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Decentralized control architecture 
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The model we consider here … 

Main assumptions: Ideal communication infrastructures, no disturbance

inputs, no state delays and systems in discrete-time
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The model we consider here … 

Plant 𝑷𝒊 described by the nonlinear discrete-time system

where:
 𝑥𝑖 𝑡 is the internal state
 𝑥𝑗 𝑡 is an external measurable input (corresponding to 

the internal state of 𝑃𝑗)

 𝑢𝑖 𝑡 is the control input where set 𝑈𝑖 is finite

𝑃𝑖: ൝
𝑥𝑖 𝑡 + 1 = 𝑓𝑖(𝑥𝑖 𝑡 , 𝑥𝑗 𝑡 , … , 𝑢𝑖 𝑡 )

𝑥𝑖 𝑡 ℝ𝑛𝑖 , 𝑥𝑗 𝑡 ℝ𝑛𝑗 , 𝑢𝑖 𝑡 𝑈𝑖
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The model we consider here … 

Controller 𝑪𝒊 described by the automaton

where:
 𝑧𝑖 𝑡 𝑍𝑖 is the internal state and 𝑍𝑖 is a finite set
 𝑢𝑖 𝑡 𝑈𝑖 is the output and set 𝑈𝑖 is a finite set

Features of 𝑪𝒊:
 finite 
 dynamic
 open-loop
 state deterministic, but
 output  nondeterministic

𝐶𝑖: ൞

𝑧𝑖 𝑡 + 1 = 𝑔𝑖 𝑧𝑖 𝑡

𝑢𝑖 𝑡 ℎ𝑖 𝑧𝑖 𝑘

𝑧𝑖 𝑡 𝑍𝑖 , 𝑧𝑖 𝑡 𝑍𝑖,0𝑍𝑖 , 𝑢𝑖 𝑡 𝑈𝑖
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Given

 the network of control systems Pi

 a regular language specification LQ

defined over a finite subset 𝑌Q of ℝ𝑛

 a desired accuracy  > 0

Find 

 a set of initial states X0 ⊆ ℝ𝑛

 a collection of decentralized controllers Ci

such that the controlled network, denoted PC, 

satisfies the specification LQ up to the 

accuracy , i.e. 

for any trajectory x(.) of P𝐶 with x(0)X0, 

there exists a word q0q1…q𝑡f
of the 

specification LQ such that

| x(t) - q𝑡 | ≤ , for all t[0; tf]

Approximate equivalence notionsTime-delay systems                                                              Introduction                                                                              
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Control Problem Formulation
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The main idea … 
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From networks of nonlinear control systems …

… to networks of symbolic models Ti each one approximating Pi
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Transition systems’ representation of the network 

Given

define

where

𝑃𝑖: ቊ
𝑥𝑖 𝑡 + 1 = 𝑓𝑖(𝑥𝑖 𝑡 , 𝑥𝑖′ 𝑡 , … , 𝑢𝑖 𝑡 )

𝑥𝑖 𝑡 ℝ𝑛𝑖 , 𝑥𝑖′ 𝑡 ℝ𝑛𝑖′ , 𝑢𝑖 𝑡 𝑈𝑖

𝑃: ቊ
𝑥 𝑡 + 1 = 𝑓(𝑥 𝑡 , 𝑢 𝑡 )

𝑥 𝑡 ℝ𝑛, 𝑢 𝑡 𝑈

𝑥 𝑡 = 𝑥1 𝑡 , 𝑥2 𝑡 , … , 𝑥𝑁 𝑡

𝑢 𝑡 = 𝑢1 𝑡 , 𝑢2 𝑡 , … , 𝑢𝑁 𝑡

𝑓 𝑥 𝑡 , 𝑢 𝑡 = (𝑓1(𝑥1 𝑡 , … , 𝑢1 𝑡 ), … ,

𝑓𝑁(𝑥𝑁 𝑡 , … , 𝑢𝑁 𝑡 ))

07/20

𝑇 𝑃 = (𝑋, 𝑋0, 𝑈, →, 𝑋𝑚, 𝑌, 𝐻)

where:

 𝑋 = 𝑋0 = 𝑋𝑚 = ℝ𝑛

 𝑈 = 𝑈1𝑈2… 𝑈𝑁

 𝑥 →
𝑢

𝑥′ if 𝑥′ = 𝑓(𝑥, 𝑢)
 𝑌 = ℝ𝑛

 𝐻 𝑥 = 𝑥
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Networks of symbolic models 

Given a quantization vector 𝜂 = (𝜂 1 , 𝜂 2 , … , 𝜂 𝑁 ) we first approximate

by

𝑇η 𝑃𝑖 = (𝑋𝑖
η

, 𝑋0,𝑖
η

, 𝑊𝑖
η
𝑈𝑖,𝑖, 𝑋𝑚,𝑖

η
, 𝑌𝑖

η
, 𝐻𝑖

η
)

where:

 𝑋𝑖
η

= 𝑋0,𝑖
η

= 𝑋𝑚,𝑖
η

= η(𝑖) ℤ𝑛

 𝑊𝑖
η

= 𝑋𝑖1

η
𝑋𝑖2

η
… where indices 𝑖𝑗 are those of 𝑃𝑖𝑗

that affect dynamics

of 𝑃𝑖

 𝑖

(𝑤𝑖,𝑢𝑖)

𝑖 ′𝑖 if ′𝑖 = 𝑓𝑖(𝜉𝑖 , 𝑤𝑖 , 𝑢𝑖) 𝜂 𝑖

 𝑌𝑖
η

= ℝ𝑛

 𝐻𝑖
η
𝑖 = 𝑖

Features of 𝑻 𝑷𝒊 : deterministic, countable and alive

𝑃𝑖: ቊ
𝑥𝑖 𝑡 + 1 = 𝑓𝑖(𝑥𝑖 𝑡 , 𝑥𝑖′ 𝑡 , … , 𝑢𝑖 𝑡 )

𝑥𝑖 𝑡 ℝ𝑛𝑖 , 𝑥𝑖′ 𝑡 ℝ𝑛𝑖′ , 𝑢𝑖 𝑡 𝑈𝑖
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Networks of symbolic models 

Define the network of symbolic models

as the transition system obtained by interconnecting 𝑇η 𝑃𝑖 , i.e.

𝑇 {𝑇η 𝑃𝑖 }𝑖∈[1;𝑁] = (𝑋
η

, 𝑋0
η

, 𝑈,η, 𝑋𝑚
η

, 𝑌
η

, 𝐻
η

)

where:

 𝑋
η

= 𝑋0
η

= 𝑋𝑚
η

= 𝑋1
η
𝑋2

η
…  𝑋𝑁

η

 𝑈 = 𝑈1𝑈2… 𝑈𝑁

 1, 2, … , 𝑁

(𝑢1,𝑢2,…,𝑢𝑁)

η ′1, ′2, … , ′𝑁 if 𝑖

(𝑤𝑖,𝑢𝑖)

𝑖 ′𝑖 where

𝑤𝑖 = 𝑖1
, 𝑖2

, …

 𝑌
η

= 𝑌1
η
𝑌2

η
… 𝑌𝑁

η

 𝐻
η
1, 2, … , 𝑁 = (𝐻1

η
1 , 𝐻2

η
2 , … , 𝐻𝑁

η
𝑁 )

𝑇 {𝑇η 𝑃𝑖 }𝑖∈[1;𝑁]
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Networks of symbolic models 

Proposition 

Suppose that P admits a locally Lipshitz -GAS Lyapunov function 𝑉
satisfying

𝑉 𝑥, 𝑦 − 𝑉 𝑥, 𝑧  ( 𝑦 − 𝑧 )

for some 𝐾 function .

Then, for any desired accuracy μ ∈ ℝ+ and for any quantization vector 𝜂 ∈
ℝ𝑁

+ satisfying the following inequality

 min (−1 ∘  ∘ 1)(μ), (2
−1 ∘ 1)(μ)

Relation 𝑅µ specified by

𝑥, 𝜉  𝑅µ ֞ 𝑉 𝑥, 𝜉  1(μ)

is a μ-approximate bisimulation between 𝑇 𝑃 and 𝑇 {𝑇 𝑃𝑖 }𝑖∈[1;𝑁] . 

Consequently, transition systems 𝑇 𝑃 and 𝑇 {𝑇 𝑃𝑖 }𝑖∈[1;𝑁] are μ-bisimilar

10/20

How to find V ? Use e.g. small gain theorem



Example

 Network of two control systems 𝑃𝑖: 𝑥𝑖 𝑡 + 1 = 0.5𝑥𝑖 𝑡 + 𝑢𝑖 𝑡 with 𝑈𝑖 =
−1,0,1

 Specification 𝐿𝑄 collection of words 0,0 1,1 and 0,0 −1, −1

Case 1: 𝐶𝑖 do not agree in advance on which word to enforce

 Starting from 0, 𝐶1 picks 𝑢1 0 = 1
 Starting from 0, 𝐶2 picks 𝑢2 0 = −1
 From (0,0) to (1,-1)  Specification violated!

Case 2: 𝐶𝑖 do agree in advance on which word to enforce:

 If they want to enforce word 0,0 1,1 both 𝐶𝑖 pick 𝑢𝑖 0 = 1
 If they want to enforce word 0,0 −1, −1 both 𝐶𝑖 pick 𝑢𝑖 0 = −1
 Specification satisfied!

Decentralized supervisory control

11/20
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How to solve problem above ?

1. Restriction of the class of specifications, from 𝐿𝑄 to 𝐿𝑄,1𝐿𝑄,2…𝐿𝑄,𝑁

2. Online agreement on which word to enforce

(distributed control architecture needed)

3. Offline agreement on which word to enforce

(decentralized control architecture enough)

Decentralized supervisory control
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Recap from Lecture L7:

 Given 𝐿𝑄 define the transition system 𝑆′𝑄 such that its input marked 
language coincides with 𝐿𝑄, i.e., 𝐿𝑚

𝑢 𝑆′𝑄 = 𝐿𝑄

 Construct the dual transition system 𝑆𝑄 of 𝑆′𝑄, where states of 𝑆𝑄 are 
transitions of 𝑆′𝑄 and vice versa; we get

𝐿𝑚
𝑦

𝑆𝑄 = 𝐿𝑚
𝑢 𝑆′𝑄 = 𝐿𝑄 and 𝐿

𝑦
𝑆𝑄 = 𝐿𝑢 𝑆′𝑄

EXAMPLE

 𝐿𝑄 = all words starting with 𝑎 and ending with 𝑏 over 𝑌𝑄 = 𝑎, 𝑏
 Regular expression 𝑎(𝑎 + 𝑏)∗𝑏

Decentralized supervisory control: solution

0 a b

a,b

1 2 0a1

a

1a1 1b2

ba

1b1 bTransition system 𝑆′𝑄

Transition system 𝑆𝑄
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 Let 𝑆𝑄= 𝑋𝑄, 𝑋𝑄,0, 𝑈𝑄,
𝑄

, 𝑋𝑄,𝑚, ℝ𝑛, 𝐻𝑄

 Let 𝐻𝑄,𝑖 be the natural projection of 𝐻𝑄 onto ℝ𝑛𝑖, i.e. 

𝐻𝑄,𝑖 𝑥𝑄 = 𝑞𝑖 if 𝐻𝑄 𝑥𝑄 = 𝑞1, 𝑞2, … , 𝑞𝑁

 Define operator 𝐼𝑖: (
𝑄

)  ℝ𝑁
+  {True, False} such that

𝐼𝑖(𝑥𝑄
𝑄

𝑥′𝑄,) = True, if 𝑢𝑖 s.t. 𝐻𝑄,𝑖 𝑥𝑄 (𝑖)

(𝑤𝑖,𝑢𝑖)

𝑖 𝐻𝑄,𝑖 𝑥′𝑄 (𝑖)

𝐼𝑖(𝑥𝑄
𝑄

𝑥′𝑄,) = False, otherwise

 Define operator 𝐼: (
𝑄

)  ℝ𝑁
+  {True, False} by

𝐼(𝑥𝑄
𝑄

𝑥′𝑄,) = ሥ

𝑖∈[1;𝑁]

𝐼𝑖(𝑥𝑄
𝑄

𝑥′𝑄,)

Decentralized supervisory control: solution
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Let 𝑆𝑄,𝜂 be the sub-transition system of 𝑆𝑄 containing all and only transitions 
𝑥𝑄

𝑄
𝑥′𝑄of 𝑆𝑄 for which 

𝐼(𝑥𝑄
𝑄

𝑥′𝑄,) = 𝑇𝑟𝑢𝑒

Remarks

1. 𝑆𝑄,𝜂 represents the part of the specification that can be matched by 
using the decentralized control architecture we consider

2. 𝑆𝑄,𝜂 is blocking in general

In order to overcome 2 compute Trim(𝑆𝑄,𝜂)

Remark

Trim(𝑆𝑄,𝜂) contains all information needed to solve our control problem, i.e. 
to define the set of initial states and to design local controllers 𝐶𝑖

Decentralized supervisory control: solution

14/20



Consider any q word marked by Trim(𝑆𝑄,𝜂) and let

𝑆𝒒= 𝑋𝒒, 𝑥𝒒,0, 𝑈𝒒, →
𝒒

, {𝑥𝒒,𝑚}, 𝑅𝑛, 𝐻𝒒

be a transition system marking q 

Remark

 Remember that 𝐶𝒊 need to agree offline on which word to enforce!

 𝑆𝒒 can be chosen wlog to be symbolic, accessible and nonblocking

Let 𝐻𝒒,𝑖 be the natural projection of 𝐻𝒒 onto ℝ𝑛𝑖

Define

𝑋0 = 𝑅
−1 ෑ

𝑖=1

𝑛

{[𝐻𝒒,𝑖(𝑥𝒒,0)](𝒊)}

Decentralized supervisory control: solution
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Define entities of local controllers 𝐶𝑖

as follows:

 𝑍𝑖,0 = {𝑥𝒒,0}

 𝑍𝑖 = 𝑋𝒒

 𝑔𝑖(𝑧𝑖) = 𝑧′𝑖 if 𝑧𝑖 →
𝒒

𝑧′𝑖

 ℎ𝑖 𝑧𝑖 𝑡 = 𝑢𝑖𝑈𝑖 | 𝑔𝑖(𝑧𝑖) = 𝑧′𝑖 and 𝐻𝑄,𝑖 𝑧𝑖 (𝑖)

(𝑤𝑖,𝑢𝑖)

𝑖 𝐻𝑄,𝑖 𝑧′𝑖 (𝑖)

Decentralized supervisory control: solution

𝐶𝑖: ൞

𝑧𝑖 𝑡 + 1 = 𝑔𝑖(𝑧𝑖 𝑡 )

𝑢𝑖 𝑡 ℎ𝑖(𝑧𝑖 𝑘 )

𝑧𝑖 𝑡 𝑍𝑖 , 𝑧𝑖 𝑡 𝑍𝑖,0𝑍𝑖 , 𝑢𝑖 𝑡 𝑈𝑖
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Quantization parameters design and formal correctness

Theorem

Suppose that P admits a locally Lipshitz -GAS Lyapunov function 𝑉
satisfying

𝑉 𝑥, 𝑦 − 𝑉 𝑥, 𝑧  ( 𝑦 − 𝑧 )

for some 𝐾 function . For any desired accuracy ℝ+ select μℝ+ and 

ℝ𝑁
+ satisfying

 min (−1 ∘  ∘ 1)(μ), (2
−1 ∘ 1)(μ)

μ +   𝜃

Then set 𝑋0 and local controllers 𝐶𝑖 solve the decentralized supervisory

control problem

Decentralized supervisory control: solution
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Remarks

 Comparison with centralized control architectures : achievable behavior in

centralized and decentralized control architecture is the same

 Efficient on-the-fly control algorithms allowing also parallel computing

architectures to further speed up computations

Approximate equivalence notionsTime-delay systems                                                              Introduction                                                                              
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Remarks

 Comparison with centralized control architectures : achievable behavior in

centralized and decentralized control architecture is the same

 Efficient on-the-fly control algorithms allowing also parallel computing

architectures to further speed up computations

 Computational complexity analysis :

Decentralized approach : linear growth with the number N of subsystems Pi

Centralized approach : exponential growth with N

Approximate equivalence notionsTime-delay systems                                                              Introduction                                                                              
3 / 4
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Example

r1

r2

rN

r3

r4r5

specification :

𝐓i t + 1 = 𝐓i t +  𝐓i+1 t + 𝐓i−1 t − 2𝐓i t +

+ Te − 𝐓i t +  Th − 𝐓i t ui t

ui t Ui = 0.25 ℤ ∩ [0,1]

 = 0.5

Temperature regulation of a circular building with N rooms ri



Temperature regulation of a circular building with N rooms ri

Computational complexity analysis ( ONLY for N = 4 ) :

 Decentralized architecture 0.1563s
 Centralized architecture 163.6304s

Computations on a Lenovo IP YOGA 3 PRO 8GB 512SSD

Approximate equivalence notionsTime-delay systems                                                              IntExampl 3 / 4Example

𝐓i t + 1 = 𝐓i t +  𝐓i+1 t + 𝐓i−1 t − 2𝐓i t +

+ Te − 𝐓i t +  Th − 𝐓i t ui t

r1

r2

rN

r3

r4r5

ui t Ui = 0.25 ℤ ∩ [0,1]

 = 0.5

specification : controller : validation :

Gain: 163.6304

0.1563
= 1046 !
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20 − 19.5924 = 0.4076 < 0.5 = 



We proposed decentralized control architectures enforcing regular

language specifications on incrementally stable networks of discrete-time

nonlinear control systems

Existence of symbolic modelsExistence of symbolic modelsAlternating nsConclusions
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