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1 Notation, Standards, Acronyms

R stands for the real line (−∞,+∞), R+
0 stands for the non-negative real line

[0,+∞), R? stands for the extended real line [−∞,+∞]. Q stands for the set of
rational numbers. Z stands for the set of the integer numbers, Z+ for the set of
the integer numbers contained in R+

0 . For a positive integer n, Rn is the linear
space of n−reals vectors. The symbol | · | stands for the Euclidean norm of a real
vector, or the induced Euclidean norm of a matrix. For y ∈ Rn and a positive real
r, Bnr (y) denotes the subset of vectors x ∈ Rn such that |x− y| ≤ r. The symbol
Bnr is used instead of Bnr (0). A Lebesgue measurable function u : [0,+∞)→ Rm,
m positive integer, is said to be essentially bounded if ess supt≥0 |u(t)| < +∞,
where

ess sup
t≥0
|u(t)| = inf{a ∈ [0,+∞] : λ({t ∈ [0,+∞) : |u(t)| > a}) = 0},

λ denoting the Lebesgue measure. The symbol ‖·‖∞ denotes the essential supre-
mum norm, that is, for a Lebesgue measurable and essentially bounded function
u : [0,+∞) → Rm, ‖u‖∞ = ess supt≥0 |u(t)|. For given times 0 ≤ T1 < T2, we
indicate with u[T1,T2) : [0,+∞) → Rm the function given by u[T1,T2)(t) = u(t)
for all t ∈ [T1, T2) and = 0 elsewhere. An input u is said to be locally es-
sentially bounded if, for any T > 0, u[0,T ) is essentially bounded. A function

ω : R+ → R+
0 is said to be: increasing if ω(t1) ≤ ω(t2) ∀t1, t2 ∈ R+

0 such that
t1 < t2; strictly increasing if ω(t1) < ω(t2) ∀t1, t2 ∈ R+

0 such that t1 < t2;
decreasing if ω(t1) ≥ ω(t2) ∀t1, t2 ∈ R+

0 such that t1 < t2; strictly decreasing
if ω(t1) > ω(t2) ∀t1, t2 ∈ R+

0 such that t1 < t2; of class P0 if it is continuous
and satisfies ω(0) = 0; of class P if it is of class P0 and ω(s) > 0 holds for all
s > 0; of class G if it is of class P0 and increasing; of class K if it is of class P
and strictly increasing; of class K∞ if it is of class K and unbounded; of class
L if it is continuous, decreasing and goes to zero as its argument goes to +∞.
A function β : R+

0 × R+
0 → R+

0 is said to be of class KL if for each fixed t the
function s→ β(s, t) is of class K and for each fixed s the function t→ β(s, t) is
of class L. For given (maximum involved time-delay) ∆ > 0, n positive integer,
C denotes the space of continuous functions mapping the interval [−∆, 0] into
Rn and for φ ∈ C, ‖φ‖∞ = sup−∆≤θ≤0 |φ(θ)|. For a given positive real H, CH
denotes the subset of continuous functions φ mapping the interval [−∆, 0] into
Rn such that ‖φ‖∞ ≤ H. Ma : C → R+

0 is any continuous functional such that
there exist K∞ functions γ

a
and γa such that the inequalities hold

γ
a
(|φ(0)|) ≤Ma(φ) ≤ γa(‖φ‖∞), ∀φ ∈ C (1)

For any continuous function x(s), defined on −∆ ≤ s < a, a > 0, and any
fixed t, 0 ≤ t < a, the standard symbol xt will denote the element of C defined
by xt(θ) = x(t + θ), −∆ ≤ θ ≤ 0. A function f : Rn × Rm → Rn is said to
be Lipschitz on bounded sets (equivalently, locally Lipschitz) if for any positive
reals H, δ there exists a positive real LH,δ such that, for any x, y ∈ BnH and for
any u, v ∈ Bmδ , the inequality holds

|f(x, u)− f(y, v)| ≤ LH,δ(|x− y|+ |u− v|)
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A map f : C × Rm → Rn is said to be Lipschitz on bounded sets if for any
positive reals H, δ there exists a positive real LH,δ such that, for any φ, ψ ∈ CH ,
and for any u, v ∈ Bmδ , the inequality holds

|f(x, u)− f(y, v)| ≤ LH,δ(|x− y|+ |u− v|)

A map V : C → R+
0 is said to be locally Lipschitz if, for any φ ∈ C there exist

positive reals δφ and Lφ such that the following inequality holds

|V (φ1)− V (φ2)| ≤ Lφ‖φ1 − φ2‖∞, ∀φ1, φ2 ∈ Cδφ(φ). (2)

In the following: ODE stands for ordinary differential equation; RFDE stands
for retarded functional differential equation; GAS stands for global asymptotic
stability or globally asymptotically stable; ISS stands for input-to-state stability
or input-to-state stable; δ-GAS stands for incremental global asymptotic stability
or incrementally globally asymptotically stable; δ-ISS stands for incremental
input-to-state stability or incrementally input-to-state stable; FC stands for
forward completeness or forward complete; LM stands for Lebesgue measurable;
LMEB stands for Lebesgue measurable essentially bounded; LMLEB stands for
Lebesgue measurable locally essentially bounded.

2 Nonlinear Delay-Free Systems

In this section we will review some basic notions of nonlinear finite dimensionals
systems, starting with the main hypothesis for the existence and uniqueness
of solution. We will provide definitions of basic internal and external stability
notions and related Lyapunov theorems.

Let us consider a nonlinear system described by the ODE ([11], [15])

Σ :

{
ẋ(t) = f(x(t), u(t)), a.e.
x(0) = x0,

(3)

where x(t) ∈ Rn, u(t) ∈ Rm, n,m are positive integers, f : Rn × Rm → Rn is a
locally Lipschitz function satisfying f(0, 0) = 0. The input signal u : R+

0 → Rm
is assumed to be Lebesgue measurable and locally essentially bounded.

The following theorem provides basic results concerning existence, uniqueness
and continuity of the solution, for the system Σ.

Theorem 1. ([11], [15]) For any initial state x0 ∈ Rn, for any LMLEB input
signal u : R+

0 → Rm:

– there exist, uniquely, a solution x(t, x0, u) on a maximal time interval [0, b),
with 0 < b ≤ +∞, and such solution is locally absolutely continuous in [0, b);

– if b < +∞, then the solution is unbounded in [0, b);
– ∀ε > 0, and ∀T ∈ (0, b), there exists a positive real δ such that, for any
y0 ∈ Rn, and for any LMLEB input signal v : R+

0 → Rm satisfying

|x0 − y0| ≤ δ, |u(t)− v(t)| ≤ δ a.e.,
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the solution x(t, y0, v) corresponding to y0, v exists in [0, T ] and, furthermore,
the inequality holds:

|x(t, x0, u)− x(t, y0, v)| ≤ ε, ∀t ∈ [0, T ]

Notice that, even if b = +∞, the continuity of the solution with respect to initial
states and input signals concerns a compact set.

Example 1. Let, in Σ, n = m = 1, f(x, u) = u, and let u(t) = D(t), where
D : R+

0 → {0, 1} is the Dirichlet function defined, for t ∈ R+
0 as

D(t) =

{
1, t ∈ Q,
0, t /∈ Q (4)

Then, the solution of Σ is x(t, x0, u) = x0, ∀t ≥ 0. Indeed, x(0, x0, u) = x0, and

the derivative dx(t,x0,u)
dt = 0, for all t ≥ 0, thus satisfying the ODE in Σ almost

everywhere (recall that Q is a set of zero Lebesgue measure).

Example 2. Let, in Σ, n = m = 1, f(x, u) = x2 + u, and let u(·) ≡ 0. Then, the
solution of Σ is

x(t, x0, 0) =

{ x0

1−x0t
, t ∈ [0,+∞) , x0 ≤ 0,

x0

1−x0t
, t ∈

[
0, 1

x0

)
, x0 > 0

(5)

Indeed, x(0, x0, u) = x0, and the derivative dx(t,x0,u)
dt = x2(t, x0, u), for all t ∈

[0,+∞) in the case x0 ≤ 0, and for all t ∈
[
0, 1

x0

)
in the case x0 > 0. The

solution is unbounded in the latter case.

Example 3. Let, in Σ, n = m = 1, f(x, u) = −x+ x2 + u, and let u(·) ≡ 0. Let
us consider three cases

1) x(0) = 1,
2) x(0) = 1 + δ,
3) x(0) = 1− δ,

where δ is a positive real. In case (1), the solution is x(t, x0, u) = 1, ∀t ∈ [0,+∞).
In case (2), the solution increases to +∞ in the interval of definition [0, b),
0 < b ≤ +∞. In case (3) the solution is defined in R+

0 , and goes to 0 as the
time t goes to +∞. Nevertheless, by Theorem 1, for any positive real ε and any
positive real T , there exist a positive real δ such that the solutions corresponding
to the cases (2) and (3), for this positive real δ, exist in [0, T ], and in [0, T ] differ
from the one of case (1) less than ε.
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2.1 Forward Completeness and Internal stability

Definition 1. ([2], [33]) Let, in Σ, the input signal u take value in a convex
compact subset D of Rm, containing the origin. System Σ is forward complete
if for every initial state x0 and every LM input signal u : R+

0 → D, the corre-
sponding solution exists for all t ∈ R+

0 .

Definition 2. ([11], [15]) System Σ with u(·) ≡ 0 is 0-GAS if there exists a
function β of class KL such that, ∀x0 ∈ Rn, the corresponding solution of Σ
exists ∀t ≥ 0, and, furthermore, satisfies the inequality

|x(t)| ≤ β(|x0|, t)

Definition 3. ([1]) Let, in Σ, the input signal u take value in a convex compact
subset D of Rm, containing the origin. System Σ is δ-GAS (with respect to D)
if there exists a function β ∈ KL such that for any initial states x0, y0 ∈ Rn,
and for any LM input signal u : R+

0 → D, the corresponding solutions x(t, x0, u)
and x(t, y0, u) exist ∀t ≥ 0, and, furthermore, satisfy the inequality

|x(t, x0, u)− x(t, y0, u)| ≤ β(|x0 − y0|, t)

Theorem 2. ([2]) System Σ is forward complete (with respect to D), if and only
if there exist a smooth function V : Rn → R+

0 , and functions α1, α2 of class K∞
such that, for any x ∈ Rn and for any u ∈ D, the following inequalities hold

1) α1(|x|) ≤ V (x) ≤ α2(|x|)
2) ∂V (x)

∂x f(x, u) ≤ V (x)

Theorem 3. ([18], [11], [15]) System Σ, with u(·) ≡ 0, is 0-GAS if and only if
there exist a smooth function V : Rn → R+

0 , functions α1, α2 ∈ K∞, a function
α3 ∈ K such that, ∀x ∈ Rn, the following inequalities hold

α1(|x|) ≤ V (x) ≤ α2(|x|)

∂V (x)

∂x
f(x, 0) ≤ −α3(|x|)

Theorem 4. ([1]) System Σ is δ−GAS (with respect to D) if and only if there
exist a smooth function V : Rn×Rn → R+

0 , and functions α1, α2 ∈ K∞, α3 ∈ K
such that, for any x, y ∈ Rn and for any u ∈ D, the inequalities hold

α1(|x− y|) ≤ V (x, y) ≤ α2(|x− y|)

∂V (x, y)

∂x
f(x, u) +

∂V (x, y)

∂y
f(y, u) ≤ −α3(|x− y|))
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Theorem 5. ([1], [6], [29]) System Σ is δ − GAS (with respect to D) if and
only if there exist a smooth function V : Rn×Rn → R+

0 , functions α1, α2 ∈ K∞,
and a positive real α3 such that, for any x, y ∈ Rn and for any u ∈ D, the
inequalities hold

α1(|x− y|) ≤ V (x, y) ≤ α2(|x− y|)
∂V (x, y)

∂x
f(x, u) +

∂V (x, y)

∂y
f(y, u) ≤ −α3V (x, y)

2.2 External Stability

Definition 4. ([31], [11], [15]) System Σ is ISS if there exist a function β ∈
KL and a function γ ∈ K, such that for any initial state x0 ∈ Rn, for any
LMLEB input signal u : R+

0 → Rm, the corresponding solution exists ∀t ≥ 0,
and, furthermore, satisfies the inequality

|x(t)| ≤ β(|x0|, t) + γ(ess sup
θ∈[0,t)

|u(θ)|)

Definition 5. ([1]) Let, in Σ, the input signal u take value in a convex compact
subset D of Rm, containing the origin. System Σ is δ-ISS (with respect to D)
if there exist a function β ∈ KL and a function γ ∈ K, such that for any
initial states x0, y0 ∈ Rn, and for any LM input signals u, v : R+

0 → D, the
corresponding solutions x(t, x0, u) and x(t, y0, v) exist ∀t ≥ 0, and, furthermore,
satisfy the inequality

|x(t, x0, u)− x(t, y0, v)| ≤ β(|x0 − y0|, t) + γ(ess sup
θ∈[0,t)

|u(θ)− v(θ)|)

Remark 1. The δ-ISS property implies the ISS property. For, just consider y0 = 0
and v(·) ≡ 0. The ISS property implies the δ-GAS property. The δ-GAS property
implies the 0-GAS property.

Example 4. ([1]) Let, in Σ, f(x, u) = −x+u3. Then, system Σ is ISS but is not
δ-ISS.

Example 5. Let, in Σ, f(x, u) = −x + x3 + u. Then, system Σ is not 0-GAS,
and thus not δ-GAS, not ISS, not δ-ISS.

Theorem 6. ([32], [11]) System Σ is ISS if and only if there exist a smooth
function V : Rn → R+

0 , and functions α1, α2, α3 ∈ K∞, σ ∈ K such that, for
any x ∈ Rn and for any u ∈ Rm, the inequalities hold

α1(|x|) ≤ V (x) ≤ α2(|x|)

∂V (x)

∂x
f(x, u) ≤ −α3(|x|) + σ(|u|)
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Theorem 7. ([1]) System Σ is δ-ISS (with respect to D) if and only if there
exist a smooth function V : Rn × Rn → R+

0 , functions α1, α2, α3 ∈ K∞, σ ∈ P
such that, for all x, y ∈ Rn, and for any u, v ∈ D, the following conditions hold:

α1(|x− y|) ≤ V (x, y) ≤ α2(|x− y|)

α3(|x− y|) ≥ |u− v| ⇒ ∂V (x, y)

∂x
f(x, u) +

∂V (x, y)

∂y
f(y, v) ≤ −σ(|x− y|)

Example 6. Let, in Σ, n = m = 1, f(x, u) = −x − x3 + u. We prove that Σ
is δ-ISS, by means of Theorem 7. Choose V (x, y) = (x − y)2. Then, α1(s) =
α2(s) = s2, s ∈ R+

0 . Taking into account that sign(x3 − y3) = sign(x − y), by
Young’s inequality, we have

∂V (x, y)

∂x
f(x, u) +

∂V (x, y)

∂y
f(y, v) =

2(x− y)(−x− x3 + u)− 2(x− y)(−y − y3 + v) =

−2(x− y)2 − 2(x− y)(x3 − y3) + 2(x− y)(u− v) ≤
−2(x− y)2 + (x− y)2 + (u− v)2 ≤ −(x− y)2 + (u− v)2 (6)

Thus, we can choose α3(s) = 1√
2
s, σ(s) = 1

2s
2.

3 Nonlinear Retarded Systems

A time-invariant RFDE is an equation of the type ([5], [7], [9], [11], [19], [17],
[21])

ẋ(t) = f(xt, u(t)), t ≥ 0, a.e.,

x(τ) = x0(τ), τ ∈ [−∆, 0], (7)

where x(t) ∈ Rn is the internal variable, u(t) ∈ Rm is the input function, for t ≥ 0
xt : [−∆, 0]→ Rn is the function in C given by xt(τ) = x(t+ τ), ∆ is a positive
real (the maximum involved delay), f is a map from C × Rm to Rn, x0 ∈ C,
m,n are positive integers. The space C is the state space of the system described
by (7). Multiple discrete non-commensurate as well as distributed time-delays
can appear in (7). We assume that the map f is Lipschitz on bounded sets. We
assume that f(0, 0) = 0, thus ensuring that x(t) = 0 is the solution corresponding
to zero initial state and zero input (i.e., the trivial solution). Moreover, we assume
that the input signal u : R+

0 → Rm is Lebesgue measurable and locally essentially
bounded. In the following, when the specification of the initial state and of the
input is necessary, for clarity of presentation, x(t, φ, u) (xt(φ, u)) will denote
the solution expressed in Rn (expressed in C) at time t corresponding to initial
condition φ and input u. x(t, φ) (xt(φ)) will denote the solution expressed in Rn
(expressed in C) at time t corresponding to initial condition φ and zero input.
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3.1 Existence, Uniqueness and Continuity of the Solution

Theorem 8. ([9], [11], [14], [16], [19], [21]) The following results hold:

1) for any initial state x0 ∈ C and any Lebesgue measurable and locally es-
sentially bounded input function u, the RFDE (7) admits a unique, locally
absolutely continuous, solution x(t) on a maximal time interval [0, b), 0 <
b ≤ +∞;

2) if b < +∞, then the solution is unbounded in [0, b);
3) for any T ∈ (0, b) and any ε > 0 there exist positive reals δ, γ such that, for

any φ ∈ Cδ(x0) and any Lebesgue measurable input signal v : [0, T ] → Rm,
satisfying the inequality ess supt∈[0,T ] |v(t)−u(t)| ≤ γ, the solution x(t, φ, v)
of (7) corresponding to initial state φ and input v exists in [0, T ] and satisfies
the inequality

|x(t, φ, v)− x(t)| < ε, t ∈ [0, T ] (8)

3.2 Internal and External Stability Definitions by KL Functions

Definition 6. ([11], [21], [25]) The system described by (7), with u(t) = 0 t ∈
R+

0 , is said to be 0-GAS if there exist a function β of class KL such that, for any
x0 ∈ C, the corresponding solution exists for all t ≥ 0 and, furthermore, satisfies
the inequality

|x(t)| ≤ β(‖x0‖∞, t), ∀t ≥ 0 (9)

Definition 7. ([31], [24]) The system described by (7) is said to be ISS if there
exist a function β of class KL and a function γ of class K such that, for any
initial condition x0 ∈ C and any Lebesgue measurable, locally essentially bounded
input u, the corresponding solution exists for all t ≥ 0 and, furthermore, satisfies

|x(t)| ≤ β(‖x0‖∞, t) + γ(‖u[0,t)‖∞), ∀t ≥ 0. (10)

Remark 2. The ISS property implies the 0-GAS property. Moreover, for any
Lebesgue measurable, essentially bounded input u, the state is bounded, and is
ultimately bounded by a class K function of ‖u[0,∞)‖∞. Because of the time-
invariant character of the system described by (7), if u(t) converges to zero, so
does x(t). Indeed, taking into account the time-invariant property of the system
described by (7), the following inequality holds

|x(t)| ≤ β
(
β(‖x0‖∞, 0) + γ(‖u[0,∞)‖∞),

t

2

)
+ γ

(
‖u[ t2 ,t)

)
, t ∈ R+

0

(11)

Definition 8. ([1], [27]) The system described by (7) is said to be δ-ISS if there
exist a function β of class KL and a function γ of class K such that, for any
couple of initial states x0, ξ0 ∈ C and any couple of Lebesgue measurable, locally
essentially bounded inputs u1, u2, the solutions corresponding to (x0, u1) and
(ξ0, u2) exist for all t ≥ 0 and, furthermore, the following inequality holds

|x(t, x0, u1)− x(t, ξ0, u2)| ≤ β(‖x0 − ξ0‖∞, t) + γ(‖(u1 − u2)[0,t)‖∞), ∀t ≥ 0
(12)
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Definition 9. Let V : C → R+
0 be a continuous functional. The derivative

D+V : C × Rm → R? of the functional V is defined, for φ ∈ C, v ∈ Rm, as
follows ([4], [11], [21], [22], [23], [24])

D+V (φ, v) = lim sup
h→0+

1

h
(V (φh)− V (φ)) , (13)

where φh ∈ C is given by

φh(s) =

{
φ(s+ h), s ∈ [−∆,−h],

φ(0) + f(φ, v)(h+ s), s ∈ (−h, 0]
(14)

3.3 Lyapunov-Krasovskii Theorem for the 0-GAS Property

Theorem 9. ([11], [12], [17], [25]) The system described by (7), with u(t) = 0,
t ≥ 0, is 0-GAS if and only if there exist a locally Lipschitz functional V : C →
R+

0 and functions α1, α2 of class K∞, α3 of class K, such that, ∀φ ∈ C, the
following inequalities hold:

i) α1(|φ(0)|) ≤ V (φ) ≤ α2(‖φ‖∞);

ii) D+V (φ, 0) ≤ −α3(|φ(0)|)

3.4 Lyapunov-Krasovskii Theorem for the ISS Property

Theorem 10. ([11], [13], [21], [24], [26]) The system (7) is ISS if and only if
there exist a locally Lipschitz functional V : C → R+

0 , a functional Ma, functions
α1, α2, α3 of class K∞ and a function ρ of class K such that:

i) α1(|φ(0)|) ≤ V (φ) ≤ α2(Ma(φ)), ∀φ ∈ C;

ii) D+V (φ, u) ≤ −α3(Ma(φ)) + ρ(|u|), ∀ φ ∈ C, u ∈ Rm.

3.5 Lyapunov-Krasovskii Theorems for the δ-ISS Property

For a locally Lipschitz functional V : C × C → R+
0 , let the derivative in the

Driver’s form D+V : C × C × Rm × Rm → R? be defined, for φi ∈ C, di ∈ Rm,
i = 1, 2, as follows ([27]):

D+V (φ1, φ2, d1, d2) = lim suph→0+
V (φh1 ,φ

h
2 )−V (φ1,φ2)
h ,

φhi (s) =

{
φi(s+ h), s ∈ [−∆,−h),
φi(0) + (s+ h)f(φi, di), s ∈ [−h, 0],

(15)

φi ∈ C, di ∈ Rm, i = 1, 2.

Theorem 11. ([27]) Let there exist a locally Lipschitz functional V : C × C →
R+

0 , a functional Ma, functions α1, α2 of class K∞, functions α3, ρ of class K
such that

9



i) α1(Ma(φ1 − φ2)) ≤ V (φ1, φ2) ≤ α2(Ma(φ1 − φ2)), ∀φ1, φ2 ∈ C;

ii) D+V (φ1, φ2, d1, d2) ≤ −α3(Ma(φ1 − φ2)),
∀ φ1, φ2 ∈ C, d1, d2 ∈ Rm : Ma(φ1 − φ2) > ρ(|d1 − d2|)

Then, the system (7) is δ − ISS.
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