

Formal Methods for the Control of Large-scale Networked Nonlinear Systems with Logic Specifications

Lecture L7b: Efficient algorithms for controller synthesis

Basilica di Santa Maria di Collemaggio, 1287, L'Aquila

Speaker: Alessandro Borri

- Computation of controllers presented in lecture L7a may require high computational effort
- Here: efficient algorithms for computational complexity reduction in designing controllers

Tools:

On-the-fly algorithms studied in computer science

Lecture based on:

[[]Pola et al., TAC12] Pola, G., Borri, A., Di Benedetto, M.D., Integrated design of symbolic controllers for nonlinear systems, IEEE Transactions on Automatic Control, 57(2):534-539, February 2012

Definition A transition system is a tuple:

 $\mathsf{T}=(\mathsf{Q},\mathsf{Q}_0,\mathsf{L},\longrightarrow,\,\mathsf{Q}_m,\mathsf{O},\mathsf{H}),$

consisting of:

- a set of states Q
- a set of initial states Q₀ ⊆ Q
- a set of control labels L
- a transition relation $\longrightarrow \subseteq Q \times L \times Q$
- a set of marked states Qm ⊆ Q
- an output set O
- an output function $H: Q \rightarrow O$

We will follow standard practice and denote (q, l, q') $\in \longrightarrow$ by $q \xrightarrow{I} q'$

We consider <u>digital control systems</u>, i.e. control systems where input signals are piecewise constant.

Consider a nonlinear digital control system

 $\mathsf{T}(\Sigma) = (\mathsf{X}, \mathsf{X}_0, \mathcal{U}, \longrightarrow, \mathsf{X}_m, \mathsf{O}, \mathsf{H}),$

and given some $\tau > 0$, define the transition system

$$\mathsf{T}_{\tau}(\Sigma) = (\mathsf{X}, \mathsf{X}_0, \mathcal{U}_{\tau}, \longrightarrow_{\tau}, \mathsf{Xm}, \mathsf{O}, \mathsf{H}),$$

where:

U_τ is the collection of <u>constant input functions</u> u : [0,τ] → R^m
 p →_τ q if x(τ,p,u) = q

Consider the following parameters:

- $\tau > 0$ sampling time
- η > 0 state space quantization
- µ > 0 input space quantization

Problem: Specifications given as deterministic transition systems

Given a plant P, a deterministic specification Q and a desired accuracy $\varepsilon > 0$, find a symbolic controller that implements Q up to the accuracy ε and that is alive when interacting with P.

Approximate composition [Tabuada IEEE TAC 08]

Definition Given $T_1 = (Q_1, Q_{01}, L_1, \longrightarrow_1, Q_{m1}, O_1, H_1)$ and $T_2 = (Q_2, Q_{02}, L_2, \longrightarrow_2, Q_{m2}, O_2, H_2)$, with $O_1 = O_2$, and an accuracy $\theta > 0$, the approximate composition of T_1 and T_2 is the system

$$\mathsf{T} = \mathsf{T}_1 ||_{\theta} \mathsf{T}_2 = (\mathsf{Q}, \mathsf{Q}_0, \mathsf{L}, \longrightarrow, \mathsf{Q}_m, \mathsf{O}, \mathsf{H})$$

where:

- $Q = \{(q_1, q_2) \in Q_1 \times Q_2: d(H_1(q_1), H_2(q_2)) \le \theta\}$
- $Q_0 = Q \cap (Q_{01} \times Q_{02})$
- L= L₁ x L₂
- $(q_1,q_2) \xrightarrow{(l_1,l_2)} (p_1,p_2)$, if $q_1 \xrightarrow{l_1} p_1$ and $q_2 \xrightarrow{l_2} p_2$
- $Q_m = Q \cap (Q_{m1} \times Q_{m2})$
- $O = O_1 = O_2$
- $H(q_1,q_2) = H_1(q_1)$

Control problem

Given a plant P, a deterministic specification Q and a desired accuracy $\epsilon > 0$, find a symbolic controller C such that

 $\begin{array}{l} 1.T_{\tau}(\mathsf{P})||_{\theta}C \leqslant_{\epsilon} \mathsf{Q} \\ 2.T_{\tau}(\mathsf{P})||_{\theta}C \text{ is alive} \end{array}$

Synthesis through a three-step process:

- 1. Compute the symbolic model $T_{\tau,\eta,\mu}(P)$ of P
- 2. Compute the symbolic controller $C^* = T_{\tau,\eta,\mu}(P) ||_{\eta} Q$
- 3. Compute the alive part Alive(C*) of C*

Plant P: Continuous System

Synthesis through a three-step process:

- 1. Compute the symbolic model $T_{\tau,\eta,\mu}(P)$ of P
- 2. Compute the symbolic controller $C^* = T_{\tau,\eta,\mu}(P) ||_{\eta} Q$
- 3. Compute the alive part Alive(C*) of C*

Synthesis through a three-step process:

- 1. Compute the symbolic model $T_{\tau,\eta,\mu}(P)$ of P
- 2. Compute the symbolic controller $C* = T_{\tau,\eta,\mu}(P) ||_{\eta} Q$
- 3. Compute the alive part Alive(C*) of C*

Synthesis through a three-step process:

- 1. Compute the symbolic model $T_{\tau,\eta,\mu}(P)$ of P
- 2. Compute the symbolic controller $C* = T_{\tau,\eta,\mu}(P) ||_{\eta} Q$
- 3. Compute the alive part Alive(C*) of C*

Synthesis through a three-step process:

- 1. Compute the symbolic model $T_{\tau,\eta,\mu}(P)$ of P
- 2. Compute the symbolic controller $C* = T_{\tau,\eta,\mu}(P) ||_{\eta} Q$
- 3. Compute the alive part Alive(C*) of C*

Theorem Suppose that P is δ -ISS and choose parameters τ , η , μ , $\theta > 0$ satisfying:

 $\beta(\theta, \tau) + \gamma(\mu) + 2\eta \le \theta + \eta \le \varepsilon$

The symbolic controller Alive(C*) solves the control problem.

Design of symbolic controllers

Drawbacks

- \bullet It considers the whole sets of states of $T_{\tau,\eta,\mu}(\mathsf{P})$ and Q
- For any source state x and target state y, it includes all transitions $x \xrightarrow{U} y$ with any control input u by which state x reaches state y
- It first constructs $T_{\tau,n,\mu}(P)$ and Q, then C*, to finally eliminate blocking states from C*

To cope with space and time complexity, instead of computing separately

- (1) Discrete abstraction $T_{\tau,\eta,\mu}(P)$ of P (2) Symbolic controller $C^* = T_{\tau,\eta,\mu}(P)||_{\eta} Q$
- (3) Alive part Alive(C*) of C*

Integrated Approach: Compute (1) + (2) + (3) at once!

Space/time complexity analysis of the proposed algorithm formally quantifies the gain of the integrated approach

Basic ideas

- 1. It only considers the intersection of the accessible parts of P and Q
- 2. For any given source state x and target state y, it considers only one transition (x,u,y)
- 3. It eliminates blocking states as soon as they show up

First, we consider the target space as the intersection of the sets of initial states of $T_{\tau,\eta,\mu}(P)$ and Q.

First, we consider the target space as the intersection of the sets of initial states of $T_{\tau,\eta,\mu}(P)$ and Q.

Pick a "symbolic" state p from the target space and compute the unique state q such that the transition $p \longrightarrow q$ is in Q.

First, we consider the target space as the intersection of the sets of initial states of $T_{\tau,\eta,\mu}(P)$ and Q.

Pick a "symbolic" state p from the target space and compute the unique state q such that the transition $p \longrightarrow q$ is in Q.

First, we consider the target space as the intersection of the sets of initial states of $T_{\tau,\eta,\mu}(P)$ and Q.

Pick a "symbolic" state p from the target space and compute the unique state q such that the transition $p \longrightarrow q$ is in Q.

First, we consider the target space as the intersection of the sets of initial states of $T_{\tau,\eta,\mu}(P)$ and Q.

Pick a "symbolic" state p from the target space and compute the unique state q such that the transition $p \longrightarrow q$ is in Q.

Pick control inputs in $[U]_{2\mu}$ and integrate the plant differential equation until $q=[x(\tau,p,u)]_{2\eta}$ for some u.

First, we consider the target space as the intersection of the sets of initial states of $T_{\tau,\eta,\mu}(P)$ and Q.

Pick a "symbolic" state p from the target space and compute the unique state q such that the transition $p \longrightarrow q$ is in Q.

Pick control inputs in $[U]_{2\mu}$ and integrate the plant differential equation until $q=[x(\tau,p,u)]_{2\eta}$ for some u.

No matching! Try another input!

First, we consider the target space as the intersection of the sets of initial states of $T_{\tau,\eta,\mu}(P)$ and Q.

Pick a "symbolic" state p from the target space and compute the unique state q such that the transition $p \longrightarrow q$ is in Q.

Pick control inputs in $[U]_{2\mu}$ and integrate the plant differential equation until $q=[x(\tau,p,u)]_{2\eta}$ for some u.

First, we consider the target space as the intersection of the sets of initial states of $T_{\tau,\eta,\mu}(P)$ and Q.

Pick a "symbolic" state p from the target space and compute the unique state q such that the transition $p \longrightarrow q$ is in Q.

Pick control inputs in $[U]_{2\mu}$ and integrate the plant differential equation until $q=[x(\tau,p,u)]_{2\eta}$ for some u.

Matching found!!

First, we consider the target space as the intersection of the sets of initial states of $T_{\tau,\eta,\mu}(P)$ and Q.

Pick a "symbolic" state p from the target space and compute the unique state q such that the transition $p \longrightarrow q$ is in Q.

Pick control inputs in $[U]_{2\mu}$ and integrate the plant differential equation until $q=[x(\tau,p,u)]_{2\eta}$ for some u.

Add the transition (p,u,q) to the controller. Replace p with q in the target space.

Matching found!!

First, we consider the target space as the intersection of the sets of initial states of $T_{\tau,\eta,\mu}(P)$ and Q.

Pick a "symbolic" state p from the target space and compute the unique state q such that the transition $p \longrightarrow q$ is in Q.

Pick control inputs in $[U]_{2\mu}$ and integrate the plant differential equation until $q=[x(\tau,p,u)]_{2\eta}$ for some u.

Matching not found!!

If any "good" input does not exist, then p is **blocking**! A backwards procedure is executed to eliminate p and all its ingoing transitions from the controller, until a controller is found which is alive.

Successive iterations:

Repeat the procedure for all the target states.

The algorithm terminates when there are no more target states to be visited.

Successive iterations:

Repeat the procedure for all the target states.

The algorithm terminates when there are no more target states to be visited.

Successive iterations:

Repeat the procedure for all the target states.

The algorithm terminates when there are no more target states to be visited.

Properties

Let C** be the outcome of the integrated procedure:

- 1. The integrated algorithm terminates in a finite number of steps
- 2. C** and Alive(C*) are exactly bisimilar C** solves the control problem
- 3. C** is the minimal 0-bisimilar system of Alive(C*)
- 4. C** is accessible

5. space/time complexity of the integrated procedure is not larger than the one of the classical procedure

Example

Comparison between Alive(C*) and C**	Alive(C*)	C**	Gain
Max memory occupation (no. of transitions)	2,759,580	48	5.7 · 104
Time (s)	5,442	13	4.2 · 10 ²