Formal Methods for the Control of Large-scale Networked Nonlinear Systems with Logic Specifications

Lecture L13: Decentralized control of networks of nonlinear systems

Speaker: Giordano Pola
What’s new?

In this course:

Control of
Large-scale Heterogeneous
Networked Nonlinear Systems
with Logic Specifications

Lecture based on:

What’s new?

To recap:

Control of

Large-scale **Heterogeneous**

Networked **Nonlinear Systems**

with Logic Specifications

Lectures

- L3, L5, L6, L8, L10, L11

Lecture based on:

What’s new?

To recap:

Control of Large-scale Heterogeneous Networked Nonlinear Systems with Logic Specifications

Lectures

- L3, L5, L6, L8, L10, L11
- L4, L7

Lecture based on:

What’s new?

To recap:

Control of Large-scale Heterogeneous Networked Nonlinear Systems with Logic Specifications

Lectures

- L3, L5, L6, L8, L10, L11
- L4, L7
- L12

Lecture based on:

What's new?

Here:

Control of
Large-scale Heterogeneous
Networked Nonlinear Systems
with Logic Specifications

Lectures

- L3, L5, L6, L8, L10, L11
- L4, L7
- L12

Lecture based on:

Decentralized control architecture

Approximate equivalence notions

Time-delay systems

Introduction

Decentralized control architecture
The model we consider here ...

Main assumptions: Ideal communication infrastructures, no disturbance inputs, no state delays and systems in discrete-time
The model we consider here ...

Main assumptions: Ideal communication infrastructures, no disturbance inputs, no state delays and systems in discrete-time
Plant P_i described by the nonlinear discrete-time system

$$P_i:\begin{cases} x_i(t + 1) = f_i(x_i(t), x_j(t), \ldots, u_i(t)) \\ x_i(t) \in \mathbb{R}^{n_i}, x_j(t) \in \mathbb{R}^{n_j}, u_i(t) \in U_i \end{cases}$$

where:

- $x_i(t)$ is the internal state
- $x_j(t)$ is an external measurable input (corresponding to the internal state of P_j)
- $u_i(t)$ is the control input where set U_i is finite
The model we consider here …

Controller C_i described by the automaton

$$ C_i: \begin{cases} z_i(t + 1) = g_i(z_i(t)) \\ u_i(t) \in h_i(z_i(k)) \\ z_i(t) \in Z_i, z_i(t) \in Z_{i,0} \subseteq Z_i, u_i(t) \in U_i \end{cases} $$

where:
- $z_i(t) \in Z_i$ is the internal state and Z_i is a finite set
- $u_i(t) \in U_i$ is the output and set U_i is a finite set

Features of C_i:
- finite
- dynamic
- open-loop
- state deterministic, but
- output nondeterministic
Control Problem Formulation

Given

- the network of control systems P_i
- a regular language specification L_Q
 defined over a finite subset Y_Q of \mathbb{R}^n
- a desired accuracy $\theta > 0$

Find

- a set of initial states $X_0 \subseteq \mathbb{R}^n$
- a collection of decentralized controllers C_i

such that the controlled network, denoted P^C, satisfies the specification L_Q up to the accuracy θ, i.e.

for any trajectory $x(.)$ of P^C with $x(0) \in X_0$, there exists a word $q_0 q_1 \ldots q_{t_f}$ of the specification L_Q such that

$$| x(t) - q_t | \leq \theta, \text{ for all } t \in [0; t_f]$$
The main idea …

From networks of nonlinear control systems …

… to networks of symbolic models T_i each one approximating P_i
Transition systems’ representation of the network

Given

\[
P_i: \begin{cases}
 x_i(t + 1) = f_i(x_i(t), x_i(t), ..., u_i(t)) \\
 x_i(t) \in \mathbb{R}^{n_i}, x_i(t) \in \mathbb{R}^{n_i'}, u_i(t) \in U_i
\end{cases}
\]

define

\[
P: \begin{cases}
 x(t + 1) = f(x(t), u(t)) \\
 x(t) \in \mathbb{R}^n, u(t) \in U
\end{cases}
\]

where

\[
 x(t) = (x_1(t), x_2(t), ..., x_N(t))
\]

\[
 u(t) = (u_1(t), u_2(t), ..., u_N(t))
\]

\[
 f(x(t), u(t)) = (f_1(x_1(t), ..., u_1(t)), ..., f_N(x_N(t), ..., u_N(t)))
\]

\[
 T(P) = (X, X_0, U, \rightarrow, X_m, Y, H)
\]

where:

- \(X = X_0 = X_m = \mathbb{R}^n \)
- \(U = U_1 \times U_2 \times ... \times U_N \)
- \(x \rightarrow x' \text{ if } x' = f(x, u) \)
- \(Y = \mathbb{R}^n \)
- \(H(x) = x \)
Networks of symbolic models

Given a quantization vector $\eta = (\eta(1), \eta(2), \ldots, \eta(N))$ we first approximate

$$P_i: \begin{cases} x_i(t + 1) = f_i(x_i(t), x_i(t), \ldots, u_i(t)) \\ x_i(t) \in \mathbb{R}^{n_i}, x_i(t) \in \mathbb{R}^{n_i'}, u_i(t) \in U_i \end{cases}$$

by

$$T^\eta(P_i) = (X^\eta_i, X^\eta_{0,i}, W^\eta_i \times U_i, \rightarrow_i, X^\eta_{m,i}, Y^\eta_i, H^\eta_i)$$

where:

- $X^\eta_i = X_{0,i}^\eta = X_{m,i}^\eta = \eta(i) \mathbb{Z}^n$
- $W^\eta_i = X_{i_1}^\eta \times X_{i_2}^\eta \times \ldots$ where indices i_j are those of P_{ij} that affect dynamics of P_i
- $\xi_i \xrightarrow{(w_i,u_i)} \xi'_i$ if $\xi'_i = [f_i(\xi_i, w_i, u_i)]_{\eta(i)}$
- $Y^\eta_i = \mathbb{R}^n$
- $H^\eta_i(\xi_i) = \xi_i$

Features of $T^\eta(P_i)$: deterministic, countable and alive

08/20
Networks of symbolic models

Define the network of symbolic models

\[T(\{T^n(P_i)\}_{i \in [1;N]}) \]

as the transition system obtained by interconnecting \(T^n(P_i) \), i.e.

\[T(\{T^n(P_i)\}_{i \in [1;N]}) = (X^n, X_0^n, U, \rightarrow_{\eta} X_m^n, Y^n, H^n) \]

where:

- \(X^n = X_0^n = X_m^n = X_1^n \times X_2^n \times ... \times X_N^n \)
- \(U = U_1 \times U_2 \times ... \times U_N \)
- \((\xi_1, \xi_2, ..., \xi_N)^{(u_1, u_2, ..., u_N)} \rightarrow_{\eta} (\xi'_1, \xi'_2, ..., \xi'_N) \) if \(\xi_i \rightarrow_{i} \xi'_i \) where \(w_i = (\xi_{i1}, \xi_{i2}, ...) \)
- \(Y^n = Y_1^n \times Y_2^n \times ... \times Y_N^n \)
- \(H^n(\xi_1, \xi_2, ..., \xi_N) = (H_1^n(\xi_1), H_2^n(\xi_2), ..., H_N^n(\xi_N)) \)
Networks of symbolic models

Proposition
Suppose that P admits a locally Lipshitz δ-GAS Lyapunov function V satisfying

$$|V(x, y) - V(x, z)| \leq \sigma(|y - z|)$$

for some K_∞ function σ.

Then, for any desired accuracy $\mu \in \mathbb{R}^+$ and for any quantization vector $\eta \in \mathbb{R}_N^+$ satisfying the following inequality

$$|\eta| \leq \min\{(\sigma^{-1} \circ \rho \circ \alpha_1)(\mu), (\alpha_2^{-1} \circ \alpha_1)(\mu)\}$$

Relation R_μ specified by

$$(x, \xi) \in R_\mu \iff V(x, \xi) \leq \alpha_1(\mu)$$

is a μ-approximate bisimulation between $T(P)$ and $T\left(\{T^\eta(P_i)\}_{i \in [1;N]}\right)$.

Consequently, transition systems $T(P)$ and $T\left(\{T^\eta(P_i)\}_{i \in [1;N]}\right)$ are μ-bisimilar.

How to find V? Use e.g. small gain theorem
Decentralized supervisory control

Example

- Network of two control systems $P_i: x_i(t + 1) = 0.5x_i(t) + u_i(t)$ with $U_i = \{-1,0,1\}$
- Specification L_Q collection of words $(0,0)(1,1)$ and $(0,0)(-1,-1)$

Case 1: C_i do not agree in advance on which word to enforce
- Starting from 0, C_1 picks $u_1(0) = 1$
- Starting from 0, C_2 picks $u_2(0) = -1$
- From $(0,0)$ to $(1,-1)$ \Rightarrow Specification violated!

Case 2: C_i do agree in advance on which word to enforce:
- If they want to enforce word $(0,0)(1,1)$ both C_i pick $u_i(0) = 1$
- If they want to enforce word $(0,0)(-1,-1)$ both C_i pick $u_i(0) = -1$
\Rightarrow Specification satisfied!
Decentralized supervisory control

Example

- Network of two control systems $P_i: x_i(t + 1) = 0.5x_i(t) + u_i(t)$ with $U_i = \{-1, 0, 1\}$.
- Specification L_Q collection of words $(0,0)(1,1)$ and $(0,0)(-1, -1)$

Case 1: C_i do not agree in advance on which word to enforce
- Starting from 0, C_1 picks $u_1(0) = 1$
- Starting from 0, C_2 picks $u_2(0) = -1$
- From $(0,0)$ to $(1,-1)$ ⇒ Specification violated!

How to solve problem above?
1. Restriction of the class of specifications, from L_Q to $L_{Q,1} \times L_{Q,2} \times \ldots \times L_{Q,N}$
2. Online agreement on which word to enforce
 (distributed control architecture needed)
3. Offline agreement on which word to enforce
 (decentralized control architecture enough)
Decentralized supervisory control

Example

- Network of two control systems $P_i: x_i(t + 1) = 0.5x_i(t) + u_i(t)$ with $U_i = \{-1, 0, 1\}$.
- Specification L_Q collection of words $(0,0)(1,1)$ and $(0,0)(-1,-1)$

Case 1: C_i do not agree in advance on which word to enforce
- Starting from 0, C_1 picks $u_1(0) = 1$
- Starting from 0, C_2 picks $u_2(0) = -1$
- From $(0,0)$ to $(1,-1)$ \Rightarrow Specification violated!

How to solve problem above?

1. Restriction of the class of specifications, from L_Q to $L_{Q,1} \times L_{Q,2} \times \ldots \times L_{Q,N}$
2. Online agreement on which word to enforce
 (distributed control architecture needed)
3. Offline agreement on which word to enforce
 (decentralized control architecture enough)
Decentralized supervisory control: solution

Recap from Lecture L7:

- Given L_Q define the transition system S'_Q such that its input marked language coincides with L_Q, i.e., $L^u_m(S'_Q) = L_Q$
- Construct the dual transition system S_Q of S'_Q, where states of S_Q are transitions of S'_Q and vice versa; we get

$$L^y_m(S_Q) = L^u_m(S'_Q) = L_Q \text{ and } L^y(S_Q) = L^u(S'_Q)$$

EXAMPLE

- $L_Q =$ all words starting with a and ending with b over $Y_Q = \{a, b\}$
- Regular expression $a(a + b)^*b$

Transition system S'_Q

Transition system S_Q

12/20
Decentralized supervisory control: solution

- Let $S_Q = (X_Q, X_{Q,0}, U_Q, X_{Q,m}, \mathbb{R}^n, H_Q)$
- Let $H_{Q,i}$ be the natural projection of H_Q onto \mathbb{R}^{n_i}, i.e.
 \[
 H_{Q,i}(x_Q) = q^i \text{ if } H_Q(x_Q) = (q^1, q^2, ..., q^N)
 \]
- Define operator $I_i: (\xrightarrow{Q}) \times \mathbb{R}^+_N \rightarrow \{\text{True, False}\}$ such that
 \[
 I_i(x_Q \xrightarrow{Q} x'_Q, \eta) = \text{True}, \text{ if } \exists u_i \text{ s.t. } [H_{Q,i}(x_Q)]_{\eta(i)} \xrightarrow{(w_i, u_i)} [H_{Q,i}(x'_Q)]_{\eta(i)}
 \]
 \[
 I_i(x_Q \xrightarrow{Q} x'_Q, \eta) = \text{False}, \text{ otherwise}
 \]
- Define operator $I: (\xrightarrow{Q}) \times \mathbb{R}^+_N \rightarrow \{\text{True, False}\}$ by
 \[
 I(x_Q \xrightarrow{Q} x'_Q, \eta) = \bigwedge_{i \in [1;N]} I_i(x_Q \xrightarrow{Q} x'_Q, \eta)
 \]
Decentralized supervisory control: solution

- Let $S_Q = (X_Q, X_{Q,0}, U_Q, \rightarrow, X_{Q,m}, \mathbb{R}^n, H_Q)$
- Let $H_{Q,i}$ be the natural projection of H_Q onto \mathbb{R}^{n_i}, i.e.
 \[H_{Q,i}(x_Q) = q^i \text{ if } H_Q(x_Q) = (q^1, q^2, ..., q^N) \]
- Define operator $I_i: (\rightarrow) \times \mathbb{R}^+_N \rightarrow \{\text{True, False}\}$ such that
 \[I_i(x_Q \rightarrow x'_Q, \eta) = \text{True, if } \exists u_i \text{ s.t. } [H_{Q,i}(x_Q)]_{\eta(i)} \stackrel{(w_i, u_i)}{\longrightarrow} [H_{Q,i}(x'_Q)]_{\eta(i)} \]
 \[I_i(x_Q \rightarrow x'_Q, \eta) = \text{False, otherwise} \]
- Define operator $I: (\rightarrow) \times \mathbb{R}^+_N \rightarrow \{\text{True, False}\}$ by
 \[I(x_Q \rightarrow x'_Q, \eta) = \bigwedge_{i \in [1;N]} I_i(x_Q \rightarrow x'_Q, \eta) \]
Decentralized supervisory control: solution

Let $S_{Q,\eta}$ be the sub-transition system of S_Q containing all and only transitions $x_Q \xrightarrow{Q} x'_Q$ of S_Q for which

$$I(x_Q \xrightarrow{Q} x'_Q, \eta) = True$$

Remarks

1. $S_{Q,\eta}$ represents the part of the specification that can be matched by using the decentralized control architecture we consider
2. $S_{Q,\eta}$ is blocking in general

In order to overcome 2 compute $\text{Trim}(S_{Q,\eta})$

Remark

$\text{Trim}(S_{Q,\eta})$ contains all information needed to solve our control problem, i.e. to define the set of initial states and to design local controllers C_i
Consider any \(q \) word marked by \(\text{Trim}(S_{Q,\eta}) \) and let

\[
S_q = (X_q, x_{q,0}, U_q, \rightarrow_q, \{x_{q,m}\}, R^n, H_q)
\]

be a transition system marking \(q \)

Remark
- Remember that \(C_i \) need to agree offline on which word to enforce!
- \(S_q \) can be chosen wlog to be symbolic, accessible and nonblocking

Let \(H_{q,i} \) be the natural projection of \(H_q \) onto \(\mathbb{R}^{n_i} \)

Define

\[
X_0 = R^{-1}_\mu \left(\prod_{i=1}^{n} \left\{ [H_{q,i}(x_{q,0})] \eta(i) \right\} \right)
\]
Decentralized supervisory control: solution

Define entities of local controllers C_i as follows:

$$
\begin{align*}
C_i: \quad & z_i(t + 1) = g_i(z_i(t)) \\
& u_i(t) \in h_i(z_i(k)) \\
& z_i(t) \in Z_i, z_i(t) \in Z_{i,0} \subseteq Z_i, u_i(t) \in U_i
\end{align*}
$$

- $Z_{i,0} = \{x_{q,0}\}$
- $Z_i = X_q$
- $g_i(z_i) = z'_i$ if $z_i \rightarrow z'_i$
- $h_i(z_i(t)) = \left\{ u_i \in U_i \mid g_i(z_i) = z'_i \text{ and } \left[H_{Q,i}(z_i)\right]_{\eta(i)} \xrightarrow{(w_i,u_i)}_{i} \left[H_{Q,i}(z'_i)\right]_{\eta(i)} \right\}$

Decentralized supervisory control: solution
Theorem
Suppose that \(P \) admits a locally Lipshitz \(\delta \)-GAS Lyapunov function \(V \) satisfying

\[
|V(x, y) - V(x, z)| \leq \sigma(|y - z|)
\]

for some \(K_\infty \) function \(\sigma \). For any desired accuracy \(\theta \in \mathbb{R}^+ \) select \(\mu \in \mathbb{R}^+ \) and \(\eta \in \mathbb{R}_N^+ \) satisfying

\[
|\eta| \leq \min\{(\sigma^{-1} \circ \rho \circ \alpha_1)(\mu), (\alpha_2^{-1} \circ \alpha_1)(\mu)\}
\]

\[
\mu + |\eta| \leq \theta
\]

Then set \(X_0 \) and local controllers \(C_i \) solve the decentralized supervisory control problem.
Remarks

- **Comparison with centralized control architectures**: achievable behavior in centralized and decentralized control architecture is the same.

- **Efficient on-the-fly control algorithms** allowing also parallel computing architectures to further speed up computations.

```plaintext
input: $S_Q = (X_Q, X_Q, U_Q, \rightarrow^Q, X_Q, m, R^n, H_Q)$;
for each $x_Q \rightarrow^Q x_Q^+$ do
  for each $i \in [1; N]$ do
    set $I_i(x_Q \rightarrow^Q x_Q^+, \eta) := \text{False}$;
    compute the set $h_{c,i}(x_Q)$ of all $u_i \in U_i^n$ satisfying (20);
    if $h_{c,i}(x_Q) \neq \emptyset$ then
      set $I_i(x_Q \rightarrow^Q x_Q^+, \eta) := \text{True}$;
    end
  end
set $I(x_Q \rightarrow^Q x_Q^+, \eta) := \bigwedge_{i \in [1; N]} I_i(x_Q \rightarrow^Q x_Q^+, \eta)$;
end
compute $S_{Q,\eta}$ in (23);
compute Trim($S_{Q,\eta}$);
output: Trim($S_{Q,\eta}$) and $h_{c,i}, i \in [1; N]$;
```

Algorithm 1: Decentralized local controllers design.
Remarks

- **Comparison with centralized control architectures**: achievable behavior in centralized and decentralized control architecture is the same.

- **Efficient on-the-fly control algorithms** allowing also parallel computing architectures to further speed up computations.

- **Computational complexity analysis**:
 Decentralized approach: linear growth with the number N of subsystems P_i
 Centralized approach: exponential growth with N.
Example

Temperature regulation of a circular building with \(N \) rooms \(r_i \)

\[
T_i(t + 1) = T_i(t) + \alpha(T_{i+1}(t) + T_{i-1}(t) - 2T_i(t)) + \\
+ \beta(T_e - T_i(t)) + \gamma(T_h - T_i(t))u_i(t)
\]

\(u_i(t) \in U_i = 0.25 \mathbb{Z} \cap [0, 1] \)

\(\theta = 0.5 \)

specification:

<table>
<thead>
<tr>
<th>(t \mod(12))</th>
<th>(T_1(t))</th>
<th>(T_i(t), i \in {2; N})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>19</td>
<td>18.5</td>
</tr>
<tr>
<td>2</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>19</td>
<td>19.5</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>19</td>
<td>19.5</td>
</tr>
<tr>
<td>8</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>9</td>
<td>19</td>
<td>18.5</td>
</tr>
<tr>
<td>10</td>
<td>19</td>
<td>18.25</td>
</tr>
<tr>
<td>11</td>
<td>19</td>
<td>18</td>
</tr>
</tbody>
</table>
Example

Temperature regulation of a circular building with N rooms r_i

$$T_i(t+1) = T_i(t) + \alpha(T_{i+1}(t) + T_{i-1}(t) - 2T_i(t)) +$$
$$+ \beta(T_e - T_i(t)) + \gamma(T_h - T_i(t))u_i(t)$$

$u_i(t) \in U_i = 0.25 \mathbb{Z} \cap [0,1]$

$\theta = 0.5$

specification:

<table>
<thead>
<tr>
<th>$t \mod(12)$</th>
<th>$T_1(t)$</th>
<th>$T_i(t)$, $i \in [2;N]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>19</td>
<td>18.5</td>
</tr>
<tr>
<td>2</td>
<td>19</td>
<td>19.5</td>
</tr>
<tr>
<td>3</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
<td>20.5</td>
</tr>
<tr>
<td>5</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>19</td>
<td>19.5</td>
</tr>
<tr>
<td>7</td>
<td>19</td>
<td>19.5</td>
</tr>
<tr>
<td>8</td>
<td>19</td>
<td>19.5</td>
</tr>
<tr>
<td>9</td>
<td>19</td>
<td>18.5</td>
</tr>
<tr>
<td>10</td>
<td>19</td>
<td>18.25</td>
</tr>
<tr>
<td>11</td>
<td>19</td>
<td>18</td>
</tr>
</tbody>
</table>

controller:

<table>
<thead>
<tr>
<th>$t \mod(12)$</th>
<th>$T_1(t)$</th>
<th>$T_i(t)$, $i \in [2;N]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>19.5000</td>
<td>18.5000</td>
</tr>
<tr>
<td>1</td>
<td>18.9788</td>
<td>18.8462</td>
</tr>
<tr>
<td>2</td>
<td>18.7329</td>
<td>19.2453</td>
</tr>
<tr>
<td>3</td>
<td>18.6496</td>
<td>19.6773</td>
</tr>
<tr>
<td>4</td>
<td>18.6042</td>
<td>20.1283</td>
</tr>
<tr>
<td>5</td>
<td>18.5992</td>
<td>20.1021</td>
</tr>
<tr>
<td>6</td>
<td>18.6087</td>
<td>20.0838</td>
</tr>
<tr>
<td>7</td>
<td>18.6176</td>
<td>19.5723</td>
</tr>
<tr>
<td>8</td>
<td>18.6176</td>
<td>19.5325</td>
</tr>
<tr>
<td>9</td>
<td>18.6176</td>
<td>19.5325</td>
</tr>
<tr>
<td>10</td>
<td>18.6176</td>
<td>19.5325</td>
</tr>
<tr>
<td>11</td>
<td>18.6176</td>
<td>19.5325</td>
</tr>
</tbody>
</table>

validation:

$$|20 - 19.5924| = 0.4076 < 0.5 = \theta$$

Computational complexity analysis (ONLY for $N = 4$):

- Decentralized architecture $0.1563s$
- Centralized architecture $163.6304s$

Gain: $\frac{163.6304}{0.1563} = 1046$!
Conclusions

We proposed decentralized control architectures enforcing regular language specifications on incrementally stable networks of discrete-time nonlinear control systems.