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 Computation of controllers presented in lecture L7a may require

high computational effort

 Here: efficient algorithms for computational complexity reduction

in designing controllers

Tools:

 On-the-fly algorithms studied in computer science

What’s new? 
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Definition A transition system is a tuple: 

T = (Q,Q0,L, , Qm,O,H),

consisting of:
 a set of states Q
 a set of initial states Q0  Q
 a set of control labels L
 a transition relation  Q × L × Q 
 a set of marked states Qm Q
 an output set O
 an output function H: Q  O 

We will follow standard practice and denote (q, l, q’)  by   q  q’

q3q2q1

o1 o2

l1
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l2

l1 l2

l

Preliminary definitions
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We consider digital control systems, i.e. control systems where 

input signals are piecewise constant.

Consider a nonlinear digital control system 

T() = (X,X0,U, , Xm,O,H),

and given some  > 0, define the transition system 

T() = (X,X0,U, , Xm,O,H), 

where:

 U is the collection of constant input functions u : [0,]  Rm

 p  q if x(,p,u) = q

Review: Construction of symbolic models

u
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Consider the following parameters:

  > 0 sampling time
  > 0 state space quantization
  > 0 input space quantization

Review: Construction of symbolic models

Q



q

p

x(,q,u) 

2

L
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Consider the following parameters:

  > 0 sampling time
  > 0 state space quantization
  > 0 input space quantization

and define T,,() = (X,,,X0,,,,U,,,  ,,, Xm,,,, O,H), where:

 X,, = [X]2

 X0,,, = X,,X0

 U,, = [U]2

 q  ,, p, if  |x(,q,u) – p|  
 Xm,,, = X,,Xm

 O = X
 H is the identity function

Review: Construction of symbolic models

L

Remark

Transition system T,,() is countable.

If state and input spaces of  are bounded 

then T,,() is symbolic!

u

Q



q

p

x(,q,u) 
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L

Theorem If  is -ISS, for any desired accuracy 

 > 0 and for any , ,  > 0 satisfying

(,) +  + () ≤ 

then T() and T,,() are -bisimilar

Q

u
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Design of symbolic controllers

Problem: Specifications given as deterministic transition systems

Given a plant P, a deterministic specification Q and a desired accuracy  > 0, find a
symbolic controller that implements Q up to the accuracy  and that is alive when
interacting with P.

Plant system P:

A/D

D/A

Symbolic

Controller C

),( uxfx ppp  xp





u ≼

, 

x1
x2 x3

Specification 

transition system Q:

y1 y3

y2
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Definition Given T1 = (Q1,Q01,L1, 1, Qm1,O1,H1) and T2 = (Q2,Q02,L2, 2, Qm2,O2,H2), with 
O1 = O2, and an accuracy θ > 0, the approximate composition of T1 and T2 is the 

system

T = T1||T2 = (Q,Q0,L, , Qm,O,H)

where:
 Q = {(q1, q2)Q1 x Q2: d(H1(q1),H2(q2)) ≤ θ}
 Q0 = Q(Q01 x Q02)
 L= L1 x L2

 (q1,q2)  (p1,p2), if q1p1 and q2p2

 Qm = Q(Qm1 x Qm2)
 O = O1 = O2

 H(q1,q2) = H1(q1)

Approximate composition [Tabuada IEEE TAC 08]
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Design of symbolic controllers

Control problem
Given a plant P, a deterministic specification Q and a desired accuracy  > 0, find a
symbolic controller C such that

1.T(P)||θC ≼ Q

2.T(P)||θC is alive

Plant system P:

A/D

D/A

Symbolic

Controller C

),( uxfx ppp  xp





u ≼

, 

y1 y3

y2

x1
x2 x3

Specification 

transition system Q:
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Synthesis through a three-step process:

1. Compute the symbolic model T,,(P) of P

2. Compute the symbolic controller C* = T,,(P)||  Q

3. Compute the alive part Alive(C*) of C*

Plant  P:

Continuous System

Solution

Specification Q
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Synthesis through a three-step process:

1. Compute the symbolic model T,,(P) of P

2. Compute the symbolic controller C* = T,,(P)||  Q 

3. Compute the alive part Alive(C*) of C*

Plant  P:

Continuous System

Symbolic model Specification Q

Solution
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Synthesis through a three-step process:

1. Compute the symbolic model T,,(P) of P

2. Compute the symbolic controller C* = T,,(P)||  Q 

3. Compute the alive part Alive(C*) of C*

Plant  P:

Continuous System

Symbolic modelFinite Controller Specification Q

Solution
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Synthesis through a three-step process:

1. Compute the symbolic model T,,(P) of P

2. Compute the symbolic controller C* = T,,(P)||  Q 

3. Compute the alive part Alive(C*) of C*

Theorem Suppose that P is –ISS and choose parameters , , ,  > 0 satisfying:

(,) + (  ) + 2 ≤  +  ≤ 

The symbolic controller Alive(C*) solves the control problem.

Solution
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Design of symbolic controllers

(1) Discrete abstraction T,,(P) of P
(2) Symbolic controller C* = T,,(P)||  Q 

(3) Alive part Alive(C*) of C*

Integrated Approach: Compute (1) + (2) + (3) at once!

Space/time complexity analysis of the proposed algorithm formally quantifies the gain 
of the integrated approach

Drawbacks
 It considers the whole sets of states of T,,(P) and Q

 For any source state x and target state y, it includes all transitions x  y with any 
control input u by which state x reaches state y

 It first constructs T,,(P) and Q, then C*, to finally eliminate blocking states from C*

To cope with space and time complexity, instead of computing separately

u
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Integrated Algorithm

Basic ideas

1. It only considers the intersection of the accessible parts of P and Q
2. For any given source state x and target state y, it considers only one transition

(x,u,y)
3. It eliminates blocking states as soon as they show up

Plant  P:

Continuous System

Symbolic modelFinite Controller

Alive Controller

 Specification Q
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First, we consider the target space as the
intersection of the sets of initial states of
T,,(P) and Q.

Integrated Algorithm

How does it work?
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p

First, we consider the target space as the
intersection of the sets of initial states of
T,,(P) and Q.

Pick a “symbolic” state p from the target
space and compute the unique state q such
that the transition p  q is in Q.

Integrated Algorithm

How does it work?
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First, we consider the target space as the
intersection of the sets of initial states of
T,,(P) and Q.

Pick a “symbolic” state p from the target
space and compute the unique state q such
that the transition p  q is in Q.

Pick control inputs in [U]2 and integrate the
plant differential equation until
q=[x (,p,u)]2 for some u.

Integrated Algorithm

How does it work?
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p

q

No matching! Try another input!

First, we consider the target space as the
intersection of the sets of initial states of
T,,(P) and Q.

Pick a “symbolic” state p from the target
space and compute the unique state q such
that the transition p  q is in Q.
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p

q

Matching found!!

First, we consider the target space as the
intersection of the sets of initial states of
T,,(P) and Q.

Pick a “symbolic” state p from the target
space and compute the unique state q such
that the transition p  q is in Q.

Pick control inputs in [U]2 and integrate the
plant differential equation until
q=[x (,p,u)]2 for some u.

How does it work?

Integrated Algorithm
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p

q

Matching found!!Add the transition (p,u,q) to the controller.
Replace p with q in the target space.

First, we consider the target space as the
intersection of the sets of initial states of
T,,(P) and Q.

Pick a “symbolic” state p from the target
space and compute the unique state q such
that the transition p  q is in Q.

Pick control inputs in [U]2 and integrate the
plant differential equation until
q=[x (,p,u)]2 for some u.

Integrated Algorithm

How does it work?
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If any “good” input does not exist, then p is blocking!
A backwards procedure is executed to eliminate p and all its ingoing transitions from
the controller, until a controller is found which is alive.

p

q

Matching not found!!

First, we consider the target space as the
intersection of the sets of initial states of
T,,(P) and Q.

Pick a “symbolic” state p from the target
space and compute the unique state q such
that the transition p  q is in Q.

Pick control inputs in [U]2 and integrate the
plant differential equation until
q=[x (,p,u)]2 for some u.

How does it work?

Integrated Algorithm
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p

Successive iterations:

Repeat the procedure for all the target
states.

The algorithm terminates when there are no
more target states to be visited.

Integrated Algorithm
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Integrated Algorithm
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Properties

Let C** be the outcome of the integrated procedure:

1. The integrated algorithm terminates in a finite number of steps
2. C** and Alive(C*) are exactly bisimilar C** solves the control problem
3. C** is the minimal 0-bisimilar system of Alive(C*)
4. C** is accessible
5. space/time complexity of the integrated procedure is not larger than the one of the
classical procedure

Integrated Algorithm
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Comparison between Alive(C*) and C** Alive(C*) C** Gain

Max memory occupation (no. of transitions) 2,759,580 48 5.7 ∙ 104

Time (s) 5,442 13 4.2 ∙ 102

Integrated symbolic control design

Example

Plant

Specification

Accuracy  = 0.2
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