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Lecture L6a: Symbolic models for
stable nonlinear systems?

Abstract. In this lecture we present some results for the construction of
symbolic models for nonlinear systems. We will show that if the system
is incrementally globally-asymptotically stable and the set of states and
the set of inputs are bounded then it is possible to construct a symbolic
model that approximates the original system in the sense of approximate
bisimulation for any desired accuracy. This lecture is based on [4], see
also [2, 6].
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1 Notation

The symbols N, Z, R, R+ and R+
0 denote the set of nonnegative integer, integer,

real, positive real, and nonnegative real numbers, respectively. Given a, b ∈ Z, we
denote [a; b] = [a, b]∩Z. Given a pair of sets X and Y and a relation R ⊆ X×Y ,
the symbol R−1 denotes the inverse relation of R, i.e. R−1 = {(y, x) ∈ Y ×X :
(x, y) ∈ R}. Given X ′ ⊆ X and Y ′ ⊆ Y , we denote R(X ′) = {y ∈ Y |∃x ∈
X ′ s.t. (x, y) ∈ R} and R−1(Y ′) = {x ∈ X|∃y ∈ Y ′ s.t. (x, y) ∈ R}. Given
a function f : X → Y and X ′ ⊆ X the symbol f(X ′) denotes the image of
X ′ through f , i.e. f(X ′) = {y ∈ Y |∃x ∈ X ′ s.t. y = f(x)}. Given functions
f : X → Y and g : Y → Z we denote by g ◦ f the composition of functions f
and g that is the function (g ◦ f) : X → Z defined by (g ◦ f)(x) = g(f(x)) for
all x ∈ X. A continuous function γ : R+

0 → R+
0 , is said to belong to class K if

it is strictly increasing and γ(0) = 0; γ is said to belong to class K∞ if γ ∈ K
and γ(r) → ∞ as r → ∞. A continuous function β : R+

0 × R+
0 → R+

0 is said to
belong to class KL if for each fixed s, the map β(r, s) belongs to class K∞ with
respect to r and, for each fixed r, the map β(r, s) is decreasing with respect to
s and β(r, s)→ 0 as s→∞. Given a vector x ∈ Rn we denote by x(i) the i–th
element of x and by |x| the infinity norm of x. Given a ∈ R and X ⊆ Rn, the
symbol aX denotes the set {y ∈ Rn|∃x ∈ X s.t. y = ax}.

2 Symbolic models for nonlinear systems

Consider the following nonlinear control system:

Σ :


ẋ(t) = f(x(t), u(t)),
x(t) ∈ X = Rn,
u(t) ∈ U ⊆ Rm, t ∈ R+

0 ,

where x(t) is the state and u(t) is the input at time t ∈ R+
0 . Control inputs u

are assumed to belong to the class U of piecewise continuous functions from R+
0

to U. For simplicity we assume that function f is such that Σ admits a unique
solution for any initial state x(0) ∈ X and for any control input function u ∈ U
and it is forward complete, i.e. starting from any initial state x(0) ∈ X and
for any control input function u ∈ U , the solution x(·, x0, u) to the differential
equation Σ exists for any time t ∈ R+

0 . We also assume here that state variables
are available for control purposes. We also assume that the use U is finite as it
is often the case in concrete applications.
We have already represented Σ as the transition system

T (Σ) = (X,X0, U, - , Xm, Y,H),

where

– X = X;
– X0 = X0;
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– U is the collection of restrictions of functions in U to intervals [0, τ [, for some
τ ∈ R+;

– x
u|[0,τ[- x′ if x′ = x(τ, x, u);

– Xm = X;
– Y = Y and
– H(x) = h(x) for all x ∈ X.

Transition system above is metric when we regard X ⊆ Rn as equipped with
a metric. In the sequel we use as metric, the infinite norm, i.e.

d(x, x′) = |x− x′|,∀x, x′ ∈ X.

The basic idea in deriving symbolic models for Σ is to first proceed with a
time discretization of the original system and then with a state space quantiza-
tion.
We start with the time discretization of Σ.

Definition 1. Given Σ and a sampling time τ ∈ R+, define

Tτ (Σ) = (Xτ , X0,τ , Uτ ,
τ
- , Xm,τ , Yτ , Hτ ),

where

– Xτ = X0,τ = Xm,τ = X;
– Uτ is the set of constant input functions u : [0, τ [→ U;

– x
u

τ
- x′ if x′ = x(τ, x, u);

– Yτ = Rn and
– Hτ (x) = x for all x ∈ Xτ .

What are connections between T (Σ) and Tτ (Σ)?

– T (Σ) and Tτ (Σ) have an infinite number of states;
– T (Σ) and Tτ (Σ) are deterministic;
– T (Σ) and Tτ (Σ) are alive;
– Tτ (Σ) is a subsystem of T (Σ);
– T (Σ) and Tτ (Σ) are metric.

We now proceed with the state space quantization of Tτ (Σ).
Given θ ∈ R+ and x ∈ Rn, we denote

Bn[−θ,θ[(x) = {y ∈ Rn|y(i) ∈ [−θ + x(i), θ + x(i)[, i ∈ [1;n]} .

A graphical representation of the set Bn[−θ,θ[(x) in R2 is given in Fig. 1.

Note that for any θ ∈ R+, the collection of sets Bn[−θ,θ[(x) with x ranging in
2θZn is a partition of Rn. We now define the quantization function.

Definition 2. Given a quantization parameter θ ∈ R+, the quantizer in Rn with
accuracy θ is a function

[ · ]nθ : Rn → 2θZn,

associating to any x ∈ Rn the unique vector [x]nθ ∈ 2θZn such that x ∈ Bn[−θ,θ[([x]nθ ).
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Fig. 1. Graphical representation of the set Bn[−θ,θ[(x) in R2.

Definition of [ · ]nθ naturally extends to sets Ω ⊆ Rn when [Ω]nθ is interpreted as
the image of Ω through function [ · ]nθ .
We can now give the following

Definition 3. Given Σ, a sampling time τ ∈ R+ and a state space quantization
η ∈ R+, define

Tτ,η(Σ) = (Xτ,η, X0,τ,η, Uτ,η,
τ,η
- , Xm,τ,η, Yτ,η, Hτ,η),

where

– Xτ,η = X0,τ,η = Xm,τ,η = [X]nη ;
– Uτ,η is the set of constant input functions u : [0, τ [→ U;

– ξ
u

τ,η
- ξ′ if ξ′ = [x(τ, ξ, u)]nη ;

– Yτ,η = Rn and
– Hτ,η(x) = x for all x ∈ Xτ,η.

The intuition behind this definition is to replace any state of Tτ (Σ) by
its quantization. Transition system Tτ,η(Σ) is countable and becomes symbolic
when the set X is bounded. In Fig. 2 we show a graphical representation of the
construction of transition system Tτ,η(Σ).

What are relationships between Tτ (Σ) and Tτ,η(Σ)?

– Tτ (Σ) has an infinite number of states while Tτ,η(Σ) has a countable number
of states;

– Tτ (Σ) and Tτ,η(Σ) are deterministic;
– Tτ (Σ) and Tτ,η(Σ) are alive;
– Tτ,η(Σ) is not a subsystem of Tτ (Σ).

The results presented in this lecture will assume certain stability assumptions
introduced in lecture L2 and briefly recalled hereafter.

Definition 4. [1] A control system Σ is incrementally globally asymptotically
stable (δ–GAS) if it is forward complete and there exist a KL function β such
that for any t ∈ R+

0 , any x, y ∈ Rn and any u ∈ U the following condition is
satisfied:

|x(t, x,u)− x(t, y,u)| ≤ β(|x− y| , t). (1)
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Fig. 2. Graphical representation of the transition system Tτ,η(Σ).

Definition above can be thought of as an incremental version of the classical
notion of global asymptotic stability (GAS) [3]. In general, inequality (1) is
difficult to check directly. Fortunately δ–GAS can be characterized by dissipation
inequalities.

Definition 5. Consider a control system Σ and a smooth function

V : Rn × Rn → R+
0 .

Function V is called a δ–GAS Lyapunov function for Σ, if there exist κ ∈ R+

and K∞ functions α1 and α2 such that:

(i) for any x, y ∈ Rn

α1(|x− y|) ≤ V (x, y) ≤ α2(|x− y|);

(ii) for any x, y ∈ Rn and any u ∈ U

∂V

∂x
f(x, u) +

∂V

∂y
f(y, u) < −κV (x, y).

Remark 1. In the classical formulation of δ–GAS Lyapunov functions, condition
(ii) in the definition above is replaced by:

(ii’) for any x, y ∈ Rn and any u ∈ U

∂V

∂x
f(x, u) +

∂V

∂y
f(y, u) < −α3(|x− y|),
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for some K function α3. However, it has been shown in [5] that there is no loss
of generality in replacing (ii’) by (ii).

The following result holds.

Theorem 1. [1] Control system Σ is δ–GAS if it admits a δ–GAS Lyapunov
function.

We also assume existence of a K∞ function γ such that

∀x, y, z ∈ Rn, |V (x, y)− V (x, z)| ≤ γ(|y − z|). (2)

Note that γ is not a function of the variable x. This assumption is not restrictive
provided that we are interested in the dynamics of Σ on a compact subset of
the state space Rn.

We can now give the following result.

Theorem 2. Consider control system Σ and suppose it admits a δ–GAS Lya-
punov function V and hence, satisfying conditions of Definition 5, for some
κ ∈ R+ and K∞ functions α1 and α2 and (2) for some K∞ function γ. Then,
for any desired accuracy µ ∈ R+ and any sampling time τ ∈ R+, select quanti-
zation parameter η ∈ R+ satisfying:

η ≤ min
{
γ−1((1− e−κτ )α1(µ)), (α−12 ◦ α1)(µ)

}
. (3)

Then, relation Rµ ⊆ Xτ ×Xτ,η specified by

(x, ξ) ∈ Rµ ⇔ V (x, ξ) ≤ α1(µ) (4)

is a µ–approximate bisimulation relation between Tτ (Σ) and Tτ,η(Σ). Conse-
quently, Tτ (Σ) and Tτ,η(Σ) are approximately bisimilar with accuracy µ.

Proof. We first show that Rµ is a µ–simulation relation from Tτ (Σ) to Tτ,η(Σ),
i.e. it satisfies the following conditions:

i) ∀x ∈ X0,τ ∃ξ ∈ X0,τ,η such that (x, ξ) ∈ Rµ;
ii) ∀x ∈ Xm,τ ∃ξ ∈ Xm,τ,η such that (x, ξ) ∈ Rµ;

iii) ∀(x, ξ) ∈ Rµ,

d(x, ξ) = |Hτ (x)−Hτ,η(ξ)| = |x− ξ| ≤ µ;

iv) ∀(x, ξ) ∈ Rµ if x
u

τ
- x′ then there exists ξ

u′

τ,η
- ξ′ such that (x′, ξ′) ∈ Rµ.

Proof of i). For any x ∈ X0,τ pick ξ = [x]η ∈ X0,τ,η. We first note that

|x− ξ| ≤ η.

Moreover
V (x, ξ) ≤ α2(|x− ξ|) ≤ α2(η) ≤ α1(µ),
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where the last inequality holds by condition (3).
Proof of ii). Same reasoning as in the proof of i).
Proof of iii). Pick any (x, ξ) ∈ Rµ, i.e. such that V (x, ξ) ≤ α1(µ). Then

d(x, ξ) = |x− ξ| ≤ α−11 (V (x, ξ)) ≤ α−11 (α1(µ)) = µ.

Proof of iv). ∀(x, ξ) ∈ Rµ consider any x
u

τ
- x′. Set z = x(τ, ξ, u), ξ′ = [z]µ

and consider the transition ξ
u

τ,η
- ξ′ in Tτ,η(Σ). We get:

V (x′, ξ′) ≤ V (x′, z) + γ(|z − ξ′|)
≤ V (x(τ, x, u),x(τ, ξ, u)) + γ(η)
≤ e−κτV (x, ξ) + γ(η)
≤ e−κτα1(µ) + γ(η)
≤ α1(µ)

where the last inequality holds by condition (3).
We now show that R−1µ is a µ–simulation relation from Tτ,η(Σ) to Tτ (Σ), i.e. it
satisfies the following conditions:

i’) ∀ξ ∈ X0,τ,η ∃x ∈ X0,τ such that (ξ, x) ∈ R−1µ ;
ii’) ∀ξ ∈ Xm,τ,η ∃x ∈ Xm,τ such that (ξ, x) ∈ R−1µ ;
iii’) ∀(ξ, x) ∈ R−1µ ,

d(ξ, x) = |Hτ,η(ξ)−Hτ (x)| = |ξ − x| ≤ µ;

iv’) ∀(ξ, x) ∈ R−1µ if ξ
u′

τ,η
- ξ′ then there exists x

u

τ
- x′ such that (ξ′, x′) ∈

R−1µ .

Proof of i’). For any ξ ∈ X0,τ,η pick x = ξ ∈ X0,τ , from which

V (x, ξ) ≤ α2(|x− ξ|) = 0 ≤ µ.

Proof of ii’). Same reasoning as in the proof of i’).
Proof of iii’). Same reasoning as in the proof of iii).
Proof of iv’). Same reasoning as in the proof of iv).

The following counterexample shows that unstable control systems do not
admit, in general, approximately bisimilar countable symbolic models.

Example 1. Consider the scalar autonomous linear system

Σ :


ẋ(t) = x,
x(t) ∈ X = R,
t ∈ R+

0 .

System Σ is unstable and hence not δ–GAS. We now show that for any µ ∈ R+
0 ,

any τ ∈ R+ and any countable transition system T , transition systems Tτ (Σ)
and T are not µ–bisimilar. Consider any countable metric transition system

T = (X,X0, U, - , X,Xm,R, H),
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with H : X → R and the same metric d(x, x′) = |x−x′| of Tτ (Σ). Consider any
relation

R ⊆ X ×Xτ

satisfying the conditions of µ–approximate bisimulation. In particular, since
X0,τ = Xτ = X, by condition i) of Definition 5 of approximate simulation
in lecture L5, we get:

R(Xτ ) = X, R−1(X) = Xτ . (5)

We now show that such relation R does not exist. By countability of T , there
exist ξ ∈ X and x, x′ ∈ Xτ = R such that x 6= x′, and (x, ξ), (x′, ξ) ∈ R. Set

xk = eτkx,
x′k = eτkx′,

for any k ∈ N. Since x 6= x′, by selecting λ ∈ R+ such that |x−x′| > λ, we have:

|xk − x′k| = eτk|x− x′| > eτkλ,∀k ∈ N. (6)

Choose k′ ∈ N such that

eτk
′
λ− µ > µ. (7)

By Definition 6 (approximate bisimulation) and condition

iv) ∀(x1, x2) ∈ R if x1
u1

1
- x′1 then there exists x2

u2

2
- x′2 such that (x′1, x

′
2) ∈

R.

of Definition 5 (approximate simulation) of lecture L5, and by (5), there must
exist ξk′ ∈ X such that, (xk′ , ξk′), (x

′
k′ , ξk′) ∈ R. Since (xk′ , ξk′) ∈ R,

|xk′ −H(ξk′)| ≤ µ. (8)

By combining inequalities (6), (8) and (7), we obtain:

|H(ξk′)− x′k′ | ≥ |xk′ − x′k′ | − |xk′ −H(ξk′)|
> eτk

′
λ− µ > µ. (9)

Inequality (9) shows that the pair (x′k′ , ξk′) ∈ R does not satisfy condition

iii’) ∀(x1, x2) ∈ R, d(H1(x1), H2(x2)) ≤ µ.

of Definition 5 (approximate simulation) of lecture L5. Hence, there does not
exist a µ–approximate bisimulation relation between Tτ (Σ) and T and conse-
quently Tτ (Σ) and T are not µ–bisimilar.
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