
Basilica di Santa Maria di Collemaggio, 1287, L’Aquila

Formal Methods for the Control of 

Large-scale Networked Nonlinear Systems 

with Logic Specifications

Speaker: Alessandro Borri

Lecture L14:

Tools



Some time ago: Hybrid Systems Tools (2000-2010)

Hybrid Systems exhibit continuous and discrete dynamic behavior

Hybrid Systems Verification tools focus on automatically proving 
some properties (safety, reachability, ecc…)

Example of these tools are Ariadne, PHAVer, KeYmaera, Checkmate, 
HybridSAL,… 

Control Synthesis tools usually restricted the attention to subclasses 
of Hybrid Systems:

 LTLCon (linear control systems)

 Hybrid Toolbox (piecewise-affine hybrid systems)

01/19



More recent tools dealing with logic specifications

LTL (Linear Temporal Logic) encodes formulae referring to
time. On top of logical operators, it defines temporal
operators such as Next, Until, Always, Eventually.

LTLMoP (Linear Temporal Logic MissiOn Planning)
toolkit is a collection of Python applications for designing,
testing, and implementing hybrid controllers generated
automatically from task specifications written in Structured
English or Temporal Logic

TuLiP: The temporal logic planning toolbox. Given a
plant model and an LTL specification, design a controller to

ensure that any execution of the system satisfies the
specification.

02/19



PESSOA: correct-by-design embedded control software

PESSOA: A tool for embedded control 
software synthesis

Developed at UCLA's CyPhyLab, for the 
synthesis of correct-by-design embedded 
control software (2010-2011).

What was new in Pessoa?

 the nature of the abstractions
(approximate simulations and 
bisimulations) 

 the classes of systems admitting such 
abstractions (linear, nonlinear, and 
switched).

Fernando Pessoa was a 20th-
century Portuguese poet and
writer, and one of the most
influential literates of the last
century.

03/19

Lecture mostly based on:

[Mazo et al., CAV2010] M. Jr. Mazo, A. Davitian, and P. Tabuada, “Pessoa: A tool for embedded 

controller synthesis”. In: Computer Aided Verification. Springer. 2010, pp. 566-569.



PESSOA and CUDD

More details:

 the core algorithms in Pessoa have been coded in C;

 the main functionalities are available through the Matlab command 
line;

 simulation of the closed-loop behavior in Simulink.

 All the systems and sets manipulated by Pessoa are represented
symbolically using Reduced Ordered Binary Decision Diagrams
(ROBDDs) supported by the CUDD library [CUD]. The package
provides a large set of operations on BDDs.

 BDDs can be considered as a compressed representation of sets or
relations. Unlike other compressed representations, operations are
performed directly on the compressed representation, i.e. without
decompression [BDDWiki].

[F. Somenzi, 1998] F. Somenzi, “CUDD: CU Decision Diagram Package”. Electronically available 

at: http://vlsi.colorado.edu/~fabio/CUDD/.

[BDDWiki] Binary decision diagram. In Wikipedia, The Free Encyclopedia. Retrieved 15:51, May 

16, 2017, from https://en.wikipedia.org/w/index.php?title=Binary_decision_diagram 04/19

More details in:

https://en.wikipedia.org/w/index.php?title=Binary_decision_diagram


From: https://en.wikipedia.org/wiki/Binary_decision_diagram

PESSOA and CUDD

Binary decision tree and truth table for a boolean function and corresponding BDD

 In Pessoa, a sets of transition is decoded into a BDD T.

 T(x,u,x’)=1 if (x,u,x’) is a transition of the symbolic model.

 A preliminary change of coordinates transforms states and 
inputs in ℝ𝑛 andℝ𝑚 into vectors of ℤ𝑛 and ℤ𝑚, respectively. 

 In this way, integer variables are used to encode the states 
and inputs, and to perform all the computations.

05/19



PESSOA: logical specifications

 Stay: trajectories start in the target set Z and remain in Z. This

specification corresponds to the Linear Temporal Logic (LTL) formula

𝜑𝑍 where 𝜑𝑍 is the predicate defining the set Z;

 Reach: trajectories enter the target set Z in finite time. This

specification corresponds to the LTL formula ◇𝜑𝑍;

 Reach and Stay: trajectories enter the target set Z in finite time and

remain within Z thereafter. This specification corresponds to the LTL

formula ◇𝜑𝑍;

 Reach and Stay while Stay: trajectories enter the target set Z in

finite time and remain within Z thereafter while always remaining

within the constraint set This specification corresponds to the LTL

formula ◇𝜑𝑍 ∧ 𝜑𝑊 where 𝜑𝑊 is the predicate defining the set W.

06/19



PESSOA: a linear example

Example 1: DC motor and associated electric circuit

 𝑥1 is the angular
velocity

 𝑥2 is the current
through the inductor

 u is the source voltage
(control input).

07/19



The system is turned into

Target set for a Reach and Stay Specification

Quantization parameters

State and input spaces

PESSOA: a linear example

08/19



Simulation results

PESSOA: a linear example

09/19



PESSOA: a nonlinear example

Example 2: Inverted pendulum on a cart

 𝜃 is the angular position
 𝜔 is the angular velocity of

the point mass
 u is the applied force

(control input)
 g=9.8 is gravity

acceleration
 l=0.5 is the length of the

rod
 m=0.5 is the mass
 h=2 is the coefficient of

rotational friction

Since the system is unstable, we 
construct an abstraction that is 
approximately alternatingly 
simulated by the control system

10/19



Schedulability constraint: states are labeled with 
the outputs a and u denoting availability and 
unavailability of the microprocessor, respectively

Target set for a Reach and Stay Specification

Quantization parameters

State and input spaces

PESSOA: a nonlinear example

11/19



Simulation results

PESSOA: a nonlinear example

12/19



PESSOA: a nonlinear example

Example 3: unicycle

 (𝑥, 𝑦) denotes the 
position coordinates of 
the vehicle, 

 θ is its orientation,
 (v, 𝜔) are the control 

inputs, linear velocity 
and angular velocity 
respectively.

Since the system is unstable, we 
construct an abstraction that is 
approximately alternatingly 
simulated by the control system

13/19



Specification Stay in Target Set while Staying in Safe Set

Quantization parameters

State and input spaces

PESSOA: a nonlinear example

Remark: given the approximate
nature of the model abstractions,
the target set that will be reached
is a set 𝜂/2 wider and taller than
the red set. Similarly, the avoided
obstacles are also 𝜂/2 thicker and
longer than the blue obstacles.

14/19



Simulation results

PESSOA: a nonlinear example

15/19



Beyond PESSOA: CoSyMA

CoSyMA: a tool for controller synthesis using 
multi-scale abstractions

Developed at INRIA and University of Joseph 
Fourier, Grenoble (2012)

What is new in CoSyMA?

 Deals with incrementally stable

switched systems

 Multi-scale abstractions

 Based on the CUDD library [CUD]

 Safety and time-bounded reachability 
specifications

[Mouelhi et al., HSCC13] S. Mouelhi, A. Girard, and G. Gössler, “CoSyMA: a tool for controller 

synthesis using multi-scale abstractions”. Proceedings of the 16th international conference on Hybrid 

systems: computation and control. ACM, 2013. 16/19

More details in:



Beyond PESSOA: SCOTS

SCOTS: A Tool for the Synthesis of Symbolic Controllers

Developed at Technical University of Munich (2016, ongoing).

What is new in SCOTS?

 Based on the more recent concept of 

feedback refinement relation (FRR)

 Does not require to include the abstraction as a building 
block (similarly to the integrated approach).

 Based on the CUDD library [CUD].

 Reachability and invariance specifications

 Synthesis via fixed point computations

[Rungger et al., HSCC16] M. Rungger, and M. Zamani, “SCOTS: A tool for the synthesis of symbolic 

controllers”. Proceedings of the 19th International Conference on Hybrid Systems: Computation and 

Control. ACM, 2016. 17/19

More details in:



SCOTS: control design

Control design in 3 steps:

1. First, given a control problem (𝑆1, Σ1), a finite simple system
𝑆2 as a substitute of 𝑆1 , together with an abstract
specification Σ2 is computed. In this context, S1 and S2 are
referred to as plant and symbolic model, respectively.

2. In the second step, a controller C2 , i.e., system that is
feedback-composable with 𝑆2 , which solves the control
problem (𝑆2, Σ2) is computed.

3. Provided that the synthesis process of C2 is successful, the
controller C2 is refined to a controller C1 that solves the
original problem (𝑆1, Σ1) in the third step.

18/19



SCOTS: implementation

Example of reachability 
specification with collision 
avoidanceImplementation work flow

19/19


