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In this lecture we will consider nonlinear control systems affected

by disturbances modeling external unknown inputs and model 

uncertaintes

Tools:

 Alternating approximate bisimulation

 Functional analysis

What’s new? 

01/53

Lecture mostly based on:

[Borri et al., IJC12] Borri, A., Pola, G., Di Benedetto, M.D., Symbolic models for nonlinear 

control systems affected by disturbances, International Journal of Control, 85(10):1422-1432,

September 2012 



 Symbolic models for nonlinear control systems affected by

disturbances were first proposed in [Pola & Tabuada, SIAM

2009], but they are difficult to be effectively constructed because

they rely upon the knowledge of reachable sets.

 In this lecture, we overcome these difficulties by leveraging

results on spline analysis and propose symbolic models that

can be effectively constructed.

 Based on these symbolic models, it is possible to design

symbolic controllers that are robust with respect to the non-

determinism of the model.

 We illustrate robust symbolic control techniques in on vehicle

platooning, adaptive cruise control, robot motion planning and

control of traffic flow

Introduction
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Definition A transition system is a tuple: 

T = (X, X0,L, , Xm,Y,H),

consisting of:
 a set of states X
 a set of initial states X0  X
 a set of inputs L = A × B, where 

 A is the set of control inputs
 B is the set of disturbance inputs

 a transition relation  X × L × X
 a set of marked states Xm  X
 a set of outputs Y
 an output function H: X  Y

T is said countable if X and L are countable sets
T is said symbolic/finite if X and L are finite sets
T is metric if the output set is equipped with a metric 

We will follow standard practice and denote (x, (a,b), x’)  by x  x’

A unified framework for continuous and discrete systems

(a,b)

x1

x2
x3

x4

x5
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Two equivalent representations for transition systems

T’ = (X, X0,A, , Xm,Y,H)

T’ is non-deterministic
The disturbance does not appear explicitly

T = (X, X0, A × B, , Xm,Y,H)

T is deterministic
A is the set of control inputs
B is the set of disturbance inputs

In the following, we will use the 
notation of T because we will compute 
explicitly an approximation of the set 
of continuous disturbances

’
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A nonlinear control system 

dx/dt = f(x,u,d), x  X  Rn, u  U  Rm, d  D  Rl

can be modeled by the transition system

T() = (X,X0,U × D, ,Xm,Y,H),

where:

 X0=X
 U is the collection of control signals u : R  U
 D is the collection of disturbance signals u : R  D
 p q, if x(,p,u,d) = q for some   0 
 Xm=X
 Y = X
 H is the identity function

T() captures the information contained in  but it is not a symbolic model because 
X, U and D are infinite sets!

p
q = x(,p,u,d)

qp
(u,d)

A unified framework for continuous and discrete systems

(u,d)
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[Milner & Park, 1981] :
Given T1 = (X1, X01, A1 x B1,1, Xm1,Y1,H1) and T2 = (X2, X02, A2 x B2,2, Xm2,Y2,H2) with
Y1 = Y2, a relation 

R  X1 × X2

is a simulation relation from T1 to T2 if

 x1  X01,  x2 X02 s.t. (x1, x2)  R
 x1  Xm1,  x2 Xm2 s.t. (x1, x2)  R
 (x1, x2)R, H1(x1) = H2(x2)
 (x1, x2)R, a1 b1 a2 b2 such that 

x1 1 p1 and x2 2 p2 and (p1, p2)  R

R is a bisimulation relation between T1 and T2 if
 R is a simulation relation from T1 to T2

 R−1 is a simulation relation from T2 to T1

(a1,b1) (a2,b2)

Transition systems T1 and T2 are bisimilar

if there exists a bisimulation relation 

between T1 and T2

Exact equivalence notions

b

y1
y3

l

ca

d

y2

y2

l l

lT1

f

y1 y3
l

ge

y2

l

T2
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[Milner & Park, 1981] :
Given T1 = (X1, X01, A1 x B1,1, Xm1,Y1,H1) and T2 = (X2, X02, A2 x B2,2, Xm2,Y2,H2) with
Y1 = Y2, a relation 

R  X1 × X2

is a simulation relation from T1 to T2 if

 x1  X01,  x2 X02 s.t. (x1, x2)  R
 x1  Xm1,  x2 Xm2 s.t. (x1, x2)  R
 (x1, x2)R, H1(x1) = H2(x2)
 (x1, x2)R, a1 b1 a2 b2 such that 

x1 1 p1 and x2 2 p2 and (p1, p2)  R

R is a bisimulation relation between T1 and T2 if
 R is a simulation relation from T1 to T2

 R−1 is a simulation relation from T2 to T1

Transition systems T1 and T2 are bisimilar

if there exists a bisimulation relation 

between T1 and T2

Exact equivalence notions

(a1,b1) (a2,b2)

b
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y3
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y2
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[Girard & Pappas, 2007] :
Given T1 = (X1, X01, A1 x B1,1, Xm1,Y1,H1) and T2 = (X2, X02, A2 x B2,2, Xm2,Y2,H2) with
Y1 = Y2, and an accuracy  > 0, a relation 

R  X1 × X2

is an -simulation relation from T1 to T2 if

 x1  X01,  x2 X02 s.t. (x1, x2)  R
 x1  Xm1,  x2 Xm2 s.t. (x1, x2)  R
 (x1, x2)R, d(H1(q1),H2(q2)) ≤ 
 (x1, x2)R, a1 b1 a2 b2 such that 

x1 1 p1 and x2 2 p2 and (p1, p2)  R

R is an -bisimulation relation between T1 and T2 if
 R is an -simulation relation from T1 to T2

 R−1 is an -simulation relation from T2 to T1

Transition systems T1 and T2 are -bisimilar

if there exists an -bisimulation relation 

between T1 and T2

Approximate equivalence notions

(a1,b1) (a2,b2)
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[Girard & Pappas, 2007] :
Given T1 = (X1, X01, A1 x B1,1, Xm1,Y1,H1) and T2 = (X2, X02, A2 x B2,2, Xm2,Y2,H2) with
Y1 = Y2, and an accuracy  > 0, a relation 

R  X1 × X2

is an -simulation relation from T1 to T2 if

 x1  X01,  x2 X02 s.t. (x1, x2)  R
 x1  Xm1,  x2 Xm2 s.t. (x1, x2)  R
 (x1, x2)R, d(H1(q1),H2(q2)) ≤ 
 (x1, x2)R, a1 b1 a2 b2 such that 

x1 1 p1 and x2 2 p2 and (p1, p2)  R

R is an -bisimulation relation between T1 and T2 if
 R is an -simulation relation from T1 to T2

 R−1 is an -simulation relation from T2 to T1

Approximate equivalence notions

(a1,b1) (a2,b2)

Drawback: This notion fails to distinguish the 

different role played by control and disturbance 

inputs!
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[Pola & Tabuada, 2009] :
Given T1 = (X1, X01, A1 x B1,1, Xm1,Y1,H1) and T2 = (X2, X02, A2 x B2,2, Xm2,Y2,H2) with
Y1 = Y2, and an accuracy  > 0, a relation 

R  X1 × X2

is an AA-simulation relation from T1 to T2 if

 x1  X01,  x2 X02 s.t. (x1, x2)  R
 x1  Xm1,  x2 Xm2 s.t. (x1, x2)  R
 (x1, x2)R, d(H1(q1),H2(q2)) ≤ 
 (x1, x2)R, a1 a2 b2 b1 such that 

x1 1 p1 and x2 2 p2 and (p1, p2)  R

R is an AA-bisimulation relation between T1 and T2 if
 R is an AA-simulation relation from T1 to T2

 R−1 is an AA-simulation relation from T2 to T1

Approximate equivalence notions

(a1,b1) (a2,b2)

Transition systems T1 and T2 are AA-bisimilar

if there exists an AA-bisimulation relation 

between T1 and T2
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[Pola & Tabuada, 2009] :
Given T1 = (X1, X01, A1 x B1,1, Xm1,Y1,H1) and T2 = (X2, X02, A2 x B2,2, Xm2,Y2,H2) with
Y1 = Y2, and an accuracy  > 0, a relation 

R  X1 × X2

is an AA-simulation relation from T1 to T2 if

 x1  X01,  x2 X02 s.t. (x1, x2)  R
 x1  Xm1,  x2 Xm2 s.t. (x1, x2)  R
 (x1, x2)R, d(H1(q1),H2(q2)) ≤ 
 (x1, x2)R, a1 a2 b2 b1 such that 

x1 1 p1 and x2 2 p2 and (p1, p2)  R

R is an AA-bisimulation relation between T1 and T2 if
 R is an AA-simulation relation from T1 to T2

 R−1 is an AA-simulation relation from T2 to T1

Approximate equivalence notions

(a1,b1) (a2,b2)

Different role of control and disturbance labels:  

- Approximate bisimulation a1 b1 a2 b2

- Alternating approximate bisimulation a1 a2 b2 b1
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[Pola & Tabuada, 2009] :
Given T1 = (X1, X01, A1 x B1,1, Xm1,Y1,H1) and T2 = (X2, X02, A2 x B2,2, Xm2,Y2,H2) with
Y1 = Y2, and an accuracy  > 0, a relation 

R  X1 × X2

is an AA-simulation relation from T1 to T2 if

 x1  X01,  x2 X02 s.t. (x1, x2)  R
 x1  Xm1,  x2 Xm2 s.t. (x1, x2)  R
 (x1, x2)R, d(H1(q1),H2(q2)) ≤ 
 (x1, x2)R, a1 a2 b2 b1 such that 

x1 1 p1 and x2 2 p2 and (p1, p2)  R

R is an AA-bisimulation relation between T1 and T2 if
 R is an AA-simulation relation from T1 to T2

 R−1 is an AA-simulation relation from T2 to T1

Approximate equivalence notions

(a1,b1) (a2,b2)

From [Alur et al., 1998] symbolic control strategies 

designed for T1 can be appropriately transferred to T2 if 

the systems are AεA-bisimilar

Goal: construct AεA-bisimilar symbolic models 12/53



Definition

A map A: R+  2C0([0,𝜏];D) is a finite inner approximation of D𝜏 if for any desired 
precision  > 0

 A() is a finite set

 A() ⊆D𝜏

 yD𝜏 zA() s.t. |y - z| 

Spline approximation of the disturbance space

Assumptions

1. D is radial, i.e. D ⊆ D for any  ∈ [0,1]

2. The disturbance functions are bounded (|𝑑| ≤M) and Lipschitz continuous with Lipschitz
constant 𝜅𝑑.

Consider the setD𝜏 of the disturbance signals defined on the time interval [0, 𝜏] for some  
𝜏 > 0.
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Spline approximation of the disturbance space

d

d1

d2

d3

t

t

t

t

4μ

2μ

h 2h 4h3h 5h τ

h 2h 4h3h 5h τ0

0

0

0 τ

τ

Approximation scheme

For a given λ > 0, we define the set AD𝜏(λ) of all 

functions 

𝑧 𝑡 : = σ𝑖=0
𝑁+1 𝑧𝑖𝑠𝑖(𝑡),  𝑡 ∈ [0, 𝜏]

satisfying the following conditions:

 𝑧𝑖 ∈ 2𝜇ℤ𝑙 ∩ 𝜌D, for 𝑖 = 0,… , 𝑁 + 1

 ∥ 𝑧𝑖+1 −𝑧𝑖 ∥≤ 𝜅𝜏/(N+1) , for 𝑖 = 0,… , 𝑁

Theorem: The map AD𝜏 is a finite inner 
approximation of D𝜏

Approximation in 3 steps:

1. d1 = ρd, 0 < ρ < 1.

2. d2 is a piecewise-linear function with N+2
samples

3. d3 is a piecewise-linear function with N+2
quantized samples
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Spline approximation of the disturbance space

d

d1

d2

d3

t

t

t

t

4μ

2μ

h 2h 4h3h 5h τ

h 2h 4h3h 5h τ0

0

0

0 τ

τ

Approximation error:

𝛬 𝜅, 𝜏,𝑀,𝑁, 𝜇 = 1 − 𝜌 𝑀 + 1 + 𝜌 𝜅ℎ + 𝜇

where 𝜌 = 1 −𝑚𝑎𝑥
𝜇

𝑀
,
2𝜇 𝑁+1

𝜅𝜏
and

 𝜅 is the Lipschitz constant

 h = 𝜏 /(N+1) is the approximation step

 M is the infinity-norm bound

 N is the number of samples

 𝜇 is the space quantization

Lemma: Given , κ, 𝜏, M, there always exist N
and 𝜇 s.t. 𝛬 𝜅, 𝜏,𝑀,𝑁, 𝜇 ≤ 𝜆
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Incremental Input-to-State-Stability

Definition
Given a nonlinear control system , a smooth function

V: ℝn x ℝn ℝ0
+

is said to be a -ISS Lyapunov function for  if there exist λ ℝ+ and K functions 1,2, u, d

such that, for any x1,x2  ℝn , any u1,u2 U, and any d1,d2  D

1) 1(|x1 - x2|)  V(x1,x2)  2 (|x1 - x2|) 

2)
𝜕V

𝜕x1
f x1, u1, d1 +

𝜕V

𝜕x2
f(x2, u2, d2)  -λV(x1,x2)+ u(|u1 - u2|) +d(|d1 - d2|) 

Theorem
A nonlinear control system  is -ISS if and only if it admits a -ISS Lyapunov function

Remark
Backstepping techniques for incremental stabilization are reported in 
[Zamani & Tabuada, IEEE-TAC 2011]
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Consider a nonlinear control system  expressed in the form of transition system

T() = (X,X0,U × D, , Xm,Y,H),

and given some  > 0, define the transition system 

T() = (X, X0,U × D , , Xm,Y,H), 

where:

 U ⊆ U is the collection of constant control input functions u : [0,]  U

 D ⊆ D is the collection of disturbance input functions d : [0,]  D

 p  q if x(,p,u,d) = q

T() can be regarded as the time-discretization of T().

T() is metric when we regard Y=X as being equipped with the metric

d𝑌 𝑝, 𝑞 = |𝑝 − 𝑞|

Time discretization

(u,d)
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Consider the following vector ℚ = (𝜏, 𝜂, 𝜇𝑢, 𝑁𝑑, 𝜇𝑑)
of quantization parameters, where:

  sampling time
  state space quantization
 u control input space quantization
 Nd number of splines 
 d disturbance input space quantization

and define the transition system Tℚ() = (Xℚ,Xℚ,0,Lℚ,ℚ, Xℚ,m,Yℚ,Hℚ), 
where:

 Xℚ = 2ηℤn ∩ X

 Xℚ,0=Xℚ
 Lℚ = (2uℤm ∩ U) × AD𝜏(Λ , τ, M, Nd, μd ) 

 p ℚq, if |x(,p,u,d) – q| 

 Xℚ,m=Xℚ
 Yℚ = X

 Hℚ is the identity function

Construction of symbolic models

X



p

q

x(,p,u,d) 

2

U

(u,d)
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Consider the following vector ℚ = (𝜏, 𝜂, 𝜇𝑢, 𝑁𝑑, 𝜇𝑑)
of quantization parameters, where:

  sampling time
  state space quantization
 u control input space quantization
 Nd number of splines 
 d disturbance input space quantization

and define the transition system Tℚ() = (Xℚ,Xℚ,0,Lℚ,ℚ, Xℚ,m,Yℚ,Hℚ), 
where:

 Xℚ = 2ηℤn ∩ X

 Xℚ,0=Xℚ
 Lℚ = (2uℤm ∩ U) × AD𝜏(Λ , τ, M, Nd, μd ) 

 p ℚq, if |x(,p,u,d) – q| 

 Xℚ,m=Xℚ
 Yℚ = X

 Hℚ is the identity function

Construction of symbolic models

(u,d)

symbolic model

Remark: Lℚ can be effectively computed, hence the symbolic transition system Tℚ() can be 
effectively constructed! 19/53



Theorem 
Consider a nonlinear control system  and suppose that:

1. There exists a -ISS Lyapunov function for , hence there exists 𝜆 ∈ ℝ+ s.t. for 
any x1,x2 ℝn , any u1,u2 U, and any d1,d2  D

𝜕V

𝜕x1
f x1, u1, d1 +

𝜕V

𝜕x2
f(x2, u2, d2)  -λV(x1,x2)+ u(|u1 - u2|) +d(|d1 - d2|). 

2. There exists a K function 𝛾 such that 𝑉 𝑥, 𝑥′ ≤ 𝑉 𝑥, 𝑥′′ + 𝛾(|𝑥′ − 𝑥′′|)

for every 𝑥, 𝑥′, 𝑥′′ ∈ 𝑋.

3. The disturbance set D is radial and the disturbance functions are bounded 
(|𝑑|∞ ≤ 𝑀) and Lipschitz continuous with uniform Lipschitz constant .

Then for any desired precision  > 0 and any quantization parameters in ℚ s.t.

𝑚𝑎𝑥 u(μ𝑢),𝑑(Λ , τ, M, Nd, μd )

𝜆
+

𝛾 𝜂

1 − 𝑒−𝜆𝜏
𝛼1()

transition systems T() and Tℚ() are AεA-bisimilar

Construction of symbolic models
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Robust control design – a simple example

In this transition system, the input u1 given at initial time can lead the system from 
the initial state 0 either to state 1 or to state 2.
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Robust control design – a simple example

In absence of a state measurement, you cannot distinguish state 1 from 2 at step 1.
Further, you cannot distinguish state 4 from 5 and state 7 from 8 at step 2.
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Robust control design – a simple example

The dashed boxes are called information sets: open-loop control strategies cannot 
distinguish states within the red, blue and green boxes.
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Robust control design – a simple example

Assume now you need to fulfill a simple specification consisting of reaching a marked 
state. The sequence of open-loop inputs u1 (at time 0) and u1 (at time 1) solves the 
problem since it reaches the blue set for any disturbance realization. 24/53



Robust control design – a simple example

Consider now the more complex case where state 5 is unmarked. Then it is readily 
seen that any open-loop control strategy cannot solve the problem robustly with 
respect to all the possible disturbance realizations. 25/53



Robust control design – a simple example

Instead, assuming state feedback, it is possible to distinguish state 1 from 2 at step
1, and consequently, also all the states at step 2. Notice that now the information 
sets become singletons (full information). 26/53



Robust control design – a simple example

Define k(x)=u1 for x=1 and k(x)=u2 if x=2. It is readily seen that the state-feedback control 
strategy setting u1 at step 1, k(x(1)) at step 2, where x(1) is the state reached at step 1, 
solves the control problem robustly with respect to all the disturbance realizations. 27/53



Example: construction of symbolic models

• 𝜃 is the angular position of the point mass
• 𝜔 is the angular velocity of the point mass
• u is the applied torque (control input)
• d is the is the (unknown) horizontal acceleration (disturbance)
• g=9.8 is gravity acceleration
• l=0.5 is the length of the rod
• m=0.6 is the mass
• k=2 is the coefficient of rotational friction

Pendulum subject to wind

28/53



Example: construction of symbolic models

Pendulum subject to wind

State space

Input space

Disturbance space

Disturbance uniform Lipschitz constant

Precision requirement

The control system is -ISS. We can build a AεA symbolic model

with the following choice of quantization parameters
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Example: robust control design

Control design problem: satisfy the following 
specification, independently from the disturbance 
signal realization:

 starting from 𝑥0 = 0,0 , reach

Ω1 =
𝜋

8
,
𝜋

4
× 𝑋2;

 stay in Ω1 for a time duration
between 2s and 4s;

 reach Ω2 = −
𝜋

4
, −

𝜋

8
× 𝑋2;

 stay in Ω2 for at most 3s;
 go back to Ω1 and stay 

definitively in Ω1.

Size of the resulting symbolic model:
159819 states, 1501 control inputs and 6366
disturbance inputs.
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Example: robust control design

Size of the resulting symbolic controller:
716 integers

Computation time: 
2681 s.

Controller synthesis computed by using fixed-point algorithms
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Application 1: Vehicle Platooning
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Application 1: Vehicle Platooning

Heavy Duty Vehicle Model equation

𝑚 ሶ𝑣 = 𝑘𝑒𝑇 − 𝐹𝑏𝑟𝑎𝑘𝑒 − 𝑘𝐷 𝑑 𝑣2

−𝑘𝑓𝑟𝑐𝑜𝑠 𝛼 − 𝑘𝑔𝑠𝑖𝑛 𝛼

 𝑚 is the mass
 𝑣 is the velocity
 𝑇 is the net engine torque
 𝑑 is the longitudinal distance from the vehicle ahead
 𝛼 is the road incline,
 𝑘𝑒, 𝑘𝑓𝑟, 𝑘𝑔 take into account vehicle engine, road friction

and gravitational effects,
 𝑘𝐷 ⋅ is a least-square approximation of the air-drag

coefficient.

Lecture mostly based on:

[Borri et al., Necsys13] A. Borri, D. V. Dimarogonas, K. H. Johansson, M. D. Di Benedetto, and 

G. Pola, Decentralized symbolic control of interconnected systems with application to 

vehicle platooning, Proceedings of NecSys 2013, Koblenz, Germany, pp. 285-292, 2013. 33/53



Symbolic control: a review

 The continuous system P is
formally rewritten in the form of
a transition system T𝜏 P with an
infinite number of states and
inputs. As you know, this object
cannot be built!

 By means of state and input
discretization and time
sampling, Tτ P can be turned
into a symbolic (finite) model
T∗ P .

x3x2x1

y1 y2

u1

y1

u2

u1 u2

X2𝜇𝑥

2𝜇𝑢

U

State quantization

Input quantization
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 The formalism of approximate simulation/bisimulation [Girard-
Pappas (2007)] allows to relate the trajectories of the original
continuous control system to the corresponding trajectories in
the symbolic model, up to a given accuracy ε.

 Exogenous inputs (disturbances) cause the symbolic model to
be nondeterministic.



Symbolic control: a review
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 Control problems can be expressed in terms of approximate
similarity games [Tabuada (2009)], with specifications
expressed in the form of finite transition systems.

 Thanks to the concept of alternating approximate simulation
(AεA simulation) [Alur et al. (1998), Pola-Tabuada (2009)], the
designed symbolic controllers are robust with respect to the
non-determinism of the model.

Symbolic model

≼
Finite Specification

?

Symbolic control: a review
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Towards the decentralized symbolic control

Serial 
interconnection 
of continuous 

systems
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Platooning problem

Precision requirement
𝜀 = 0.02 (1%)

Global Specification
 Safety (no collisions in the

platoon)

 Refinement problem: minimize
global fuel consumption

Main assumptions
 N=6 vehicles
 The leader vehicle may

reduce his nominal speed due
to road speed changes,
obstacles… (modeled as
disturbances)
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Centralized Synthesis

Problem 1. Given a
continuous plant P , a
specification 𝑆 , and a
desired precision  > 0, find
a sampling time 𝜏 , a
parameter θ>0, a symbolic
controller 𝐶 and an AθA-
simulation relation ℛ from 𝐶
to 𝑇𝜏 𝑃 s.t. the closed-loop
system is  -simulated by
the specification, namely:

𝑇τ 𝑃 ×𝜃
ℛ 𝐶≼ 𝑆
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Centralized Synthesis

Control Design

1. Compute the symbolic model 
𝑇∗ 𝑃 of 𝑃

2. Compute the maximal sub-
transition system 𝐶∗

of 𝑇∗ 𝑃 such that:

𝐶∗ ≼𝜇𝑥 𝑆 (behavioral inclusion) 

𝐶∗ ≼𝟎
𝒂𝒍𝒕 𝑇∗ 𝑃 (robustness requirement)
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Centralized Synthesis

Theorem 1. For any desired 
precision  > 0, and any θ, 𝜇𝑥, 
η > 0 s.t.

𝜇𝑥  ത𝛼
−1(𝛼 θ )θη

𝜇𝑥+ θ  

the control problem 1 is solved
with 𝐶 = 𝐶∗ and with
ℛ = ℛ∗ , where ℛ∗ is the
maximal A0A-simulation
relation from 𝐶∗ to 𝑇∗ 𝑃 .

Drawback: high computational complexity 
(exponential with N)
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Decentralized Synthesis

Problem 2. Given a
continuous plant P, in the
form of serial
interconnection of 𝑁
plants 𝑃𝑖 , a specification
𝑆, and a desired precision
 > 0, find 𝜏, θ>0, some
symbolic controllers 𝐶𝑖
and some AθA-simulation
relations ℛ𝑖 from 𝐶𝑖 to
𝑇𝜏 𝑃𝑖 s.t. the closed-loop
system is  -simulated by
the specification, namely:

𝑇τ 𝑃1 ×𝜃
ℛ𝟏 𝐶1 ||…|| 𝑇τ 𝑃𝑁 ×𝜃

ℛ𝑵 𝐶𝑁 ≼ 𝑆
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Decentralized Synthesis

Control Design.

1. The specification 𝑆 is
decomposed into 𝑁
local specifications 𝑆𝑖
s.t.

𝑆1||𝑆2||…||𝑆𝑁 ≼0 𝑆
2. Compute the maximal 

𝐶𝑖
∗ ⊑ 𝑇∗ 𝑃𝑖 s.t.

𝐶𝑖
∗ ≼𝜇𝑥 𝑆𝑖 and

𝐶𝑖
∗ ≼𝟎

𝒂𝒍𝒕 𝑇∗ 𝑃𝑖 , where

𝑇∗ 𝑃𝑖 is the symbolic
model of 𝑃𝑖.
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Decentralized Synthesis

Theorem 2. For any 
desired precision  > 0, 
and any θ, 𝜇𝑥, η > 0 s.t.

𝜇𝑥 min𝑖 ത𝛼𝑖
−1(𝛼𝑖 θ )θη

𝜇𝑥+ θ  

the control problem 2 is

solved with 𝐶𝑖 = 𝐶𝑖
∗ and

with ℛ𝑖 = ℛ𝑖
∗, where ℛ𝑖

∗

is the maximal A0A-

simulation relation from

𝐶𝑖
∗ to 𝑇∗ 𝑃𝑖 , for all i.

Advantage: low complexity, 
in particular for identical plants
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Centralized vs. decentralized symbolic control 

Design parameters
𝜃 = 0.01 𝜏 = 0.2 𝑠

𝜇𝑥 = 0.005

(satisfying Theorems
1-2)

Space Complexity (estimated)

Centralized approach: 4 ∙ 1028

states, 4 ∙ 1015 controls, 401
disturbances (intractable)

Decentralized approach : 1.6 ∙ 105

states, 401 controls, 401
disturbances (tractable)

Local Specifications
• Safety (no collision with the 

vehicle ahead)

• Refinement problem: 
minimize local fuel consumption
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Simulations

Simulink implementation (by Luigi Rodorigo)
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Simulations

Critical event

Safety is preserved
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Application 2: Symbolic adaptive cruise control

 An alternative approach to the platooning problem it to 
design Adaptive Cruise Control (ACC) systems independently 
on each vehicle.

 ACC can be modelled as a hybrid system, with two modes 
q=1 (no lead car) and q=2 (lead car), where the latter 
indicates the situation in which a lead car is present within 
the radar range. Parameter h denotes the distance from the 
lead car and 𝑣𝐿, 𝑎𝐿 the leader velocity and acceleration, when

present.

More details in:

[Nilsson et al., CST2016] S. Coogan, M. Arcak, and C. Belta, P. Nilsson, O. Hussien, A. Balkan, Y. Chen, A. D. 

Ames, J. W. Grizzle, N. Ozay, H. Peng, and P. Tabuada, “Correct-by-construction adaptive cruise control: 

Two approaches”, IEEE Transactions on Control Systems Technology, 24(4), 1294-1307, 2016.
48/53



First define the time headway 𝜔 =
ℎ

𝑣
.

Requirements (coded in LTL):

1. ACC operates in two modes: the set speed mode and the time 

gap mode.

2. In set speed mode, a preset desired speed 𝑣𝑑𝑒𝑠 eventually needs 

to be maintained.

3. In time gap mode, a desired time headway 𝜔𝑑𝑒𝑠 to the lead 

vehicle eventually needs to be maintained, and the time 

headway needs to satisfy 𝜔 ≥ 𝜔𝑚𝑖𝑛 at all times.

4. The system is in set speed mode if ℎ ≥ 𝑣𝑑𝑒𝑠𝜔𝑑𝑒𝑠, otherwise it is 

in time gap mode.

5. Independently of the mode, the input constraint −0.3𝑚𝑔 ≤ 𝐹𝑤 ≤

0.2𝑚𝑔 needs to be satisfied at all times.

Application 2: Symbolic adaptive cruise control
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Application 2: Symbolic adaptive cruise control

Target sets and specification mode sets

𝑀1 = 𝑣, ℎ, 𝐹𝑤 : 𝑣𝑑𝑒𝑠 ≤ ℎ/𝜔𝑑𝑒𝑠 set speed

𝑀2 = 𝑣, ℎ, 𝐹𝑤 : 𝑣𝑑𝑒𝑠 > ℎ/𝜔𝑑𝑒𝑠 time gap

𝑀1 and 𝑀2 define the set speed and the 
time gap modes.

𝐺1 and 𝐺2 expresses requirements 2 
which have to be EVENTUALLY satisfied
in set speed mode and time gap mode, 
respectively.

𝑆1, 𝑆2, 𝑆𝑈 are safe sets which need to be 
ALWAYS satisfied.

These atomic propositions allow to 
encode more complex specifications. 
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Application 2: Symbolic adaptive cruise control

Numerical simulation and physical implementation

Hardware testbed on which the two controllers 
were implemented
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Application 3: Symbolic robot motion control

More details in:

[Belta et al., RAM2007] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. J. 

Pappas, “Symbolic planning and control of robot motion”, IEEE Robotics & Automation 

Magazine, 14(1), 61-70, 2007. 52/53



Application 4: Control of Traffic Flow

More details in:

[Coogan et al., CSM2017] S. Coogan, M. Arcak, and C. Belta, “Formal Methods for Control of 

Traffic Flow”, IEEE Control Systems Magazine, April 2017.
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