

Formal Methods for the Control of Large-scale Networked Nonlinear Systems with Logic Specifications

Basilica di Santa Maria di Collemaggio, 1287, L'Aquila

Lecture L12:
Symbolic models
and control for
networked
control systems

Speaker: Alessandro Borri

What's new?

In this lecture we will remove the ideality assumption placed on the communication infrastructure conveying information between the plant and the controller

Tools:

- δ-GAS, δ-FC
- Alternating approximate (bi)simulation

Lecture based on:

[Borri et al., HSCC12] Borri, A., Pola, G., Di Benedetto, M.D., A symbolic approach to the design of nonlinear networked control systems, Hybrid Systems: Computation and Control 2012, Bejing, China, April 2012, pp. 255-264, I. Mitchell and T. Dang, Eds.

[Borri et al., CDC12] Borri, A., Pola, G., Di Benedetto, M.D., Integrated Symbolic Design of Unstable Nonlinear Networked Control Systems, 51st IEEE Conference on Decision and Control, Maui, Hawaii, USA, December 2012, pp. 1374-1379

Networked control systems

- Networked Control Systems (NCS) are spatially distributed systems where the communication among plants, sensors, actuators and controllers occurs in a shared communication network
- At present, most of the results concerning NCS focus on stability and stabilizability problems
- Results available in the literature vary depending on the class of systems considered (linear vs. nonlinear), controllers synthesized (continuous vs. digital), and assumptions on the network non-idealities

Outline

Symbolic Control Design of Nonlinear Networked Control Systems

- Mathematical model of nonlinear NCS
- Symbolic models for stable and unstable NCS
- Symbolic control design of NCS
- Efficient control design algorithms

Networked control systems: Our model

Networked control systems: Our model

Networked control systems: Our model

Network non-idealities: quantization, packet drops, variable delays (e.g. [Andersson, IEEE-CDC-05], [Antsaklis, IEEE-TAC-04], [Heemels, IEEE-TAC-10], [Hespanha, Proc. IEEE-07], [Murray, SMTNS-06]) Network and computing non-idealities in our model:

- Quantization errors
- Bounded time-varying network access times
- Bounded time-varying communication delays induced by the network
- Bounded time-varying computation time of computing units
- Limited bandwidth
- Bounded packet losses

Correct-by-design controller synthesis

... a three-step process:

- 1. Construct the finite/symbolic model T of the plant system Σ
- 2. Design a finite/symbolic controller C that solves the specification S for T
- 3. Refine the controller C to obtain controller C' for Σ

t	0	τ	2τ	3τ	4τ	5τ	6τ	7τ	8τ	9τ	
u	0	0	0	u ₁	u ₂						
Х	x(0)	χ (τ)	x(2τ)	x(3τ)	x(4τ)	x(5τ)	x(6τ)	x(7τ)	x(8τ)	x(9τ)	
		N_1	= 4				N ₂	= 6			

t	0	τ	2τ	3τ	4τ	5τ	6τ	7τ	8τ	9τ			
u	0	0	0	u ₁	u ₂								
Х	x(0)	χ(τ)	x(2τ)	x(3τ)	x(4τ)	x(5τ)	x(6τ)	x(7τ)	x(8τ)	x(9τ)			
		$N_1 = 4$				$N_2 = 6$							

t	0	τ	2τ	3τ	4τ	5τ	6τ	7τ	8τ	9τ			
u	0	0	0	u ₁	u ₂								
Х	x(0)	x (τ)	x(2τ)	x(3τ)	x(4τ)	x(5τ)	x(6τ)	x(7τ)	x(8τ)	x(9τ)			
		$x(0) x(\tau) x(2\tau) x(3\tau)$ $N_1 = 4$				$N_2 = 6$							

t	0	τ	2τ	3τ	4τ	5τ	6τ	7τ	8τ	9τ	
u	0	0	0	u_1	u_1	u ₁	u ₁	u ₁	u ₁	u ₂	
Х	x(0)	x (τ)	x(2τ)	x(3τ)	x(4τ)	x(5τ)	x(6τ)	x(7τ)	x(8τ)	x(9τ)	
		$N_1 = 4$					N ₂	= 6			

t	0	τ	2τ	3τ	4τ	5τ	6τ	7τ	8τ	9τ	
u	0	0	0	u ₁	u_1	u ₁	u ₁	u ₁	u ₁	u ₂	
Х	x(0)	x (τ)	x(2τ)	x(3τ)	x(4τ)	x(5τ)	x(6τ)	x(7τ)	x(8τ)	x(9τ)	
		N_1	= 4				N ₂	= 6			

t	0	τ	2τ	3τ	4τ	5τ	6τ	7τ	8τ	9τ	
u	0	0	0	u ₁	u ₁	u_1	u ₁	u ₁	u_1	u ₂	
Х	x(0)	x (τ)	x(2τ)	x(3τ)	x(4τ)	x(5τ)	x(6τ)	x(7τ)	x(8τ)	x(9τ)	
						$N_2 = 6$					

t	0	τ	2τ	3τ	4τ	5τ	6τ	7τ	8τ	9τ	
u	0	0	0	u ₁	u ₁	u ₁	u_1	u ₁	u ₁	u ₂	
Х	x(0)	x (τ)	x(2τ)	x(3τ)	x(4τ)	x(5τ)	x(6τ)	x(7τ)	x(8τ)	x(9τ)	
		N_1	= 4				N_2	= 6			

t	0	τ	2τ	3τ	4τ	5τ	6τ	7τ	8τ	9τ	
u	0	0	0	u ₁	u ₁	u ₁	u ₁	u_1	u ₁	u ₂	
Х	x(0)	x (τ)	x(2τ)	x(3τ)	x(4τ)	x(5τ)	x(6τ)	x(7τ)	x(8τ)	x(9τ)	
		N ₁	= 4				N ₂	= 6			

t	0	τ	2τ	3τ	4τ	5τ	6τ	7τ	8τ	9τ	
u	0	0	0	u ₁	u_1	u ₂					
Х	x(0)	x (τ)	x(2τ)	x(3τ)	x(4τ)	x(5τ)	x(6τ)	x(7τ)	x(8τ)	x(9τ)	
		N_1	= 4								

t	0	τ	2τ	3τ	4τ	5τ	6τ	7τ	8τ	9τ	
u	0	0	0	u ₁	u_1	u_2					
Х	x(0)	x (τ)	x(2τ)	x(3τ)	x(4τ)	x(5τ)	x(6τ)	x(7τ)	x(8τ)	x(9τ)	
		N_1	= 4				N_2	= 6			

$$(x(0),x(\tau),x(2\tau),x(3\tau)) \xrightarrow{u_1} (x(4\tau),x(5\tau),x(6\tau),x(7\tau),x(8\tau),x(9\tau))$$

t	0	τ	2τ	3τ	4τ	5τ	6τ	7τ	8τ	9τ	•••
u	0	0	0	u ₁	u_1	u ₁	u ₁	u ₁	u ₁	u ₂	
Х	x(0)	x(τ)	x(2τ)	x(3τ)	x(4τ)	x(5τ)	x(6τ)	x(7τ)	x(8τ)	x(9τ)	
		N_1	= 4				N ₂	= 6			

t	0	τ	2τ	3τ	4τ	5τ	6τ	7τ	8τ	9τ	
u	0	0	0	u ₁	u ₂						
Х	x(0)	x (τ)	x(2τ)	x(3τ)	x(4τ)	x(5τ)	x(6τ)	x(7τ)	x(8τ)	x(9τ)	
		$x(0) x(\tau) x(2\tau) x(3\tau)$ $N_1 = 4$					N ₂	= 6			

Given a NCS Σ define the TS

$$T(\Sigma) = (Q_{\tau}, Q_{0,\tau}, L_{\tau}, \longrightarrow_{\tau}, Q_{m,\tau}, O_{\tau}, H_{\tau})$$
 where:

• $Q_{\tau} \subseteq Q_0 \cup Q_e$ where $Q_e \coloneqq \bigcup_{N=N_{min}}^{N_{max}} Q^N$ and for any $q=(x_1,x_2,\ldots,x_N) \in Q^N$, $x_{i+1}=x(\tau,x_i,u^-)$, $i\in[1;N-2]$, and $x_N=x(\tau,x_{N-1},u^+)$ for some control inputs u^-,u^+

Given a NCS Σ define the TS

- $Q_{\tau} \subseteq Q_0 \cup Q_e$ where $Q_e \coloneqq \bigcup_{N=N_{min}}^{N_{max}} Q^N$ and for any $q=(x_1,x_2,...,x_N) \in Q^N$, $x_{i+1}=x(\tau,x_i,u^-)$, $i\in[1;N-2]$, and $x_N=x(\tau,x_{N-1},u^+)$ for some control inputs u^-,u^+
- $Q_{0,\tau} = Q_0$

Given a NCS Σ define the TS

- $Q_{\tau} \subseteq Q_0 \cup Q_e$ where $Q_e \coloneqq \bigcup_{N=N_{min}}^{N_{max}} Q^N$ and for any $q=(x_1,x_2,...,x_N) \in Q^N$, $x_{i+1}=$ $\pmb{x}(\tau,x_i,u^-)$, $i\in[1;N-2]$, and $x_N=\pmb{x}(\tau,x_{N-1},u^+)$ for some control inputs u^-,u^+
- $\begin{array}{ccc} \bullet & Q_{0,\tau} = Q_0 \\ \bullet & L_{\tau} = [U]_{\mu_{II}} \end{array}$

Given a NCS Σ define the TS

- $Q_{\tau} \subseteq Q_0 \cup Q_e$ where $Q_e \coloneqq \bigcup_{N=N_{min}}^{N_{max}} Q^N$ and for any $q=(x_1,x_2,...,x_N) \in Q^N$, $x_{i+1}=x(\tau,x_i,u^-)$, $i\in[1;N-2]$, and $x_N=x(\tau,x_{N-1},u^+)$ for some control inputs u^-,u^+
- $Q_{0,\tau} = Q_0$
- $L_{\tau} = [U]_{\mu_U}$
- $q^1 \xrightarrow{u}_{\tau} q^2 \text{ where, for some } N_1, N_2 \in [N_{min}; N_{max}]$

Given a NCS Σ define the TS

$$T(\Sigma) = (Q_{\tau}, Q_{0,\tau}, L_{\tau}, \longrightarrow_{\tau}, Q_{m,\tau}, O_{\tau}, H_{\tau})$$
 where:

- $Q_{\tau} \subseteq Q_0 \cup Q_e$ where $Q_e \coloneqq \bigcup_{N=N_{min}}^{N_{max}} Q^N$ and for any $q=(x_1,x_2,...,x_N) \in Q^N$, $x_{i+1}=x(\tau,x_i,u^-)$, $i\in[1;N-2]$, and $x_N=x(\tau,x_{N-1},u^+)$ for some control inputs u^-,u^+
- $Q_{0,\tau} = Q_0$
- $L_{\tau} = [U]_{\mu_U}$
- $q^{1} \xrightarrow{u}_{\tau} q^{2} \text{ where, for some } N_{1}, N_{2} \in [N_{min}; N_{max}]$ $x_{i+1}^{1} = \mathbf{x}(\tau, x_{i}^{1}, u_{1}^{-}), i \in [1; N_{1} 2]$ $x_{N}^{1} = \mathbf{x}(\tau, x_{N_{1}-1}^{1}, u_{1}^{+})$

Given a NCS Σ define the TS

- $Q_{\tau} \subseteq Q_0 \cup Q_e$ where $Q_e \coloneqq \bigcup_{N=N_{min}}^{N_{max}} Q^N$ and for any $q=(x_1,x_2,\ldots,x_N) \in Q^N$, $x_{i+1}=x(\tau,x_i,u^-)$, $i\in[1;N-2]$, and $x_N=x(\tau,x_{N-1},u^+)$ for some control inputs u^-,u^+
- $Q_{0,\tau} = Q_0$
- $L_{\tau} = [U]_{\mu_U}$
- $q^{1} \xrightarrow{u}_{\tau} q^{2} \text{ where, for some } N_{1}, N_{2} \in [N_{min}; N_{max}]$ $x_{i+1}^{1} = \mathbf{x}(\tau, x_{i}^{1}, u_{1}^{-}), i \in [1; N_{1} 2]$ $x_{N}^{1} = \mathbf{x}(\tau, x_{N_{1}-1}^{1}, u_{1}^{+})$ $x_{i+1}^{2} = \mathbf{x}(\tau, x_{i}^{2}, u_{2}^{-}), i \in [1; N_{2} 2]$ $x_{N}^{2} = \mathbf{x}(\tau, x_{N_{2}-1}^{2}, u_{2}^{+})$

Given a NCS Σ define the TS

- $Q_{\tau} \subseteq Q_0 \cup Q_e$ where $Q_e \coloneqq \bigcup_{N=N_{min}}^{N_{max}} Q^N$ and for any $q=(x_1,x_2,\ldots,x_N) \in Q^N$, $x_{i+1}=x(\tau,x_i,u^-)$, $i\in[1;N-2]$, and $x_N=x(\tau,x_{N-1},u^+)$ for some control inputs u^-,u^+
- $Q_{0,\tau} = Q_0$
- $L_{\tau} = [U]_{\mu_U}$
- $q^{1} \xrightarrow{\mathsf{U}}_{\tau} q^{2} \text{ where, for some } N_{1}, N_{2} \in [N_{min}; N_{max}]$ $x_{i+1}^{1} = \mathbf{x}(\tau, x_{i}^{1}, u_{1}^{-}), i \in [1; N_{1} 2]$ $x_{N}^{1} = \mathbf{x}(\tau, x_{N_{1}-1}^{1}, u_{1}^{+})$ $x_{i+1}^{2} = \mathbf{x}(\tau, x_{i}^{2}, u_{2}^{-}), i \in [1; N_{2} 2]$ $x_{N}^{2} = \mathbf{x}(\tau, x_{N_{2}-1}^{2}, u_{2}^{+})$ $u_{2}^{-} = u_{1}^{+}$ $u_{2}^{+} = u$ $x_{1}^{2} = \mathbf{x}(\tau, x_{N_{1}}^{1}, u_{2}^{-})$

Given a NCS Σ define the TS

$$T(\Sigma) = (Q_{\tau}, Q_{0,\tau}, L_{\tau}, \longrightarrow_{\tau}, Q_{m,\tau}, O_{\tau}, H_{\tau})$$
 where:

- $Q_{\tau} \subseteq Q_0 \cup Q_e$ where $Q_e \coloneqq \bigcup_{N=N_{min}}^{N_{max}} Q^N$ and for any $q=(x_1,x_2,\ldots,x_N) \in Q^N$, $x_{i+1}=x(\tau,x_i,u^-)$, $i\in[1;N-2]$, and $x_N=x(\tau,x_{N-1},u^+)$ for some control inputs u^-,u^+
- $Q_{0,\tau} = Q_0$
- $L_{\tau} = [U]_{\mu_U}$
- $q^{1} \xrightarrow{\mathsf{u}}_{\tau} q^{2} \text{ where, for some } N_{1}, N_{2} \in [N_{min}; N_{max}]$ $x_{i+1}^{1} = \mathbf{x}(\tau, x_{i}^{1}, u_{1}^{-}), i \in [1; N_{1} 2]$ $x_{N}^{1} = \mathbf{x}(\tau, x_{N_{1}-1}^{1}, u_{1}^{+})$ $x_{i+1}^{2} = \mathbf{x}(\tau, x_{i}^{2}, u_{2}^{-}), i \in [1; N_{2} 2]$ $x_{N}^{2} = \mathbf{x}(\tau, x_{N_{2}-1}^{2}, u_{2}^{+})$ $u_{2}^{-} = u_{1}^{+}$ $u_{2}^{+} = u$ $x_{1}^{2} = \mathbf{x}(\tau, x_{N_{1}}^{1}, u_{2}^{-})$
- $Q_{m,\tau} = Q_{\tau}$
- $O_{\tau} = X_{\tau}$
- $H_{ au}$ is the identity function

Symbolic models for NCS

 $T(\Sigma)$ collects all the information of the NCS Σ available at the sensor, but it is not a symbolic model. We therefore propose a symbolic model by quantizing the state space X of the plant P

Given $x \in X$ let $[x]_{\mu_X} \in [X]_{\mu_X}$ be such that $|x - [x]_{\mu_X}| \le \mu_X$

Symbolic models for NCS

Define the transition system $T^*(\Sigma) = (Q_*, Q_{0,*}, L_*, \longrightarrow_*, Q_{m,*}, O_*, H_*)$ where:

- $\begin{array}{ll} \bullet & Q_* \subseteq [Q_0 \cup Q_e]_{\mu_{\mathcal{X}}} \text{ s.t. for any } q^* = (x_1^*, x_2^*, \dots, x_N^*) \in Q_*, \ x_{i+1}^* = [\textbf{\textit{x}}(\tau, x_i^*, u_*^-)]_{\mu_{\mathcal{X}}}, \\ & i \in [1; N-2], \text{ and } x_N^* = [\textbf{\textit{x}}(\tau, x_{N-1}^*, u_*^+)]_{\mu_{\mathcal{X}}} \text{ for some } u_*^-, u_*^+ \end{array}$
- $Q_{0,*} = [X_0]_{\mu_x}$
- $L_* = [U]_{\mu_u}$
- $q^1 \longrightarrow_*^{u_*} q^2$ where, for some N_1 , N_2

$$x_{i+1}^1 = [\mathbf{x}(\tau, x_i^1, u_1^-)]_{\mu_x}, i \in [1; N-2]$$

$$x_N^1 = [\mathbf{x}(\tau, x_{N_1-1}^1, u_1^+)]_{\mu_X}$$

$$x_{i+1}^2 = [\mathbf{x}(\tau, x_i^2, u_2^-)]_{\mu_x}, i \in [1; N-2]$$

$$x_N^2 = [\mathbf{x}(\tau, x_{N_2-1}^2, u_2^+)]_{\mu_X}$$

$$u_2^- = u_1^+$$

$$u_2^+ = u_*$$

$$x_1^2 = [\mathbf{x}(\tau, x_{N_1}^1, u_2^-)]_{\mu_x}$$

- $Q_{m,*} = Q_*$
- \bullet $O_* = X_{\tau}$
- H_* is the identity function

Symbolic models for NCS

Theorem 1 [HSCC-2012]

Consider the NCS Σ and suppose that the plant nonlinear control system P enjoys the following properties:

1. There exists a δ -GAS Lyapunov function for Σ , hence there exists $\lambda \in \mathbb{R}^+$ s.t. for any $x_1, x_2 \in X$, and any $u \in U$

$$\frac{\partial V}{\partial x_1} f(x_1, u) + \frac{\partial V}{\partial x_2} f(x_2, u) \le -\lambda V(x_1, x_2).$$

2. There exists a K_{∞} function γ such that $V(x, x') \leq V(x, x'') + \gamma(+|x'-x''|)$ for every $x, x', x'' \in X$.

Then for any desired precision ε > 0, any sampling time τ > 0, and any state quantization μ_{χ} > 0 such that

$$\mu_{x} \leq min\left\{\gamma^{-1}\left(\left(1 - e^{-\lambda \tau}\right)\underline{\alpha}(\varepsilon)\right), \bar{\alpha}^{-1}(\underline{\alpha}(\varepsilon)), \hat{\mu}_{X}\right\}$$

transition systems $T(\Sigma)$ and $T^*(\Sigma)$ are ϵ -alternatingly bisimilar

Symbolic models

Theorem [HSCC-2012]

For any δ -GAS nonlinear NCS Σ with compact state and input spaces and for any precision ϵ there exists a symbolic transition system T*(Σ) that is an ϵ -alternating approximate bisimulation of Σ and that can be effectively computed

Theorem [IEEE-CDC-2012]

For any δ -FC nonlinear NCS Σ with compact state and input spaces, for any precision ϵ , there exists a symbolic transition system $T^*(\Sigma)$ that is an ϵ -alternating approximate simulation of Σ and that can be effectively computed

Class of specifications

Non-deterministic finite automata on infinite strings

Examples:

- Language specifications (e.g. robot motion planning)
- Synchronization specifications (e.g. starting from region A reach region B passing through region C in 1s)
- Obstacle avoidance (e.g. starting from region A, reach region B in finite time, while avoiding region C)
- Switching specifications (e.g. rotate clockwise in a certain region of the state space and rotate counter-clockwise in other regions of the state space)
- ...

Problem formulation:

Given a NCS Σ , a specification LTS S and a desired precision ϵ > 0, find a symbolic controller that implements S (up to precision ϵ) robustly with respect to the non–idealities of the communication network and that is alive when interacting with Σ

Synthesis through a three-step process:

- 1. Compute the symbolic model $T^*(\Sigma)$ of Σ
- 2. Compute the approximate parallel composition $C^* = T^*(\Sigma) \mid \mu_X S$
- 3. Compute the maximal alive part Alive(C*) of C*

Synthesis through a three-step process:

- 1. Compute the symbolic model $T^*(\Sigma)$ of Σ
- 2. Compute the approximate parallel composition $C^* = T^*(\Sigma) \mid \mu_X S$
- 3. Compute the maximal alive part Alive(C*) of C*

- 1. Compute the symbolic model $T^*(\Sigma)$ of Σ
- 2. Compute the approximate parallel composition $C^* = T^*(\Sigma) \mid \mu_X S$
- 3. Compute the maximal alive part Alive(C*) of C*

- 1. Compute the symbolic model $T^*(\Sigma)$ of Σ
- 2. Compute the approximate parallel composition $C^* = T^*(\Sigma) \mid \mu \mid \Sigma$
- 3. Compute the maximal alive part Alive(C*) of C*

- 1. Compute the symbolic model $T^*(\Sigma)$ of Σ
- 2. Compute the approximate parallel composition $C^* = T^*(\Sigma) \mid \mu_X S$
- 3. Compute the maximal alive part Alive(C*) of C*

Synthesis through a three-step process:

- 1. Compute the symbolic model $T^*(\Sigma)$ of Σ
- 2. Compute the approximate parallel composition $C^* = T^*(\Sigma) \mid \mu_X S$
- 3. Compute the maximal alive part Alive(C*) of C*

Drawback

High computational complexity!

Synthesis through a three-step process:

- 1. Compute the symbolic model $T^*(\Sigma)$ of Σ
- 2. Compute the approximate parallel composition $C^* = T^*(\Sigma) \mid \mu_X S$
- 3. Compute the maximal alive part Alive(C*) of C*

Drawback

High computational complexity!

Efficient on-the-fly (off-line) algorithms that integrate the synthesis of Alive(C*) with the construction of $T^*(\Sigma)$

[Pola, Borri, Di Benedetto, IEEE-TAC-2012]

- 1. Compute the symbolic model $T^*(\Sigma)$ of Σ
- 2. Compute the approximate parallel composition $C^* = T^*(\Sigma) \mid \mu_X S$
- 3. Compute the maximal alive part Alive(C*) of C*

- 1. Compute the symbolic model $T^*(\Sigma)$ of Σ
- 2. Compute the approximate parallel composition $C^* = T^*(\Sigma) \mid \mu_X S$
- 3. Compute the maximal alive part Alive(C*) of C*

- 1. Compute the symbolic model $T^*(\Sigma)$ of Σ
- 2. Compute the approximate parallel composition $C^* = T^*(\Sigma) \mid \mu_X S$
- 3. Compute the maximal alive part Alive(C*) of C*

- 1. Compute the symbolic model $T^*(\Sigma)$ of Σ
- 2. Compute the approximate parallel composition $C^* = T^*(\Sigma) \mid \mu_X S$
- 3. Compute the maximal alive part Alive(C*) of C*

- 1. Compute the symbolic model $T^*(\Sigma)$ of Σ
- 2. Compute the approximate parallel composition $C^* = T^*(\Sigma) \mid \mu_X S$
- 3. Compute the maximal alive part Alive(C*) of C*

- 1. Compute the symbolic model $T^*(\Sigma)$ of Σ
- 2. Compute the approximate parallel composition $C^* = T^*(\Sigma) \mid \mu_X S$
- 3. Compute the maximal alive part Alive(C*) of C*

- 1. Compute the symbolic model $T^*(\Sigma)$ of Σ
- 2. Compute the approximate parallel composition $C^* = T^*(\Sigma) \mid \mu_X S$
- 3. Compute the maximal alive part Alive(C*) of C*

- 1. Compute the symbolic model $T^*(\Sigma)$ of Σ
- 2. Compute the approximate parallel composition $C^* = T^*(\Sigma) \mid \mu_X S$
- 3. Compute the maximal alive part Alive(C*) of C*

- 1. Compute the symbolic model $T^*(\Sigma)$ of Σ
- 2. Compute the approximate parallel composition $C^* = T^*(\Sigma) \mid \mu \mid \Sigma$
- 3. Compute the maximal alive part Alive(C*) of C*

- 1. Compute the symbolic model $T^*(\Sigma)$ of Σ
- 2. Compute the approximate parallel composition $C^* = T^*(\Sigma) \mid \mu \mid \Sigma$
- 3. Compute the maximal alive part Alive(C*) of C*

We consider a widely used nonlinear vehicle model, controlled over a nonreliable network:

P:
$$\dot{x} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = f(x, u) = \begin{bmatrix} u_1 \cos x_3 \\ u_1 \sin x_3 \\ u_2 \end{bmatrix}$$

State space

$$x \in X = X_0 = [-1,1[\times [-1,1[\times [-\pi,\pi[$$

Input space

$$u \in U = [-1,1[\times [-1,1[$$

Sampling/quantization parameters $\tau = 0.2 \, s$ $\mu_x = 0.02$ $\mu_u = 0.25$

$$\tau = 0.2 s$$

$$\mu_{x} = 0.02$$

$$\mu_u = 0.25$$

The plant P is δ -FC with $\lambda = 2$

We consider a widely used nonlinear vehicle model, controlled over a nonreliable network:

P:
$$\dot{x} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = f(x, u) = \begin{bmatrix} u_1 \cos x_3 \\ u_1 \sin x_3 \\ u_2 \end{bmatrix}$$

Bandwidth $B_{max} = 1 \, kbit/s$

Maximum control computation time $\Delta_{max}^{ctrl} = 0.01 s$

Maximum waiting time to access the network $\Delta_{max}^{req} = 0.05 s$

Maximum network delays $\Delta_{max}^{delay} = 0.1 \, \mathrm{s}$

Required precision

$$\varepsilon = 0.15$$

$$N_{min} = [\Delta_{min} / \tau] = 1$$
 $\Delta_{min} = (total)$ minimum delay allowed $N_{max} = [\Delta_{max} / \tau] = 2$ $\Delta_{max} = (total)$ maximum delay allowed

Robust control design problem: enforce trajectories in the state space independently from the realization of the network uncertainties.

This example shows how formal methods offer a systematic approach to deal with complex specifications, such as obstacle avoidance and path planning problems *in the presence of nonideal communication infrastructure*, which is often the case in concrete applications.

Motion planning with obstacle avoidance

