
National School SIDRA 2017:
Formal Methods for the Control of

Large-scale Networked Nonlinear Systems with
Logic Specifications

Lecture L5: Relations among
metric transition systems?

Abstract. In this lecture we will introduce basic notions from formal
methods. We will introduce the notions of simulation and bisimulation
relations and their alternating variants, first in the exact case, then in
the approximate case. Some examples are also offered. This lecture is
based on [3, 4, 1, 2, 5].
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1 Notation

The symbols R, R+ and R+
0 denote the set of real, positive real, and nonnegative

real numbers, respectively.

2 Transition systems relations and equivalences

In order to relate properties of infinite states transition systems to symbolic
transition systems we need to recall some notions from formal methods. We
start with the notion of simulation relation.

Definition 1. [3, 4] Let Ti = (Xi, X0,i, Ui,
i
- , Xm,i, Yi, Hi) (i = 1, 2) be

transition systems with the same output sets Y1 = Y2. A relation

R ⊆ X1 ×X2

is said to be a simulation relation from T1 to T2 if it satisfies the following
conditions:

i) ∀x1 ∈ X0,1 ∃x2 ∈ X0,2 such that (x1, x2) ∈ R;
ii) ∀x1 ∈ Xm,1 ∃x2 ∈ Xm,2 such that (x1, x2) ∈ R;

iii) ∀(x1, x2) ∈ R, H1(x1) = H2(x2);

iv) ∀(x1, x2) ∈ R if x1
u1

1
- x′1 then there exists x2

u2

2
- x′2 such that (x′1, x

′
2) ∈

R.

Transition system T1 is simulated by transition system T2, denoted

T1 � T2,

if there exists a simulation relation from T1 to T2.

Intuitively, if T2 simulates T1 then the behavior of T2 contains the behavior
of T1. Moreover,

Proposition 1. If T1 � T2 then Ly(T1) ⊆ Ly(T2) and Lym(T1) ⊆ Lym(T2).

The converse implication in the result above is not true in general. The
following example clarifies these issues.

Example 1. Consider transition systems T1 and T2 in Fig. 1. It is easy to see
that T1 � T2 with simulation relation

R = {(0, 0′), (1, 1′), (3, 1′), (2, 2′), (4, 3′)}.

Moreover,

Ly(T1) = {ε, a, ab, abc, abd} ⊆ {ε, a, ab, abc, abd} = Ly(T2);
Lym(T1) = {abc, abd} ⊆ {abc, abd} = Lym(T2).

Conversely, T2 is not simulated by T1 because there is no state in T1 that can
mimic the state 1′ of T2 (state 1′ can reach two states with outputs c and d),
while it is true that

Ly(T2) ⊆ Ly(T1);
Lym(T2) ⊆ Lym(T1).
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Fig. 1. Transition systems T1 and T2.

The following proposition states that the simulation relation is a preorder on
the set of transition systems:

Proposition 2. For any transition systems Ti = (Xi, X0,i, Ui,
i
- , Xm,i, Yi,

Hi), i = 1, 2, 3 with Y1 = Y2 = Y3:

i) Ti � Ti;
ii) Ti � Tj and Tj � Tk implies Ti � Tk.

Proof. Proof of i): Pick R as the identity relation, i.e. the relation composed by
pairs of the form (x, x) for any state x of T1.
Proof of ii): Let R12 and R23 denote simulation relations from T1 to T2 and
from T2 to T3, respectively, and consider the relation R12 ◦R23 obtained by the
composition of R12 and R23 and defined by

R12◦R23 = {(x1, x3) ∈ X1×X3|∃x2 ∈ X2 s.t. (x1, x2) ∈ R12 and (x2, x3) ∈ R23}.

The following proposition establishes connections between the notions of sim-
ulation relations and of subsystems:

Proposition 3. If T1 v T2 then T1 � T2.

Proof. Define the relation R ⊆ X1 ×X2, where Xi is the set of states of Ti, as
(x1, x2) ∈ R if and only if x1 = x2. Relation R is a simulation relation from T1
to T2.

The converse implication in the result above is clearly not true in general.
We now introduce bisimulation equivalence:
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Definition 2. [3, 4] Let Ti = (Xi, X0,i, Ui,
i
- , Xm,i, Yi, Hi) (i = 1, 2) be

transition systems with the same output sets Y1 = Y2. A relation

R ⊆ X1 ×X2

is said to be a bisimulation relation between T1 and T2 if it satisfies the following
conditions:

– R is simulation relation from T1 to T2;
– R−1 is a simulation relation from T2 to T1, where R−1 ⊆ X2 × X1 is the

inverse relation of R, defined by

(x2, x1) ∈ R−1 ⇐⇒ (x1, x2) ∈ R.

Transition system T1 and T2 are bisimilar, denoted

T1 ∼= T2,

if there exists a bisimulation relation R between T1 and T2.

Intuitively, T1 and T2 are bisimilar if the behavior of T1 is the same as the
behavior of T2. Moreover,

Proposition 4. If T1 ∼= T2 then Ly(T1) = Ly(T2) and Lym(T1) = Lym(T2).

The converse implication in the result above is not true in general. Example
1 serves also to the purpose of illustrating this issue. However, it is possible to
show that the converse implication is true in the case of output deterministic
transition systems, see e.g. [6] for details.

The following result establishes connections between the notions of simulation
and bisimulation.

Proposition 5. If T1 ∼= T2 then T1 � T2 and T2 � T1.

The converse implication in the result above is not true in general as shown
in the following

Example 2. Consider transition system T2 in Fig. 1 and transition system T3 in
Fig. 2. We get:

– T3 � T2 with simulation relation

R = {(0, 0′), (1, 1′), (3, 1′), (2, 2′), (4, 3′)};

– T2 � T3 with simulation relation

R = {(0′, 0), (1′, 1), (2′, 2), (3′, 4)};

– T2 and T3 are not bisimilar because there is no state in T2 that can replicate
the exact behavior of state 3 in T3 (state 3 can only reach a state with output
d while state 1′ can reach two states with outputs c and d).
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Fig. 2. Transition system T3.

The following proposition states that bisimulation is an equivalence relation
on the set of transition systems:

Proposition 6. For any transition system Ti = (Xi, X0,i, Ui,
i
- , Xm,i, Yi,

Hi), i = 1, 2, 3 with Y1 = Y2 = Y3:

i) T1 ∼= T1;
ii) If T1 ∼= T2 then T2 ∼= T1;

iii) T1 ∼= T2 and T2 ∼= T3 implies T1 ∼= T3.

Proof. For the proofs of i) and iii) use the same arguments as those used in the
proof of i) and ii) of Proposition 2. For the proof of ii) if R is a bisimulation
relation between T1 and T2 then R−1 is a bisimulation relation between T2 and
T1.

We now proceed a step further and introduce the notions of alternating sim-
ulation and alternating bisimulation relations. These notions were introduced in
[1] as a tool to address control design for nondeterministic transition systems.
We start with the following

Example 3. Consider the transition system T1 in Fig. 3. Note that T1 is nonde-
terministic. Suppose you want to find a control strategy bringing the state of T1
from 0 to 1 or to 2 in one step. This is a basic reachability control problem. We
now want to use simulation relations to simplify control design. Consider the
transition system T2 in Fig. 3. It is easy to see that T2 is a subsystem of T1, i.e.
T2 v T1, and hence, by Proposition 3, T2 � T1. Indeed relation

R = {(0, 0), (1, 1), (2, 2)}

is a simulation relation from T2 to T1. Since by definition of simulation relation,

for any transition x2
u2

2
- x′2 in T2 there exists a transition x1

u1

1
- x′1 in T1

such that (x′2, x
′
1) ∈ R, I want to use T2 that is with fewer transitions than T1 to

find a control strategy enforcing my reachability specification on T1. By looking
at T2 I found the control strategy: When I am in state 0, I pick either input u
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Fig. 3. Transition systems T1, T2 and T3.

or input v; indeed, in both cases I reach states 1 and 2 in one step, as requested
by my specification. What happens if I apply this control strategy to T1? It does
not work because starting from 0 and applying input u, I can jump to state 0,
thus violating the specification.

The example above shows that simulation relation is not appropriate to ad-
dress control design for nondeterministic transition systems. This happens be-
cause the notion of simulation relation treats disturbances (parametrizing nonde-
terminism) as cooperative inputs while they need to be considered as adversarial
inputs. This problem has been solved in [1] with the notions of alternating sim-
ulation and alternating bisimulation relations that we now introduce.

Definition 3. [1] Let Ti = (Xi, X0,i, Ui,
i
- , Xm,i, Yi, Hi) (i = 1, 2) be

transition systems with the same output sets Y1 = Y2. A relation

R ⊆ X1 ×X2

is said to be an alternating simulation relation from T1 to T2 if it satisfies con-
ditions i), ii) and iii) of Definition 1 and the following one:

iv’) ∀(x1, x2) ∈ R ∀u1 ∈ U1(x1) ∃u2 ∈ U2(x2) such that ∀x2
u2

2
- x′2 ∃x1

u1

1
- x′1

such that (x′1, x
′
2) ∈ R.
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Transition system T1 is alternatingly simulated by transition system T2, denoted

T1 �alt T2,

if there exists an alternating simulation relation from T1 to T2.

We now come back to Example 3.
Example 3. (Continued.) Consider the transition system T3 in Fig. 3. It is

easy to see that T3 �alt T1 with alternating simulation relation

R′ = {(0, 0), (1, 1), (2, 2)}.

By looking at T3 I found the control strategy: When I am in state 0, I pick
input v. If I apply this control strategy to T1, it indeed enforces the desired
specification. This is because alternating simulation relations consider correctly
the role of disturbances.

Definition 4. [1] Let Ti = (Xi, X0,i, Ui,
i
- , Xm,i, Yi, Hi) (i = 1, 2) be

transition systems with the same output sets Y1 = Y2. A relation

R ⊆ X1 ×X2

is said to be an alternating bisimulation relation between T1 to T2 if it satisfies
the following conditions:

– R is an alternating simulation relation from T1 to T2;
– R−1 is an alternating simulation relation from T2 to T1.

Transition systems T1 and T2 are alternatingly bisimilar, denoted

T1 ∼=alt T2,

if there exists an alternating bisimulation relation R between T1 and T2.

It is easy to see that, as in the non alternating case:

– The notion of alternating simulation is a preorder on the set of transition
systems;

– The notion of alternating bisimulation is an equivalence relation on the set
of transition systems.

There is no formal relationship between the notions of simulation and bisim-
ulation relations and their alternating variants, as shown in Example 4.21 of [6].
However, as also pointed out in [6]:

Proposition 7. If T1 and T2 are deterministic then T1 � T2 if and only if
T1 �alt T2.
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The notion of simulation and bisimulation relations and its alternating vari-
ants, we have introduced so far, are also called ’exact’ because they require the
outputs of two states x1 and x2 in the relation to be exactly the same, see con-
dition iii) of Definition 1. We now extend the notion above to an approximating
setting where condition

H1(x1) = H2(x2)

is replaced by

d(H1(x1), H2(x2)) ≤ µ,

where d is a metric placed on the output sets of the transition systems involved
and µ ∈ R+

0 is a desired accuracy.
We can now give the following

Definition 5. [2] Let Ti = (Xi, X0,i, Ui,
i
- , Xm,i, Yi, Hi) (i = 1, 2) be

metric transition systems with the same output sets Y1 = Y2 and metric d, and
let µ ∈ R+

0 be a given accuracy. A relation

R ⊆ X1 ×X2

is said to be a µ–simulation relation from T1 to T2 if it satisfies properties i), ii)
and iv) of Definition 1 and the following one:

iii’) ∀(x1, x2) ∈ R, d(H1(x1), H2(x2)) ≤ µ.

Metric transition system T1 is µ–simulated by metric transition system T2, de-
noted

T1 �µ T2,

if there exists a µ–simulation relation from T1 to T2.

Definition 6. [2] Let Ti = (Xi, X0,i, Ui,
i
- , Xm,i, Yi, Hi) (i = 1, 2) be

metric transition systems with the same output sets Y1 = Y2 and metric d, and
let µ ∈ R+

0 be a given accuracy. A relation

R ⊆ X1 ×X2

is said to be a µ-bisimulation relation between T1 to T2 if it satisfies the following
conditions:

– R is µ–simulation relation from T1 to T2;
– R−1 is a µ–simulation relation from T2 to T1.

Metric transition systems T1 and T2 are µ–bisimilar, denoted

T1 ∼=µ T2,

if there exists a µ–bisimulation relation R between T1 and T2.
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Definition 7. [5] Let Ti = (Xi, X0,i, Ui,
i
- , Xm,i, Yi, Hi) (i = 1, 2) be

metric transition systems with the same output sets Y1 = Y2 and metric d, and
let µ ∈ R+

0 be a given accuracy. A relation

R ⊆ X1 ×X2

is said to be an alternating µ-simulation relation from T1 to T2 if it satisfies
conditions i), ii) and iii’) of Definition 5 and condition iv’) of Definition 3.
Metric transition system T1 is alternatingly µ-simulated by metric transition
system T2, denoted

T1 �alt
µ T2,

if there exists an alternating µ–simulation relation from T1 to T2.

Definition 8. [5] Let Ti = (Xi, X0,i, Ui,
i
- , Xm,i, Yi, Hi) (i = 1, 2) be

metric transition systems with the same output sets Y1 = Y2 and metric d, and
let µ ∈ R+

0 be a given accuracy. A relation

R ⊆ X1 ×X2

is said to be an alternating µ-bisimulation relation between T1 to T2 if it satisfies
the following conditions:

– R is an alternating µ–simulation relation from T1 to T2;
– R−1 is an alternating µ–simulation relation from T2 to T1.

Metric transition systems T1 and T2 are alternatingly µ–bisimilar, denoted

T1 ∼=alt
µ T2,

if there exists an alternating µ–bisimulation relation R between T1 and T2.
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