
National School SIDRA 2017:
Formal Methods for the Control of

Large-scale Networked Nonlinear Systems with
Logic Specifications

Lecture L4: Regular languages?

Abstract. In this lecture we will recall basic notions of regular lan-
guages. This lecture is based on [1] and [2].

? These lecture notes were prepared specifically for the PhD students attending the
SIDRA School by Giordano Pola, and must not be reproduced without consent of
the author.

1 Notation

The standard symbols ∪, ∩ and \ denote the set union, set intersection and
set difference. The symbols N, Z and R denote the set of nonnegative integer,
integer and real numbers, respectively. Given a vector x ∈ Rn we denote by |x|
the infinity norm of x.

2 Regular languages

We recall some notions on formal language theory. Let Y be a finite set repre-
senting the alphabet.

Definition 1. A word w over Y is a finite sequence y1 y2 ... yl of symbols in Y .

The length of a word w = y1 y2 ... yl is l.

Example 1. parola is a word over the Latin alphabet and its length is 6.

Definition 2. The concatenation of two words y1 y2 ... yl and yl+1 yl+2 ... yl′ is
the word

y1 y2 ... ylyl+1 yl+2 ... yl′ .

The empty word is denoted by ε. The length of ε is zero. The empty word is
the identity element of concatenation, i.e.

εw = wε = w.

Definition 3. Given three words p, t and s and their concatenation pts, p is
said a prefix of pts, t a substring of pts, and s a suffix of pts.

It is easy to see that:

– Empty string and w are both prefixes of w, indeed, w = εw and w = wε;
– Empty string and w are both substrings of w, indeed, w = wεε and w = εwε;
– Empty string and w are both suffixes of w, indeed, w = wε and w = εw.

We can now give the following

Definition 4. The symbol Y ∗ denotes the Kleene closure of Y , that is the col-
lection of all words over Y including the empty word.

Remark 1. Unless Y = ∅ or Y = {ε}, the cardinality of Y ∗ is infinite.

Example 2. For Y = {a, b} we get Y ∗ = {ε, a, b, aa, ab, ba, bb, ...}.

Similarly,

Definition 5. Given a word y over Y , the symbol {y}∗ denotes the Kleene clo-
sure of word y, that is the collection of all words, including the empty word,
obtained by concatenating y with itself, an arbitrary but finite number of times.

2

Fig. 1. Transition system T .

Example 3. For y = ab we get {y}∗ = {ε, ab, abab, ababab, ...}.

We can now give the following

Definition 6. A language L over a finite set Y is a subset of Y ∗.

Example 4. The following sets are languages in the sense of the definition above:

– The Italian language L1 over the Latin alphabet;
– The set L2 of all words over {a, b} ending with a;
– The set L3 of all words over {a, b} of the form anbn, with n integer.

Remark 2. L1 has finite cardinality while L2 and L3 have not.

We now extend the notion of concatenation to languages:

Definition 7. The concatenation of two languages L1 and L2 is the language
L1L2 containing all and only the words w1w2 obtained by the concatenation of
a word w1 ∈ L1 and a word w2 ∈ L2.

Definition 8. The Kleene closure of a language L is defined as

L∗ = {ε} ∪ L ∪ LL ∪ LLL...

We now introduce connections between languages and transition systems.

Definition 9. The input language (resp. output language) of a transition system
T = (X,X0, U, - , Xm, Y,H), denoted Lu(T) (resp. Ly(T)), is the collection
of all its input runs (resp. output runs).

Definition 10. The marked input language (resp. marked output language) of
a transition system T = (X,X0, U, - , Xm, Y,H), denoted as Lum(T) (resp.
Lym(T)), is the collection of all its input runs

rU : u0 u1 ... ul−1,

(resp. output runs
rY : H(x0)H(x1) ... H(xl))

3

such that the corresponding sequence of transitions

x0
u0- x1

u1- ...
ul−1- xl

with x0 ∈ X0, is with ending state xl ∈ Xm.

Remark 3. Note that Lum(T) ⊆ Lu(T) and Lym(T) ⊆ Ly(T).

Example 5. For the transition system T in Fig. 1, we have:

Lu(T) = {ε, a, b, aa, ab, ba, bb, ...} = {a, b}∗,
Ly(T) = {ε, c, cc, cd, ccc, ccd, ...},
Lum(T) = {a, aa, ba, ...},
Lym(T) = {cd, ccd, ...}.

We can now give the following

Definition 11. A language L over a finite set U is said regular if there exists
a symbolic transition system T with input set U such that

L = Lum(T).

Example 6. Consider the language L over {a, b} composed of all words ending
with a. This language coincides with Lum(T) where transition system T is defined
in Example 5. Hence, L is regular.

Example 7. A classical example of a language that is not regular is the language
L defined over {a, b} and composed of all words of the form anbn with n integer.
By having a look at Fig. 2, it is clear that a transition system that marks L
needs an infinite number of states, because it needs to count how many a’s have
been processed to be able to replicate the same number of b’s.

Here below we recall some important properties of regular languages.

Theorem 1. If L1 and L2 are regular languages, then the following languages
are regular:

– The prefix closure of Li, denoted Li, i.e. the set of all words that are prefixes
of all words in Li;

– L∗i ;
– Y ∗\Li;
– L1 ∪ L2;
– L1L2;
– L1 ∩ L2.

The proof of the standard result above is constructive, in the sense that given
symbolic transition systems marking L1 and L2, symbolic transition systems
marking Li, L

∗
i , Y

∗\Li, L1 ∪ L2, L1L2, L1 ∩ L2 are constructed. An example is
reported below.

4

Fig. 2. Transition system marking language L defined over {a, b} and composed of all
words of the form anbn with n integer. Outputs are not represented meaning that the
output function is the identity.

Example 8. Let us show that if L is regular then also L is regular. If L is regular
there exists a symbolic transition system T such that

L = Lum(T).

Starting from T , first construct the coaccessible part Coac(T) of T and then
mark all the states of Coac(T). Call the obtained transition system T ′. It is easy
to see that

L = Lum(T ′).

Moreover, if T is symbolic, so is Coac(T) and also, so is T ′. Hence, L is regular.

We now introduce the notion of regular expressions:

Definition 12. A regular expression over a finite set U is defined recursively as
follows:

1) The following are regular expressions:
• ∅, denoting the empty set;
• ε, denoting the set {ε};
• u, denoting the set {u}, for all u ∈ U .

2) If r and s are regular expressions, then
• rs, denoting the concatenation of r and s, is a regular expression;
• (r + s), denoting the union of {r} and {s}, is a regular expression;
• r∗ and s∗, denoting the Kleene closure of r and s, respectively, are regular

expressions.

5

Fig. 3. Transition system T of Example 9. Outputs are not represented meaning that
the output function is the identity.

3) There are no regular expressions other than those constructed by applying
rules 1) and 2) above a finite number of times.

We can now recall the following important result:

Theorem 2. (Kleene’s Theorem) Any language that can be denoted by a regular
expression is a regular language; conversely, any regular language can be denoted
by a regular expression.

There are several automatic tools to translate a regular expression in a sym-
bolic transition system marking the corresponding regular language and vice
versa. We conclude this section with two examples.

Example 9. Let U = {a, b, c, d}. The regular expression corresponding to all
words starting with a, ending with d and with no symbols c is given by

a(a+ b+ d)∗d

The regular expression above corresponds to the regular language:

L = {a}{a, b, d}∗{d}.

A symbolic transition system T marking L is depicted in Fig. 3.

Example 10. In Fig. 4, we illustrate how to find a regular expression correspond-
ing to the regular language marked by symbolic transition system T . Starting
from T one can construct T ′ where transition from state 1′ to 0′ is labelled by
the regular expression b+ca. By this construction we did not alter words marked
by T . Starting from T ′ we construct T ′′ which again does not alter the language
marked by T ′ and hence, by T . Note that T ′ and T ′′ are not transition systems
because some of their labels are regular expressions; they are only instrumen-
tal in deriving regular expressions. It is easy to see that the regular expression
associated to T ′′, and hence to T , is

(a(b+ ca))∗a.

6

Fig. 4. Transition system T of Example 10. Outputs are not represented meaning that
the output function is the identity.

3 Modeling logic specifications via regular languages

We have seen in lecture L3 that transition systems are general enough to describe
the physical and the cyber parts of CPS. We now show how transition systems
are useful also to model logic specifications.
Consider a finite collection of points YQ of Rn. This set can be viewed as an
alphabet on the basis of which a regular language

LQ ⊆ Y ∗Q

can be constructed. This regular language models the specifications we are in-
terested in when controlling a CPS. In the sequel we present some examples of
logic specifications that are of interest when controlling CPS.

Safety specifications

Given a subset of good states G of Rn, my specification requires to stay all
the time inside G.
How to model this specification as a regular expression?
Suppose that G has interior and is given as the union of a finite collection of
hyperrectangles. Consider the collection of points gj in

Gη = G ∩ (ηZn),

7

where η ∈ R+ represents the accuracy of the specification approximation. Under
the assumptions placed on G, there exists η̂ ∈ R+ such that Gη 6= ∅ for any η ≤
η̂, see [3]. The regular expression modeling the safety specification corresponds
to all and only words with symbols gj , that is ∑

gj∈Gη

gj

 ∑
gj∈Gη

gj

∗ .
Reachability specifications

Starting from a set of initial states I ⊆ Rn, my specification requires to reach
in finite time a target set T ⊆ Rn.
How to model this specification as a regular expression?
Suppose that I and T have interior and are given as the unions of finite col-
lections of hyperrectangles. Let D ⊆ Rn be a set representing the domain of
interest and assume it has interior, is given as the union of a finite collection of
hyperrectangles, and contains sets I and T . Consider the set Iη of points ij in the
lattice ηZn that are far away from I no more than η, where η ∈ R+ represents
the accuracy of the specification approximation, i.e. for any ij ∈ Iη there exists
xj ∈ I such that

|ij − xj | ≤ η.

Note that Iη 6= ∅ for any η ∈ R+. Consider the collection of points tj in the set

Tη = T ∩ (ηZn).

Consider the collection of points dj in the set

Dη = D ∩ (ηZn).

Under the assumptions placed on T and D, there exists η̂ ∈ R+ such that
Tη 6= ∅ and Dη 6= ∅ for any η ≤ η̂. The regular expression modeling the
reachability specification corresponds to all and only words starting with symbols
in Iη and with last symbols in Tη, i.e. ∑

ij∈Iη

ij

 ∑
dj∈Dη

dj

∗ ∑
tj∈Tη

tj

 .

8

Reach and stay with obstacle avoindance specifications

Starting from a set of initial states I ⊆ Rn, my specification requires to reach
in finite time a target set T ⊆ Rn, while avoiding the set of obstacles O ⊆ Rn
and then remain definitely in the target set T .
We suppose that

I ∩O ∩ T = ∅.

How to model this specification as a regular expression?
Suppose that I, O and T have interior and are given as the unions of finite
collections of hyperrectangles. Let D ⊆ Rn be a set representing the domain of
interest and assume it has interior, is given as the union of a finite collection
of hyperrectangles, and contains sets I, O and T . Consider the set Iη of points
ij in the lattice ηZn that are far away from I no more than η, where η ∈ R+

represents the accuracy of the specification approximation, i.e. for any ij ∈ Iη
there exists xj ∈ I such that

|ij − xj | ≤ η.

Note that Iη 6= ∅ for any η ∈ R+. Consider the set Oη of points oj in the lattice
ηZn that are far away from O no more than η, i.e. for any oj ∈ Oη there exists
xj ∈ O such that

|oj − xj | ≤ η.

Note that Oη 6= ∅ for any η ∈ R+. Consider the collection of points tj in the set

Tη = T ∩ (ηZn).

Consider the collection of points dj in the set

Dη = D ∩ (ηZn).

Under the assumptions placed on T and D, there exists η̂ ∈ R+ such that Tη 6= ∅
and Dη 6= ∅ for any η ≤ η̂. The regular expression modeling the specification
under consideration corresponds to all and only words starting with symbols in
Iη, with no symbols in Oη and ending with symbols in Tη, i.e. ∑

ij∈Iη

ij

 ∑
dj∈Dη\Oη

dj

∗ ∑
tj∈Tη

tj

 ∑
tj∈Tη

tj

∗ .
Synchronization specifications

Starting from a set of initial states I ⊆ Rn my specification requires to reach
a set R ⊆ Rn in no more than 2s, stay there for at most 4s and then reach a
target set T ⊆ Rn in no less than 3s but in finite time. We suppose that

I ∩R ∩ T = ∅.

This specification is relevant in multi–agent environments where a resource is
shared by different agents.

9

How to model this specification as a regular expression?
Suppose that I, R and T have interior and are given as the unions of finite
collections of hyperrectangles. Let D ⊆ Rn be a set representing the domain of
interest and assume it has interior, is given as the union of a finite collection
of hyperrectangles, and contains sets I, R and T . Consider the set Iη of points
ij in the lattice ηZn that are far away from I no more than η, where η ∈ R+

represents the accuracy of the specification approximation, i.e. for any ij ∈ Iη
there exists xj ∈ I such that

|ij − xj | ≤ η.

Note that Iη 6= ∅ for any η ∈ R+. Consider the collection of points rj in the set

Rη = R ∩ (ηZn).

Consider the collection of points tj in the set

Tη = T ∩ (ηZn).

Consider the collection of points dj in the set

Dη = D ∩ (ηZn).

Under the assumptions placed on R, T and D, there exists η̂ ∈ R+ such that
Rη 6= ∅, Tη 6= ∅ and Dη 6= ∅ for any η ≤ η̂. Suppose to consider an internal
clock of our digital controller τ = 1s. By setting the following regular expressions

I ′ =
∑
ij∈Iη ij ;

R′ =
∑
rj∈Rη rj ;

T ′ =
∑
tj∈Tη tj ;

D′ =
∑
dj∈Dη\Rη dj ;

D′′ =
∑
dj∈Dη\Tη dj .

the required regular espression is given by:

I ′(ε+D′)(R′ +R′R′ +R′R′R′ +R′R′R′R′)(D′′D′′(D′′)∗)T ′.

References

1. C.G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Kluwer
Academic Publishers, 1999.

2. G. Pola, P. Pepe, and M. D. Di Benedetto. Decentralized approximate su-
pervisory control of networks of nonlinear control systems. IEEE Transactions
on Automatic Control, 2017. Submitted for publication. Available online at
arxiv.org/abs/1606.04647 [math.OC].

3. M. Zamani, M. Mazo, G. Pola, and P. Tabuada. Symbolic models for nonlinear
control systems without stability assumptions. IEEE Transactions of Automatic
Control, 57(7):1804–1809, July 2012.

10

