
National School SIDRA 2017:
Formal Methods for the Control of

Large-scale Networked Nonlinear Systems with
Logic Specifications

Lecture L3: Metric transition systems?

Abstract. In this lecture we introduce the basic material from formal
methods to address control of large–scale networked nonlinear systems
with logic specifications. We introduce the class of metric transition sys-
tems that we use to model continuous processes, modeling the physical
part, discrete processes, modeling software and hardware in the cyber
part, of Cyber–Physical Systems, and also regular languages, modeling
specifications. This lecture is based on [3], [2],[4] and [1].

? These lecture notes were prepared specifically for the PhD students attending the
SIDRA School by Maria Domenica Di Benedetto and Giordano Pola, and must not
be reproduced without consent of the authors.



1 Notation

The symbols N, Z, R, R+ and R+
0 denote the set of nonnegative integer, integer,

real, positive real, and nonnegative real numbers, respectively. Given a function
f : X → Y and X ′ ⊆ X the symbol f(X ′) denotes the image of X ′ through f ,
i.e. f(X ′) = {y ∈ Y |∃x ∈ X ′ s.t. y = f(x)}.

2 Metric Transition Systems

We use the mathematical paradigm of metric transition systems as a unifying
framework to describe complex heterogeneous processes in Cyber–Physical Sys-
tems and logic specifications. We start with the following:

Definition 1. [3] A transition system is a tuple

T = (X,X0, U, - , Xm, Y,H),

consisting of

– a set of states X;
– a set of initial states X0 ⊆ X;
– a set of inputs U ;
– a transition relation - ⊆ X × U ×X;
– a set of marked states Xm ⊆ X;
– a set of outputs Y and
– an output function H : X → Y .

Remark 1. The definition above slightly extends the notion of systems of [4]
because it includes the set of marked states. A transition system enters a marked
state whenever it completes some operation or task, see e.g. [1]. Marked states
are also instrumental in defining regular languages in lecture no. 4.

We will follow standard practice and denote a transition (x, u, x′) ∈ -

of T by

x
u- x′.

The following definition will be useful further.

Definition 2. Given a transition system T = (X,X0, U, - , Xm, Y,H),

– the set of active inputs U(x) of state x ∈ X is the set

U(x) = {u ∈ U | ∃ x u- x′};

– the set of u–successors of state x, denoted Postu(x), is the set:

Postu(x) = {x′ ∈ X| ∃ x u- x′}.

2



Given a set Z ⊆ X, we shall abuse the notation and denote by Postu(Z) the
set

Postu(Z) =
⋃
x∈Z

Postu(x).

The evolution of transition systems is captured by the notions of state, input
and output runs.

Definition 3. (Semantics) Given a sequence of transitions of T

x0
u0- x1

u1- ...
ul−1- xl (1)

with x0 ∈ X0, the sequences

rX : x0 x1 ... xl,

rU : u0 u1 ... ul−1, (2)

rY : H(x0)H(x1) ... H(xl), (3)

are called a state run, an input run and an output run of T , respectively.

Definition 4. (Transition systems classification) Transition system T is said
to be

– empty, if X0 = ∅;
– countable, if X and U are countable sets;
– symbolic/finite, if X and U are finite sets;
– deterministic, if for any x ∈ X and u ∈ U(x) there exists a unique transition

x
u- x+ and nondeterministic, otherwise;

– alive, if for any x
u- x′ there exists x′

u′- x′′;
– nonblocking, if for any sequence of transitions (1) of T with x0 ∈ X0 either
xl ∈ Xm or there exists a continuation of it

x0
u0- x1

u1- ...
ul−1- xl

ul- ...
ul′−1- xl′

such that xl′ ∈ Xm, and blocking, otherwise.
– metric if Y is equipped with a metric d : Y × Y → R+

0 , i.e. a function

d : Y × Y → R,

satisfying for all y1, y2, y3 ∈ Y :
• d(y1, y2) ≥ 0;
• d(y1, y2) = 0 if and only if y1 = y2;
• d(y1, y2) = d(y2, y1);
• d(y1, y3) ≤ d(y1, y2) + d(y2, y3).

Note that:

– A transition system may be alive and blocking (consider the transition sys-
tem in Fig. 1);

3



Fig. 1. A transition system that is alive and blocking. Outputs are not represented,
meaning that the output function is the identity.

– A transition system may be nonblocking and not alive (consider the transi-
tion system composed only of an initial state that is also a marked state);

Metric transition systems are general enough to describe continuous pro-
cesses modeling physical systems and discrete processes modeling software and
hardware at the implementation level, in Cyber–Physical Systems, see [4], as
illustrated in the following two examples.

Example 1. A physical process is often described by differential equations. Con-
sider the following nonlinear control system:

Σ :



ẋ(t) = f(x(t), u(t)),
y(t) = h(x(t)),
x(t) ∈ X ⊆ Rn,
x(0) ∈ X0 ⊆ X,
u(t) ∈ U ⊆ Rm,
y(t) ∈ Y ⊆ Rp,
t ∈ R+

0 ,

(4)

where x(t) is the state, u(t) is the input and y(t) is the output at time t ∈ R+
0 .

Control inputs u are assumed to belong to the class U of piecewise continuous
functions from R+

0 to U. For simplicity we assume that function f and sets X
and U are such that Σ admits a unique solution for any initial state x(0) ∈ X0

and for any control input function u and it is forward complete, i.e. starting
from any initial state x(0) ∈ X0 and for any control input function u ∈ U , the
solution x(·, x0, u) to the differential equation (4) exists for any time t ∈ R+

0 .
How to model Σ through the formalism of transition systems? Given Σ define

T (Σ) = (X,X0, U, - , Xm, Y,H),

where

– X = X;
– X0 = X0;

4



– U is the collection of restrictions of functions in U to intervals [0, τ [, for some
τ ∈ R+;

– x
u|[0,τ[- x′ if x′ = x(τ, x, u);

– Xm = X;
– Y = Y and
– H(x) = h(x) for all x ∈ X.

What are the connections between Σ and T (Σ)?

– Σ and T (Σ) have an infinite number of states;
– Σ admits a unique solution for any initial state x(0) ∈ X0 and for any control

input function u and T (Σ) is deterministic;
– Σ is forward complete and T (Σ) is alive;
– T (Σ) preserves reachability properties of Σ, that is, a state xf is reached by

a trajectory of Σ starting from X0 if and only if there exists a state run in
T (Σ) ending in xf .

Example 2. Any software can be rewritten in the Assembler language. For ex-
ample, Matlab is written in the C language that is in turn, written in the As-
sembler language. Assembler language is a low-level programming language for
a computer, or other programmable device, in which there is a very strong (gen-
erally one-to-one) correspondence between the language and the architecture’s
machine code instructions. The key operation of the Assembler language is to
change the contents of the memory depending on the inputs given by the user.
How to model a program in Assembler language through the formalism of tran-
sition systems? Let U be the finite set of inputs of the user, X be the finite set
corresponding to all possible configurations of the memory (for example for a
memory of 2 bits we have X = {00, 01, 10, 11}), let transition relation -

describe how memory contents change in the program and depending on the
inputs of the user. Set X0 as the initial memory configuration, Xm as the final
memory configuration, Y = X and H be the identity function. We have then
defined T = (X,X0, U, - , Xm, Y,H). Fig. 2 illustrates a transition system
describing a part of the Arithmetic Logic Unit (ALU) devoted to the calculation
of the sum operation on a machine with a memory of two bits.

We also recall some unary operations on transition systems naturally adapted
from the ones given for discrete–event systems [1].

Definition 5. A transition system

T ′ = (X ′, X ′0, U
′, - ′, X ′m, Y

′, H ′)

is said to be a subsystem of transition system

T = (X,X0, U, - , Xm, Y,H),

denoted
T ′ v T,

if X ′ ⊆ X, X ′0 ⊆ X0, U ′ ⊆ U , - ′ ⊆ - , X ′m ⊆ Xm, Y ′ ⊆ Y and
H ′(x) = H(x) for all x ∈ X ′.

5



Fig. 2. Transition system describing part of the ALU devoted to the calculation of the
sum operation on a machine with a memory of two bits. Outputs are not represented,
meaning that the output function is the identity.

Remark 2. Binary operator v in the definition above is a pre–order on the set
of transition systems because it enjoys the reflexivity property, i.e. T v T for
any transition system T , and the transitivity property, i.e. T1 v T2 and T2 v T3
implies T1 v T3 for any transition systems T1, T2 and T3.

We can now give the following

Definition 6. The accessible part of a nonempty transition system T , denoted
Ac(T ), is the unique maximal1 subsystem T ′ of T such that for any state x′ of
T ′ there exists a state run of T ′ ending in x′. A nonempty transition system T
is accessible if T = Ac(T ).

By definition, Ac(T ) if not empty is accessible.

Definition 7. The co–accessible part of a nonempty transition system T , de-
noted Coac(T ), is the unique maximal2 subsystem T ′ of T such that for any
state x′ ∈ X ′ there exists a sequence of transitions of T ′ starting from x′ and
ending in a marked state of T ′. A nonempty transition system T is co–accessible
if T = Coac(T ).

By definition, Coac(T ) if not empty is co–accessible, and therefore also non-
blocking. Conversely, T may be nonblocking but not co–accessible.
We now introduce one more unary operator that is used in the next lectures to
address control design with logic specifications.

Definition 8. The trim of a nonempty transition system T , denoted Trim(T ),
is defined as

Trim(T ) = Coac(Ac(T )) = Ac(Coac(T )).

By definition, Trim(T ), if not empty, is accessible and co–accessible and
hence, nonblocking.

1 Here, maximality is with respect to the pre–order naturally induced by the binary
operator v, see Remark 2.

2 Here, maximality is with respect to the pre–order naturally induced by the binary
operator v, see Remark 2.

6



Fig. 3. A transition system T , its accessible part Ac(T ), co–accessible part Coac(T ),
and Trim(T ).

7



Example 3. In Fig. 3 we illustrate the use of the unary operators introduced
above. Output function of transition system T is assumed to be the identity and
therefore output symbols are not represented in Fig. 3.

References

1. C.G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Kluwer
Academic Publishers, 1999.

2. A. Girard and G.J. Pappas. Approximation metrics for discrete and continuous
systems. IEEE Transactions on Automatic Control, 52(5):782–798, 2007.

3. G. Pola, P. Pepe, and M. D. Di Benedetto. Decentralized approximate su-
pervisory control of networks of nonlinear control systems. IEEE Transactions
on Automatic Control, 2017. Submitted for publication. Available online at
arxiv.org/abs/1606.04647 [math.OC].

4. P. Tabuada. Verification and Control of Hybrid Systems: A Symbolic Approach.
Springer, 2009.

8


