs
and outputs for (5) to have a so-called boundary control
system on X , see e.g. [10], has been addressed in [15], [16].

Theorem 2.1: Let W be a n⇥2n real matrix. If W has full
rank and satisfies W⌃WT � 0, being ⌃ =

✓

0 I
I 0

◆

, then

the system (5) with input u(t) = W

✓

f@(t)
e@(t)

◆

is a bounda-

ry control system on X . Furthermore, the operator J x =

P1(@/@z)(Lx) + (P0 �G0)Lx with domain

D(J ) =

⇢

Lx 2 H1
(a, b;Rn

) |
✓

f@
e@

◆

2 KerW

�

generates a contraction semigroup on X . Moreover, let ˜W be
a full rank n⇥2n matrix such that

�

WT
˜WT

�

is invertible
and let P be given by

P =

✓

W⌃WT W⌃

˜WT

˜W⌃WT
˜W⌃

˜WT

◆�1

Define the output as y(t) =

˜W

✓

f@(t)
e@(t)

◆

. Then, for u 2

C2
(0,1;Rn

) and (Lx)(0) 2 H1
(a, b;Rn

), the following
energy balance equation is satisfied:

dH

dt
(x(t))  1

2

✓

u(t)
y(t)

◆T

P

✓

u(t)
y(t)

◆

(6)

In this paper, u and y are chosen in such a way that (5)
is in impedance form, i.e. W⌃WT

=

˜W⌃

˜WT
= 0, and

W⌃

˜WT
= I , so that P = ⌃ and (6) reduces to

dH

dt
(x(t))  yT(t)u(t) (7)

Under these hypotheses, (5) is characterised by a Dirac
structure on the space of flows

F = FS ⇥ FR ⇥ FC (8)

with FS = L2(a, b;Rn
), FR = Rr, and FC = Rn, being

r = rankG0. Here, (fS , eS) represents the energy-storage
port, (fR, eR) the dissipative port, and (fC , eC) ⌘ (y, u)
the control port, that is assumed with effort-in causality
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structure on the space of flows

F = FS ⇥ FR ⇥ FC (8)

with FS = L2(a, b;Rn
), FR = Rr, and FC = Rn, being

r = rankG0. Here, (fS , eS) represents the energy-storage
port, (fR, eR) the dissipative port, and (fC , eC) ⌘ (y, u)
the control port, that is assumed with effort-in causality
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II. BACKGROUND

A. Dirac structures on Hilbert spaces
Dirac structures on Hilbert spaces have been introduced in

[12], while their kernel and image representations have been
discussed in [13]. Here, for simplicity, we assume that the
space of flows F is an Hilbert space, and that the space of
efforts is E ⌘ F . Denote by h· | ·i the inner product on F .
The Cartesian space F ⇥ E equipped by the inner product

h(f1, e1) | (f2, e2)iF�E = hf1 | f2i+ he1 | e2i

with f1, f2 2 F and e1, e2 2 E , is called the Hilbert space
F�E . Differently, the Cartesian space F⇥E equipped with
the indefinite inner product

⌧ (f1, e1), (f2, e2) �= hf1 | e2i+ hf2 | e1i (1)

is the bond space B. Given a linear space A ⇢ B, its
orthogonal complement with respect to (1) is
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a0 2 B |⌧ a, a0 �= 0, 8a 2 A
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Similarly to the case in which the bond space is a linear
vector space [11], we give the following definition, [13]:

Definition 2.1: Let F and E be the spaces of efforts and
flows, B the associated bond space, and D a linear subset of
B. We say that D is a Dirac structure on B if D = D?.

In [13], it has been proved that all the Dirac structures on
Hilbert spaces admit a kernel and an image representation. In
fact, denote by ⇤ an Hilbert space isometrically isomorphic
to F ⌘ E . For any Dirac structure D, there exists linear maps
F : F ! ⇤ and E : E ! ⇤ satisfying the conditions
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such that
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where · stands for the closure of an operator, while ·⇤
denotes the adjoint operator, see e.g. [10]. From (2), it
follows that D can be also written as

D =
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(f, e) 2 B | f = E⇤�, e = F ⇤�, 8� 2 ⇤
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The expressions (3) and (4) are the kernel and image repre-
sentations respectively of the Dirac structure D. The image
representation is useful in the control synthesis because it
provides a simple way to parametrize the system trajectories.

B. A class of distributed port-Hamiltonian systems
In this paper, we refer to the class of distributed port-

Hamiltonian systems that have been studied in [15], [16],
i.e. to systems described by the following PDE:
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(z) and L(z) � I , with  > 0, for all z 2 [a, b].
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consequence, X is also called the space of energy variables
and Lx is the co-energy variable.
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II. BACKGROUND

A. Dirac structures on Hilbert spaces
Dirac structures on Hilbert spaces have been introduced in

[12], while their kernel and image representations have been
discussed in [13]. Here, for simplicity, we assume that the
space of flows F is an Hilbert space, and that the space of
efforts is E ⌘ F . Denote by h· | ·i the inner product on F .
The Cartesian space F ⇥ E equipped by the inner product

h(f1, e1) | (f2, e2)iF�E = hf1 | f2i+ he1 | e2i

with f1, f2 2 F and e1, e2 2 E , is called the Hilbert space
F�E . Differently, the Cartesian space F⇥E equipped with
the indefinite inner product

⌧ (f1, e1), (f2, e2) �= hf1 | e2i+ hf2 | e1i (1)

is the bond space B. Given a linear space A ⇢ B, its
orthogonal complement with respect to (1) is

A?
=

n

a0 2 B |⌧ a, a0 �= 0, 8a 2 A
o

Similarly to the case in which the bond space is a linear
vector space [11], we give the following definition, [13]:

Definition 2.1: Let F and E be the spaces of efforts and
flows, B the associated bond space, and D a linear subset of
B. We say that D is a Dirac structure on B if D = D?.

In [13], it has been proved that all the Dirac structures on
Hilbert spaces admit a kernel and an image representation. In
fact, denote by ⇤ an Hilbert space isometrically isomorphic
to F ⌘ E . For any Dirac structure D, there exists linear maps
F : F ! ⇤ and E : E ! ⇤ satisfying the conditions

FE⇤
+ EF ⇤

= 0 ran

�

F E
�

= ⇤ (2)

such that

D =

n

(f, e) 2 B | Ff + Ee = 0

o

(3)

where · stands for the closure of an operator, while ·⇤
denotes the adjoint operator, see e.g. [10]. From (2), it
follows that D can be also written as

D =

n

(f, e) 2 B | f = E⇤�, e = F ⇤�, 8� 2 ⇤

o

(4)

The expressions (3) and (4) are the kernel and image repre-
sentations respectively of the Dirac structure D. The image
representation is useful in the control synthesis because it
provides a simple way to parametrize the system trajectories.

B. A class of distributed port-Hamiltonian systems
In this paper, we refer to the class of distributed port-

Hamiltonian systems that have been studied in [15], [16],
i.e. to systems described by the following PDE:
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L(z)x(t, z)
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+(P0�G0)L(z)x(t, z) (5)

with x 2 Rn and z 2 [a, b]. Moreover, P1 = PT
1 > 0,

P0 = �PT
0 , G0 = GT

0 � 0, and L(·) is a bounded and
continuously differentiable matrix-valued function such that
L(z) = LT

(z) and L(z) � I , with  > 0, for all z 2 [a, b].
For simplicity, L(z)x(t, z) ⌘ (Lx)(t, z). The state space is

X = L2(a, b;Rn
), and is endowed with the inner product

hx1 | x2iL = hx1 | Lx2i and norm kx1k2L = hx1 | x1iL,
where h· | ·i denotes the natural L2-inner product. The se-
lection of this space for the state variable is motivated by
the fact that H(·) =

1/2 k·k2L is the energy function. As a
consequence, X is also called the space of energy variables
and Lx is the co-energy variable.

To define a distributed port-Hamiltonian system, the PDE
(5) has to be “completed” by proper boundary port. More
precisely, given Lx 2 H1

(a, b;Rn
), the boundary port

variables are the vectors f@ , e@ 2 Rn given by
✓
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The boundary port variables are just a linear combination
of the restriction of the boundary variables, and simple
integration by parts shows that ˙H(x(t)) = eT@ (t)f@(t).

The problem of determining the “right” boundary inputs
and outputs for (5) to have a so-called boundary control
system on X , see e.g. [10], has been addressed in [15], [16].

Theorem 2.1: Let W be a n⇥2n real matrix. If W has full
rank and satisfies W⌃WT � 0, being ⌃ =

✓

0 I
I 0

◆

, then

the system (5) with input u(t) = W

✓

f@(t)
e@(t)

◆

is a bounda-

ry control system on X . Furthermore, the operator J x =

P1(@/@z)(Lx) + (P0 �G0)Lx with domain

D(J ) =

⇢

Lx 2 H1
(a, b;Rn

) |
✓

f@
e@

◆

2 KerW

�

generates a contraction semigroup on X . Moreover, let ˜W be
a full rank n⇥2n matrix such that

�

WT
˜WT

�

is invertible
and let P be given by

P =

✓

W⌃WT W⌃

˜WT

˜W⌃WT
˜W⌃

˜WT

◆�1

Define the output as y(t) =

˜W

✓

f@(t)
e@(t)

◆

. Then, for u 2

C2
(0,1;Rn

) and (Lx)(0) 2 H1
(a, b;Rn

), the following
energy balance equation is satisfied:

dH

dt
(x(t))  1

2

✓

u(t)
y(t)

◆T

P

✓

u(t)
y(t)

◆

(6)

In this paper, u and y are chosen in such a way that (5)
is in impedance form, i.e. W⌃WT

=

˜W⌃

˜WT
= 0, and

W⌃

˜WT
= I , so that P = ⌃ and (6) reduces to

dH

dt
(x(t))  yT(t)u(t) (7)

Under these hypotheses, (5) is characterised by a Dirac
structure on the space of flows

F = FS ⇥ FR ⇥ FC (8)

with FS = L2(a, b;Rn
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and is responsible for the interaction between the system
and the “environment,” e.g. a (boundary) controller. The
same structure, but clearly different structure matrices F
and E, can be found also in case the distributed parameter
system is interconnected with a finite dimensional, linear
port-Hamiltonian system. This case is treated in Sect. VI.

The Dirac structure can be written in the form (3), where
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being (Be)T =

�

eT(b) eT(a)
�

, 8e 2 L2(a, b;Rn
). The

port-Hamiltonian system (5) is a consequence of the follow-
ing port behaviour at the storage and resistive ports:

fS = �@x

@t
eS =

�H

�x
= Lx eR = � ¯GfR (11)

where � denotes the variational derivative, and GR in (10)
and ¯G are such that G0 = GR

¯GGT
R. Moreover, we have that
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=

⇢

(f, e) 2 F ⇥ E | eS absolutely

continuous, and
@eS
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(12)

As far as the image representation (4) is concerned, since
⇤ = L2(a, b;Rn

)⇥Rr ⇥Rn ⇥Rn, we have that F ⇤
S = FT

S ,
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III. BOUNDARY ENERGY-BALANCING CONTROL

From (7), the port-Hamiltonian system (4) satisfies fol-
lowing energy balancing relation in integral form

H(x(t))�H(x(0)) =

Z t

0
yT(⌧)u(⌧) d⌧ � d(t) (15)

where d(t) � 0 takes into account the dissipated energy.
The standard formulation of passivity-based control requires
to determine a control action

u(t) = �(x(t)) + u0
(t) (16)

such that the closed-loop dynamics satisfies the following
new energy-balance relation:

Hd(x(t))�Hd(x(0)) =

Z t

0
y0T(⌧)u0

(⌧) d⌧ � dd(t) (17)

Here, Hd is a desired energy function that has a strict
minimum at the equilibrium, y0 is the new passive “output,”
while dd(t) � 0 replaces the natural dissipation, that is
usually increased to improve the convergence rate. So, a
direct comparison between (15) and (17) clearly shows the
main steps of this control technique, i.e. the energy shaping
plus the damping injection, [8], [9], [17].

A large class of dynamical systems can be stabilized by
further requiring to find a function � such that the energy
supplied by the controller is a function Ha of the state of
the plant, i.e. if

��T
(x(t))u(t) =

Z b

a

�THa

�x
(t, z)

@x

@t
(t, z)dz (18)

Clearly, (18) is a particular case of (17), provided that

Hd(x(t)) = H(x(t)) +Ha(x(t)) (19)
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= 0

for all � in the set defined in (14), relation that can be
satisfied if

�

0, 0, 0, �Ha
�x , 0, ��

�

2 D. Having in mind the
image representation of the Dirac structure, we can state the
next general proposition.

Proposition 3.1: (Energy-balancing control) Let us con-
sider a port-Hamiltonian system characterised by a Dirac
structure on the space of flows (8), with matrices F and
E given by (9), and port behaviour at the storage and
resistive ports (11). Then, there exist an energy-balancing
state feedback law in the form (16) and a function Ha that
satisfy (18) if it is possible to find � in (14) such that
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Remark 3.1: Solution of (20) provides both the class of
functions Ha that can be employed in the energy shaping
procedure, and the associated control action (16).

This result is equivalent to the control by interconnection
and energy shaping based on the presence of Casimir func-
tions in closed-loop, [4]–[7]. This methodology is not able to
overcome the dissipation obstacle, as shown in Sect. VI for
the transmission line with RLC load in parallel configuration.
This problem is solved in the next section by supposing
that the controller is allowed to supply an infinite amount
of power to the plant, also at the equilibrium.

IV. BOUNDARY CONTROL VIA STATE-MODULATED
SOURCE

The solution of (20) can be stated as follows: find a state
dependent control action � that is able to shape the open-
loop Hamiltonian thanks to Ha, and in such a way that
closed-loop and target dynamics have the same behaviour
at the storage, resistive and control ports. This requirement
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Remark 3.1: Solution of (20) provides both the class offunctions Ha that can be employed in the energy shapingprocedure, and the associated control action (16).This result is equivalent to the control by interconnectionand energy shaping based on the presence of Casimir func-tions in closed-loop, [4]–[7]. This methodology is not able toovercome the dissipation obstacle, as shown in Sect. VI forthe transmission line with RLC load in parallel configuration.This problem is solved in the next section by supposingthat the controller is allowed to supply an infinite amountof power to the plant, also at the equilibrium.
IV. BOUNDARY CONTROL VIA STATE-MODULATED

SOURCE
The solution of (20) can be stated as follows: find a statedependent control action � that is able to shape the open-loop Hamiltonian thanks to Ha, and in such a way thatclosed-loop and target dynamics have the same behaviourat the storage, resistive and control ports. This requirement
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and is responsible for the interaction between the system
and the “environment,” e.g. a (boundary) controller. The
same structure, but clearly different structure matrices F
and E, can be found also in case the distributed parameter
system is interconnected with a finite dimensional, linear
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III. BOUNDARY ENERGY-BALANCING CONTROL

From (7), the port-Hamiltonian system (4) satisfies fol-
lowing energy balancing relation in integral form
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The standard formulation of passivity-based control requires
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Here, Hd is a desired energy function that has a strict
minimum at the equilibrium, y0 is the new passive “output,”
while dd(t) � 0 replaces the natural dissipation, that is
usually increased to improve the convergence rate. So, a
direct comparison between (15) and (17) clearly shows the
main steps of this control technique, i.e. the energy shaping
plus the damping injection, [8], [9], [17].

A large class of dynamical systems can be stabilized by
further requiring to find a function � such that the energy
supplied by the controller is a function Ha of the state of
the plant, i.e. if
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next general proposition.

Proposition 3.1: (Energy-balancing control) Let us con-
sider a port-Hamiltonian system characterised by a Dirac
structure on the space of flows (8), with matrices F and
E given by (9), and port behaviour at the storage and
resistive ports (11). Then, there exist an energy-balancing
state feedback law in the form (16) and a function Ha that
satisfy (18) if it is possible to find � in (14) such that
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Remark 3.1: Solution of (20) provides both the class of
functions Ha that can be employed in the energy shaping
procedure, and the associated control action (16).

This result is equivalent to the control by interconnection
and energy shaping based on the presence of Casimir func-
tions in closed-loop, [4]–[7]. This methodology is not able to
overcome the dissipation obstacle, as shown in Sect. VI for
the transmission line with RLC load in parallel configuration.
This problem is solved in the next section by supposing
that the controller is allowed to supply an infinite amount
of power to the plant, also at the equilibrium.
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III. BOUNDARY ENERGY-BALANCING CONTROL

From (7), the port-Hamiltonian system (4) satisfies fol-
lowing energy balancing relation in integral form

H(x(t))�H(x(0)) =

Z t

0
yT(⌧)u(⌧) d⌧ � d(t) (15)

where d(t) � 0 takes into account the dissipated energy.
The standard formulation of passivity-based control requires
to determine a control action

u(t) = �(x(t)) + u0
(t) (16)

such that the closed-loop dynamics satisfies the following
new energy-balance relation:

Hd(x(t))�Hd(x(0)) =

Z t

0
y0T(⌧)u0

(⌧) d⌧ � dd(t) (17)

Here, Hd is a desired energy function that has a strict
minimum at the equilibrium, y0 is the new passive “output,”
while dd(t) � 0 replaces the natural dissipation, that is
usually increased to improve the convergence rate. So, a
direct comparison between (15) and (17) clearly shows the
main steps of this control technique, i.e. the energy shaping
plus the damping injection, [8], [9], [17].

A large class of dynamical systems can be stabilized by
further requiring to find a function � such that the energy
supplied by the controller is a function Ha of the state of
the plant, i.e. if
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2 D. Having in mind the
image representation of the Dirac structure, we can state the
next general proposition.

Proposition 3.1: (Energy-balancing control) Let us con-
sider a port-Hamiltonian system characterised by a Dirac
structure on the space of flows (8), with matrices F and
E given by (9), and port behaviour at the storage and
resistive ports (11). Then, there exist an energy-balancing
state feedback law in the form (16) and a function Ha that
satisfy (18) if it is possible to find � in (14) such that
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Remark 3.1: Solution of (20) provides both the class of
functions Ha that can be employed in the energy shaping
procedure, and the associated control action (16).

This result is equivalent to the control by interconnection
and energy shaping based on the presence of Casimir func-
tions in closed-loop, [4]–[7]. This methodology is not able to
overcome the dissipation obstacle, as shown in Sect. VI for
the transmission line with RLC load in parallel configuration.
This problem is solved in the next section by supposing
that the controller is allowed to supply an infinite amount
of power to the plant, also at the equilibrium.

IV. BOUNDARY CONTROL VIA STATE-MODULATED
SOURCE

The solution of (20) can be stated as follows: find a state
dependent control action � that is able to shape the open-
loop Hamiltonian thanks to Ha, and in such a way that
closed-loop and target dynamics have the same behaviour
at the storage, resistive and control ports. This requirement
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III. BOUNDARY ENERGY-BALANCING CONTROL
From (7), the port-Hamiltonian system (4) satisfies fol-lowing energy balancing relation in integral form
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Here, Hd is a desired energy function that has a strictminimum at the equilibrium, y0 is the new passive “output,”while dd(t) �
0 replaces the natural dissipation, that isusually increased to improve the convergence rate. So, adirect comparison between (15) and (17) clearly shows themain steps of this control technique, i.e. the energy shapingplus the damping injection, [8], [9], [17].
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Remark 3.1: Solution of (20) provides both the class offunctions Ha that can be employed in the energy shapingprocedure, and the associated control action (16).This result is equivalent to the control by interconnectionand energy shaping based on the presence of Casimir func-tions in closed-loop, [4]–[7]. This methodology is not able toovercome the dissipation obstacle, as shown in Sect. VI forthe transmission line with RLC load in parallel configuration.This problem is solved in the next section by supposingthat the controller is allowed to supply an infinite amountof power to the plant, also at the equilibrium.
IV. BOUNDARY CONTROL VIA STATE-MODULATED

SOURCE
The solution of (20) can be stated as follows: find a statedependent control action � that is able to shape the open-loop Hamiltonian thanks to Ha, and in such a way thatclosed-loop and target dynamics have the same behaviourat the storage, resistive and control ports. This requirement
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III. BOUNDARY ENERGY-BALANCING CONTROL

From (7), the port-Hamiltonian system (4) satisfies fol-

lowing energy balancing relation in integral form
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takes into account the dissipated energy.

The standard formulation of passivity-based control requires

to determine a control action
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Remark 3.1: Solution of (20) provides both the class of

functions Ha that can be employed in the energy shaping

procedure, and the associated control action (16).

This result is equivalent to the control by interconnection

and energy shaping based on the presence of Casimir func-

tions in closed-loop, [4]–[7]. This methodology is not able to

overcome the dissipation obstacle, as shown in Sect. VI for

the transmission line with RLC load in parallel configuration.

This problem is solved in the next section by supposing

that the controller is allowed to supply an infinite amount

of power to the plant, also at the equilibrium.

IV. BOUNDARY CONTROL VIA STATE-MODULATED

SOURCE

The solution of (20) can be stated as follows: find a state

dependent control action � that is able to shape the open-

loop Hamiltonian thanks to Ha, and in such a way that

closed-loop and target dynamics have the same behaviour

at the storage, resistive and control ports. This requirement

The image representation  
 
allows an easy mapping of the effect of the 
boundary (inputs) on the system dynamics: for this reason, it is the main tool used in the control synthesis

II. BACKGROUND
A. Dirac structures on Hilbert spaces

Dirac structures on Hilbert spaces have been introduced in[12], while their kernel and image representations have beendiscussed in [13]. Here, for simplicity, we assume that thespace of flows F is an Hilbert space, and that the space ofefforts is E ⌘ F . Denote by h· | ·i the inner product on F .The Cartesian space F ⇥ E equipped by the inner product
h
(f1, e1) | (f2, e2)iF�E = hf1 | f2i+ he1 | e2i

with f1, f2 2 F and e1, e2 2 E , is called the Hilbert spaceF�E . Differently, the Cartesian space F⇥E equipped withthe indefinite inner product

⌧
(f1, e1), (f2, e2) �= hf1 | e2i+ hf2 | e1i (1)

is the bond space B. Given a linear space A ⇢ B, itsorthogonal complement with respect to (1) is
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Similarly to the case in which the bond space is a linearvector space [11], we give the following definition, [13]:Definition 2.1: Let F and E be the spaces of efforts andflows, B the associated bond space, and D a linear subset ofB. We say that D is a Dirac structure on B if D
= D?.In [13], it has been proved that all the Dirac structures onHilbert spaces admit a kernel and an image representation. Infact, denote by
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where · stands for the closure of an operator, while ·⇤denotes the adjoint operator, see e.g. [10]. From (2), itfollows that D can be also written as
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The expressions (3) and (4) are the kernel and image repre-sentations respectively of the Dirac structure D. The imagerepresentation is useful in the control synthesis because itprovides a simple way to parametrize the system trajectories.
B. A class of distributed port-Hamiltonian systems

In this paper, we refer to the class of distributed port-Hamiltonian systems that have been studied in [15], [16],i.e. to systems described by the following PDE:
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To define a distributed port-Hamiltonian system, the PDE(5) has to be “completed” by proper boundary port. Moreprecisely, given Lx 2 H1
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The boundary port variables are just a linear combinationof the restriction of the boundary variables, and simpleintegration by parts shows that ˙H
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In this paper, u and y are chosen in such a way that (5)is in impedance form, i.e. W
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Under these hypotheses, (5) is characterised by a Diracstructure on the space of flows

F
= FS ⇥ FR ⇥ FC (8)
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and the dynamics follows from the port behaviour (4), i.e.
fS,1 = �ẋ1 and eS,1 = @H1

@x1
.

III. ENERGY-BASED CONTROL

To simplify the notation, in (5) the “interaction port” is
not taken into account, i.e. FI = ;. However, all the result
that are presented in this section can be easily extended to
the most general case.

A. Energy-balancing passivity-based control
The energy-balance relation (9) can be equivalently rewrit-

ten in integral form

H(x(t))�H(x(0)) =

Z t

0
eTC(⌧)fC(⌧)d⌧ � d(t) (18)

where d(t) � 0 takes into account the dissipated energy. It is
well known that, under the hypothesis that (8) as an effort-
in causality at the control port, the standard formulation of
passivity-based control requires to determine a control action

eC = �(x) + e0C (19)

such that the closed-loop dynamics satisfies the following
new energy-balance relation:
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Here, Hd is a desired energy function that has a strict
minimum at x?, f 0

C is the new passive “output,” while
dd(t) � 0 replaces the natural dissipation, that is usually
increased to improve the convergence rate. So, a direct
comparison between (18) and (20) clearly shows the main
step of this control technique, i.e. the energy shaping plus
the damping injection, [1], [2], [5].

A large class of dynamical systems can be stabilized by
further requiring to find a function �(x) such that the energy
supplied by the controller is a function Ha of the state of
the plant, i.e. if
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with  2 R some constant, [1], [2], [5]. Clearly, (21) is
a particular case of (20). In this respect, let us write the
“desired” closed-loop Hamiltonian as follows:

Hd(x) = H(x) +Ha(x) (22)

Given a desired equilibrium configuration x?, the idea is to
select Ha in such a way that Hd has a minimum in x?, that
is made asymptotically stable by damping injection.

Having in mind the image representation (2) of a Dirac
structure in the form (5), the differential formulation of (21)
is equivalent to require that
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from the resistive relation: an equivalent way to re-write (23)
is in fact
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It is easy to verify that, thanks to (19), the port-
Hamiltonian system (8) is transformed into another port-
Hamiltonian system with Hamiltonian Hd given by (22) that
satisfies the following energy-balance relation:

dHd

dt
= eTRfR + e0

T
CfC  e0

T
CfC (25)

Clearly, among all the possible choices compatible with (23)
or (24), Ha will be selected in such a way that Hd is a
candidate Lyapunov function with a minimum at the desired
equilibrium x?. Then, (25) can be used in Lyapunov analysis
to deduce stability of x? by taking, for example, e0C = 0. The
equilibrium turns out to be asymptotically stable if the largest
invariant set under the closed-loop dynamics contained in
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(26)

equals {x?}, being B an open neighbourhood of x?.
Furthermore, from the linearity properties of the Dirac

structure, the open-loop system with control input (19) and
the target dynamics resulting from the Hamiltonian (22)
share the same behaviour at the storage, resistive and control
ports, independently from the resistive relation. This means
that (23) or (24) impose a strong link between open and
closed-loop dynamics, that is based only on the property
of the Dirac structure. This is somehow related to the so-
called “dissipation obstacle,” that prevents energy-balancing
passivity-based control schemes to stabilise equilibria that
require an infinite amount of supplied energy. A possible
solution to this problem is illustrated in the next section.
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fS,1 = �ẋ1 and eS,1 = @H1

@x1
.

III. ENERGY-BASED CONTROL

To simplify the notation, in (5) the “interaction port” is
not taken into account, i.e. FI = ;. However, all the result
that are presented in this section can be easily extended to
the most general case.

A. Energy-balancing passivity-based control
The energy-balance relation (9) can be equivalently rewrit-

ten in integral form

H(x(t))�H(x(0)) =

Z t

0
eTC(⌧)fC(⌧)d⌧ � d(t) (18)

where d(t) � 0 takes into account the dissipated energy. It is
well known that, under the hypothesis that (8) as an effort-
in causality at the control port, the standard formulation of
passivity-based control requires to determine a control action

eC = �(x) + e0C (19)

such that the closed-loop dynamics satisfies the following
new energy-balance relation:

Hd(x(t))�Hd(x(0)) =

Z t

0
e0C

T
(⌧)f 0

C(⌧)d⌧ � dd(t) (20)

Here, Hd is a desired energy function that has a strict
minimum at x?, f 0

C is the new passive “output,” while
dd(t) � 0 replaces the natural dissipation, that is usually
increased to improve the convergence rate. So, a direct
comparison between (18) and (20) clearly shows the main
step of this control technique, i.e. the energy shaping plus
the damping injection, [1], [2], [5].

A large class of dynamical systems can be stabilized by
further requiring to find a function �(x) such that the energy
supplied by the controller is a function Ha of the state of
the plant, i.e. if

�
Z t

0
�T(x(⌧))fC(⌧)d⌧ = Ha(x(t)) +  (21)

with  2 R some constant, [1], [2], [5]. Clearly, (21) is
a particular case of (20). In this respect, let us write the
“desired” closed-loop Hamiltonian as follows:

Hd(x) = H(x) +Ha(x) (22)

Given a desired equilibrium configuration x?, the idea is to
select Ha in such a way that Hd has a minimum in x?, that
is made asymptotically stable by damping injection.

Having in mind the image representation (2) of a Dirac
structure in the form (5), the differential formulation of (21)
is equivalent to require that

✓

�@THa

@x
ET

S + �TET
C

◆

� = 0

for all � 2 RnS+nR+nC , or equivalently that

�ES
@Ha

@x
+ EC� = 0 (23)

The PDE (23) provides the family of Hamiltonian Ha that
can be used to shape the energy function in closed-loop, and
the control action that realizes it. This equation is determined
by the Dirac structure D of the plant, and it is independent
from the resistive relation: an equivalent way to re-write (23)
is in fact

0

B

B

B

B

B

B

@

0
0
0

�@Ha
@x
0
�

1

C

C

C

C

C

C

A

2 Im

0

B

B

B

B

B

B

@

ET
S

ET
R

ET
C

FT
S

FT
R

FT
C

1

C

C

C

C

C

C

A

⌘ D (24)

It is easy to verify that, thanks to (19), the port-
Hamiltonian system (8) is transformed into another port-
Hamiltonian system with Hamiltonian Hd given by (22) that
satisfies the following energy-balance relation:

dHd

dt
= eTRfR + e0

T
CfC  e0

T
CfC (25)

Clearly, among all the possible choices compatible with (23)
or (24), Ha will be selected in such a way that Hd is a
candidate Lyapunov function with a minimum at the desired
equilibrium x?. Then, (25) can be used in Lyapunov analysis
to deduce stability of x? by taking, for example, e0C = 0. The
equilibrium turns out to be asymptotically stable if the largest
invariant set under the closed-loop dynamics contained in

n

x 2 X \ B | eTRfR = 0
o

(26)

equals {x?}, being B an open neighbourhood of x?.
Furthermore, from the linearity properties of the Dirac

structure, the open-loop system with control input (19) and
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ports, independently from the resistive relation. This means
that (23) or (24) impose a strong link between open and
closed-loop dynamics, that is based only on the property
of the Dirac structure. This is somehow related to the so-
called “dissipation obstacle,” that prevents energy-balancing
passivity-based control schemes to stabilise equilibria that
require an infinite amount of supplied energy. A possible
solution to this problem is illustrated in the next section.
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Dirac structures & control synthesis

For distributed-parameter systems, we have

and is responsible for the interaction between the system
and the “environment,” e.g. a (boundary) controller. The
same structure, but clearly different structure matrices F
and E, can be found also in case the distributed parameter
system is interconnected with a finite dimensional, linear
port-Hamiltonian system. This case is treated in Sect. VI.
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III. BOUNDARY ENERGY-BALANCING CONTROL

From (7), the port-Hamiltonian system (4) satisfies fol-
lowing energy balancing relation in integral form

H(x(t))�H(x(0)) =
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where d(t) � 0 takes into account the dissipated energy.
The standard formulation of passivity-based control requires
to determine a control action

u(t) = �(x(t)) + u0
(t) (16)

such that the closed-loop dynamics satisfies the following
new energy-balance relation:
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Here, Hd is a desired energy function that has a strict
minimum at the equilibrium, y0 is the new passive “output,”
while dd(t) � 0 replaces the natural dissipation, that is
usually increased to improve the convergence rate. So, a
direct comparison between (15) and (17) clearly shows the
main steps of this control technique, i.e. the energy shaping
plus the damping injection, [8], [9], [17].

A large class of dynamical systems can be stabilized by
further requiring to find a function � such that the energy
supplied by the controller is a function Ha of the state of
the plant, i.e. if
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next general proposition.
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Remark 3.1: Solution of (20) provides both the class of
functions Ha that can be employed in the energy shaping
procedure, and the associated control action (16).

This result is equivalent to the control by interconnection
and energy shaping based on the presence of Casimir func-
tions in closed-loop, [4]–[7]. This methodology is not able to
overcome the dissipation obstacle, as shown in Sect. VI for
the transmission line with RLC load in parallel configuration.
This problem is solved in the next section by supposing
that the controller is allowed to supply an infinite amount
of power to the plant, also at the equilibrium.

IV. BOUNDARY CONTROL VIA STATE-MODULATED
SOURCE

The solution of (20) can be stated as follows: find a state
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direct comparison between (15) and (17) clearly shows the
main steps of this control technique, i.e. the energy shaping
plus the damping injection, [8], [9], [17].

A large class of dynamical systems can be stabilized by
further requiring to find a function � such that the energy
supplied by the controller is a function Ha of the state of
the plant, i.e. if

��T
(x(t))u(t) =

Z b

a

�THa

�x
(t, z)

@x

@t
(t, z)dz (18)

Clearly, (18) is a particular case of (17), provided that

Hd(x(t)) = H(x(t)) +Ha(x(t)) (19)

Note that (18) is equivalent to require that on ⇤

⌧

EC� � ES
�Ha

�x
| �

�

= 0

for all � in the set defined in (14), relation that can be
satisfied if

�

0, 0, 0, �Ha
�x , 0, ��

�

2 D. Having in mind the
image representation of the Dirac structure, we can state the
next general proposition.

Proposition 3.1: (Energy-balancing control) Let us con-
sider a port-Hamiltonian system characterised by a Dirac
structure on the space of flows (8), with matrices F and
E given by (9), and port behaviour at the storage and
resistive ports (11). Then, there exist an energy-balancing
state feedback law in the form (16) and a function Ha that
satisfy (18) if it is possible to find � in (14) such that
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Remark 3.1: Solution of (20) provides both the class of
functions Ha that can be employed in the energy shaping
procedure, and the associated control action (16).

This result is equivalent to the control by interconnection
and energy shaping based on the presence of Casimir func-
tions in closed-loop, [4]–[7]. This methodology is not able to
overcome the dissipation obstacle, as shown in Sect. VI for
the transmission line with RLC load in parallel configuration.
This problem is solved in the next section by supposing
that the controller is allowed to supply an infinite amount
of power to the plant, also at the equilibrium.

IV. BOUNDARY CONTROL VIA STATE-MODULATED
SOURCE

The solution of (20) can be stated as follows: find a state
dependent control action � that is able to shape the open-
loop Hamiltonian thanks to Ha, and in such a way that
closed-loop and target dynamics have the same behaviour
at the storage, resistive and control ports. This requirement

All the results based on energy-Casimir 
method for distributed port-Hamiltonian 
systems are solution of this PDE
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Let us consider at first the finite element model of a transmission line, 
which is characterized by a Dirac structure with matrices 
 
and an Hamiltonian

Fig. 3. Finite element model of a lossless transmission line.

structure defined by the following relation:
0

B

B

@

1 0
0 1
0 0
0 0

1

C

C

A

| {z }

=:FS,s

✓

fQ
f�

◆

+

0

B

B

@

0 1
�1 0
0 1
0 1

1

C

C

A

| {z }

=:ES,s

✓

eQ
e�

◆

+

0

B

B

@

0
0
�1
0

1

C

C

A

| {z }

=:FR,s

fR+

+

0

B

B

@

0
1
0
0

1

C

C

A

| {z }

=:ER,s

eR +

0

B

B

@

0
0
0
�1

1

C

C

A

f +

0

B

B

@

0
1
0
0

1

C

C

A

e = 0 (10)

On the other hand, the Dirac stricture of the RLC circuit in
parallel configuration of Fig. 2(b) is defined by the following
relation:
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In both cases, the Hamiltonian is given by

HL(xQ, x�) =
1

2

 

x2
Q

CL
+

x2
�

LL

!

(12)

where xQ and x� are the charge in the capacitor and the
magnetic field in the inductor, respectively. Moreover, the
resistive relation (6) takes the form

RLfR + eR = 0 (13)

Finally, the dynamics follows from (4), that now reads

fQ = �ẋQ f� = �ẋ� eQ =
@HL

@xQ
e� =

@HL

@x�
Example 2.2 (Trasmission line): The distributed port-

Hamiltonian description of the lossless transmission line
has been given in [14], but in this paper its finite element
approximation discussed in [6] is adopted for control
purposes. It is beyond the scope of this paper to provide a
detailed description on how this approximation is obtained.

Roughly speaking, the spatial domain Z = [0, L] of
the trasmission line is divided into N segments, and
on each segment the dynamics is approximated by a
finite dimensional port-Hamiltonian system. Denote by
Zi = [li, ri], with i = 1, . . . , N , one segment. Clearly,
ri = li+1 for i = 1, . . . , N � 1, and l1 = 0 and rN = L.
Then, it is possible to verify that a port-Hamiltonian system
that approximates the infinite dimensional dynamics on
Zi is characterized by a Dirac structure describe by the
following set of equations, that show the effect on the
internal “energy port” of the boundary conditions in z = li:

eil = eiq + (1� ↵)f i
� f i

l = �ei� � (1� ↵)f i
q (14)

and in z = ri:

eir = eiq � ↵f i
� f i

r = �↵f i
q + ei� (15)

where 0 < ↵ < 1 is a free parameter. With reference to
Fig. 3, in (14) and (15), f i

q and f i
� represent (minus) the

currents flowing through the capacitor Ci and the inductor
Li that approximate the dynamics of electrical and magnetic
fields on Zi, while eiq and ei� are the voltages at the same
components. Moreover, (f i

l , e
i
l) and (f i

r, e
i
r) define a pair

of ports that are the discrete counterpart of the boundary
conditions for the spatial domain Zi. The complete Dirac
structure of the trasmission line is obtained by interconnect-
ing in power-conserving way all the Dirac structure defined
on each Zi, by imposing that f i

r = �f i+1
l and eir = ei+1

l ,
for i = 1, . . . , N � 1. The result is a Dirac structure in the
form (5) with FR = ;, defined by the following relation:
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and the storage, control and interaction ports given by
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�T denotes the state
variable, the total Hamiltonian is given by
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(17)

and the dynamics follows from the port behaviour (4), i.e.
fS,1 = �ẋ1 and eS,1 = @H1

@x1
.

III. ENERGY-BASED CONTROL

To simplify the notation, in (5) the “interaction port” is
not taken into account, i.e. FI = ;. However, all the result
that are presented in this section can be easily extended to
the most general case.

A. Energy-balancing passivity-based control
The energy-balance relation (9) can be equivalently rewrit-

ten in integral form

H(x(t))�H(x(0)) =

Z t

0
eTC(⌧)fC(⌧)d⌧ � d(t) (18)

where d(t) � 0 takes into account the dissipated energy. It is
well known that, under the hypothesis that (8) as an effort-
in causality at the control port, the standard formulation of
passivity-based control requires to determine a control action

eC = �(x) + e0C (19)

such that the closed-loop dynamics satisfies the following
new energy-balance relation:

Hd(x(t))�Hd(x(0)) =

Z t

0
e0C

T
(⌧)f 0

C(⌧)d⌧ � dd(t) (20)

Here, Hd is a desired energy function that has a strict
minimum at x?, f 0

C is the new passive “output,” while
dd(t) � 0 replaces the natural dissipation, that is usually
increased to improve the convergence rate. So, a direct
comparison between (18) and (20) clearly shows the main
step of this control technique, i.e. the energy shaping plus
the damping injection, [1], [2], [5].

A large class of dynamical systems can be stabilized by
further requiring to find a function �(x) such that the energy
supplied by the controller is a function Ha of the state of
the plant, i.e. if

�
Z t

0
�T(x(⌧))fC(⌧)d⌧ = Ha(x(t)) +  (21)

with  2 R some constant, [1], [2], [5]. Clearly, (21) is
a particular case of (20). In this respect, let us write the
“desired” closed-loop Hamiltonian as follows:

Hd(x) = H(x) +Ha(x) (22)

Given a desired equilibrium configuration x?, the idea is to
select Ha in such a way that Hd has a minimum in x?, that
is made asymptotically stable by damping injection.

Having in mind the image representation (2) of a Dirac
structure in the form (5), the differential formulation of (21)
is equivalent to require that
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for all � 2 RnS+nR+nC , or equivalently that

�ES
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@x
+ EC� = 0 (23)

The PDE (23) provides the family of Hamiltonian Ha that
can be used to shape the energy function in closed-loop, and
the control action that realizes it. This equation is determined
by the Dirac structure D of the plant, and it is independent
from the resistive relation: an equivalent way to re-write (23)
is in fact
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⌘ D (24)

It is easy to verify that, thanks to (19), the port-
Hamiltonian system (8) is transformed into another port-
Hamiltonian system with Hamiltonian Hd given by (22) that
satisfies the following energy-balance relation:

dHd

dt
= eTRfR + e0

T
CfC  e0

T
CfC (25)

Clearly, among all the possible choices compatible with (23)
or (24), Ha will be selected in such a way that Hd is a
candidate Lyapunov function with a minimum at the desired
equilibrium x?. Then, (25) can be used in Lyapunov analysis
to deduce stability of x? by taking, for example, e0C = 0. The
equilibrium turns out to be asymptotically stable if the largest
invariant set under the closed-loop dynamics contained in

n

x 2 X \ B | eTRfR = 0
o

(26)

equals {x?}, being B an open neighbourhood of x?.
Furthermore, from the linearity properties of the Dirac

structure, the open-loop system with control input (19) and
the target dynamics resulting from the Hamiltonian (22)
share the same behaviour at the storage, resistive and control
ports, independently from the resistive relation. This means
that (23) or (24) impose a strong link between open and
closed-loop dynamics, that is based only on the property
of the Dirac structure. This is somehow related to the so-
called “dissipation obstacle,” that prevents energy-balancing
passivity-based control schemes to stabilise equilibria that
require an infinite amount of supplied energy. A possible
solution to this problem is illustrated in the next section.
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and the dynamics follows from the port behaviour (4), i.e.
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It is easy to verify that, thanks to (19), the port-

Hamiltonian system (8) is transformed into another port-

Hamiltonian system with Hamiltonian Hd given by (22) that

satisfies the following energy-balance relation:
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Clearly, among all the possible choices compatible with (23)

or (24), Ha will be selected in such a way that Hd is a

candidate Lyapunov function with a minimum at the desired

equilibrium x?. Then, (25) can be used in Lyapunov analysis

to deduce stability of x? by taking, for example, e0C = 0. The

equilibrium turns out to be asymptotically stable if the largest

invariant set under the closed-loop dynamics contained in
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equals {x?}, being B an open neighbourhood of x?.

Furthermore, from the linearity properties of the Dirac

structure, the open-loop system with control input (19) and

the target dynamics resulting from the Hamiltonian (22)

share the same behaviour at the storage, resistive and control

ports, independently from the resistive relation. This means

that (23) or (24) impose a strong link between open and

closed-loop dynamics, that is based only on the property

of the Dirac structure. This is somehow related to the so-

called “dissipation obstacle,” that prevents energy-balancing

passivity-based control schemes to stabilise equilibria that

require an infinite amount of supplied energy. A possible

solution to this problem is illustrated in the next section.

The plant is a finite dimensional port-

Hamiltonian system with control port (fC, eC)

controller
load
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For the complete system we have 

Simple physical considerations lead to the desired equilibrium: 

The energy-balance controller follows if it exists λ such that

B. Passivity-based control with state-modulated source

The solution of (24) can be stated as follows: find a state
dependent control action � that is able to shape the open-loop
Hamiltonian thanks to Ha, and in such a way that closed-
loop dynamics i.e., (8) with (19), and target dynamics i.e.,
the port-Hamiltonian system with the same Dirac structure
(5) and resistive relation (6), but with Hamiltonian (22), have
the same behaviour at the storage, resistive and control ports.
This requirement is quite strong, and it can be relaxed by
requiring that the control input �(x) is able to map the tra-
jectories of the open-loop system (8) into the trajectories of
another port-Hamiltonian system with Hamiltonian (22), and
characterised by the same Dirac structure (5) and resistive
relation (6).

From the image representation (2) of a Dirac structure,
as far as the open-loop dynamics is concerned, it exists a
possibly time-dependent � 2 RnS+nR+nC such that
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Similarly, as far as the “desired dynamics” is concerned,
there exists �0 2 RnS+nR+nC such that
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Since the trajectories are required to be the same, and in
spite of (19) and (22), we have that
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(27)

Note that if (24) holds, then also (27) is satisfied.
It is easy to verify that, if (27) holds, then the open-

loop system is mapped into the desired closed-loop one, for
which the Hamiltonian function Hd is selected so that “nice”
stability properties are satisfied: the same consideration about
the proof of asymptotic stability drawn for the energy-
balancing passivity-based control discussed in the previous
section are still valid here. More details on this point in the
next session.

IV. EXAMPLE: TRANSMISSION LINE WITH RLC LOAD

The scope of this section is to verify the applicability of
the previously introduced techniques to a simple but illus-
trative example. The plant consists of the power conserving
interconnection of the spatially discretized transmission line
of Example 2.2 with the series and parallel RLC circuits
presented in Example 2.1. In both cases, we impose that
fI = �f and eI = e.

In case the transmission line load is the RLC circuit
in the series configuration, from (10) and (16), the port-
Hamiltonian model is characterised by a Dirac structure
defined by (5), where
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with
fS =

�

fQ f� fS,1
�T

eS =
�

eQ e� eS,1
�T

(29)

Moreover, the resistive relation (13) holds. The state variable
is the collection of the state variables of the two main
subsystems:

x =
�

xQ x� x1
�T (30)

and the total Hamiltonian the sum of the (12) and (17), i.e.:

H(x) = H1(x1) +HL(xQ, x�) (31)

Simple physical considerations show that the desired equi-
librium configuration is:

x?
Q

CL
=

xi,?
q

Ci
= e?

x?
�

LL
=

xi,?
�

Li
= 0

for i = 1, . . . , N , that means zero flowing current and
constant voltage e? along the transmission line and on the
load. As in the case in which the transmission line is
not present, such equilibrium can be stabilised via energy-
shaping by following the methodology discussed in Sect. III-
A. In particular, the PDE (23) or its equivalent formulation

B. Passivity-based control with state-modulated source

The solution of (24) can be stated as follows: find a state
dependent control action � that is able to shape the open-loop
Hamiltonian thanks to Ha, and in such a way that closed-
loop dynamics i.e., (8) with (19), and target dynamics i.e.,
the port-Hamiltonian system with the same Dirac structure
(5) and resistive relation (6), but with Hamiltonian (22), have
the same behaviour at the storage, resistive and control ports.
This requirement is quite strong, and it can be relaxed by
requiring that the control input �(x) is able to map the tra-
jectories of the open-loop system (8) into the trajectories of
another port-Hamiltonian system with Hamiltonian (22), and
characterised by the same Dirac structure (5) and resistive
relation (6).

From the image representation (2) of a Dirac structure,
as far as the open-loop dynamics is concerned, it exists a
possibly time-dependent � 2 RnS+nR+nC such that
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Note that if (24) holds, then also (27) is satisfied.
It is easy to verify that, if (27) holds, then the open-

loop system is mapped into the desired closed-loop one, for
which the Hamiltonian function Hd is selected so that “nice”
stability properties are satisfied: the same consideration about
the proof of asymptotic stability drawn for the energy-
balancing passivity-based control discussed in the previous
section are still valid here. More details on this point in the
next session.

IV. EXAMPLE: TRANSMISSION LINE WITH RLC LOAD

The scope of this section is to verify the applicability of
the previously introduced techniques to a simple but illus-
trative example. The plant consists of the power conserving
interconnection of the spatially discretized transmission line
of Example 2.2 with the series and parallel RLC circuits
presented in Example 2.1. In both cases, we impose that
fI = �f and eI = e.

In case the transmission line load is the RLC circuit
in the series configuration, from (10) and (16), the port-
Hamiltonian model is characterised by a Dirac structure
defined by (5), where
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fS =
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Moreover, the resistive relation (13) holds. The state variable
is the collection of the state variables of the two main
subsystems:

x =
�

xQ x� x1
�T (30)

and the total Hamiltonian the sum of the (12) and (17), i.e.:

H(x) = H1(x1) +HL(xQ, x�) (31)

Simple physical considerations show that the desired equi-
librium configuration is:
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for i = 1, . . . , N , that means zero flowing current and
constant voltage e? along the transmission line and on the
load. As in the case in which the transmission line is
not present, such equilibrium can be stabilised via energy-
shaping by following the methodology discussed in Sect. III-
A. In particular, the PDE (23) or its equivalent formulation

B. Passivity-based control with state-modulated source

The solution of (24) can be stated as follows: find a state
dependent control action � that is able to shape the open-loop
Hamiltonian thanks to Ha, and in such a way that closed-
loop dynamics i.e., (8) with (19), and target dynamics i.e.,
the port-Hamiltonian system with the same Dirac structure
(5) and resistive relation (6), but with Hamiltonian (22), have
the same behaviour at the storage, resistive and control ports.
This requirement is quite strong, and it can be relaxed by
requiring that the control input �(x) is able to map the tra-
jectories of the open-loop system (8) into the trajectories of
another port-Hamiltonian system with Hamiltonian (22), and
characterised by the same Dirac structure (5) and resistive
relation (6).

From the image representation (2) of a Dirac structure,
as far as the open-loop dynamics is concerned, it exists a
possibly time-dependent � 2 RnS+nR+nC such that
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Note that if (24) holds, then also (27) is satisfied.
It is easy to verify that, if (27) holds, then the open-

loop system is mapped into the desired closed-loop one, for
which the Hamiltonian function Hd is selected so that “nice”
stability properties are satisfied: the same consideration about
the proof of asymptotic stability drawn for the energy-
balancing passivity-based control discussed in the previous
section are still valid here. More details on this point in the
next session.

IV. EXAMPLE: TRANSMISSION LINE WITH RLC LOAD

The scope of this section is to verify the applicability of
the previously introduced techniques to a simple but illus-
trative example. The plant consists of the power conserving
interconnection of the spatially discretized transmission line
of Example 2.2 with the series and parallel RLC circuits
presented in Example 2.1. In both cases, we impose that
fI = �f and eI = e.

In case the transmission line load is the RLC circuit
in the series configuration, from (10) and (16), the port-
Hamiltonian model is characterised by a Dirac structure
defined by (5), where
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with
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fQ f� fS,1
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eS =
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eQ e� eS,1
�T

(29)

Moreover, the resistive relation (13) holds. The state variable
is the collection of the state variables of the two main
subsystems:

x =
�

xQ x� x1
�T (30)

and the total Hamiltonian the sum of the (12) and (17), i.e.:

H(x) = H1(x1) +HL(xQ, x�) (31)

Simple physical considerations show that the desired equi-
librium configuration is:
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for i = 1, . . . , N , that means zero flowing current and
constant voltage e? along the transmission line and on the
load. As in the case in which the transmission line is
not present, such equilibrium can be stabilised via energy-
shaping by following the methodology discussed in Sect. III-
A. In particular, the PDE (23) or its equivalent formulation

(24) has a solution. With reference to (24), it is necessary to
find � = (�1, �2, �3)

T, possibly dependent on x, such that
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Let assume �1 = (�1,2, . . . , �1,4)
T, �2 = (�2,1,�2,2)

T and
�3 = (�3,1, . . . , �3,2(N�1))

T. Then, with simple calcula-
tions, from the last set of relations in (32), it follows that
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A possible choice for Ha is the following:
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where CC > 0 is a design parameter and  a constant. This
is the same result obtained in [7], where the controller has
been developed by generating Casimir functions in closed-
loop. The constant  can be selected to have the closed-loop
Hamiltonian (22) quadratic in the increments, i.e.:
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Stability easily follows from (25) and from the fact that (34)
is bounded from below. Asymptotic stability is proved by
checking that under the closed-loop dynamics, the largest
invariant solution contained in (26) equals the desired equi-
librium. In fact, when Ḣd = eTRfR = 0, we have that x� = 0
and xQ = x̄Q constant, to be determined later on. From the
system dynamics we obtain that

↵ẋN
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xN
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q +
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The only invariant solution compatible with Ḣd = 0 is xN
� =

0 and xN
q
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= x̄Q

CL
, and the iteration of this procedure for all

the elements of the transmission line leads to xi
� = 0 and

xi
q

Ci
= x̄Q

CL
, with i = 1, . . . , N . From (33) the value assumed

by the control action � in this steady state configuration can
be computed, and then it follows that x̄Q

CL
= e?, and this

completes the proof.
In case the load interconnected to the transmission line

is the RLC circuit in parallel configuration, the resulting
port-Hamiltonian model is characterised by a Dirac structure
defined by (5), where the matrices FS , FR, FC , ES , ER, and
EC are the same as in (28), but with FS,s, ES,s, FR,s, and
ER,s replaced by FS,p, ES,p, FR,p, and ER,p defined in (11).
Moreover, the port variables are defined in (29), the resistive
relation (13) holds, and state variable and Hamiltonian are
given by (30) and (31), respectively. The desired equilibrium
configuration is
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(35)

with i = 1, . . . , N , which means constant voltage e? and
current e?

RL
along the transmission line and on the load.

As in the situation in which there is no transmission line,
an energy-balancing passivity-based controller is not able to
stabilise the system, [2]. In other words, the PDE (23) or,
equivalently, (24) does not admit a solution Ha that is able to
shape the closed-loop Hamiltonian to introduce a minimum
at the desired equilibrium (35). For space limitations, this
step is not reported in this paper. Then, it is preferable to
rely on the method discussed in Sect. III-B, and look for
solutions of the PDE (27), i.e. to find � = (�1, �2, �3)

T

such that
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As in the previous example, from the last set of relations in
(36), it follows that
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(24) has a solution. With reference to (24), it is necessary to
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T, possibly dependent on x, such that
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A possible choice for Ha is the following:
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where CC > 0 is a design parameter and  a constant. This
is the same result obtained in [7], where the controller has
been developed by generating Casimir functions in closed-
loop. The constant  can be selected to have the closed-loop
Hamiltonian (22) quadratic in the increments, i.e.:
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with
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Stability easily follows from (25) and from the fact that (34)
is bounded from below. Asymptotic stability is proved by
checking that under the closed-loop dynamics, the largest
invariant solution contained in (26) equals the desired equi-
librium. In fact, when Ḣd = eTRfR = 0, we have that x� = 0
and xQ = x̄Q constant, to be determined later on. From the
system dynamics we obtain that
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, with i = 1, . . . , N . From (33) the value assumed

by the control action � in this steady state configuration can
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= e?, and this

completes the proof.
In case the load interconnected to the transmission line

is the RLC circuit in parallel configuration, the resulting
port-Hamiltonian model is characterised by a Dirac structure
defined by (5), where the matrices FS , FR, FC , ES , ER, and
EC are the same as in (28), but with FS,s, ES,s, FR,s, and
ER,s replaced by FS,p, ES,p, FR,p, and ER,p defined in (11).
Moreover, the port variables are defined in (29), the resistive
relation (13) holds, and state variable and Hamiltonian are
given by (30) and (31), respectively. The desired equilibrium
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with i = 1, . . . , N , which means constant voltage e? and
current e?

RL
along the transmission line and on the load.

As in the situation in which there is no transmission line,
an energy-balancing passivity-based controller is not able to
stabilise the system, [2]. In other words, the PDE (23) or,
equivalently, (24) does not admit a solution Ha that is able to
shape the closed-loop Hamiltonian to introduce a minimum
at the desired equilibrium (35). For space limitations, this
step is not reported in this paper. Then, it is preferable to
rely on the method discussed in Sect. III-B, and look for
solutions of the PDE (27), i.e. to find � = (�1, �2, �3)
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As in the previous example, from the last set of relations in
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A possible choice for Ha is the following:
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where CC > 0 is a design parameter and  a constant. This

is the same result obtained in [7], where the controller has

been developed by generating Casimir functions in closed-

loop. The constant  can be selected to have the closed-loop

Hamiltonian (22) quadratic in the increments, i.e.:

Hd(x) =
1

2
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q
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q
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(34)

with

Hd =

0

B

B

B

B

B

B

B

B

B

@

C2
L

CC
+ CL · · · CLCN

CC
0 · · · 0

... . . .
...

...
. . .

...

CLCN

CC
· · · C2

N

CC
+ CN 0 · · · 0

0 · · · 0
1
LL

· · · 0

... . . .
...

...
. . .

...

0 · · · 0 0 · · · 1
LN

1

C

C

C

C

C

C

C

C

C

A

Stability easily follows from (25) and from the fact that (34)

is bounded from below. Asymptotic stability is proved by

checking that under the closed-loop dynamics, the largest

invariant solution contained in (26) equals the desired equi-

librium. In fact, when Ḣd = eTRfR = 0, we have that x� = 0

and xQ = x̄Q constant, to be determined later on. From the

system dynamics we obtain that

↵ẋN� +
xNq
CN

=
x̄Q

CL

↵ẋNq +
xN�
LN

= 0

The only invariant solution compatible with Ḣd = 0 is xN� =

0 and
xN
q

CN
=

x̄Q

CL
, and the iteration of this procedure for all

the elements of the transmission line leads to xi� = 0 and

xi
q

Ci
=

x̄Q

CL
, with i = 1, . . . , N . From (33) the value assumed

by the control action � in this steady state configuration can

be computed, and then it follows that x̄Q

CL
= e?, and this

completes the proof.

In case the load interconnected to the transmission line

is the RLC circuit in parallel configuration, the resulting

port-Hamiltonian model is characterised by a Dirac structure

defined by (5), where the matrices FS , FR, FC , ES , ER, and

EC are the same as in (28), but with FS,s, ES,s, FR,s, and

ER,s replaced by FS,p, ES,p, FR,p, and ER,p defined in (11).

Moreover, the port variables are defined in (29), the resistive

relation (13) holds, and state variable and Hamiltonian are

given by (30) and (31), respectively. The desired equilibrium

configuration is

x?Q
CL

=
xi,?q
Ci

= e?
x?�
LL

=
x
i,?
�

Li

=
e?

RL

(35)

with i = 1, . . . , N , which means constant voltage e? and

current e?

RL
along the transmission line and on the load.

As in the situation in which there is no transmission line,

an energy-balancing passivity-based controller is not able to

stabilise the system, [2]. In other words, the PDE (23) or,

equivalently, (24) does not admit a solution Ha that is able to

shape the closed-loop Hamiltonian to introduce a minimum

at the desired equilibrium (35). For space limitations, this

step is not reported in this paper. Then, it is preferable to

rely on the method discussed in Sect. III-B, and look for

solutions of the PDE (27), i.e. to find � = (�1, �2, �3)
T

such that

�@Ha

@x
= FS

T�

� = FC
T�

0 = ET
S� = (RLE

T
R + FT

R )�

(36)

As in the previous example, from the last set of relations in

(36), it follows that

�1,2 = �1,3 = �2,1 = �3,2i�1

�1,1 = ��1,4 = �2,2 = �3,2i

�RL�1,2 + �1,1 = 0 (37)

RLC load in series conf.
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The port-Hamiltonian formulation of the line is 

In case of RLC load in series configuration:

is quite strong, and it can be relaxed by requiring that the
control input � is able to map the trajectories of the open-
loop system into the trajectories of another port-Hamiltonian
system with Hamiltonian (19), and characterised by the same
Dirac structure and resistive relation.

From the image representation (4) of a Dirac structure,
with structure matrices (9) and port behaviour (11), as far as
the open-loop dynamics is concerned, for all � in (14) we
have that
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B
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@

�@x
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u
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C
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A

=
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B

B

@

E⇤
S

F ⇤
S

¯GE⇤
R + F ⇤

R

F ⇤
C

1

C

C

A

� (21)

in which u is given as in (16). Similarly, as far as the
“desired dynamics” is concerned, since open and closed-loop
systems have the same Dirac structure and port behaviour
(but with different Hamiltonian), the stabilisation problem
can be solved if there exists at least a �0 in (14) such that

0

B

B

@

�@x
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�Hd
�x
0

u0

1

C
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A

=

0

B

B

@

E⇤
S

F ⇤
S

¯GE⇤
R + F ⇤

R

F ⇤
C

1

C

C

A

�0 (22)

Since the trajectories are required to be the same, and in
spite of (16) and (19), from (21) and (22), we can state the
following proposition:

Proposition 4.1: (Control by state-modulated source) Let
us consider a port-Hamiltonian system characterised by a
Dirac structure on the space of flows (8), with matrices F
and E given by (9), and port behaviour at the storage and
resistive ports (11). Then, there exist a state feedback law in
the form (16) that maps the open-loop dynamics (21) into
(22), if it is possible to find �, Ha and � in (14) such that

0

B

B

@

0

�Ha
�x
0
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1

C

C

A

=

0

B

B

@

E⇤
S

F ⇤
S

¯GE⇤
R + F ⇤

R

F ⇤
C

1

C

C

A

˜� (23)

Remark 4.1: Note that (20) is a particular case of (23),
and similarly, solution of (23) provides both the class of
functions Ha that can be employed in the energy shaping
procedure (19), and the associated control action (16).

V. A CRITERION FOR ASYMPTOTIC STABILITY

Propositions 3.1 and 4.1 provide two methods for realising
the energy-shaping of a port-Hamiltonian system via full
state feedback (16). Stabilisation in a desired equilibrium
configuration x? 2 X is achieved by properly choosing Ha

in (19), to introduce a (possibly) global minimum in x? for
Hd. Then, as discussed in [18], to verify the stability of
x?, it is necessary to show that it is an extremum of the
closed-loop Hamiltonian, i.e. rHd(x

?
) = 0. Moreover, let

�x denote the displacement from the equilibrium configu-
ration, and let N (�x) = Hd(x

?
+ �x) � Hd(x

?
) to be a

functional that is proportional to the second variation of Hd.
Then, the configuration x? is Lyapunov stable if there exist
C1, C2, ↵ > 0 such that

C1 k�xk2  N (�x)  C2 k�xk↵ (24)

where k·k is the norm determined by the natural L2-inner
product on X . Such set of conditions has to be “paired” with
an energy-balance relation that follows from the passivity
properties of both open- and closed-loop systems that usually
takes the form ˙Hd(x(t))  0 for a proper choice of � and
of u0 in (16), if necessary.

The energy-balance relation, however, is not usually suf-
ficient for proving asymptotic stability of the equilibrium
without relying on La Salle’s arguments that are quite
complex to be used in the infinite dimensional case due
to several technical assumptions on the system trajectories
that have to be checked, also in the linear case, [19]. Under
the hypothesis that the closed-loop system is well-posed
(see e.g., [6], [7], [15], [16] for the linear case, that rely
basically on Theorem 2.1), a simple but useful result to check
asymptotic stability is now presented. This results is based
on the energy multipliers method, [19], [20]

Proposition 5.1: Consider a port-Hamiltonian system
with Hamiltonian Hd, and suppose that x? 2 X is a stable
equilibrium in the sense of [18]. Assume that ↵ = 2 in
(24) and, without loss of generality, that x?

= 0, and that
Hd(x

?
) = 0. If there exists a function ⇢ : X ! R such that

|⇢(x)|  C⇢ kxk2 (25)

for some C⇢ > 0, and a constant ✏ > 0, supposed small,
such that function V (x) = Hd(x) + ✏⇢(x) satisfies

dV

dt
(x(t))  �C✏ kx(t)k2 (26)

for some C✏ > 0, then x? is an asymptotically (exponen-
tially) stable equilibrium.

Proof: The proof follows a similar result discussed in
[19]. From (24) we have that C1 kxk2  Hd(x)  C2 kxk2,
and from (25) we have that

(C1 � ✏C⇢) kxk2  V (x)  (C2 + ✏C⇢) kxk2 (27)

with C1 � ✏C⇢ positive if ✏ is “small.” Then, (26) and (27)
imply that

dV

dt
(x(t))  � C✏

C2 + ✏C⇢
V (x(t))

which means that V (x(t)) ! 0 exponentially, and so kx(t)k
in spite of (27).

VI. EXAMPLE: TRANSMISSION LINE WITH RLC LOAD

The port-Hamiltonian formulation of the lossless transmis-
sion line equation is in the form (5) and given by, [1]:

8

>

>

<

>

>

:

@xq

@t
(t, z) = � @

@z

�HTL

�x�
(t, z)

@x�

@t
(t, z) = � @

@z

�HTL

�xq
(t, z)

(28)

where z 2 Z ⌘ [0, `], xq and x� are the charge and
magnetic flux densities along the line, and HTL(xq, x�) =

1
2

R `

0

⇣

x2
q

C +

x2
�

L

⌘

dz is the Hamiltonian (energy) function,
with C and L the distributed capacitance and inductance
of the line. The transmission line exchanges power with the

environment (e.g., a load, or a voltage source), through a
couple of power ports (I0, V0) =

⇣

�H
�x�

(0), �H
�xq

(0)

⌘

, and

(I`, V`) =

⇣

� �H
�x�

(`), �H
�xq

(`)
⌘

, that are the restriction of the
voltage and current along the line in z = 0 and in z = `.

Let us interconnect an RLC circuit in series configuration
to the line in z = `. Its port-Hamiltonian formulation is

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ẋQ =

@HRLC

@x�

ẋ� = �@HRLC

@xQ
�RL

@HRLC

@x�
+ V

I =

@HRLC

@x�

(29)

where xQ and x� are the charge on the capacitor and the
magnetic flux in the inductor, RL is the resistance, V and I
are the (input) voltage and the (output) current, and

HRLC(xQ, x�) =
1

2

 

x2
Q

CL
+

x2
�

LL

!

(30)

is the Hamiltonian, with CL and LL the capacitor and the
inductor. Load and transmission line are interconnected in
power conserving way since (I`, V`) = (�I, V ). The control
port is (I0, V0), and the desired equilibrium is, [3]:

✓

x?
q

C
,
x?
�

L
,
x?
Q

CL
,
x?
�

LL

◆

= (e?, 0, e?, 0) , e? 2 R (31)

Note that, in spite of Theorem 2.1, it is easy to prove that
the resulting system is a boundary control system, [7].

The associated Dirac structure is defined on the space of
flows (8), with now FS = L2(0, `;R2

) ⇥ R2, and FR =

FC = R. Moreover, we have that fS =

�

fq, f�, fQ, f�
�T,

and eS =

�

eq, e�, eQ, e�
�T, while the structure matrix are
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(32)

Here, ·|0 and ·|` denote the restriction of a function in z = 0

and in z = ` respectively. Moreover, the port-Hamiltonian
model is obtained as in (11), with now H = HTL +HRLC

and the resistive relation eR = �RLfR. Finally, the domain
associated to the Dirac structure in kernel representation is
(12), with eS =

�

eq, e�
�T.

As far as the image representation (4) is concerned,
provided that ⇤ = L2(0, `;R2

) ⇥ R6, everything is as in
Sect. II-B, with now

E⇤
S =

0

B

B

@

0 @z 0 0 0 0 0 0

@z 0 0 0 0 0 0 0

0 0 0 �1 0 0 0 0

0 0 1 0 �1 1 0 0

1

C
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A

where � = (�q,��,�Q,��,�qL,�R,��0,�q0) and

dom

✓

E⇤

F ⇤

◆
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⇢

� 2 ⇤ | �q(0) = �q0, ��(0) = ��0,

�q(L) = �qL, ��(L) = ��

�

(33)

Note the similarities with (13) and (14).
The boundary energy-balancing control follows from

Prop. 3.1, with (20) that implies

�� = �� = ��0 = �R =

�Ha

�x�
=

@Ha

@x�
= 0

�q = �Q = �qL = �q0 =

�Ha

�xq
=

@Ha

@xQ
= ��

The admissible Ha are in the form

Ha(⇠), ⇠ = xQ +

Z L

0
xq dz (34)

and the boundary action is �(xq, xQ) = �@Ha
@⇠ (⇠). This is

the same result is obtained in [3], and based on the control by
interconnection and energy shaping via Casimir generation.
Asymptotic stability follows by selecting

Ha(⇠) =
1

2

(⇠ � ⇠?)2

CC
� e?

✓

1 +

CL + C

CC

◆

⇠

with CC > 0, and where ⇠? is the value of ⇠ in (34) at the
equilibrium (31). In fact, in the error coordinates

x̃q = xq � x?
q x̃� = x� � x?

�

x̃Q = xQ � x?
Q x̃� = x� � x?

�

(35)

stability of (31) is equivalent to the stability of
(x̃q, x̃�, x̃Q, x̃�) = (0, 0, 0, 0), which satisfies, together
with the Hamiltonian ˜Hd in the new coordinates, all the
hypotheses of Prop. 5.1. Moreover, from (19), we have that

d

˜Hd

dt
= �RL

 

@ ˜Hd

@x�

!2

= �RL

✓

x̃�

LL

◆2

 0

So, energy decreases until in steady state we have that
x̃Q

CL
=

x̃q

C
(`) (36)

as it can be deduced from (29). Asymptotic stability follows
from Prop. 5.1 by selecting

⇢(x̃(t)) = ✏̄ x̃Q(t)x̃�(t)�
Z `

0

z

`
x̃q(t, z)x̃�(t, z)dz

being ✏̄ > 0 a small constant, and noting that fot sufficiently
large T > 0, in spite of (36), we have that x̃Q/CL(t) '
x̃q/C(t, `), for all t � T .

Desired equilibrium 
 

environment (e.g., a load, or a voltage source), through a

couple of power ports (

I0, V0) =

⇣

�H
�x�

(

0

)
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(

0

)

⌘

, and
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�x�

(

`), �H
�xq

(

`)
⌘

, that are the restriction of the

voltage and current along the line in z =

0

and in z =

`.

Let us interconnect an RLC circuit in series configuration

to the line in z =

`. Its port-Hamiltonian formulation is
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where xQ and x� are the charge on the capacitor and the

magnetic flux in the inductor, RL is the resistance, V and I

are the (input) voltage and the (output) current, and

HRLC(xQ, x�) =
1

2

 

x2Q
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+

x2�
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!

(30)

is the Hamiltonian, with CL and LL the capacitor and the

inductor. Load and transmission line are interconnected in

power conserving way since (

I`, V`) = (

�I, V )

. The control

port is (

I0, V0), and the desired equilibrium is, [3]:
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Note that, in spite of Theorem 2.1, it is easy to prove that

the resulting system is a boundary control system, [7].

The associated Dirac structure is defined on the space of

flows (8), with now FS =
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(32)

Here, ·|0 and ·|` denote the restriction of a function in z =

0

and in z =

` respectively. Moreover, the port-Hamiltonian

model is obtained as in (11), with now H =

HTL +

HRLC

and the resistive relation eR =

�RLfR. Finally, the domain

associated to the Dirac structure in kernel representation is

(12), with eS =

�

eq, e�
�T .

As far as the image representation (4) is concerned,

provided that ⇤
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⇥ R6, everything is as in
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where � =
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Note the similarities with (13) and (14).

The boundary energy-balancing control follows from

Prop. 3.1, with (20) that implies
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The admissible Ha are in the form

Ha(⇠), ⇠ =

xQ +

Z L

0

xq dz (34)

and the boundary action is �(xq, xQ) =

�@Ha

@⇠
(

⇠). This is

the same result is obtained in [3], and based on the control by

interconnection and energy shaping via Casimir generation.

Asymptotic stability follows by selecting

Ha(⇠) =
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with CC > 0

, and where ⇠? is the value of ⇠ in (34) at the

equilibrium (31). In fact, in the error coordinates

˜xq = xq � x?q ˜x� =

x� � x?�

˜xQ =

xQ � x?Q ˜x� =

x� � x?�
(35)

stability of (31) is equivalent to the stability of

(

˜xq, ˜x�, ˜xQ, ˜x�) =

(

0

, 0, 0, 0), which satisfies, together

with the Hamiltonian ˜Hd in the new coordinates, all the

hypotheses of Prop. 5.1. Moreover, from (19), we have that
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˜Hd

d

t
=
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So, energy decreases until in steady state we have that

˜xQ

CL

=

˜xq

C
(

`) (36)

as it can be deduced from (29). Asymptotic stability follows

from Prop. 5.1 by selecting

⇢(˜x(t)) = ✏̄ ˜xQ(t)˜x�(t)�
Z `

0

z

`
˜xq(t, z)˜x�(t, z)dz

being ✏̄ > 0

a small constant, and noting that fot sufficiently

large T > 0

, in spite of (36), we have that x̃Q/CL(t) '

x̃q/C(t, `), for all t � T .

Fig. 1. A port-Hamiltonian system.

D ⇢ F ⇥ E such that dimD = dimF and he, fi = 0,
8(f, e) 2 D.

It is clear from the previous definition that the Dirac
structure defines a power-conserving relation on F⇥E . Dirac
structures admit different representations in coordinates, [13].
For example, every Dirac structure D on an n-dimensional
space of flows F can be given in kernel representation as

D =
n

(f, e) 2 F ⇥ E | Ff + Ee = 0
o

(1)

or in image representation as

D =
n

(f, e) 2 F⇥E | f = ET�, e = FT�, � 2 Rn
o

(2)

where F and E are n⇥ n matrices such that

(a) EFT + FET = 0
(b) rank

�

F | E�

= n
(3)

and, in this case, he, fi = eTf .

B. Port-Hamiltonian systems
In case of finite dimensional port-Hamiltonian systems,

once the Dirac structure is given, the dynamics follows from
the port behavior of the energy storing elements. Denote by
X the space of energy variables and by H : X ! R the
energy function. Then, the port behavior is:

f = �ẋ e =
@H

@x
(4)

and, if the kernel representation (1) for a Dirac structure
is adopted, the associated dynamics is expressed by the
following DAE:

�Fẋ+ E
@H

@x
= 0, x(0) = x0 2 X

Note that, Ḣ = 0, i.e. energy is conserved, which is coherent
with the fact that no external ports and dissipative effects
have been modelled. Moreover, F and E may also depend
on x, and most of the results presented in this paper remain
valid in this situation.

In the general case a port-Hamiltonian system can be
represented as in Fig. 1. The Dirac structure D defines a
power conserving relation between several port variables.
In particular, there are two internal ports S and R, which
correspond to energy-storage and dissipation respectively,
and two external ports C and I, which are devoted to an
exchange of energy with a controller and the environment
respectively.

(a) Series configuration. (b) Parallel configuration.

Fig. 2. RLC circuits.

If (fS , eS) 2 FS ⇥ ES , (fR, eR) 2 FR ⇥ ER, (fC , eC) 2
FC ⇥ EC and (fI , eI) 2 FI ⇥ EI denote the power variables
of the energy-storage, dissipative, control and interaction
ports respectively, in the kernel representation (1) the Dirac
structure D is given by the following subset of F ⇥ E , with
F = FS ⇥ FR ⇥ FC ⇥ FI and E = ES ⇥ ER ⇥ EC ⇥ EI :

D =
n

(fS , fR, fC , fI , eS , eR, eC , eI) 2 F ⇥ E |
FSfS + FRfR + FCfC + FIfI+

+ ESeS + EReR + ECeC + EIeI = 0
o

(5)

where the matrices (Fi, Ei), with i = S, R, C, I , satisfy a
set of conditions similar to (3). If the behavior at the energy
storing port is given as in (4) and the dissipative port satisfies
the (linear) resistive relation

RffR +ReeR = 0 (6)

where Rf and Re are square matrices such that

(a) RfR
T
e = ReR

T
f > 0

(b) rank
�

Rf | Re

�

= dimFR
(7)

then the port-Hamiltonian dynamics results into the follow-
ing set of DAEs:

�FS ẋ+ ES
@H

@x
+ FRfR + EReR+

+FCfC + ECeC + FIfI + EIeI = 0

RffR +ReeR = 0

(8)

with x(0) = x0 2 X . Note that, in this case,

d

dt
H  eTCfC + eTI fI (9)

which means that the variation of internal energy is bounded
by the incoming power flows through the control and interac-
tion ports. In particular cases, it is possible to explicitly get
rid of the algebraic constraints in (8) and write the port-
Hamiltonian dynamics in input-state-output form. In this
paper, this most general formulation of port-Hamiltonian
dynamics is adopted.

Example 2.1 (RLC circuits): The RLC circuit in series
configuration reported in Fig. 2(a) is characterized by a Dirac
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For the image representation of the Dirac structure we have 

To have a boundary energy-balancing control we need that

environment (e.g., a load, or a voltage source), through a
couple of power ports (I0, V0) =

⇣

�H
�x�

(0), �H
�xq

(0)

⌘

, and

(I`, V`) =

⇣

� �H
�x�

(`), �H
�xq

(`)
⌘

, that are the restriction of the
voltage and current along the line in z = 0 and in z = `.

Let us interconnect an RLC circuit in series configuration
to the line in z = `. Its port-Hamiltonian formulation is

8
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>

:

ẋQ =
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@xQ
�RL
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@x�
+ V

I =

@HRLC
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(29)

where xQ and x� are the charge on the capacitor and the
magnetic flux in the inductor, RL is the resistance, V and I
are the (input) voltage and the (output) current, and

HRLC(xQ, x�) =
1

2

 

x2
Q

CL
+

x2
�

LL

!

(30)

is the Hamiltonian, with CL and LL the capacitor and the
inductor. Load and transmission line are interconnected in
power conserving way since (I`, V`) = (�I, V ). The control
port is (I0, V0), and the desired equilibrium is, [3]:
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= (e?, 0, e?, 0) , e? 2 R (31)

Note that, in spite of Theorem 2.1, it is easy to prove that
the resulting system is a boundary control system, [7].

The associated Dirac structure is defined on the space of
flows (8), with now FS = L2(0, `;R2

) ⇥ R2, and FR =

FC = R. Moreover, we have that fS =

�

fq, f�, fQ, f�
�T,

and eS =

�

eq, e�, eQ, e�
�T, while the structure matrix are
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(32)

Here, ·|0 and ·|` denote the restriction of a function in z = 0

and in z = ` respectively. Moreover, the port-Hamiltonian
model is obtained as in (11), with now H = HTL +HRLC

and the resistive relation eR = �RLfR. Finally, the domain
associated to the Dirac structure in kernel representation is
(12), with eS =

�

eq, e�
�T.

As far as the image representation (4) is concerned,
provided that ⇤ = L2(0, `;R2

) ⇥ R6, everything is as in
Sect. II-B, with now

E⇤
S =

0

B
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where � = (�q,��,�Q,��,�qL,�R,��0,�q0) and
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(33)

Note the similarities with (13) and (14).
The boundary energy-balancing control follows from

Prop. 3.1, with (20) that implies

�� = �� = ��0 = �R =

�Ha

�x�
=

@Ha

@x�
= 0

�q = �Q = �qL = �q0 =

�Ha

�xq
=

@Ha

@xQ
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The admissible Ha are in the form

Ha(⇠), ⇠ = xQ +

Z L

0
xq dz (34)

and the boundary action is �(xq, xQ) = �@Ha
@⇠ (⇠). This is

the same result is obtained in [3], and based on the control by
interconnection and energy shaping via Casimir generation.
Asymptotic stability follows by selecting

Ha(⇠) =
1

2
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CC

◆

⇠

with CC > 0, and where ⇠? is the value of ⇠ in (34) at the
equilibrium (31). In fact, in the error coordinates

x̃q = xq � x?
q x̃� = x� � x?

�

x̃Q = xQ � x?
Q x̃� = x� � x?

�

(35)

stability of (31) is equivalent to the stability of
(x̃q, x̃�, x̃Q, x̃�) = (0, 0, 0, 0), which satisfies, together
with the Hamiltonian ˜Hd in the new coordinates, all the
hypotheses of Prop. 5.1. Moreover, from (19), we have that

d

˜Hd

dt
= �RL
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✓
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So, energy decreases until in steady state we have that
x̃Q

CL
=

x̃q

C
(`) (36)

as it can be deduced from (29). Asymptotic stability follows
from Prop. 5.1 by selecting

⇢(x̃(t)) = ✏̄ x̃Q(t)x̃�(t)�
Z `

0

z

`
x̃q(t, z)x̃�(t, z)dz

being ✏̄ > 0 a small constant, and noting that fot sufficiently
large T > 0, in spite of (36), we have that x̃Q/CL(t) '
x̃q/C(t, `), for all t � T .

environment (e.g., a load, or a voltage source), through a
couple of power ports (I0, V0) =
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, and
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, that are the restriction of the
voltage and current along the line in z = 0 and in z = `.

Let us interconnect an RLC circuit in series configuration
to the line in z = `. Its port-Hamiltonian formulation is
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where xQ and x� are the charge on the capacitor and the
magnetic flux in the inductor, RL is the resistance, V and I
are the (input) voltage and the (output) current, and

HRLC(xQ, x�) =
1

2
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(30)

is the Hamiltonian, with CL and LL the capacitor and the
inductor. Load and transmission line are interconnected in
power conserving way since (I`, V`) = (�I, V ). The control
port is (I0, V0), and the desired equilibrium is, [3]:
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Note that, in spite of Theorem 2.1, it is easy to prove that
the resulting system is a boundary control system, [7].

The associated Dirac structure is defined on the space of
flows (8), with now FS = L2(0, `;R2

) ⇥ R2, and FR =
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Here, ·|0 and ·|` denote the restriction of a function in z = 0

and in z = ` respectively. Moreover, the port-Hamiltonian
model is obtained as in (11), with now H = HTL +HRLC

and the resistive relation eR = �RLfR. Finally, the domain
associated to the Dirac structure in kernel representation is
(12), with eS =

�

eq, e�
�T.

As far as the image representation (4) is concerned,
provided that ⇤ = L2(0, `;R2

) ⇥ R6, everything is as in
Sect. II-B, with now
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Note the similarities with (13) and (14).
The boundary energy-balancing control follows from

Prop. 3.1, with (20) that implies
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The admissible Ha are in the form

Ha(⇠), ⇠ = xQ +

Z L

0
xq dz (34)

and the boundary action is �(xq, xQ) = �@Ha
@⇠ (⇠). This is

the same result is obtained in [3], and based on the control by
interconnection and energy shaping via Casimir generation.
Asymptotic stability follows by selecting
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1
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with CC > 0, and where ⇠? is the value of ⇠ in (34) at the
equilibrium (31). In fact, in the error coordinates

x̃q = xq � x?
q x̃� = x� � x?

�

x̃Q = xQ � x?
Q x̃� = x� � x?

�

(35)

stability of (31) is equivalent to the stability of
(x̃q, x̃�, x̃Q, x̃�) = (0, 0, 0, 0), which satisfies, together
with the Hamiltonian ˜Hd in the new coordinates, all the
hypotheses of Prop. 5.1. Moreover, from (19), we have that
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So, energy decreases until in steady state we have that
x̃Q
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as it can be deduced from (29). Asymptotic stability follows
from Prop. 5.1 by selecting

⇢(x̃(t)) = ✏̄ x̃Q(t)x̃�(t)�
Z `

0

z

`
x̃q(t, z)x̃�(t, z)dz

being ✏̄ > 0 a small constant, and noting that fot sufficiently
large T > 0, in spite of (36), we have that x̃Q/CL(t) '
x̃q/C(t, `), for all t � T .

environment (e.g., a load, or a voltage source), through a
couple of power ports (I0, V0) =
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, that are the restriction of the
voltage and current along the line in z = 0 and in z = `.

Let us interconnect an RLC circuit in series configuration
to the line in z = `. Its port-Hamiltonian formulation is
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where xQ and x� are the charge on the capacitor and the
magnetic flux in the inductor, RL is the resistance, V and I
are the (input) voltage and the (output) current, and

HRLC(xQ, x�) =
1

2
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is the Hamiltonian, with CL and LL the capacitor and the
inductor. Load and transmission line are interconnected in
power conserving way since (I`, V`) = (�I, V ). The control
port is (I0, V0), and the desired equilibrium is, [3]:
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Note that, in spite of Theorem 2.1, it is easy to prove that
the resulting system is a boundary control system, [7].

The associated Dirac structure is defined on the space of
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Here, ·|0 and ·|` denote the restriction of a function in z = 0

and in z = ` respectively. Moreover, the port-Hamiltonian
model is obtained as in (11), with now H = HTL +HRLC

and the resistive relation eR = �RLfR. Finally, the domain
associated to the Dirac structure in kernel representation is
(12), with eS =

�

eq, e�
�T.

As far as the image representation (4) is concerned,
provided that ⇤ = L2(0, `;R2

) ⇥ R6, everything is as in
Sect. II-B, with now
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(33)

Note the similarities with (13) and (14).
The boundary energy-balancing control follows from

Prop. 3.1, with (20) that implies

�� = �� = ��0 = �R =

�Ha

�x�
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The admissible Ha are in the form

Ha(⇠), ⇠ = xQ +

Z L

0
xq dz (34)

and the boundary action is �(xq, xQ) = �@Ha
@⇠ (⇠). This is

the same result is obtained in [3], and based on the control by
interconnection and energy shaping via Casimir generation.
Asymptotic stability follows by selecting

Ha(⇠) =
1
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with CC > 0, and where ⇠? is the value of ⇠ in (34) at the
equilibrium (31). In fact, in the error coordinates

x̃q = xq � x?
q x̃� = x� � x?

�

x̃Q = xQ � x?
Q x̃� = x� � x?

�

(35)

stability of (31) is equivalent to the stability of
(x̃q, x̃�, x̃Q, x̃�) = (0, 0, 0, 0), which satisfies, together
with the Hamiltonian ˜Hd in the new coordinates, all the
hypotheses of Prop. 5.1. Moreover, from (19), we have that

d
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dt
= �RL
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So, energy decreases until in steady state we have that
x̃Q

CL
=

x̃q

C
(`) (36)

as it can be deduced from (29). Asymptotic stability follows
from Prop. 5.1 by selecting

⇢(x̃(t)) = ✏̄ x̃Q(t)x̃�(t)�
Z `

0

z

`
x̃q(t, z)x̃�(t, z)dz

being ✏̄ > 0 a small constant, and noting that fot sufficiently
large T > 0, in spite of (36), we have that x̃Q/CL(t) '
x̃q/C(t, `), for all t � T .

environment (e.g., a load, or a voltage source), through a
couple of power ports (I0, V0) =
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, that are the restriction of the
voltage and current along the line in z = 0 and in z = `.

Let us interconnect an RLC circuit in series configuration
to the line in z = `. Its port-Hamiltonian formulation is
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where xQ and x� are the charge on the capacitor and the
magnetic flux in the inductor, RL is the resistance, V and I
are the (input) voltage and the (output) current, and

HRLC(xQ, x�) =
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(30)

is the Hamiltonian, with CL and LL the capacitor and the
inductor. Load and transmission line are interconnected in
power conserving way since (I`, V`) = (�I, V ). The control
port is (I0, V0), and the desired equilibrium is, [3]:
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Note that, in spite of Theorem 2.1, it is easy to prove that
the resulting system is a boundary control system, [7].

The associated Dirac structure is defined on the space of
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Here, ·|0 and ·|` denote the restriction of a function in z = 0

and in z = ` respectively. Moreover, the port-Hamiltonian
model is obtained as in (11), with now H = HTL +HRLC

and the resistive relation eR = �RLfR. Finally, the domain
associated to the Dirac structure in kernel representation is
(12), with eS =

�

eq, e�
�T.

As far as the image representation (4) is concerned,
provided that ⇤ = L2(0, `;R2

) ⇥ R6, everything is as in
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Note the similarities with (13) and (14).
The boundary energy-balancing control follows from
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The admissible Ha are in the form

Ha(⇠), ⇠ = xQ +
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and the boundary action is �(xq, xQ) = �@Ha
@⇠ (⇠). This is

the same result is obtained in [3], and based on the control by
interconnection and energy shaping via Casimir generation.
Asymptotic stability follows by selecting
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with CC > 0, and where ⇠? is the value of ⇠ in (34) at the
equilibrium (31). In fact, in the error coordinates

x̃q = xq � x?
q x̃� = x� � x?
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x̃Q = xQ � x?
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(35)

stability of (31) is equivalent to the stability of
(x̃q, x̃�, x̃Q, x̃�) = (0, 0, 0, 0), which satisfies, together
with the Hamiltonian ˜Hd in the new coordinates, all the
hypotheses of Prop. 5.1. Moreover, from (19), we have that
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So, energy decreases until in steady state we have that
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as it can be deduced from (29). Asymptotic stability follows
from Prop. 5.1 by selecting

⇢(x̃(t)) = ✏̄ x̃Q(t)x̃�(t)�
Z `

0

z

`
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being ✏̄ > 0 a small constant, and noting that fot sufficiently
large T > 0, in spite of (36), we have that x̃Q/CL(t) '
x̃q/C(t, `), for all t � T .



Dirac structures & control synthesis

Finding the EB regulator means finding a state dependent control 
action able to shape the open-loop Hamiltonian, in such a way that 
closed loop and target dynamics have the same behaviour at the 
storage, resistive and control ports 

Very strong requirement! 

Let us ask less: just a matching between open-loop plus controller, and 
target dynamics (with desired stability properties)

B. Passivity-based control with state-modulated source

The solution of (24) can be stated as follows: find a state
dependent control action � that is able to shape the open-loop
Hamiltonian thanks to Ha, and in such a way that closed-
loop dynamics i.e., (8) with (19), and target dynamics i.e.,
the port-Hamiltonian system with the same Dirac structure
(5) and resistive relation (6), but with Hamiltonian (22), have
the same behaviour at the storage, resistive and control ports.
This requirement is quite strong, and it can be relaxed by
requiring that the control input �(x) is able to map the tra-
jectories of the open-loop system (8) into the trajectories of
another port-Hamiltonian system with Hamiltonian (22), and
characterised by the same Dirac structure (5) and resistive
relation (6).

From the image representation (2) of a Dirac structure,
as far as the open-loop dynamics is concerned, it exists a
possibly time-dependent � 2 RnS+nR+nC such that
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Similarly, as far as the “desired dynamics” is concerned,
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Since the trajectories are required to be the same, and in
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Note that if (24) holds, then also (27) is satisfied.
It is easy to verify that, if (27) holds, then the open-

loop system is mapped into the desired closed-loop one, for
which the Hamiltonian function Hd is selected so that “nice”
stability properties are satisfied: the same consideration about
the proof of asymptotic stability drawn for the energy-
balancing passivity-based control discussed in the previous
section are still valid here. More details on this point in the
next session.

IV. EXAMPLE: TRANSMISSION LINE WITH RLC LOAD

The scope of this section is to verify the applicability of
the previously introduced techniques to a simple but illus-
trative example. The plant consists of the power conserving
interconnection of the spatially discretized transmission line
of Example 2.2 with the series and parallel RLC circuits
presented in Example 2.1. In both cases, we impose that
fI = �f and eI = e.

In case the transmission line load is the RLC circuit
in the series configuration, from (10) and (16), the port-
Hamiltonian model is characterised by a Dirac structure
defined by (5), where
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with
fS =

�

fQ f� fS,1
�T

eS =
�

eQ e� eS,1
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(29)

Moreover, the resistive relation (13) holds. The state variable
is the collection of the state variables of the two main
subsystems:

x =
�

xQ x� x1
�T (30)

and the total Hamiltonian the sum of the (12) and (17), i.e.:

H(x) = H1(x1) +HL(xQ, x�) (31)

Simple physical considerations show that the desired equi-
librium configuration is:
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Li
= 0

for i = 1, . . . , N , that means zero flowing current and
constant voltage e? along the transmission line and on the
load. As in the case in which the transmission line is
not present, such equilibrium can be stabilised via energy-
shaping by following the methodology discussed in Sect. III-
A. In particular, the PDE (23) or its equivalent formulation

B. Passivity-based control with state-modulated source

The solution of (24) can be stated as follows: find a state
dependent control action � that is able to shape the open-loop
Hamiltonian thanks to Ha, and in such a way that closed-
loop dynamics i.e., (8) with (19), and target dynamics i.e.,
the port-Hamiltonian system with the same Dirac structure
(5) and resistive relation (6), but with Hamiltonian (22), have
the same behaviour at the storage, resistive and control ports.
This requirement is quite strong, and it can be relaxed by
requiring that the control input �(x) is able to map the tra-
jectories of the open-loop system (8) into the trajectories of
another port-Hamiltonian system with Hamiltonian (22), and
characterised by the same Dirac structure (5) and resistive
relation (6).
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possibly time-dependent � 2 RnS+nR+nC such that
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Note that if (24) holds, then also (27) is satisfied.
It is easy to verify that, if (27) holds, then the open-

loop system is mapped into the desired closed-loop one, for
which the Hamiltonian function Hd is selected so that “nice”
stability properties are satisfied: the same consideration about
the proof of asymptotic stability drawn for the energy-
balancing passivity-based control discussed in the previous
section are still valid here. More details on this point in the
next session.

IV. EXAMPLE: TRANSMISSION LINE WITH RLC LOAD

The scope of this section is to verify the applicability of
the previously introduced techniques to a simple but illus-
trative example. The plant consists of the power conserving
interconnection of the spatially discretized transmission line
of Example 2.2 with the series and parallel RLC circuits
presented in Example 2.1. In both cases, we impose that
fI = �f and eI = e.

In case the transmission line load is the RLC circuit
in the series configuration, from (10) and (16), the port-
Hamiltonian model is characterised by a Dirac structure
defined by (5), where
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with
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Moreover, the resistive relation (13) holds. The state variable
is the collection of the state variables of the two main
subsystems:

x =
�

xQ x� x1
�T (30)

and the total Hamiltonian the sum of the (12) and (17), i.e.:

H(x) = H1(x1) +HL(xQ, x�) (31)

Simple physical considerations show that the desired equi-
librium configuration is:
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for i = 1, . . . , N , that means zero flowing current and
constant voltage e? along the transmission line and on the
load. As in the case in which the transmission line is
not present, such equilibrium can be stabilised via energy-
shaping by following the methodology discussed in Sect. III-
A. In particular, the PDE (23) or its equivalent formulation
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and the storage, control and interaction ports given by
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and the dynamics follows from the port behaviour (4), i.e.
fS,1 = �ẋ1 and eS,1 = @H1

@x1
.

III. ENERGY-BASED CONTROL

To simplify the notation, in (5) the “interaction port” is
not taken into account, i.e. FI = ;. However, all the result
that are presented in this section can be easily extended to
the most general case.

A. Energy-balancing passivity-based control
The energy-balance relation (9) can be equivalently rewrit-

ten in integral form

H(x(t))�H(x(0)) =

Z t

0
eTC(⌧)fC(⌧)d⌧ � d(t) (18)

where d(t) � 0 takes into account the dissipated energy. It is
well known that, under the hypothesis that (8) as an effort-
in causality at the control port, the standard formulation of
passivity-based control requires to determine a control action

eC = �(x) + e0C (19)

such that the closed-loop dynamics satisfies the following
new energy-balance relation:
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T
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C(⌧)d⌧ � dd(t) (20)

Here, Hd is a desired energy function that has a strict
minimum at x?, f 0

C is the new passive “output,” while
dd(t) � 0 replaces the natural dissipation, that is usually
increased to improve the convergence rate. So, a direct
comparison between (18) and (20) clearly shows the main
step of this control technique, i.e. the energy shaping plus
the damping injection, [1], [2], [5].

A large class of dynamical systems can be stabilized by
further requiring to find a function �(x) such that the energy
supplied by the controller is a function Ha of the state of
the plant, i.e. if

�
Z t

0
�T(x(⌧))fC(⌧)d⌧ = Ha(x(t)) +  (21)

with  2 R some constant, [1], [2], [5]. Clearly, (21) is
a particular case of (20). In this respect, let us write the
“desired” closed-loop Hamiltonian as follows:

Hd(x) = H(x) +Ha(x) (22)

Given a desired equilibrium configuration x?, the idea is to
select Ha in such a way that Hd has a minimum in x?, that
is made asymptotically stable by damping injection.

Having in mind the image representation (2) of a Dirac
structure in the form (5), the differential formulation of (21)
is equivalent to require that
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The PDE (23) provides the family of Hamiltonian Ha that
can be used to shape the energy function in closed-loop, and
the control action that realizes it. This equation is determined
by the Dirac structure D of the plant, and it is independent
from the resistive relation: an equivalent way to re-write (23)
is in fact
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⌘ D (24)

It is easy to verify that, thanks to (19), the port-
Hamiltonian system (8) is transformed into another port-
Hamiltonian system with Hamiltonian Hd given by (22) that
satisfies the following energy-balance relation:

dHd

dt
= eTRfR + e0

T
CfC  e0

T
CfC (25)

Clearly, among all the possible choices compatible with (23)
or (24), Ha will be selected in such a way that Hd is a
candidate Lyapunov function with a minimum at the desired
equilibrium x?. Then, (25) can be used in Lyapunov analysis
to deduce stability of x? by taking, for example, e0C = 0. The
equilibrium turns out to be asymptotically stable if the largest
invariant set under the closed-loop dynamics contained in

n

x 2 X \ B | eTRfR = 0
o

(26)

equals {x?}, being B an open neighbourhood of x?.
Furthermore, from the linearity properties of the Dirac

structure, the open-loop system with control input (19) and
the target dynamics resulting from the Hamiltonian (22)
share the same behaviour at the storage, resistive and control
ports, independently from the resistive relation. This means
that (23) or (24) impose a strong link between open and
closed-loop dynamics, that is based only on the property
of the Dirac structure. This is somehow related to the so-
called “dissipation obstacle,” that prevents energy-balancing
passivity-based control schemes to stabilise equilibria that
require an infinite amount of supplied energy. A possible
solution to this problem is illustrated in the next section.
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and the dynamics follows from the port behaviour (4), i.e.
fS,1 = �ẋ1 and eS,1 = @H1

@x1
.

III. ENERGY-BASED CONTROL

To simplify the notation, in (5) the “interaction port” is
not taken into account, i.e. FI = ;. However, all the result
that are presented in this section can be easily extended to
the most general case.

A. Energy-balancing passivity-based control
The energy-balance relation (9) can be equivalently rewrit-

ten in integral form

H(x(t))�H(x(0)) =

Z t

0
eTC(⌧)fC(⌧)d⌧ � d(t) (18)

where d(t) � 0 takes into account the dissipated energy. It is
well known that, under the hypothesis that (8) as an effort-
in causality at the control port, the standard formulation of
passivity-based control requires to determine a control action

eC = �(x) + e0C (19)

such that the closed-loop dynamics satisfies the following
new energy-balance relation:

Hd(x(t))�Hd(x(0)) =
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0
e0C

T
(⌧)f 0

C(⌧)d⌧ � dd(t) (20)

Here, Hd is a desired energy function that has a strict
minimum at x?, f 0

C is the new passive “output,” while
dd(t) � 0 replaces the natural dissipation, that is usually
increased to improve the convergence rate. So, a direct
comparison between (18) and (20) clearly shows the main
step of this control technique, i.e. the energy shaping plus
the damping injection, [1], [2], [5].

A large class of dynamical systems can be stabilized by
further requiring to find a function �(x) such that the energy
supplied by the controller is a function Ha of the state of
the plant, i.e. if

�
Z t

0
�T(x(⌧))fC(⌧)d⌧ = Ha(x(t)) +  (21)

with  2 R some constant, [1], [2], [5]. Clearly, (21) is
a particular case of (20). In this respect, let us write the
“desired” closed-loop Hamiltonian as follows:

Hd(x) = H(x) +Ha(x) (22)

Given a desired equilibrium configuration x?, the idea is to
select Ha in such a way that Hd has a minimum in x?, that
is made asymptotically stable by damping injection.

Having in mind the image representation (2) of a Dirac
structure in the form (5), the differential formulation of (21)
is equivalent to require that
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The PDE (23) provides the family of Hamiltonian Ha that
can be used to shape the energy function in closed-loop, and
the control action that realizes it. This equation is determined
by the Dirac structure D of the plant, and it is independent
from the resistive relation: an equivalent way to re-write (23)
is in fact
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It is easy to verify that, thanks to (19), the port-
Hamiltonian system (8) is transformed into another port-
Hamiltonian system with Hamiltonian Hd given by (22) that
satisfies the following energy-balance relation:

dHd

dt
= eTRfR + e0

T
CfC  e0

T
CfC (25)

Clearly, among all the possible choices compatible with (23)
or (24), Ha will be selected in such a way that Hd is a
candidate Lyapunov function with a minimum at the desired
equilibrium x?. Then, (25) can be used in Lyapunov analysis
to deduce stability of x? by taking, for example, e0C = 0. The
equilibrium turns out to be asymptotically stable if the largest
invariant set under the closed-loop dynamics contained in

n

x 2 X \ B | eTRfR = 0
o

(26)

equals {x?}, being B an open neighbourhood of x?.
Furthermore, from the linearity properties of the Dirac

structure, the open-loop system with control input (19) and
the target dynamics resulting from the Hamiltonian (22)
share the same behaviour at the storage, resistive and control
ports, independently from the resistive relation. This means
that (23) or (24) impose a strong link between open and
closed-loop dynamics, that is based only on the property
of the Dirac structure. This is somehow related to the so-
called “dissipation obstacle,” that prevents energy-balancing
passivity-based control schemes to stabilise equilibria that
require an infinite amount of supplied energy. A possible
solution to this problem is illustrated in the next section.

controlled system

“desired” system
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Since trajectories are required to be the same 

It is possible to prove that the open-loop system is mapped into the 
desired closed-loop one, for which the Hamiltonian function Hd is 
selected so that “nice” stability properties are satisfied 

Asymptotic stability follows as in case of energy-balancing regulators

B. Passivity-based control with state-modulated source

The solution of (24) can be stated as follows: find a state
dependent control action � that is able to shape the open-loop
Hamiltonian thanks to Ha, and in such a way that closed-
loop dynamics i.e., (8) with (19), and target dynamics i.e.,
the port-Hamiltonian system with the same Dirac structure
(5) and resistive relation (6), but with Hamiltonian (22), have
the same behaviour at the storage, resistive and control ports.
This requirement is quite strong, and it can be relaxed by
requiring that the control input �(x) is able to map the tra-
jectories of the open-loop system (8) into the trajectories of
another port-Hamiltonian system with Hamiltonian (22), and
characterised by the same Dirac structure (5) and resistive
relation (6).

From the image representation (2) of a Dirac structure,
as far as the open-loop dynamics is concerned, it exists a
possibly time-dependent � 2 RnS+nR+nC such that

�ẋ = ET
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Similarly, as far as the “desired dynamics” is concerned,
there exists �0 2 RnS+nR+nC such that
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Since the trajectories are required to be the same, and in
spite of (19) and (22), we have that
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Note that if (24) holds, then also (27) is satisfied.
It is easy to verify that, if (27) holds, then the open-

loop system is mapped into the desired closed-loop one, for
which the Hamiltonian function Hd is selected so that “nice”
stability properties are satisfied: the same consideration about
the proof of asymptotic stability drawn for the energy-
balancing passivity-based control discussed in the previous
section are still valid here. More details on this point in the
next session.

IV. EXAMPLE: TRANSMISSION LINE WITH RLC LOAD

The scope of this section is to verify the applicability of
the previously introduced techniques to a simple but illus-
trative example. The plant consists of the power conserving
interconnection of the spatially discretized transmission line
of Example 2.2 with the series and parallel RLC circuits
presented in Example 2.1. In both cases, we impose that
fI = �f and eI = e.

In case the transmission line load is the RLC circuit
in the series configuration, from (10) and (16), the port-
Hamiltonian model is characterised by a Dirac structure
defined by (5), where
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with
fS =

�

fQ f� fS,1
�T

eS =
�

eQ e� eS,1
�T

(29)

Moreover, the resistive relation (13) holds. The state variable
is the collection of the state variables of the two main
subsystems:

x =
�

xQ x� x1
�T (30)

and the total Hamiltonian the sum of the (12) and (17), i.e.:

H(x) = H1(x1) +HL(xQ, x�) (31)

Simple physical considerations show that the desired equi-
librium configuration is:

x?
Q

CL
=

xi,?
q

Ci
= e?

x?
�

LL
=

xi,?
�

Li
= 0

for i = 1, . . . , N , that means zero flowing current and
constant voltage e? along the transmission line and on the
load. As in the case in which the transmission line is
not present, such equilibrium can be stabilised via energy-
shaping by following the methodology discussed in Sect. III-
A. In particular, the PDE (23) or its equivalent formulation

B. Passivity-based control with state-modulated source

The solution of (24) can be stated as follows: find a state
dependent control action � that is able to shape the open-loop
Hamiltonian thanks to Ha, and in such a way that closed-
loop dynamics i.e., (8) with (19), and target dynamics i.e.,
the port-Hamiltonian system with the same Dirac structure
(5) and resistive relation (6), but with Hamiltonian (22), have
the same behaviour at the storage, resistive and control ports.
This requirement is quite strong, and it can be relaxed by
requiring that the control input �(x) is able to map the tra-
jectories of the open-loop system (8) into the trajectories of
another port-Hamiltonian system with Hamiltonian (22), and
characterised by the same Dirac structure (5) and resistive
relation (6).

From the image representation (2) of a Dirac structure,
as far as the open-loop dynamics is concerned, it exists a
possibly time-dependent � 2 RnS+nR+nC such that
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Similarly, as far as the “desired dynamics” is concerned,
there exists �0 2 RnS+nR+nC such that
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Since the trajectories are required to be the same, and in
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Note that if (24) holds, then also (27) is satisfied.
It is easy to verify that, if (27) holds, then the open-

loop system is mapped into the desired closed-loop one, for
which the Hamiltonian function Hd is selected so that “nice”
stability properties are satisfied: the same consideration about
the proof of asymptotic stability drawn for the energy-
balancing passivity-based control discussed in the previous
section are still valid here. More details on this point in the
next session.

IV. EXAMPLE: TRANSMISSION LINE WITH RLC LOAD

The scope of this section is to verify the applicability of
the previously introduced techniques to a simple but illus-
trative example. The plant consists of the power conserving
interconnection of the spatially discretized transmission line
of Example 2.2 with the series and parallel RLC circuits
presented in Example 2.1. In both cases, we impose that
fI = �f and eI = e.

In case the transmission line load is the RLC circuit
in the series configuration, from (10) and (16), the port-
Hamiltonian model is characterised by a Dirac structure
defined by (5), where
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with
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fQ f� fS,1
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eS =
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eQ e� eS,1
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(29)

Moreover, the resistive relation (13) holds. The state variable
is the collection of the state variables of the two main
subsystems:

x =
�

xQ x� x1
�T (30)

and the total Hamiltonian the sum of the (12) and (17), i.e.:

H(x) = H1(x1) +HL(xQ, x�) (31)

Simple physical considerations show that the desired equi-
librium configuration is:
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LL
=
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Li
= 0

for i = 1, . . . , N , that means zero flowing current and
constant voltage e? along the transmission line and on the
load. As in the case in which the transmission line is
not present, such equilibrium can be stabilised via energy-
shaping by following the methodology discussed in Sect. III-
A. In particular, the PDE (23) or its equivalent formulation

In a similar manner, this result can be 

obtained in the distributed-parameter scenario 
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A possible choice for Ha can be the following:

(24) has a solution. With reference to (24), it is necessary to
find � = (�1, �2, �3)

T, possibly dependent on x, such that
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Let assume �1 = (�1,2, . . . , �1,4)
T, �2 = (�2,1,�2,2)

T and
�3 = (�3,1, . . . , �3,2(N�1))

T. Then, with simple calcula-
tions, from the last set of relations in (32), it follows that

�1,2 = �1,3 = �2,1 = �3,1 = �3,2i�1 = 0

�1,1 = ��1,4 = �2,2 = �3,2i

with i = 1, . . . , N � 1. Since
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A possible choice for Ha is the following:
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where CC > 0 is a design parameter and  a constant. This
is the same result obtained in [7], where the controller has
been developed by generating Casimir functions in closed-
loop. The constant  can be selected to have the closed-loop
Hamiltonian (22) quadratic in the increments, i.e.:

Hd(x) =
1

2

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

xQ

CL
� e?

x1
q

C1
� e?

...
xN
q

CN
� e?

x�

x1
�
...

xN
�

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

T

Hd

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

xQ

CL
� e?

x1
q

C1
� e?

...
xN
q

CN
� e?

x�

x1
�
...

xN
�

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(34)

with
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Stability easily follows from (25) and from the fact that (34)
is bounded from below. Asymptotic stability is proved by
checking that under the closed-loop dynamics, the largest
invariant solution contained in (26) equals the desired equi-
librium. In fact, when Ḣd = eTRfR = 0, we have that x� = 0
and xQ = x̄Q constant, to be determined later on. From the
system dynamics we obtain that

↵ẋN
� +

xN
q
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x̄Q

CL
↵ẋN

q +
xN
�
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The only invariant solution compatible with Ḣd = 0 is xN
� =

0 and xN
q

CN
= x̄Q

CL
, and the iteration of this procedure for all

the elements of the transmission line leads to xi
� = 0 and

xi
q

Ci
= x̄Q

CL
, with i = 1, . . . , N . From (33) the value assumed

by the control action � in this steady state configuration can
be computed, and then it follows that x̄Q

CL
= e?, and this

completes the proof.
In case the load interconnected to the transmission line

is the RLC circuit in parallel configuration, the resulting
port-Hamiltonian model is characterised by a Dirac structure
defined by (5), where the matrices FS , FR, FC , ES , ER, and
EC are the same as in (28), but with FS,s, ES,s, FR,s, and
ER,s replaced by FS,p, ES,p, FR,p, and ER,p defined in (11).
Moreover, the port variables are defined in (29), the resistive
relation (13) holds, and state variable and Hamiltonian are
given by (30) and (31), respectively. The desired equilibrium
configuration is
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with i = 1, . . . , N , which means constant voltage e? and
current e?

RL
along the transmission line and on the load.

As in the situation in which there is no transmission line,
an energy-balancing passivity-based controller is not able to
stabilise the system, [2]. In other words, the PDE (23) or,
equivalently, (24) does not admit a solution Ha that is able to
shape the closed-loop Hamiltonian to introduce a minimum
at the desired equilibrium (35). For space limitations, this
step is not reported in this paper. Then, it is preferable to
rely on the method discussed in Sect. III-B, and look for
solutions of the PDE (27), i.e. to find � = (�1, �2, �3)

T

such that
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As in the previous example, from the last set of relations in
(36), it follows that
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(24) has a solution. With reference to (24), it is necessary to
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tions, from the last set of relations in (32), it follows that

�1,2 = �1,3 = �2,1 = �3,1 = �3,2i�1 = 0

�1,1 = ��1,4 = �2,2 = �3,2i

with i = 1, . . . , N � 1. Since
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= �1,1 � = �2,2 = �1,1

�@Ha

@x�
= �@Ha

@xi
�

= �1,2 = 0

we have that

Ha(x) = Ha(⇠)
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⇠=xQ+
PN

i=1 xi
q

�(x) = � @Ha

@⇠
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i=1 xi
q

(33)

A possible choice for Ha is the following:
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where CC > 0 is a design parameter and  a constant. This
is the same result obtained in [7], where the controller has
been developed by generating Casimir functions in closed-
loop. The constant  can be selected to have the closed-loop
Hamiltonian (22) quadratic in the increments, i.e.:
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with
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Stability easily follows from (25) and from the fact that (34)
is bounded from below. Asymptotic stability is proved by
checking that under the closed-loop dynamics, the largest
invariant solution contained in (26) equals the desired equi-
librium. In fact, when Ḣd = eTRfR = 0, we have that x� = 0
and xQ = x̄Q constant, to be determined later on. From the
system dynamics we obtain that

↵ẋN
� +

xN
q

CN
=

x̄Q

CL
↵ẋN

q +
xN
�

LN
= 0

The only invariant solution compatible with Ḣd = 0 is xN
� =

0 and xN
q

CN
= x̄Q

CL
, and the iteration of this procedure for all

the elements of the transmission line leads to xi
� = 0 and

xi
q

Ci
= x̄Q

CL
, with i = 1, . . . , N . From (33) the value assumed

by the control action � in this steady state configuration can
be computed, and then it follows that x̄Q

CL
= e?, and this

completes the proof.
In case the load interconnected to the transmission line

is the RLC circuit in parallel configuration, the resulting
port-Hamiltonian model is characterised by a Dirac structure
defined by (5), where the matrices FS , FR, FC , ES , ER, and
EC are the same as in (28), but with FS,s, ES,s, FR,s, and
ER,s replaced by FS,p, ES,p, FR,p, and ER,p defined in (11).
Moreover, the port variables are defined in (29), the resistive
relation (13) holds, and state variable and Hamiltonian are
given by (30) and (31), respectively. The desired equilibrium
configuration is

x?
Q

CL
=

xi,?
q

Ci
= e?

x?
�

LL
=

xi,?
�

Li
=

e?

RL
(35)

with i = 1, . . . , N , which means constant voltage e? and
current e?

RL
along the transmission line and on the load.

As in the situation in which there is no transmission line,
an energy-balancing passivity-based controller is not able to
stabilise the system, [2]. In other words, the PDE (23) or,
equivalently, (24) does not admit a solution Ha that is able to
shape the closed-loop Hamiltonian to introduce a minimum
at the desired equilibrium (35). For space limitations, this
step is not reported in this paper. Then, it is preferable to
rely on the method discussed in Sect. III-B, and look for
solutions of the PDE (27), i.e. to find � = (�1, �2, �3)

T

such that

�@Ha

@x
= FS

T�

� = FC
T�

0 = ET
S � = (RLE

T
R + FT

R )�

(36)

As in the previous example, from the last set of relations in
(36), it follows that

�1,2 = �1,3 = �2,1 = �3,2i�1

�1,1 = ��1,4 = �2,2 = �3,2i

�RL�1,2 + �1,1 = 0 (37)

with i = 1, . . . , N � 1. Since
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with i = 1, . . . , N � 1, from (37), we have that

Ha(x) = Ha(⇠)
�

�

�

⇠=x�+RLxQ+
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A possible choice for Ha is the following:

Ha(⇠) =
1

2

(⇠ � ⇠?)2

LC
� e?

RL
⇠ +  (39)

where LC > 0 is a design parameter,  a constant and ⇠?

the value of ⇠ at the equilibrium (35). By following the
same methodology of the previous example, it is possible
to prove that the closed-loop Hamiltonian (22) is quadratic
in the increments, and that (35) is the unique minimum.
Asymptotic stability is proved in the same way as in the
previous example.

V. FURTHER DEVELOPMENTS

A. IDA-PBC for implicit port-Hamiltonian systems

Similarly to the technique presented in Sect. III-B, the
IDA-PBC control methodology tries to overcome the dis-
sipation obstacle by transforming the open-loop system (8)
into a new one, that is characterised not only by a desired
Hamiltonian function (22), but also by a different Dirac
structure and resistive relation, [2], [11], [12]. The first and
crucial step (also called “matching condition”), is then to
find a state-feedback (19), so that (8) is transformed into

�FS,dẋ+ ES,d
@Hd

@x
+

+FRf
0
R + ERe

0
R + FCf

0
C + ECe

0
C = 0

Rf,df
0
R +Re,de

0
R = 0

where Hd is given as in (22), and

FS,d = FS + FS,a ES,d = ES + ES,a

Rf,d = Rf +Rf,a Re,d = Re +Re,a

(40)

Clearly, the structure matrices in (40) have to define a Dirac
structure, i.e. FS,d, ES,d, FR, ER, FC and EC have to satisfy
(3), while the dissipative relation, i.e. Re,d and Rf,d, has to
satisfy (7). The feedback action is supposed to change the
part of the plant Dirac structure that is responsible for the
power flow among the energy storage elements – the matrices
FS and ES – and to properly change (usually increase) the
damping already present in the plant and/or add it along
some directions in the state space if necessary. The port of
the dissipative elements – the matrices FR and ER are not
changed, but only the resistive relation at the resistive port
(fR, eR). Finally, the closed-loop Hamiltonian has to satisfy

“nice” stability properties at least in a neighborhood of the
equilibrium.

Similarly to Sect. III-B, a necessary condition for matching
the desired dynamics in closed-loop turns out to be that the
next PDE has a solution for some Ha and �:
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This PDE is a generalisation of (27), as it can be easily
verified. On the other hand, it is not completely clear how
to select the target dynamics, i.e. the matrices introduced
in (40). This step, together with the improvements and
deeper analysis of the matching condition, is still under
investigation.

B. Boundary control via state-modulated source
In [7], the energy-shaping control for implicit port-

Hamiltonian systems has been realised by generating a set
of Casimir functions in closed-loop, and it has been shown
that, in case of lossless distributed port-Hamiltonian systems,
there is a one-to-one correspondence between the Casimirs
that can be found when the plant is an infinite dimensional
system, and when its finite dimensional approximation [6]
is adopted. As major consequence, the Hamiltonian function
of the controller and, formally, the control law turns out to
be the same.

The energy-shaping control via Casimir generation is
an alternative view of interpreting the energy-balancing
passivity-based control, so the limitations due to the dissipa-
tion obstacle are the same. In other words, it is not possible
to stabilise the system resulting from the power-conserving
interconnection of a trasmission line (modeled with a PDE
or with a finite dimensional approximation), with an RLC
load in parallel configuration, basically because there are no
useful Casimir functions in closed-loop. On the other hand,
in Sect. IV we have proved that a state-modulated source
can overcome the dissipation obstacle when a finite element
model of the transmission line is used. With (38) and (39)
in mind, it is interesting to investigate if the control law

�(⇠) = �RL

LC
(⇠ � ⇠?) + e?

with now

⇠ = x� +RLxQ +

Z

Z

(x� +RLxq) dz

is able to stabilise the “full-order” system, i.e. the system
in which a distributed port-Hamiltonian formulation of the
transmission line is adopted. As in [7], the summation is

with i = 1, . . . , N � 1. Since
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with i = 1, . . . , N � 1, from (37), we have that
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A possible choice for Ha is the following:

Ha(⇠) =
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⇠ +  (39)

where LC > 0 is a design parameter,  a constant and ⇠?

the value of ⇠ at the equilibrium (35). By following the
same methodology of the previous example, it is possible
to prove that the closed-loop Hamiltonian (22) is quadratic
in the increments, and that (35) is the unique minimum.
Asymptotic stability is proved in the same way as in the
previous example.

V. FURTHER DEVELOPMENTS

A. IDA-PBC for implicit port-Hamiltonian systems

Similarly to the technique presented in Sect. III-B, the
IDA-PBC control methodology tries to overcome the dis-
sipation obstacle by transforming the open-loop system (8)
into a new one, that is characterised not only by a desired
Hamiltonian function (22), but also by a different Dirac
structure and resistive relation, [2], [11], [12]. The first and
crucial step (also called “matching condition”), is then to
find a state-feedback (19), so that (8) is transformed into

�FS,dẋ+ ES,d
@Hd

@x
+

+FRf
0
R + ERe

0
R + FCf

0
C + ECe

0
C = 0

Rf,df
0
R +Re,de

0
R = 0

where Hd is given as in (22), and

FS,d = FS + FS,a ES,d = ES + ES,a

Rf,d = Rf +Rf,a Re,d = Re +Re,a

(40)

Clearly, the structure matrices in (40) have to define a Dirac
structure, i.e. FS,d, ES,d, FR, ER, FC and EC have to satisfy
(3), while the dissipative relation, i.e. Re,d and Rf,d, has to
satisfy (7). The feedback action is supposed to change the
part of the plant Dirac structure that is responsible for the
power flow among the energy storage elements – the matrices
FS and ES – and to properly change (usually increase) the
damping already present in the plant and/or add it along
some directions in the state space if necessary. The port of
the dissipative elements – the matrices FR and ER are not
changed, but only the resistive relation at the resistive port
(fR, eR). Finally, the closed-loop Hamiltonian has to satisfy

“nice” stability properties at least in a neighborhood of the
equilibrium.

Similarly to Sect. III-B, a necessary condition for matching
the desired dynamics in closed-loop turns out to be that the
next PDE has a solution for some Ha and �:
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This PDE is a generalisation of (27), as it can be easily
verified. On the other hand, it is not completely clear how
to select the target dynamics, i.e. the matrices introduced
in (40). This step, together with the improvements and
deeper analysis of the matching condition, is still under
investigation.

B. Boundary control via state-modulated source
In [7], the energy-shaping control for implicit port-

Hamiltonian systems has been realised by generating a set
of Casimir functions in closed-loop, and it has been shown
that, in case of lossless distributed port-Hamiltonian systems,
there is a one-to-one correspondence between the Casimirs
that can be found when the plant is an infinite dimensional
system, and when its finite dimensional approximation [6]
is adopted. As major consequence, the Hamiltonian function
of the controller and, formally, the control law turns out to
be the same.

The energy-shaping control via Casimir generation is
an alternative view of interpreting the energy-balancing
passivity-based control, so the limitations due to the dissipa-
tion obstacle are the same. In other words, it is not possible
to stabilise the system resulting from the power-conserving
interconnection of a trasmission line (modeled with a PDE
or with a finite dimensional approximation), with an RLC
load in parallel configuration, basically because there are no
useful Casimir functions in closed-loop. On the other hand,
in Sect. IV we have proved that a state-modulated source
can overcome the dissipation obstacle when a finite element
model of the transmission line is used. With (38) and (39)
in mind, it is interesting to investigate if the control law

�(⇠) = �RL

LC
(⇠ � ⇠?) + e?

with now

⇠ = x� +RLxQ +

Z

Z

(x� +RLxq) dz

is able to stabilise the “full-order” system, i.e. the system
in which a distributed port-Hamiltonian formulation of the
transmission line is adopted. As in [7], the summation is

Asymptotic stability is a consequence 

of the energy dissipation inequality



Dirac structures & control synthesis

In the distributed parameter case, the desired equilibrium is 

The Dirac structure is similar to the previous case, with the same 
domains, and this only noticeable difference:

As in the finite dimensional case [9], the methodology
discussed in Sect. III fails when the desired equilibrium re-
quires an infinite amount of energy from the controller. This
limitation is well-known and takes the name of “dissipation
obstacle.” In particular, when the load is an RLC circuit in
parallel configuration, the PDE (20) cannot be solved. In this
case, the load is described by the port-Hamiltonian system
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with Hamiltonian given by (30), and interconnected to (28)
by imposing (I`, V`) = (�I, V ), as in the previous case. For
this system, the desired equilibrium configuration is
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As far as the associated Dirac structure is concerned, the
matrices FS , FC and EC remain the same as in (32), while
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The domains of the operators associated to both the kernel
and image representation remain the same as before, i.e. (12)
and (33) respectively, with the only difference that

E⇤
S =

0

B

B

@

0 @z 0 0 0 0 0 0

@z 0 0 0 0 0 0 0

0 0 0 �1 0 �1 0 0

0 0 1 0 �1 0 0 0

1

C

C

A

with also F ⇤
R = FT

R and E⇤
R = ET

R .
Simple calculations show that (20) cannot be solved,

as expected. However, a boundary state-modulated source
is able to properly shape the open-loop Hamiltonian and
enforce asymptotic stability of (37). According to Prop. 4.1,
the PDE (23) leads to

˜�� =

˜�� = �˜�R =
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˜�R +
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which implies that the admissible Ha are in the form

Ha(⇠), ⇠ = x� +RLxQ +

Z L

0
(x� +RLxq) dz (38)

and the control action is �(xq, x�, xQ, x�) = �RL
@Ha
@⇠ (⇠).

Note the similarities with case in which the transmission line
is not present, [9]. A possible choice for Ha is

Ha(⇠) =
1

2

K(⇠ � ⇠?)2 � e?

RL
⇠, K > 0

with ⇠? the value of ⇠ in (38) at the equilibrium (37).
Asymptotic stability follows by applying the coordinate

change (35), and noting that

d
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for some C > 0. Asymptotic stability of the zero equilibrium
in the new coordinates follows from Prop. 5.1, with ⇢ = 0.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, it has been shown how to take advantage of
the geometric properties of a distributed port-Hamiltonian
system, i.e. of its Dirac structure, in the development
of energy-based boundary control laws. Standard energy-
balancing control schemes have been re-discovered without
relying on the existence of Casimir functions in closed-loop,
and novel boundary controllers based on state modulated
sources have been developed to overcome the dissipation
obstacle. The theoretical results have been discussed with the
help of a simple but illustrative example, i.e. a transmission
line with RLC load in both serial and parallel configurations.

Future work deals with the improvement of the presented
results from a formal point of view, the generalisation to the
distributed parameter case of more complex control method-
ologies (e.g., the IDA-PBC), and the study of nonlinear
distributed port-Hamiltonian systems.
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As far as the associated Dirac structure is concerned, the
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The domains of the operators associated to both the kernel
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Simple calculations show that (20) cannot be solved,

as expected. However, a boundary state-modulated source
is able to properly shape the open-loop Hamiltonian and
enforce asymptotic stability of (37). According to Prop. 4.1,
the PDE (23) leads to
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in the new coordinates follows from Prop. 5.1, with ⇢ = 0.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, it has been shown how to take advantage of
the geometric properties of a distributed port-Hamiltonian
system, i.e. of its Dirac structure, in the development
of energy-based boundary control laws. Standard energy-
balancing control schemes have been re-discovered without
relying on the existence of Casimir functions in closed-loop,
and novel boundary controllers based on state modulated
sources have been developed to overcome the dissipation
obstacle. The theoretical results have been discussed with the
help of a simple but illustrative example, i.e. a transmission
line with RLC load in both serial and parallel configurations.

Future work deals with the improvement of the presented
results from a formal point of view, the generalisation to the
distributed parameter case of more complex control method-
ologies (e.g., the IDA-PBC), and the study of nonlinear
distributed port-Hamiltonian systems.
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as expected. However, a boundary state-modulated source
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for some C > 0. Asymptotic stability of the zero equilibrium
in the new coordinates follows from Prop. 5.1, with ⇢ = 0.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, it has been shown how to take advantage of
the geometric properties of a distributed port-Hamiltonian
system, i.e. of its Dirac structure, in the development
of energy-based boundary control laws. Standard energy-
balancing control schemes have been re-discovered without
relying on the existence of Casimir functions in closed-loop,
and novel boundary controllers based on state modulated
sources have been developed to overcome the dissipation
obstacle. The theoretical results have been discussed with the
help of a simple but illustrative example, i.e. a transmission
line with RLC load in both serial and parallel configurations.

Future work deals with the improvement of the presented
results from a formal point of view, the generalisation to the
distributed parameter case of more complex control method-
ologies (e.g., the IDA-PBC), and the study of nonlinear
distributed port-Hamiltonian systems.
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As far as the associated Dirac structure is concerned, the
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Simple calculations show that (20) cannot be solved,

as expected. However, a boundary state-modulated source
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for some C > 0. Asymptotic stability of the zero equilibrium
in the new coordinates follows from Prop. 5.1, with ⇢ = 0.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, it has been shown how to take advantage of
the geometric properties of a distributed port-Hamiltonian
system, i.e. of its Dirac structure, in the development
of energy-based boundary control laws. Standard energy-
balancing control schemes have been re-discovered without
relying on the existence of Casimir functions in closed-loop,
and novel boundary controllers based on state modulated
sources have been developed to overcome the dissipation
obstacle. The theoretical results have been discussed with the
help of a simple but illustrative example, i.e. a transmission
line with RLC load in both serial and parallel configurations.

Future work deals with the improvement of the presented
results from a formal point of view, the generalisation to the
distributed parameter case of more complex control method-
ologies (e.g., the IDA-PBC), and the study of nonlinear
distributed port-Hamiltonian systems.
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As far as the associated Dirac structure is concerned, thematrices FS , FC and EC remain the same as in (32), while
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Conclusions and open problems

From finite-dimensional energy-based control, to the distributed 
parameter scenario 

Energy-balancing method 

Energy-Casimir method 

Control by state-modulated source 

Connection between port-Hamiltonian systems and semigroup theory 
Existence of solutions for the open and closed-loop systems 

Stability analysis 

La Salle’s invariance principle in the distributed-parameter case 
Powerful tool, with some technical difficulties to be applied 

Strong connection with physics, and with the finite dimensional case 

Initial results on nonlinear distributed port-Hamiltonian systems 
The Riemann invariants, or scattering coordinates, as a possible framework 
to tackle the problem
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