
Exercises 
Port-Hamiltonian modelling and passivity-based 
control of physical systems. Theory and applications


Exercise #1 
The figure shows the physical part of a load-positioning system without the sensors and the 
controller electronics that control the voltage source. 


1. You are to make a bond graph model of the system, including the following effects: 

A. The voltage is a controlled effort source. Indicate this by including a signal or active 

bond with a double arrow impinging on an effort source.

B. The dc motor has inductance and resistance in the armature coils. 

C. Include a rotary inertia for the motor armature and the screw drive.

D. Use a resistor to model the friction moment associated with the motor and the screw 

drive. 

E. A constant �  relates the angular velocity of the screw with the nut: � . 

F. The tube connecting the nut with the load mass is elastic with a spring constant � .

G. The load mass has significant friction with the ground. 


2. Write down the final system in port-Hamiltonian form.

3. Suppose that the control input is the torque �  generated by the dc motor. Develop an energy-

shaping control law that allows to position the load mass

4. What if the control input is the voltage � ?


S V1 = S ω
k

τ
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(b) Perform a sample calculation to find out what radius the pipe should
have to make the fluid inertia of the pipe have the same effect on the
effective mass of the system as the mass of the ram and load mass.
Use the following parameters:

ρ = 900 [kg/m3], l = 0.5 [m], m = 740 [kg],
A = πR2, R = 50 [mm], a = πr2

Answers:
(a) Ieq = (m + ρlA2/a),
(b) a = ρlA2/m, r = 15 [mm].

4-30. The figure shows the physical part of a load-positioning system without the
sensors and the controller electronics that control the voltage source. You
are to make a bond graph model of the system, including the following
effects:

voltage
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load
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(a) The voltage is a controlled effort source. Indicate this by including
a signal or active bond with a double arrow impinging on an effort
source.

(b) The dc motor has inductance and resistance in the armature coils.
(c) Include a rotary inertia for the motor armature and the screw drive.
(d) Use a resistor to model the friction moment associated with the motor

and the screw drive.
(e) A constant S relates the angular velocity of the screw with the nut:

V1 = Sω.
(f) The tube connecting the nut with the load mass is elastic with a

spring constant k .
(g) The load mass has significant friction with the ground.



Exercise #2 
An inertial actuator is a device in which, by appropriate acceleration of an internal mass, a 
prescribed reaction force can be generated. By attaching the actuator to a structure, the structure 
motion can be controlled. 


The device shown is voice coil driven, where only the winding resistance is important on the 
electrical side. The mass �  is attached to the base with spring �  and damper � . 

1. Here, �  is the output force. Assume the base has prescribed motion, � . Construct a bond 

graph model and derive state equations in port-Hamiltonian form.

2. Derive the transfer functions relating �  to �  and �  to � , and denote them with �  and 

� , respectively. 

3. Sometimes we desire the reaction force to mimic the effect of a damper attached between the 

base and inertial ground, i.e. that � , with �  some controller gain. Derive the ideal 
control system that will yield the desired reaction force from the inherent dynamics of the 
device. 


4. Shown here is the previous device attached to a structure consisting of a mass, � , spring, � , 
and damper, � . A force, � , acts upon the structure mass. Construct a bond graph model for 
this total system and derive state equations. 


5. Derive the open-loop (i.e. with � ) transfer function relating output, � , to input, � . Does 
the result have a component similar to a damper to ground?
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8-17. Consider an electrically linear parallel-plate capacitor as described by
Eqs. (8.23) and (8.25). Rewrite the force law in the form

F = −q2C ′

2C2 , C ′ = dC(X)

dX
,

in analogy to the solenoid force law in Eq. (8.33).
(a) Use Eq. (8.23) to find the force for the case when the voltage is held

constant at the value e0 by eliminating q in favor of e0.
(b) Using the approximate expression C (X ) = εA/X mentioned below

Eq. (8.25), show that when q is constant, the force does not vary
with X under this assumption, but if the voltage is held constant, the
force does vary with X .

8-18. A butterfly condenser has a capacitance that varies with the angular posi-
tion of a rotor, θ , rather than with a linear position X as in Problem 8-17.
This requires a torque, τ , in analogy with the force F for a parallel-plate
capacitor. Assuming the capacitance varies with θ according to

C(θ) = C0 + C1 cos 2θ

with

C0 = 15 × 10−12F, C1 = 10 × 10−12F,

and assuming the condenser is attached to a 1000-V source, compute the
magnitude of the torque resulting at an angle when it is a large as possible.

8-19. An inertial actuator is a device in which, by appropriate acceleration of an
internal mass, a prescribed reaction force can be generated. By attaching
the actuator to a structure, the structure motion can be controlled.
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The device shown is voice coil driven, where only the winding resistance
is important on the electrical side. The mass m is attached to the base with
spring k and damper b.
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Here, F R is the output force. Assume the base has prescribed motion,
v2(t). Construct a bond graph model and derive state equations. Derive
the output equation for F R .

8-20. From the state equations of Problem 8-19, derive the transfer functions
relating F r to v2 and F r to ec . Derive

Fr

v2
= GFv(s) and

Fr

ec
= GFc(s).

8-21. Since Problem 8-19 is treated as a linear system, we can express the output
force in terms of the transfer functions from Problem 8-20 as

FR(s) = GFvv2 + GFcec.

Sometimes we desire the reaction force to mimic the effect of a damper
attached between the base and inertial ground. In other words, we desire

FR = bcv2,

where bc is a controller gain. Derive the ideal control filter that will yield
the desired reaction force from the inherent dynamics of the device.

8-22. Shown below is the device from Problem 8-19 attached to a structure
consisting of a mass, ms , spring, ks , and damper, bs . A force, F d , acts
upon the structure mass. Construct a bond graph model for this total system
and derive state equations.
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Exercise #3 
An ideal, compressible, isentropic fluid with one dimensional domain is modelled by the following 
coupled PDEs that express the conservation of mass and momentum: 

�  

in which �  is the fluid density, �  is the flow velocity, �  is the flow pressure, 
and �  the spatial coordinate.

1. Prove that the second relation can be equivalently rewritten as 

� 


2. The energy variables are in fact the fluid density �  and its velocity � , and the total energy is

�  

where �  is the internal energy of the fluid. Since 

� ,  

where �  is the universal gas constant, �  is the system (constant) temperature and �  is the 
fluid molar mass, compute the expression of the internal energy � , and write the system of 
coupled PDEs in port-Hamiltonian form.


3. The co-energy variables are the dynamic pressure and fluid flow, that are given by 

�  

Compute their expression.

4. The boundary inputs are chosen in the following way: in � , the fluid flow, while in �  

the dynamic pressure. Determine the dual outputs such that the system is in impedance form.

5. For stabilisation purposes, a control law based on damping injection is implemented at both 

sides of the spatial domain. Write down the control law.


6. Under the condition � , prove that the original system can be mapped into  

�  

where �  have to be computed. Verify that, under the previous hypothesis, �  and 
�  have opposite sign. Write down the damping injection control law in the new coordinates.  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Exercise #4 
The figure below shows a planar 2DOF manipulator with rotational joints where:

A. Each link can be modelled as a homogeneous rectangular bar with mass �  and moment of 

inertia �  around the � -axis. 

B. Each joint is subject to a rotational viscous friction with damping coefficient � .

C. �  represents the joint variables

D. Each joint can be actuated by a torque � .

E. The gravity force is along the negative �  direction.


Now, answer the next questions:

1. Build the port-Hamiltonian model of the manipulator in the joint space.

2. Using the control by interconnection technique, build a controller for stabilising the 

configuration � . Write down the Casimir function you used for developing 
the controller.


3. Suppose that the robot is under-actuated, i.e. that � . Is it still possible to stabilise the 
robot at � ? Which configurations can you stabilise using the control by 
interconnection technique?
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(θ1, θ2) = (π /2,π /2)

τ1 = 0
(θ1, θ2) = (π /2,π /2)


