Exercises
Port-Hamiltonian modelling and passivity-based
control of physical systems. Theory and applications

Exercise #1

The figure shows the physical part of a load-positioning system without the sensors and the
controller electronics that control the voltage source.
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1. You are to make a bond graph model of the system, including the following effects:
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The voltage is a controlled effort source. Indicate this by including a signal or active
bond with a double arrow impinging on an effort source.

The dc motor has inductance and resistance in the armature coils.

Include a rotary inertia for the motor armature and the screw drive.

Use a resistor to model the friction moment associated with the motor and the screw
drive.

A constant S relates the angular velocity of the screw with the nut: V, = S w.

The tube connecting the nut with the load mass is elastic with a spring constant k.
The load mass has significant friction with the ground.

2. Write down the final system in port-Hamiltonian form.

3. Suppose that the control input is the torque 7 generated by the dc motor. Develop an energy-
shaping control law that allows to position the load mass

4. What if the control input is the voltage E(7)?



Exercise #2

An inertial actuator is a device in which, by appropriate acceleration of an internal mass, a
prescribed reaction force can be generated. By attaching the actuator to a structure, the structure
motion can be controlled.
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The device shown is voice coil driven, where only the winding resistance is important on the
electrical side. The mass m is attached to the base with spring k and damper b.

1. Here, F is the output force. Assume the base has prescribed motion, v,(#). Construct a bond
graph model and derive state equations in port-Hamiltonian form.

2. Derive the transfer functions relating F to v, and Fj to e,, and denote them with G, (s) and
G (s), respectively.
3. Sometimes we desire the reaction force to mimic the effect of a damper attached between the

base and inertial ground, i.e. that F'r = b_v,, with b, some controller gain. Derive the ideal
control system that will yield the desired reaction force from the inherent dynamics of the
device.

4. Shown here is the previous device attached to a structure consisting of a mass, m,, spring, k,

and damper, b,. A force,F;, acts upon the structure mass. Construct a bond graph model for
this total system and derive state equations.
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5. Derive the open-loop (i.e. with e, = 0) transfer function relating output, v,, to input, F;. Does
the result have a component similar to a damper to ground?



Exercise #3

An ideal, compressible, isentropic fluid with one dimensional domain is modelled by the following
coupled PDEs that express the conservation of mass and momentum:
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in which p(t, z) > 0 is the fluid density, v(#, z) is the flow velocity, P(¢, z) is the flow pressure,
and z € [a, b] the spatial coordinate.
1. Prove that the second relatlon can be equwalently rewritten as
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2. The energy variables are in fact the fluid density p and its velocity v, and the total energy is
b
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where U(p) is the internal energy of the fluid. Since
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where R is the universal gas constant, T is the system (constant) temperature and M is the

fluid molar mass, compute the expression of the internal energy U(p), and write the system of
coupled PDEs in port-Hamiltonian form.
3. The co-energy variables are the dynamic pressure and fluid flow, that are given by

—(p,v) —H( )
op Py ov Py

Compute their expression.

4. The boundary inputs are chosen in the following way: in z = a, the fluid flow, whileinz = b
the dynamic pressure. Determine the dual outputs such that the system is in impedance form.

5. For stabilisation purposes, a control law based on damping injection is implemented at both
sides of the spatial domain. Write down the control law.
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6. Under the condition |v(t,z)| < V prove that the original system can be mapped into
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where X_, X, A_, A, have to be computed. Verify that, under the previous hypothesis, 4_ and
/1+ have opposite sign. Write down the damping injection control law in the new coordinates.



Exercise #4

The figure below shows a planar 2DOF manipulator with rotational joints where:
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Each link can be modelled as a homogeneous rectangular bar with mass m; and moment of
inertia /; around the z-axis.

Each joint is subject to a rotational viscous friction with damping coefficient b,.

0, represents the joint variables

Each joint can be actuated by a torque ;.

The gravity force is along the negative y direction.

Now, answer the next questions:

1.
2.

Build the port-Hamiltonian model of the manipulator in the joint space.
Using the control by interconnection technique, build a controller for stabilising the

configuration (0,, 8,) = (n/2,7/2). Write down the Casimir function you used for developing

the controller.
Suppose that the robot is under-actuated, i.e. that 7, = 0. Is it still possible to stabilise the

robot at (0,,6,) = (x/2,7/2)? Which configurations can you stabilise using the control by
interconnection technique?



