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What’s new?

In this lecture symbolic models for time-varying time-delay systems

Tools:

= countable approximations of functional spaces for approximating
Infinite dimensional state space

* incremental input-delay-to state stability for relating solutions of
time-delay systems with different delay realizations

Lecture based on:

[Pola et al., IJIRNC15] Pola, G., Pepe, P. Di Benedetto, M.D., Symbolic Models for Time-Varying
Time—Delay Systems via Alternating Approximate Bisimulation, International Journal of Robust
and Nonlinear Control, 25:2328-2347, September 2015

[Pola et al., SCL10] Pola, G., Pepe, P., Di Benedetto, M.D., Tabuada, P., Symbolic models for
nonlinear time-delay systems using approximate bisimulation, Systems & Control Letters 59(6):
365-373, June 2010
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Time-varying time-delay systems

Some applications of interest :

= Electric engineering
partial element equivalent circuits

= Chemical engineering
continuous stirred tank reactor with recycle

= Systems biology
human glucose insulin system
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Time-varying time-delay systems

We consider the following nonlinear time-varying time-delay system:

(10 = FEOxte O ate =) .
x(t) = &o(t), t € [—Amax 0]

where:

x(t) € R*and x; € y = C°([—A,qx 0], R™) is the state at time t

= &, € y Is the initial condition

= u(t) € R™is the control input attime t € [—r, +oo[ and r is the constant
control input delay

= A:R{ - [Ain Amax] 1S the unknown time-varying state delay and

Amin: Amax € REI)_

f:R" x R" x R™ — R" is the vector field

In the sequel we refer for simplicity, to the time-varying time-delay system
above as a time-delay system

.. unRnown thme-varying delay in the state

and Rnown constant deLaa n the control |
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Time-delay systems

AQ: Technical assumptions:

1. £(0,0,0) = 0 and locally Lipschitz

2. |u(t)|] £ By forallt € [—r, +oo[ for some known By > 0
3. Delay bounds A,,;n, A e € RS are known
4

Initial condition &, € C1([—A,,4y, 0], R™) bounded and with bounded
derivative over [—A,,, 4, 0]

5. Input functions u belonging to the functional space U of all
measurable control inputs u: [—r, +oo[— B (0)

6. Delay realizations A belonging to the functional space D of all
continuously differentiable functions A: RE — [Ain, Amas] With
derivative bounded by d,,;,, € [0,1] known

In the sequel we will denote:

* time-delay system satisfying Assumption AO by the tuple
=R x &, UUD,f)

= the solution of (*), starting from &, with control input u and time-
delay A, in R™ and y, by x(t, &y, u,A) and x:(&,, u, A), respectively
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Some questions ...

X ($o01,Up, Aq)

May | Leverage previous results and definitions?

(Q1) Since A can be thought of a disturbance, may | use results of L8?

No! Here, the state is a function and not a vector!
Countable approximation of infinite dimensional systems
for approximating the state space !

(Q2) May | use stability notions introduced in L9?
No! Here, | need a notion of incremental stability wrt different delay realizations!

Incremental input-delay-to state stability !
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Countable approximation of functional spaces

Definition
Given a functional space Y < C°([a, b],R), a map
AY: Rt — ZCO([a,b],R)
IS a countable approximation of Y if for any desired accuracy 4 > 0

= Ay(4) is a countable set
= Foranyy €Y there exists z € Ay(1) suchthat ||y — z|| < 4
= Foranyz € Ay(A) there exists y € Y suchthat ||y — z|| < 4

Map Ay is said a finite approximation of Y if functional space Ay (A1) is
finite for any accuracy A > 0
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Incremental input-delay-to-state stability

Definition

A time-delay system X is incrementally Input-Delay-to-State Stable (5-1DSS)
iIf it is forward complete and there exist a KL function g and K functions yy
and yp such that that for any initial conditions &, &, € y, for any inputs
u,,u, € U and any time-delay realizations A, A, € D, the corresponding
solutions x; (&1, uq, A1) and x;(&,, uy, A,) exist for any time t > 0 and satisfy

||xt(€1ru1JA1) T xt(fZJuZJAZ)”oo <
BUIEL = E2lleo®) +vu (s = udlmre—rll ) +vo (11A1 = A0l )

Xe($1, U1, A1)
= Yu (||(u1 - uz)l[—r,t—r[”oo) VD (”(A1 ~ Az)|[0,t[||oo)

$2
$1

x: (&, up,Ap)
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Incremental input-delay-to-state stability

Definition

A time-delay system X is incrementally Input-Delay-to-State Stable (5-1DSS)
iIf it is forward complete and there exist a KL function g and K functions yy
and yp such that that for any initial conditions &, &, € y, for any inputs
u,,u, € U and any time-delay realizations A, A, € D, the corresponding
solutions x; (&1, uq, A1) and x;(&,, uy, A,) exist for any time t > 0 and satisfy

|2 (€1, U1, B1) — x:(E2, Uz, A2) |00 <
LUIE — &2l t) +ru (||(u1 - uz)l[—r,t—r[”OO) +Yp (”(A1 - A2)|[0,t[||oo)
A 56-IDSS Lyapunov-Krasovskii functional can be properly defined by which
Theorem
Time delay system X is 6-IDSS if it admits a 6-IDSS Lyapunov-Krasovskii

functional
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To recap ...

We have provided

= Countable approximations of functional spaces to deal with infinite
dimensionality of the state space and with the delay realization

= The notion of §-IDSS for comparing trajectories with different delay
realizations

One guestion:

which approx’umatﬁow schenee oo we weed to constoer?

1. Exact bisimulation
2. Approximate bisimulation
3. Approximate and alternating bisimulation
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Time-discretization of time-delay systems ...

Given the time-delay system X and a sampling time = > 0 consider the
following metric transition system

T; (Z) — (XT' Xoo, Uy =0, Xme, Yo, HT)
where:

" X=X =X
= Xor = {$o}
» U, =U,xD,

wd) _, . ,
. 5_)1-6 , I xr(f: U, A) — f
" =X
= H (¢§)=¢&, forallé ey

and

= U, is the collection of constant functions u: [—-r,—r + t[- U in U for
which x;(&,u, A) is defined forany A € D,

= D is the collection of functions A: [0, t[= [Ain Amax] IN D for which

x:(& u,A) is defined for any u € U, 10/17



Symbolic models

Given

» asamplingtimet >0

» a state space quantization Ay > 0

" an input space quantization Ay > 0

» a delay space quantization A, > 0
define the following metric transition system

Tq (Z) — (XQJ Xqu Uq; _)qumqr qu Hq)

where q = (1, Ay, Ay, Ap) and
- Xq — qu — A)((AX)
" Xoq = {%0q} suchthat &y, € A, (Ay) and [|& — &oq| < Ay
" Ug=Ay,(4y) X Ap (Ap)
wh) .o
TR S R if [|&"—x:(&u, Dl < B(Ax, T) +¥p(Ap) + Ax
n Yq:X
= Hy () =¢, forall & € X,

and 4,, Ay_and Ap_ are countable approximations of Reach.(Z), U, and D, 1



Existence of symbolic models

Theorem

Consider a time-delay system X and a desired accuracy u > 0.

Suppose:

= Y is o6-IDSS and choose 7 > 0s.t. B(u, 1) < L.

= Existence of countable approximations Ay and A, of Reach,(X) and D.
Then, forany Ay >0, Ay > 0 and A, > 0 satisfying

B, t) +yy(Ay) + yp(Ap) + max{f(Ax,7),yp(Ap)} +Ax < 1

transition systems T;(X) and T, (X) are alternatingly approximately
bisimilar with accuracy u

Remark: The «completeness property»
If a control strategy exists for enforcing some specification on T, (%) then a

control strategy exists for enforcing the same specification on T.(X) up to a
given accuracy, and vice versa

... how to compute countable/finite approximations of Reach (X) and D ?
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Computation of countable approximations

How to Approximate ¥ € C°([a, b], R)? ... Spline AwaLHsLs

yA Approximating error:

M
A(N,0,M) = h2§+ (N +2)0

where:

: » >t - N number of samples
b—a

-h = v T 1 time quantization

- O space quantization
- M bound on ||.||., of 2"d derivative

| | .
2 TR
. .

. (1. 8

SR

1 i o e .'n.i': ol .l e b
a ta+h ra+2h  1a+3h 1a+dh  ia+bh ia+bh  1a+Th b

-
‘‘‘‘‘

>t Given 1 and M find ® and N such that:

A(N,®,M) < A

Approximate Y < C°([a, b], R) by ¥, y(Y)

ot Pam ) = iepon+1)Yisi(0)
¥i —y(a+in)| <0

a ia+h ta+2h  la+3h  la+dh  ia+Sh  ia+bh  la+Th b
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Example

Given

x1(t) = —8 x1(t) + tanh(x,(t — A(t)))
X5 (t) = —9x,(t) + sin (xl(t = A(t))) + cos(xz (t)) u(t—r)
with A, = 1073, A, .. = 1072, 7 = 2 and dp;, = 0.2

DL

Find a control strategy enforcing the following specification robustly wrt to
time-delay realizations and with accuracy u = 0.12

Synchronization specification:
Starting from the origin, remain in the positive orthant for all times, reach the
set X; = [0.01,00[X [0.01, o[ iIn NO more than 4s, stay in the set X; for at
least 4s, reach the set X, = [0.02,0.16] x [0.02,0.16] and finally remain in
X, for at least 12s
Remarks This specification is
= Relevant in multi-agent systems with shared resourses
= Difficult to enforce by using known techniques in time-delay systems
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Example

Control strategy designed

186 —396 248 —-562 —546 —484 388
(0,0) = (4,30) —(3,22) — (4,31) — (3,20) —(3,24) —>(2,20) — (3,21)
234 —220 542 -560 —-74 —142
(4,33) = (4,31) —5(3,25) — (4,35) —> (3,19) —(3,27) —(3,26)

where

u
(ny,ny)—>Mq,n,)
stands for

‘LL‘L9U , ,
(n1Vx, nyvyx) — (n' 9y, n' pVx)
with 95 = 0.04 and 9; = 0.0005

Time of computation
7692s on an Intel Core 2 Duo T5500 at 1.66 GHz
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Example

Simulation results
. . AmaxtAmin |, Bmax—Bmin _.
for delay realization A(t) = - + > sin(0.01¢t)
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Conclusions

= Incremental Input-Delay-to-State Stability (6-IDSS)

= Existence of symbolic models approximating nonlinear control
systems with unknown and time-varying delays

= Construction of symbolic models through spline analysis
= Example with synchronization specification
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