

Formal Methods for the Control of Large-scale Networked Nonlinear Systems with Logic Specifications

Basilica di Santa Maria di Collemaggio, L'Aquila (Italy), 1287

Lecture L13:

Decentralized control of networks of nonlinear systems

Speaker: Giordano Pola

In this course:

Control of

Large-scale Heterogeneous

Networked Nonlinear Systems

with Logic Specifications

Lecture based on:

[Pola et al., TAC17] Pola, Pepe, Di Benedetto, Decentralized Supervisory Control of Networks of Nonlinear Control Systems, 2016, submitted, http://arxiv.org/abs/1606.04647

To recap:

Control of
Large-scale Heterogeneous
Networked Nonlinear Systems
with Logic Specifications

Lectures

L3, L5, L6, L8, L10, L11

Lecture based on:

[Pola et al., TAC17] Pola, Pepe, Di Benedetto, Decentralized Supervisory Control of Networks of Nonlinear Control Systems, 2016, submitted, http://arxiv.org/abs/1606.04647

To recap:

Control of
Large-scale Heterogeneous
Networked Nonlinear Systems
with Logic Specifications

Lectures

- L3, L5, L6, L8, L10, L11
- L4, L7

Lecture based on:

[Pola et al., TAC17] Pola, Pepe, Di Benedetto, Decentralized Supervisory Control of Networks of Nonlinear Control Systems, 2016, submitted, http://arxiv.org/abs/1606.04647

To recap:

Control of
Large-scale Heterogeneous
Networked Nonlinear Systems
with Logic Specifications

Lectures

- L3, L5, L6, L8, L10, L11
- L4, L7
- L12

Lecture based on:

[Pola et al., TAC17] Pola, Pepe, Di Benedetto, Decentralized Supervisory Control of Networks of Nonlinear Control Systems, 2016, submitted, http://arxiv.org/abs/1606.04647

Here:

Control of

Large-scale Heterogeneous

Networked Nonlinear Systems

with Logic Specifications

Lectures

- L3, L5, L6, L8, L10, L11
- L4, L7
- L12

Lecture based on:

[Pola et al., TAC17] Pola, Pepe, Di Benedetto, Decentralized Supervisory Control of Networks of Nonlinear Control Systems, 2016, submitted, http://arxiv.org/abs/1606.04647

Decentralized control architecture

Main assumptions: Ideal communication infrastructures, no disturbance inputs, no state delays and systems in discrete-time

Main assumptions: Ideal communication infrastructures, no disturbance inputs, no state delays and systems in discrete-time

Plant P_i described by the nonlinear discrete-time system

$$P_{i}: \begin{cases} x_{i}(t+1) = f_{i}(x_{i}(t), x_{j}(t), \dots, u_{i}(t)) \\ x_{i}(t) \in \mathbb{R}^{n_{i}}, x_{j}(t) \in \mathbb{R}^{n_{j}}, u_{i}(t) \in U_{i} \end{cases}$$

where:

- $x_i(t)$ is the internal state
- $x_j(t)$ is an external measurable input (corresponding to the internal state of P_j)
- $u_i(t)$ is the control input where set U_i is finite

Controller C_i described by the automaton

$$C_i: \begin{cases} z_i(t+1) = g_i(z_i(t)) \\ u_i(t) \in h_i(z_i(k)) \\ z_i(t) \in Z_i, z_i(t) \in Z_{i,0} \subseteq Z_i, u_i(t) \in U_i \end{cases}$$

where:

- $z_i(t) \in Z_i$ is the internal state and Z_i is a finite set
- $u_i(t) \in U_i$ is the output and set U_i is a finite set

Features of C_i :

- finite
- dynamic
- open-loop
- state deterministic, but
- output nondeterministic

Control Problem Formulation

Given

- the network of control systems P_i
- a regular language specification L_Q
 defined over a finite subset Y_Q of \mathbb{R}^n
- a desired accuracy $\theta > 0$

Find

- a set of initial states $X_0 \subseteq \mathbb{R}^n$
- a collection of decentralized controllers C_i such that the controlled network, denoted P^C , satisfies the specification L_Q up to the accuracy θ , i.e.

for any trajectory x(.) of P^C with $x(0) \in X_0$, there exists a word $q_0q_1...q_{t_f}$ of the specification L_Q such that

$$|\mathbf{x}(t) - \mathbf{q}_t| \le \theta$$
, for all $t \in [0; t_f]$

The main idea ...

From networks of nonlinear control systems ...

 \dots to networks of symbolic models T_i each one approximating P_i

Transition systems' representation of the network

Given

$$P_{i}: \begin{cases} x_{i}(t+1) = f_{i}(x_{i}(t), x_{i}, (t), \dots, u_{i}(t)) \\ x_{i}(t) \in \mathbb{R}^{n_{i}}, x_{i}, (t) \in \mathbb{R}^{n_{i}}, u_{i}(t) \in U_{i} \end{cases}$$

define

$$P: \begin{cases} x(t+1) = f(x(t), u(t)) \\ x(t) \in \mathbb{R}^n, u(t) \in U \end{cases}$$

where

$$\begin{split} x(t) &= \left(x_1(t), x_2(t), \dots, x_N(t) \right) \\ u(t) &= \left(u_1(t), u_2(t), \dots, u_N(t) \right) \\ f\left(x(t), u(t) \right) &= \left(f_1(x_1(t), \dots, u_1(t)), \dots, f_N(x_N(t), \dots, u_N(t)) \right) \end{split}$$

$$T(P) = (X, X_0, U, \rightarrow, X_m, Y, H)$$

where:

•
$$X = X_0 = X_m = \mathbb{R}^n$$

$$U = U_1 \times U_2 \times \dots \times U_N$$

•
$$x \stackrel{u}{\rightarrow} x'$$
 if $x' = f(x, u)$

$$Y = \mathbb{R}^n$$

$$- H(x) = x$$

Networks of symbolic models

Given a quantization vector $\eta = (\eta(1), \eta(2), ..., \eta(N))$ we first approximate

$$P_{i}: \begin{cases} x_{i}(t+1) = f_{i}(x_{i}(t), x_{i}, (t), \dots, u_{i}(t)) \\ x_{i}(t) \in \mathbb{R}^{n_{i}}, x_{i}, (t) \in \mathbb{R}^{n_{i}}, u_{i}(t) \in U_{i} \end{cases}$$

by

$$T^{\eta}(P_i) = (X_i^{\eta}, X_{0,i}^{\eta}, W_i^{\eta} \times U_i, \longrightarrow_i, X_{m,i}^{\eta}, Y_i^{\eta}, H_i^{\eta})$$

where:

- $X_i^{\eta} = X_{0,i}^{\eta} = X_{m,i}^{\eta} = \eta(i) \mathbb{Z}^n$
- $W_i^{\eta} = X_{i_1}^{\eta} \times X_{i_2}^{\eta} \times ...$ where indices i_j are those of P_{i_j} that affect dynamics of P_i
- $\xi_i \xrightarrow{(w_i, u_i)} \xi'_i$ if $\xi'_i = [f_i(\xi_i, w_i, u_i)]_{\eta(i)}$
- $Y_i^{\eta} = \mathbb{R}^n$
- $\bullet \quad H_i^{\eta}(\xi_i) = \xi_i$

Features of $T^{\eta}(P_i)$: deterministic, countable and alive

Networks of symbolic models

Define the network of symbolic models

$$T(\lbrace T^{\eta}(P_i)\rbrace_{i\in[1;N]})$$

as the transition system obtained by interconnecting $T^{\eta}(P_i)$, i.e.

$$T(\lbrace T^{\eta}(P_i)\rbrace_{i\in[1;N]}) = (X^{\eta}, X_0^{\eta}, U, \longrightarrow_{\eta}, X_m^{\eta}, Y^{\eta}, H^{\eta})$$

where:

- $X^{\eta} = X_0^{\eta} = X_m^{\eta} = X_1^{\eta} \times X_2^{\eta} \times ... \times X_N^{\eta}$
- $U = U_1 \times U_2 \times \dots U_N$
- $(\xi_1, \xi_2, \dots, \xi_N) \xrightarrow{(u_1, u_2, \dots, u_N)} \eta(\xi'_1, \xi'_2, \dots, \xi'_N)$ if $\xi_i \xrightarrow{(w_i, u_i)} \xi'_i$ where $w_i = (\xi_{i_1}, \xi_{i_2}, \dots)$
- $Y^{\eta} = Y_1^{\eta} \times Y_2^{\eta} \times ... \times Y_N^{\eta}$
- $H^{\eta}(\xi_1, \xi_2, ..., \xi_N) = (H_1^{\eta}(\xi_1), H_2^{\eta}(\xi_2), ..., H_N^{\eta}(\xi_N))$

Networks of symbolic models

Proposition

Suppose that P admits a locally Lipshitz δ -GAS Lyapunov function V satisfying

$$|V(x,y) - V(x,z)| \le \sigma(|y-z|)$$

for some K_{∞} function σ .

Then, for any desired accuracy $\mu \in \mathbb{R}^+$ and for any quantization vector $\eta \in \mathbb{R}^+_N$ satisfying the following inequality

$$|\eta| \le \min\{(\sigma^{-1} \circ \rho \circ \alpha_1)(\mu), (\alpha_2^{-1} \circ \alpha_1)(\mu)\}$$

Relation R_{μ} specified by

$$(x,\xi) \in R_{\mathfrak{u}} \iff V(x,\xi) \leq \alpha_1(\mathfrak{u})$$

is a μ -approximate bisimulation between T(P) and $T(\{T^{\eta}(P_i)\}_{i\in[1;N]})$.

Consequently, transition systems T(P) and $T(\{T^{\eta}(P_i)\}_{i \in [1;N]})$ are μ -bisimilar

How to find V? use e.g. small gain theorem

Decentralized supervisory control

Example

- Network of two control systems P_i : $x_i(t+1) = 0.5x_i(t) + u_i(t)$ with $U_i = \{-1,0,1\}$
- Specification L_0 collection of words (0,0)(1,1) and (0,0)(-1,-1)

Case 1: C_i do not agree in advance on which word to enforce

- Starting from 0, C_1 picks $u_1(0) = 1$
- Starting from 0, C_2 picks $u_2(0) = -1$
- From (0,0) to $(1,-1) \Rightarrow$ Specification violated!

Case 2: C_i do agree in advance on which word to enforce:

- If they want to enforce word (0,0)(1,1) both C_i pick $u_i(0)=1$
- If they want to enforce word (0,0)(-1,-1) both C_i pick $u_i(0)=-1$
- ⇒ Specification satisfied!

Decentralized supervisory control

Example

- Network of two control systems P_i : $x_i(t+1) = 0.5x_i(t) + u_i(t)$ with $U_i = \{-1,0,1\}$.
- Specification L_Q collection of words (0,0)(1,1) and (0,0)(-1,-1)

Case 1: C_i do not agree in advance on which word to enforce

- Starting from 0, C_1 picks $u_1(0) = 1$
- Starting from 0, C_2 picks $u_2(0) = -1$
- From (0,0) to $(1,-1) \Rightarrow$ Specification violated!

How to solve problem above?

- 1. Restriction of the class of specifications, from L_Q to $L_{Q,1} \times L_{Q,2} \times ... \times L_{Q,N}$
- 2. Online agreement on which word to enforce (distributed control architecture needed)
- 3. Offline agreement on which word to enforce (decentralized control architecture enough)

Decentralized supervisory control

Example

- Network of two control systems P_i : $x_i(t+1) = 0.5x_i(t) + u_i(t)$ with $U_i = \{-1,0,1\}$.
- Specification L_Q collection of words (0,0)(1,1) and (0,0)(-1,-1)

Case 1: C_i do not agree in advance on which word to enforce

- Starting from 0, C_1 picks $u_1(0) = 1$
- Starting from 0, C_2 picks $u_2(0) = -1$
- From (0,0) to $(1,-1) \Rightarrow$ Specification violated!

How to solve problem above?

- 1. Restriction of the class of specifications, from L_Q to $L_{Q,1} \times L_{Q,2} \times ... \times L_{Q,N}$
- 2. Online agreement on which word to enforce (distributed control architecture needed)
- 3. Offline agreement on which word to enforce (decentralized control architecture enough)

Recap from Lecture L7:

- Given L_Q define the transition system S'_Q such that its input marked language coincides with L_Q , i.e., $L_m^u(S'_Q) = L_Q$
- Construct the dual transition system S_Q of S'_Q , where states of S_Q are transitions of S'_Q and vice versa; we get

$$L_m^{\mathcal{Y}}(S_Q) = L_m^{\mathcal{U}}(S_Q') = L_Q \text{ and } L^{\mathcal{Y}}(S_Q) = L^{\mathcal{U}}(S_Q')$$

EXAMPLE

- L_O = all words starting with a and ending with b over $Y_O = \{a, b\}$
- Regular expression $a(a + b)^*b$

Transition system S'_Q

Transition system S_Q

- Let $S_Q = (X_Q, X_{Q,0}, U_Q, \xrightarrow{Q}, X_{Q,m}, \mathbb{R}^n, H_Q)$
- Let $H_{Q,i}$ be the natural projection of H_Q onto \mathbb{R}^{n_i} , i.e.

$$H_{Q,i}(x_Q) = q^i \text{ if } H_Q(x_Q) = (q^1, q^2, ..., q^N)$$

■ Define operator I_i : $(\longrightarrow_Q) \times \mathbb{R}_N^+ \to \{\text{True}, \text{False}\}$ such that

$$I_i(x_Q \xrightarrow{Q} x'_Q, \eta) = \text{True, if } \exists u_i \text{ s.t. } [H_{Q,i}(x_Q)]_{\eta(i)} \xrightarrow{(w_i, u_i)} [H_{Q,i}(x'_Q)]_{\eta(i)}$$

$$I_i(x_Q \xrightarrow{Q} x'_Q, \eta) = \text{False, otherwise}$$

■ Define operator $I: (\longrightarrow_Q) \times \mathbb{R}_N^+ \to \{\text{True, False}\}$ by

$$I(x_Q \xrightarrow{Q} x'_Q, \eta) = \bigwedge_{i \in [1:N]} I_i(x_Q \xrightarrow{Q} x'_Q, \eta)$$

- Let $S_Q = (X_Q, X_{Q,0}, U_Q, \xrightarrow{Q}, X_{Q,m}, \mathbb{R}^n, H_Q)$
- Let $H_{Q,i}$ be the natural projection of H_Q onto \mathbb{R}^{n_i} , i.e.

$$H_{Q,i}(x_Q) = q^i \text{ if } H_Q(x_Q) = (q^1, q^2, ..., q^N)$$

■ Define operator I_i : $(\longrightarrow_Q) \times \mathbb{R}_N^+ \to \{\text{True, False}\}$ such that

$$I_{\underline{i}}(x_Q \xrightarrow{Q} x'_Q, \eta) = \text{True, if } \exists u_{\underline{i}} \text{ s.t. } \left[H_{Q,\underline{i}}(x_Q)\right]_{\eta(\underline{i})} \xrightarrow{(w_i, u_{\underline{i}})} \left[H_{Q,\underline{i}}(x'_Q)\right]_{\eta(\underline{i})}$$

$$I_{\underline{i}}(x_Q \xrightarrow{Q} x'_Q, \eta) = \text{False, otherwise}$$

■ Define operator $I: (\longrightarrow_Q) \times \mathbb{R}_N^+ \to \{\text{True, False}\}$ by

$$I(x_Q \xrightarrow{Q} x'_Q, \eta) = \bigwedge_{i \in [1;N]} I_i(x_Q \xrightarrow{Q} x'_Q, \eta)$$

Let $S_{Q,\eta}$ be the sub-transition system of S_Q containing all and only transitions $x_Q \xrightarrow[]{} x'_Q$ of S_Q for which

 $I(x_Q \xrightarrow{Q} x'_Q, \eta) = True$

Remarks

- 1. $S_{Q,\eta}$ represents the part of the specification that can be matched by using the decentralized control architecture we consider
- 2. $S_{0,\eta}$ is blocking in general

In order to overcome 2 compute $Trim(S_{O,\eta})$

Remark

 $Trim(S_{Q,\eta})$ contains all information needed to solve our control problem, i.e. to define the set of initial states and to design local controllers C_i

Consider any **q** word marked by $Trim(S_{Q,\eta})$ and let

$$S_q = \left(X_q, x_{q,0}, U_q, \xrightarrow{q}, \{x_{q,m}\}, R^n, H_q\right)$$

be a transition system marking q

Remark

- Remember that C_i need to agree offline on which word to enforce!
- S_q can be chosen wlog to be symbolic, accessible and nonblocking

Let $H_{q,i}$ be the natural projection of H_q onto \mathbb{R}^{n_i}

Define

$$X_0 = R_{\mu}^{-1} \left(\prod_{i=1}^n \{ [H_{q,i}(x_{q,0})]_{\eta(i)} \} \right)$$

Define entities of local controllers C_i

$$C_i: \begin{cases} z_i(t+1) = g_i(z_i(t)) \\ u_i(t) \in h_i(z_i(k)) \\ z_i(t) \in Z_i, z_i(t) \in Z_{i,0} \subseteq Z_i, u_i(t) \in U_i \end{cases}$$

as follows:

- $Z_{i,0} = \{x_{q,0}\}$
- $Z_i = X_q$ $g_i(z_i) = z'_i \text{ if } z_i \xrightarrow{q} z'_i$
- $h_i(z_i(t)) = \left\{ u_i \in U_i \mid g_i(z_i) = z'_i \text{ and } \left[H_{Q,i}(z_i) \right]_{\eta(i)} \xrightarrow{(w_i, u_i)} \left[H_{Q,i}(z'_i) \right]_{\eta(i)} \right\}$

Quantization parameters design and formal correctness

Theorem

Suppose that P admits a locally Lipshitz δ -GAS Lyapunov function V satisfying

$$|V(x,y) - V(x,z)| \le \sigma(|y-z|)$$

for some K_{∞} function σ . For any desired accuracy $\theta \in \mathbb{R}^+$ select $\mu \in \mathbb{R}^+$ and $\eta \in \mathbb{R}^+_N$ satisfying

$$|\eta| \leq \min \{ (\sigma^{-1} \circ \rho \circ \alpha_1)(\mu), (\alpha_2^{-1} \circ \alpha_1)(\mu) \}$$
$$\mu + |\eta| \leq \theta$$

Then set X_0 and local controllers C_i solve the decentralized supervisory control problem

Remarks

- Comparison with centralized control architectures: achievable behavior in centralized and decentralized control architecture is the same
- Efficient on-the-fly control algorithms allowing also parallel computing architectures to further speed up computations

```
1 input: S_Q = (X_Q, X_{Q,0}, U_Q, \xrightarrow{Q}, X_{Q,m}, \mathbb{R}^n, H_Q);
2 for each x_Q \xrightarrow{Q} x_Q^+ do

3 | for each i \in [1; N] do

4 | set \mathcal{I}_i(x_Q \xrightarrow{Q} x_Q^+, \eta) := \text{False};
5 | compute the set h_{c,i}(x_Q) of all u_i \in U_i^\eta
satisfying (20);
if h_{c,i}(x_Q) \neq \varnothing then

7 | set \mathcal{I}_i(x_Q \xrightarrow{Q} x_Q^+, \eta) := \text{True};
8 | end
9 | end
10 | set
\mathcal{I}(x_Q \xrightarrow{Q} x_Q^+, \eta) := \wedge_{i \in [1;N]} \mathcal{I}_i(x_Q \xrightarrow{Q} x_Q^+, \eta);
11 end
12 compute S_{Q,\eta} in (23);
13 compute Trim(S_{Q,\eta});
14 output: Trim(S_{Q,\eta}) and h_{c,i}, i \in [1;N];
```

Algorithm 1: Decentralized local controllers design.

Remarks

- Comparison with centralized control architectures: achievable behavior in centralized and decentralized control architecture is the same
- Efficient on-the-fly control algorithms allowing also parallel computing architectures to further speed up computations
- Computational complexity analysis :
 - Decentralized approach : linear growth with the number N of subsystems P_i Centralized approach : exponential growth with N

Example

Temperature regulation of a circular building with N rooms ri

$$\begin{split} \boldsymbol{T}_i(t+1) &= & \boldsymbol{T}_i(t) + \alpha \big(\boldsymbol{T}_{i+1}(t) + \boldsymbol{T}_{i-1}(t) - 2\boldsymbol{T}_i(t)\big) + \\ & + \beta \big(\boldsymbol{T}_e - \boldsymbol{T}_i(t)\big) + \gamma \big(\boldsymbol{T}_h - \boldsymbol{T}_i(t)\big)\boldsymbol{u}_i(t) \\ \boldsymbol{u}_i(t) &\in \boldsymbol{U}_i = & 0.25 \ \mathbb{Z} \cap [0,1] \\ \boldsymbol{\theta} &= & 0.5 \end{split}$$

specification:

t mod(12)	$\mathbf{T}_1(t)$	$\mathbf{T}_i(t), i \in [2; N]$
0	19	18
1	19	18.5
2	19	19
3	19	19.5
4	19	20
5	19	20
6	19	20
7	19	19.5
8	19	19
9	19	18.5
10	19	18.25
11	19	18

Example

Temperature regulation of a circular building with N rooms r_i

$$\begin{split} \boldsymbol{T}_i(t+1) &= & \boldsymbol{T}_i(t) + \alpha \big(\boldsymbol{T}_{i+1}(t) + \boldsymbol{T}_{i-1}(t) - 2\boldsymbol{T}_i(t)\big) + \\ & + \beta \big(\boldsymbol{T}_e - \boldsymbol{T}_i(t)\big) + \gamma \big(\boldsymbol{T}_h - \boldsymbol{T}_i(t)\big)\boldsymbol{u}_i(t) \\ \boldsymbol{u}_i(t) &\in \boldsymbol{U}_i = & 0.25 \ \mathbb{Z} \cap [0,1] \end{split}$$

$$\theta = 0.5$$

specification:

-		
t mod(12)	$T_1(t)$	$\mathbf{T}_{i}(t), i \in [2; N]$
0	19	18
1	19	18.5
2	19	19
3	19	19.5
4	19	20
5	19	20
6	19	20
7	19	19.5
8	19	19
9	19	18.5
10	19	18.25
11	19	18

controller:

•			
t mod(12)	C_1	$C_2 = C_N$	$C_i, i \in [3; N-1]$
0	$\{0.65\}$	{0.45}	$\{0.6\}$
1	{0.475}	{0.55}	{0.625}
2	{0.325}	{0.65}	{0.65}
3	{0.15}	{0.75}	{0.65}
4	{0}	{0.525}	{0.35}
5	$\{0\}$	{0.525}	{0.35}
7	$\{0\}$	{0.175}	{0.025}
8	{0.15}	{0.1}	$\{0\}$
9	{0.325}	{0}	$\{0\}$
6	{0.475}	{0.075}	{0.15}
10	{0.55}	{0.025}	{0.15}
11	{0.65}	{0.15}	{0.30}

validation:

validation.					
t mod(12)	$\mathbf{T}_1(t)$	$T_2(t) = T_N(t)$	$T_i(t), i \in [3; N-1]$		
0	19.5000	18.5000	17.5000		
1	18.9788	18.8462	18.0125		
2	18.7329	19.2453	18.5368		
3	18.6496	19.6773	19.0709		
4	18.6042	20.1282	10.5744		
5	18.5992	20.1021	19.5924		
6	18.6058	20.0838	19.0098		
7	18.6176	19 5475	19.1325		
8	18,6200	19.0492	18.6292		
9	18.6440	18.5357	18.1385		
10	18.6448	18.2824	17.8990		
11	18.6431	18.0186	17.9080		

$$|20 - 19.5924| = 0.4076 < 0.5 = 0$$

Computational complexity analysis (ONLY for N=4):

- Decentralized architecture 0.1563s
- Centralized architecture 163.6304s

Gain: $\frac{163.6304}{0.1563}$ = 1046!

Conclusions

We proposed decentralized control architectures enforcing regular language specifications on incrementally stable networks of discrete-time nonlinear control systems