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Context and motivation

Use physical invariants and coupling in the :
1 physically-based modelling making use of physical invariants
2 physically-based control design : design control Lyapunov

functions using physical invariants
3 simultaneous design of process an control using physical

analogy of the controller or the closed-loop system
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Competing formulations for physical systems’ dynamics and
control

Competing formulations for open physical systems
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Mechanical systems’ dynamics and control

The structure of the dynamical equations may be related to
Mathematical Physics : Lagrangian and Hamiltonian systems
defined on T ∗Q, Q configuration manifold and augmented with
input-output maps.

R.W.Brockett, Control theory and analytical mechanics,in Geometric Control
Theory, C.Martin and R.Herman eds., pp.1–46, Vol. VII of Lie groups: History,
Frontiers and Applications, Math.Sci.Press, Brookline, 1977

A.J. van der Schaft, System Theoretic Description of Physical Systems, CWI
Tracts, Mathematisch Centrum, Amsterdam, 1984

A.J. van der Schaft, System Theory and Mechanics, in Three Decades of
Mathematical System Theory, H.Nijmeijer and J.M.Schumacher eds., Lect.
Notes Contr. Inf. Sci.,Vol.135, pp. 426–452, Springer, Berlin, 1989

J.E.Marsden, Lecture Notes on Mechanics, London Math. Soc. Lecture Notes
Series, 174, Cambridge Un. Press, Great Britain, 1992
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Network systems’ dynamics and control

For electrical circuits: Port/standard Hamiltonian systems,
pseudo-gradient systems: Kirchoff’s laws and n-port elements

Hamiltonian systems
G.M. Bernstein and M.A. Lieberman, ”A method for obtaining a canonical
Hamiltonian for nonlinear LC circuits, IEEE Trans. on Circuits and
Systems, CAS–35, 3, 411–420,1989
B.M. Maschke, A.J. van der Schaft and P.C. Breedveld, ”An intrinsic
Hamiltonian formulation of network dynamics: non–standard Poisson
structures and gyrators”, Journal of the Franklin Institute, Vol. 329, n.
5, pp. 923–966, 1992

Brayton-Moser equations (or pseudo- gradient systems)
R.K. Brayton and J.K. Moser, ”A Theory of Nonlinear Networks–I and II” ,
Quartely of Applied Mathematics, Vol.22, nº1, pp.1–33, April 1964 and
nº2, pp.81–104, July 1964
S. Smale, ”On the Mathematical Foundations of Electrical Circuit
Theory”, J. of Differential Geometry, Vol.7, pp.193–210, 1972
D. Jeltsema, R. Ortega, J.M.A. Scherpen, On passivity and power-balance
inequalities of nonlinear RLC circuits, IEEE Trans. Circuits and Systems
Part-I Fund Theory Appl. 50 (9) (2003) 1174–1179.B. Maschke Port contact systems
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Dissipative systems’ dynamics and control

For electro-mechanical systems with dissipation : controlled
Lagrangian and Hamiltonian systems with dissipation, dissipative port
Hamiltonian systems

A.J. van der Schaft, System Theory and Mechanics, in Three Decades of
Mathematical System Theory, H.Nijmeijer and J.M.Schumacher eds., Lect.
Notes Contr. Inf. Sci.,Vol.135, pp. 426–452, Springer, Berlin, 1989
van der Schaft, A., Maschke, B., The Hamiltonian formulation of energy
conserving physical systems with external ports. Arch. für Elektronik und
Übertragungstech. 49, 362–371, 1995

For chemical engineering: gradient systems, GENERIC systems,
irreversible port contact systems

Otero-Muras, I., Szederkényi, G., Alonso, A.A., Hangos, K.M., Local dissipative
Hamiltonian description of reversible reaction networks. Syst. ControlLett. 57,
554–560, 2008.
H., Grmela, M., Dynamics and thermodynamics of complex fluids. ii.
Illustrations of a general formalism. Phys. Rev. E56, 6633–6655, 1997..
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Contact geometry for open thermodynamic systems

For thermodynamical systems one has to consider simulataneously
the energy balance and the entropy balance equation with the
irreversible entropy creation term. This is not encompassed in
(dissipative) Hamiltonian systems.
The objective is to develop a similar control theory for irreversible
Thermodynamic systems :

1 intrinsic structure of state space is contact manifold
2 the dynamics is described by contact vector fields.

inspired by work of M. Grmela and R. Mrugała
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Equilibrium Thermodynamics

Equilibrium Thermodynamics characterizes the thermodynamical
properties of matter (extremely diverse and complex) : constitutive
remations with respect to energy (or any thermodynamical
potenetial function)

In general there are not given by a real-valued function, like in
mechanics but given in the Thermodynamical Phase Space
consisting of :

1 n+1 extensive variables denoted
(
x0, x1, ... ,xn

)
2 n intensive variables denoted (p1, ... ,pn)

by Gibbs’ relation : dx0 = ∑
n
i=1 pi dx

i

This gives a canonical geometric structure to thermodynamial
systems called contact structure.
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Thermodynamical properties : Gibbs’ fundamental relation

They are defined on n+1-dimensional space of extensive
variables N ∼ Rn+1:

1 energy x0 ∈ R
2 remaining extensive variables x ∈ Rn

3 the fundamental equation: x0 = U(x)
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Figure: The fundamental equation: x0 = U(x)
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Thermodynamical properties : Gibbs’ equations

Thermodynamic Phase space T ∼ R2n+1, the space of 1-jets
over N :

additional intensive variables p ∈ Rn

Gibb’s relation: dx0 = ∑
n
i=1 pi dx

i
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Figure: Gibbs’ equation dU +PdV = 0
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Thermodynamical properties

For a simple Thermodynamic System:
extensive variables: energy U, entropy S , volume V , number of
moles N
intensive variables: temperature T , pressure P, chemical potential µ

Gibbs’ relation dU = TdS + (−P)dV + µdN
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Figure: The fundamental equation: x0 = U(V ) and Gibbs’
equations dU +PdV = 0
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Intrinsic definitions : contact structure

Definition
A contact structure on a manifold M is determined by a 1-form θ

of constant class (2n+1). The pair (M ,θ) is then called a contact
manifold, and θ a contact form.

According to Darboux’s theorem there exists a set of canonical
coordinates (x0,x ,p) ∈ R×Rn×Rn of M where the contact form
θ is given by : θ = dx0−∑

n
i=1 pidxi

Definition
The Reeb vector field E associated with the contact form θ is the
unique vector field satisfying iEθ = 1 and iEdθ = 0

where iE denotes the contraction by the vector field E of
differential forms
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The geometry of Equilibrium Thermodynamics
some references

1 C.Carathéodory, Untersuchungen über die Grundlagen der
Thermodynamik, Math. Ann., 1909

2 Gibbs, J.W.,Collected Works : I : Thermodynamics,
Longmans, 1928

3 Herman, R., Geometry, Physics and Systems, Dekker, 1973
4 R. Mrugała, Geometrical formulation of equilibrium

phenomenological Thermodynamics, Reports on
Mathematical Physics, 1978
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Thermodynamical properties: a geometric perspective

The solutions to a Pfaffian equation :

θ |L = dx0−pidx i
∣∣
L

= 0 (1)

are given by a
Legendre submanifold L which is defined, in a given set of
canonical coordinates (x0,x1, . . . ,xn,p1, . . . ,pn) by:

a partition I ∪J of the set of indices {1, . . . ,n}
a differentiable function F (x I ,pJ) of n variables, i ∈ I , j ∈ J

and the equations:

x0 = F −pJ
∂F

∂pJ
, xJ =− ∂F

∂pJ
, pI =

∂F

∂x I
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Pure monoatomic perfect gas
generated by the free energy

1 the thermodynamical phase space:
energy x0 = U , extensive variables: x i = S ,V ,N ,
intensive variables: pi = T ,P,µ

2 Gibbs’ form θ = d U−T d S +P d V −µ d N
3 the Legendre submanifold is generated by the free energy:

G (T ,−P,N) =
5/2NRT (1− ln(T/T0))−NT (s0−R ln(P/P0)) where R is
the constant of perfect gases and T0,P0,s0 are constants:

U(T ,−P,N) =
3
2
NRT

S(T ,−P,N) =Ns =Ns0+
5
2
NRln(

T

T0
)−NRln(

P

P0
)

V (T ,−P,N) =
NRT

P

µ(T ,−P,N) =
5
2
RT −Ts
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Contact vector fields: definition

Definition
A (smooth) vector field X on the contact manifold M is a contact
vector field with respect to a contact form θ if and only if there
exists a smooth function ρ ∈ C∞(M ) such that LXθ = ρθ ,

where LX · denotes the Lie derivative with respect to the vector field
X .

Theorem
The map Φ(X ) = iXθ defines an isomorphism from the vector
space of contact vector fields in the space of smooth real functions
on the contact manifold.

The function K = Φ(X ) is called contact Hamiltonian
the function ρ is ρ = iEdK where E is the Reeb vector field.
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Contact vector field in coordinates

Theorem

In a set of canonical coordinates (x0,x1, . . . ,xn,p1, . . . ,pn), the
contact vector field is expressed by:

XK (x) =

K0
0

+

0 0 −p>
0 0 −In
p In 0




∂K
∂x0
∂K
∂x
∂K
∂p


where In denotes the n×n identity matrix.
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Decomposition of vector fields (M , θ )

The tangent bundle TM may be decomposed into

TM = kerdθ ⊕kerθ (2)

where kerdθ , called vertical bundle , is of rank 1 and is generated
by the Reeb vector field and kerθ , called horizontal bundle, is of
rank 2n .
Every vector field X on M may be decomposed in a unique way
into

X = (iXθ)E︸ ︷︷ ︸
∈kerdθ

+ (X − (iXθ)E )︸ ︷︷ ︸
=H (X )∈kerθ=C

(3)

where (iXθ)E is horizontal and (X − (iXθ)E ) is horizontal and is
denoted by H (X ) .
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Decomposition of contact vector fields (M , θ )

Φ−1 (f ) = Xf = f E + θ
] (df − (iEdf )θ) (4)

where f E is the vertical and θ ] (df − (iEdf )θ) is the horizontal
components of the contact vector field.
Note that if the contact Hamiltonian f is is a first integral of the
Reeb vector field (i.e. satisfies iEdf = 0 or in other words, it
differential df is semi-basic), then

Xf = f E + θ
] (df )

and leaves invariant the contact form and is called strict contact
vector field.
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Contact vector fields leaving invariant a Legendre
submanifold

Consider a Legendre submanifold L

Theorem
[Mrugała, 1991] Then XK is tangent to L if and only if K is
identically zero on L :

L ⊂ K−1(0)

This characterizes contact fields which leave invariant some
thermodynamical properties.

For instance: reversible thermodynamic transformations are
generated by the state equations.
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Reversible transformation of a perfect gas

Consider as contact Hamiltonian function the state equation

K (U,S ,V ,B,−T ,P,−µ) = U− (3/2)NRT

The associated contact vector field is :

XK = U
∂

∂U
+T

∂

∂T
+P

∂

∂P
+

(
µ− 3

2
RT

)
∂

∂ µ
+

3
2
NR

∂

∂S
+0

∂

∂V
+0

∂

∂N

Thus the integral curves of XK are isochore reversible
transformations of the closed system

U(t) = U0e
t , T (t) = T0e

t , P(t) = P0e
t , µ(t) = µ0e

t − 3
2RT0e

t ,
S(t) = S0+

3
2N0Rt, V (t) = V0, N(t) =N0

Since L ⊂ K−1(0), XK is tangent to L :
the thermodynamical properties of the ideal gas
are preserved along the integral curves.
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The geometry of Irreversible Thermodynamics

Irreversible Thermodynamics deals with systems subject to
irreversible phenomena

1 mass transport through diffusion
2 heat transport through conduction ...

due to non-equilibrium condition between subsystems or with the
environment.

We shall use contact vector fields naturally defined on contact
structure for a geometrically consistent definition of the dynamic
equations of irreversible, open processes.
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Conservative system on a contact manifold

A conservative system on a contact manifold is defined by:

1 a strictly contact manifold M with contact form θ (the
Thermodynamic Phase Space)

2 a Legendre submanifold L (the Thermodynamic properties)

3 a contact Hamiltonian K0 (the potential generating the fluxes)
and satisfying the invariance condition:

K |L = 0

4 the differential equation: dx̃
dt = XK0
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Two cells exchanging heat
Two cells exchanging heat : the paradigm of coupled entropy balance equations

Thermodynamic model given by Gibbs’ relation : dUi = Ti dSi
where Ti = ∂Ui

∂Si
(Si ), i = 1,2

Heat flux due to conducting wall : Q̇1→2 = λ (T1−T2) with λ the
heat conduction coefficient
Continuity of heat flux : Q̇1→2 =−T1

dSi
dt = T2

dS2
dt
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Dynamics of the 2 cells lift to a contact sytem

Thermodynamic phase space has the coordinates:
1 energy x0

2 entropies x i ∈N = R2

3 temperatures pi ∈ T ∗SN ≈ R2

with contact form θ = dx0−pidx
i

a Legendre submanifold L 3
(
U, S i , Ti

)
generated by U(S)

the contact Hamiltonian K0 (p, T ) =−R(T (x) ,p)p>JsT (x), with
R(T (x) ,p) = λ

(
p1−p2
T1T2

)
satisfies the invariance condition and has the dimension of power.
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Dynamics of the 2 cells on the Thermodynamic Phase Space
The energy coordinate dynamics:

dx0

dt
= λ

(
p1−p2
T1T2

)(
∂S

∂x

>
Jp

)(
p>J

∂U

∂x

)
︸ ︷︷ ︸

|L =0

(5)

The entropy coordinate dynamics:

dxi
dt

= λ

(
p1−p2
T1T2

)(
0 −1
1 0

) 
(
p>J

∂U

∂x

)
︸ ︷︷ ︸

|L =0

∂S
∂x +

(
∂S

∂x
>Jp

)
︸ ︷︷ ︸

=p1−p2

∂U
∂x

 (6)

The temperature coordinate dynamics :

dpi
dt

=−
(
p>J

∂U

∂x

)
︸ ︷︷ ︸

|L =0

∂

∂x

[
λ

(
p1−p2
T1T2

)(
∂S

∂x

>
Jp

)]
+λ

(
p1−p2
T1T2

)(
∂S

∂x
>Jp

)
︸ ︷︷ ︸

=p1−p2

∂2U

∂x2
(x)Jp

(7)
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Dynamics of the 2 cells on the Legendre submanifold

The energy balance equation:

dx0

dt

∣∣∣∣
L

=
dU

dt
= 0 (8)

The local energy balance (expressed on temperatures) :

dpi
dt

∣∣∣∣
L

=
dTi

dt
=

(
−CV 1

−1
λ(T1−T2)

CV 2
−1

λ(T1−T2)

)
(9)

The entropy balance equation :

dxi
dt

∣∣∣∣
L

=
dSi
dt

= λ

(
1
T2
− 1

T1

)(
0 −1
1 0

) (
T1
T2

)
(10)
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Controlled conservative contact system

Definition
A control contact system is defined by:

1 a contact manifold R2n+1 with contact form θ

2 a Legendre submanifold L

3 m+1 a contact Hamiltonians: K0 internal and Kj interaction
Hamiltonian
satisfying the invariance condition:

Kj |L = 0 , j = 0, ...,m

4 the differential equation: ˙̃x = XK0 + ∑
m
j=1 uj XKj
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2 cells with thermostat

Two simple thermodynamic systems 1 and 2 interact through a
heat conducting conducting wall and system 2 interacts with a
thermostat at temperature Te = u.

Irreversible port Hamiltonian systems (IPHS) The heat exchanger and the CSTR as IPHS

The heat exchanger: interaction through two conducting walls

Consider two simple thermodynamic systems with entropy balance equations

[
Ṡ1

Ṡ2

]
= λ

[T2(S2)−T1(S1)
T1(S1)

T1(S1)−T2(S2)
T2(S2)

]
+ λe

[
0

u(t)−T2(S2)
T2(S2)

]

with x = [S1, S2]" the entropies, U = U1(x1) + U2(x2) the internal energy, ∂U
∂xi

= Ti (xi ) =

T0 exp
(

xi
ci

)
where T0 and ci are constants, u(t) external heat source and λ,λe > 0 Fourier’s

heat conduction coefficients of the wall.

The process

H. Raḿırez (DIE, UdeC - LAGEP, UCB) Thesis dissertation 9 March 2012 9 / 36
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2 cells with thermostat: pseudo-Hamiltonian formulation

The control pseudo PHS is defined by:

ẋ = R(x ,T (x))J
∂U

∂x
(x) +W +g(T )u

where W +g(T )u represent the external “forces” is then :[
Ṡ1
Ṡ2

]
= λ

(
1

∂U
∂S2

− 1
∂U
∂S1

)[
0 −1
1 0

][
∂U
∂S1
∂U
∂S2

]
+ λe

[
0

1
∂U
∂S2

− 1
u

]
u

= λ

(
1

∂U
∂S2

− 1
∂U
∂S1

)
︸ ︷︷ ︸

R=R(x ,T (x))

[
0 −1
1 0

][
∂U
∂S1
∂U
∂S2

]
+−λe [01 ]︸ ︷︷ ︸

=W

+
λe

T2
[01 ]︸ ︷︷ ︸

=g

u,
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2 cells with thermostat as a port contact system

Thermodynamic phase space has the coordinates:
energy x0, entropies x i ∈N = R2 , temperature
pi ∈ T ∗SN ≈ R2

with contact form θ = dx0−pidx
i

a Legendre submanifold L 3
(
U, S i , Ti

)
generated by U(S)

the internal contact Hamiltonian:K0 (p, T ) =−λ

(
p1−p2
T1T2

)
p>JsT (x),

the control Hamiltonian:

Kc (x ,p) =
(
1− p2

T2

)
λe (Te −p12) (11)
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2 cells with thermostat: contact system in coordinates

The energy coordinate dynamics:

dx0

dt
= λ

(
p1−p2
T1T2

)(
∂S

∂x

>
Jp

)(
p>J

∂U

∂x

)
︸ ︷︷ ︸

|L =0

+λe (Te −p12) (12)

The entropy coordinate dynamics :

dxi
dt

= λ

(
p1−p2
T1T2

)(
0 −1
1 0

) 
(
p>J

∂U

∂x

)
︸ ︷︷ ︸

|L =0

∂S
∂x +

(
∂S

∂x
>Jp

)
︸ ︷︷ ︸

=p1−p2

∂U
∂x

+
(

0
1
T2

)
λe (Te−p12)

(13)
The temperature coordinate dynamics :

dx1 i
dt

∣∣∣∣
L

=
dSi
dt

= λ

(
1
T2
− 1

T1

)(
0 −1
1 0

) (
T1
T2

)
+

(
0

λe

(
1
T2
− 1

Te

)
Te

)
(14)
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2 cells with thermostat: restriction to the Legendre
submanifold

The energy balance equation:

dx0

dt

∣∣∣∣
L

=
dU

dt
= λe (Te −T2) (15)

The entropy balance equation :

dx1 i
dt

∣∣∣∣
L

=
dSi
dt

= λ

(
1
T2
− 1

T1

)(
0 −1
1 0

) (
T1
T2

)
+

(
0

λe

(
1
T2
− 1

Te

)
Te

)
(16)

The local energy balance (expressed on temperatures) :

dp1 i
dt

∣∣∣∣
L

=
dTi

dt
=

(
−CV 1

−1
λ(T1−T2)

CV 2
−1

λ(T1−T2)

)
+

(
0

CV 2
−1

λe(Te −T2)

)
(17)
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The CSTR

The Continuous Stirred Tank Reactor
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Continuous Stirred Tank Reactor

Assume a chemical reaction in a CSTR with the following reversible
reaction scheme

ν1A1 + . . .+ νlAl 
 νl+1Al+1 + . . .+ νmAm, m > l ≥ 1.

and assume V the volume in the reactor as well as the pressure P
are constant.

The contact formulation is obtained by lifting the Irreversible Port
Hamiltonian formulation

ẋ = R
(
x , ∂U

∂x ,
∂S
∂x

)
J

∂U

∂x
(x) +W (x ,Fe) +g

Q

T
∗ (18)

on the Thermodynamic phase space R2n+1 3 (x0, x , p) with
x = [n,S ]>.
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CSTR: Thermodynamic Properties

The thermodynamic properties of the mixture in the reactor (with
assumption of constant volume and pressure) may be defined by
the Legendre submanifold of the TPS R2n+1 3 (x0, x , p) ,
generated by the internal energy function U (n,S)

LU :


x0 = U (n,S)
x = [n,S ]>

p = [µ (n,S) , T (n,S)]>
(19)
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CSTR: internal contact Hamiltonian

Internal contact Hamiltonian

K0 =−p>Re

(
x , ∂U

∂x ,
∂S
∂x ,p

)
J

∂U

∂x
(x)

with

Re

(
x , ∂U

∂x ,
∂S
∂x ,p

)
=

r(Af (µ) , Ar (µ) , T )V

T (x)A (µ)
A (p). (20)

Virtual energy balance due to chemical reaction

r(Af (µ) , Ar (µ) , T )V
[
µ
>A (p)−p>A (µ)

]
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CSTR: control contact Hamiltonian
Control contact Hamiltonian
Kc =

(
∂U
∂x −p

)> [
W
(
x , ∂U

∂x ,p
)

+g Q
T

]
with

W
(
x , ∂U

∂x

)
=


Fe1−Fs2

(
x , ∂U

∂x

)
...

Fem−Fsm

(
x , ∂U

∂x

)
1
T ∑

m
i=1

(
Fei sei −Fsi

(
x , ∂U

∂x

)
si

(
x , ∂U

∂x

))

 ,

mass exchange with the environment
m

∑
i=1

(µi −pi )
(
Fei −Fsi

(
x , ∂U

∂x

))
(thermal) energy exchange with environment

(T −pS )

(
m

∑
i=1

(
Fei sei −Fsi (x ,p)si

(
x , ∂U

∂x

))
+

Q

T

)
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Alternative definition of contact vector fields

Definition
A contact vector field XK generated by the Hamiltonian function
K (x̃) is the unique vector field satisfying

iXθ = K
iXdθ = −dK (H (X )) =−(dK − (iEdK )θ)

(21)

In a set of canonical coordinates (x0,x1, . . . ,xn,p1, . . . ,pn), the
contact vector field is expressed by:

XK (x) =

K0
0

+

0 0 −p>
0 0 −In
p In 0




∂K
∂x0
∂K
∂x
∂K
∂p
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Variational contact systems [Merker et al. 2013]

A variational control contact system on (M ,θ), is defined by
(i) output variables defined by the vector bundle E 3 y overM with
flat covariant derivative ∇

(ii) a bundle map A : T ∗M → E with A(θ) = 0
(ii) conjugated input variables is the dual bundle E ∗ 3 u overM
(iii) input map defined by the adjoint bundle map A∗ : E ∗→ TM
(iv) internal contact Hamiltonian function K0 (x̃)
and the dynamical system dx̃

dt = X (x̃ , u, y) with the unique vector
field X (x̃ , u, y) satisfying

i(X−A∗u)dθ +dK0 = 0

θ (X ) = iXθ = K0 + 〈u, y〉 (22)
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Reminder on decomposition of vector fields

The tangent bundle TM may be decomposed into

TM = kerdθ ⊕kerθ

where kerdθ , called vertical bundle , is of rank 1 and is generated
by the Reeb vector field
kerθ , called horizontal bundle, is of rank 2n .
Every vector field X on M may be decomposed in a unique way
into

X = (iXθ)E + (X − (iXθ)E )

where (iXθ)E ∈ kerdθ is vertical and
(X − (iXθ)E ) = H (X ) ∈ kerθ = C is horizontal with respect to
the contact form θ .
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Variational contact systems as explicit nonlinear system (1)

Using the decomposition of the tangent manifold
TM = kerdθ ⊕kerθ , the variational contact system is

X (x̃ , u, y) = (iXθ)E︸ ︷︷ ︸
∈kerdθ

+ (X − (iXθ)E )︸ ︷︷ ︸
=H (X )∈kerθ=C

= (K0 + 〈u, y〉)E +H (XK0) + A∗u︸︷︷︸
∈kerθ=C

= XK0︸︷︷︸
drift contact vect. field

+〈u, y〉E︸ ︷︷ ︸
∈kerdθ

+ A∗u︸︷︷︸
∈kerθ=C︸ ︷︷ ︸

control vect. field

(23)

B. Maschke Port contact systems



Introduction
The geometry of Thermodynamics

Controlled contact systems
An alternative definition of port contact Hamiltonian systems

Controlled contact systems and their feedback
Conclusion

Variational contact systems as explicit nonlinear system (1)

The output variable y satisfies

d

dt
y = A◦dθ (X (x̃ , u, y)) (24)

But

dθ (X (x̃ , u, y)) = iX (x̃ ,u,y)dθ

= iXK0
dθ + 〈u, y〉 iEdθ︸ ︷︷ ︸

=0

+dθ (A∗ u)

= −(dK0− (iEdK0)θ) +dθ (A∗ u)

hence the dynamics of the output becomes

d
dt y = −A(dK0) + (A◦dθ ◦A∗)u
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Relation with input-output contact systems

The conservative contact input-output system with internal contact
Hamiltonian K0 (x̃) and control contact Hamiltonians −Ki (x̃) is a
variational control contact system with internal contact Hamiltonian
K0 (x̃) and bundle map A : T ∗M → Rn×M defined by

A(λ ) = (Ai (λ ))i=1, ...,m = (〈λ , H (XKi
)〉)i=1, ...,m (25)
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Objectives

We would like to investigate the abstract problem about
state-feedback of single input control contact systems, affine in the
input :
under which conditions is the closed-loop system again a contact
system ?

Based on

1 H. Ramırez Estay , B. Maschke and D. Sbarbaro, Feedback equivalence of
input-output contact systems, Systems and Control Letters, Volume 62,
Issue 6, pp. 475-481, June 2013

2 H. Ramirez, B. Maschke and Daniel Sbarbaro, Partial stabilization of
input-output contact systems on a Legendre submanifold , IEEE
Transaction on Automatic Control, Vol. 62, n°3, pp. 1431 - 1437, March
2017
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Control contact systems

Control contact systems are defined by contact Hamiltonians which
depend not only on the state variables x̃ but also on a time
dependent input function u(t) ∈ Lloc

1 (R+) as control Hamiltonian
systems.

Definition

Control contact systems affine in the input are defined by d
dt x̃ = X

X = XK0 +XKcu (26)

where K0 ∈ C∞(M ) is the internal contact Hamiltonian and
Kc ∈ C∞(M ) is the interaction (or control) contact Hamiltonian
and where XK0 and XKc are contact vector fields with respect to
the canonical contact form θ .
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Structure preserving feedback

Structure preserving feedback
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State feedback leaving the contact form invariant

When does a state feedback u = α(x̃), with α ∈ C∞(M ), generates
a closed-loop vector field X = XK0 +XKc α that is again a contact
vector field with respect to the contact form θ ?

Theorem
Consider the controlled contact system with the condition that Kc

vanishes on a submanifold of measure 0 (that is, is fully actuated)
and the feedback u = α(x̃) being a smooth function of the state
variables. The closed loop vector field X is a contact vector field
with respect to the canonical contact form θ if and only if
α(x̃) = αcte is constant.
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Proof

Using Cartan’s formula: LX ·= iXd ·+diX ·., one obtains:

LXθ = LXK0+αXKc
θ = (ρ0 + αρc)θ +Kcdα (27)

where ρ0 = iEdK0 and ρc = iEdKc .
This is equivalent to the existence of a function φ ∈ C∞(M ) such
that: Kcdα = φθ .
In canonical coordinates, we may write

Kc

(
∂α

∂x0 dx
0+

n

∑
k=1

∂α

∂xk
dxk +

n

∑
k=1

∂α

∂pk
dpk

)
= φdx0−

n

∑
k=1

pkdx
k ,

which by smoothness of the functions and as Kc vanishes on a
submanifold of measure 0 leads to ∂α

∂xk
=− ∂α

∂x0
pk and ∂α

∂pk
= 0,

which implies that α is constant.
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Feedback equivalence with a contact vector field with
respect to a different contact form

When does a state feedback u = α(x̃) define the closed-loop
contact vector field X = XK0 +XKc α , as a contact vector field
with respect to a new contact form θd ?

Therefore we consider the equivalent condition of the existence of a
function ρd ∈ C∞(M ) such that LXθd = ρdθd .

The problem is formulated : under which conditions there exist a
contact form θd , a function ρd ∈ C∞(M ) and a feedback
u = α ∈ C∞(M ) such that the following matching equation is
satisfied

ρdθd = LXK0
θd + αLXKc

θd + (iXKC
θd)dα. (28)
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Matching equation for strict contact vector fields

Matching equation for strict contact vector fields
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Matching equation for strict contact vector fields

We assume in the sequel that the internal and control contact
Hamiltonian and the closed-loop contact Hamiltonian do not
depend on the coordinate x0 hence ρd = ρ0 = ρc = 0.

This is not a restrictive assumption since for contact systems arising
from the modelling of physical systems, the contact Hamiltonian
indeed do not depend on the x0 coordinate representing the energy
(or more generally a thermodynamic potential) .

Under this assumption the matching equation (28) is reduced to a
relation on the feedback α and the closed-loop contact structure θd

LXK0
θd + αLXKc

θd + (iXKC
θd)dα = 0. (29)
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Matching to a contact form obtained by adding an exact
form

We shall restrict the closed-loop contact form θd defined as

θd = θ+dF , (30)

with F ∈ C∞(M ) satisfying iEdF = 0.

Note that the condition iEdF = 0 is equivalent in canonical
coordinates to assume that the function F depends only on (x ,p)
and not on x0.

Theorem
The 1-form defined by (30) is a contact form.
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Proof (1)

Recall that θd is a contact form if it is a Pfaffian form of class
2n+1, satisfying ,

θd ∧ (dθd)n 6=0, (31)

θd ∧ (dθd)n+1 =0. (32)

Consider first the inequality (31). Note that using d2F = 0 one has
that

θd ∧ (dθd)n = (θ +dF )∧ (d(θ +dF ))n

= (θ +dF )∧ (dθ)n
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Proof (2)

Now proceed by contradiction and assume that θd ∧ (dθd)n = 0.
Then, using the fact that iE is a ∧ antiderivation and the properties
of the Reeb vector field:

iE [θd ∧ (dθd)n]

= iE [(θ +dF )∧ (dθ)n]

= iE (θ +dF ) ∧ (dθ)n + (−1)(θ +dF )∧ iE ((dθ)n)

= (1+ iEdF )∧ (dθ)n

and iEdF = 0, implies that (dθ)n = 0 which is contradicting the
fact that θ is of class 2n+1.
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Proof (3) and interpretation of the closed-loop contact
structure

To check θd ∧ (dθd)n+1 = 0 notice that (dθ)n+1 is full rank, hence
dF ∧ (dθ)n+1 = 0 no matter the choice of F and

θd ∧ (dθd)n+1 = θ ∧ (dθ)n+1 +dF ∧ (dθ)n+1

= θ ∧ (dθ)n+1 = 0

The closed-loop contact form is thus given by

θd = θ +dF =

(
dx0−

n

∑
i=1

pidxi

)
+dF ,

= d(x0 +F )−
n

∑
i=1

pidxi .

and is the original one changed in the direction of the Reeb vector
field (the x0 coordinate).
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Matching equation in terms of feedback and added form

The matching equation may finally be rewritten as the following
matching equation in the feedback α and the function F

d (X (F )) +Kcdα = 0. (33)

Taking the exterior derivative of (33) we get dKc ∧dα = 0 which
leads to consider α = ϕ ◦Kc .

The closed-loop vector fieldX may be defined as a contact vector
field with respect to the contact form θd

X = XK0 + αXKc = X̂K (34)

and generated by K = K0 +XK0(F ) + α(Kc +XKc (F )) .
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Decoupling the matching equation

Theorem
Define K0,Kc ,F ∈ C ∞(M ), satisfying iE . = 0, with closed-loop
contact form θd = θ +dF and state-feedback

α = ϕ ◦Kc

where ϕ ∈ C∞(R), then
X = XK0 + αXKc is contact vector field with respect to θd iff

XK0(F ) + (ϕ ◦Kc)[Kc +XKc (F )]−Φ◦Kc = cF

with Φ(λ ) =
∫

λ

0 ϕ (λ )dχ .
Furthermore the closed-loop Hamiltonian is K = K0 + Φ◦Kc .
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Some remarks on control synthesis

We have shown that the control is defined by a function ϕ ∈ C∞(R)
as : α = ϕ ◦Kc .
Once the choice of this function ϕ is made one has still to consider
the matching equation n F :

XK0(F ) + (ϕ ◦Kc)[Kc +XKc (F )]−Φ◦Kc = cF

which is written in canonical coordinates :

[
∂F
∂x
∂F
∂p

]>[
− ∂K0

∂p − (ϕ ◦Kc) ∂Kc
∂p

∂K0
∂x + (ϕ ◦Kc) ∂Kc

∂x

]
+ (ϕ ◦Kc)Kc −Φ◦Kc = 0. (35)

and is a quasi-linear PDE in F .
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Equilibria of a contact system: reminder

Theorem
Consider a contact manifold (M ,θ) and a strict contact vector
field XK generated by the contact Hamiltonian K (x̃) ∈ C∞ (M )
(satifying iEdK = 0). and the contact system defined by

d

dt
x̃ = XK (x̃) (36)

then a point x̃∗ ∈M is an equilibrium point of the contact system
if and only if it satisfies

K (x̃∗) = 0

dK (x̃∗) = 0
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The submanifold of the zeros of the contact Hamiltonian
S = K−1 (0)

In the sequel we shall consider the set

S = K−1 (0)

and assume some regularity of Hamiltonian K (x̃).

Assumption

The set S = K−1 (0) is a differentiable manifold of constant
dimension 2n.

Note that the set S contains:
all equilibrium points
the Legendre submanifold LU defining the thermodynamic
properties for a conservative system
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Invariance of the submanifold S = K−1 (0)

Proposition
The contact vector field XK with contact Hamiltonian K being an
invariant of the Reeb vector field, leaves any submanifold K−1 (c),
c ∈ R invariant.

Using the Jacobi bracket [ , ]
θ
induced by θ , one has

LXK
K = iXK

dK = [K ,K ]
θ︸ ︷︷ ︸

=0

+K iEdK︸ ︷︷ ︸
=0

= 0

as the Jacobi bracket is anti-symmetric and the contact
Hamiltonian is an invariant of the Reeb vector field, that is:
iEdK = 0.
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About the stability of equilibria points relatively to
S = K−1 (0)

In the sequel we shall analyze
the stability relatively to the invariant manifold S = K−1 (0),
i.e. the stability of the restriction X̄K = XK |S of the strict contact
vector field on the submanifold S = K−1 (0)

Theorem

Let x̃∗ ∈ S be an hyperbolic critical point of the restriction X̄K of
the strict contact vector field on the submanifold S = K−1 (0). The
stable manifold S+ ({x̃∗}) and the unstable manifold S− ({x̃∗}) are
Legendre submanifolds of (M ,θ).

B. Maschke Port contact systems



Introduction
The geometry of Thermodynamics

Controlled contact systems
An alternative definition of port contact Hamiltonian systems

Controlled contact systems and their feedback
Conclusion

Feedback invariance of control contact systems
Structure preserving feedback
Matching equation for strict contact vector fields
Stabilizing feedback
Control of 2 cells

Proof (1)

By assumption, the vector field X̄K is complete and denote by ϕt

its integral flow.
As it is the restriction of the contact vector field XK , one has

θ (s)
(
X̄K (s)

)
= θ (ϕt (s))

(
ϕt (s)∗ X̄K (s)

)
∀s ∈ S+ ({x̃∗}) , t ∈ R+.

As the vector field X̄K generates an orbit converging to the
equilibrium point x̃∗,

lim
t→+∞

ϕt (s)∗ X̄K (s) = 0

hence

θ (s)
(
X̄K (s)

)
= 0 ∀s ∈ S+ ({x̃∗}) , X̄K ∈ TsS

+ ({x̃∗}) (37)
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Proof (2)

As a consequence, the stable manifold by S+ ({x̃∗}) is an integral
manifold of θ of dimension less or equal than n.

It may be shown with similar arguments (but reversing the time
limit) that the unstable manifold S− ({x̃∗}) is also an integral
manifold of θ and has dimension less or equal than n.

As the equilibrium point is assumed to be hyperbolic, the stable
and unstable submanifolds have complementary dimensions in
S = K−1 (0) which by assumption has dimension 2n.
Hence both the stable and unstable submanifolds have the maximal
dimension n and are Legendre submanifolds.
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Partial stabilization on a Legendre submanifold

Partial stabilization on a Legendre submanifold
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Control objective: stabilization

As a consequence, any state-feedback control

α = ϕ ◦Kc

which preserves the contact strucure in the sense that the
closed-loop system is again a conservative contact system defined
by the strict contact vector field

X = XK0 + αXKc

is contact vector field with respect to θd = θ +dF may at most
stabilize the input-output contact system on a Legendre
submanifold being the stable manifold by S+ ({x̃∗}) of X .
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Control objective: shaping the equilibrium and
non-equilibrium properties

Hence we shall state-feedback control

α = ϕ ◦Kc

such that the closed-loop system is again a conservative contact
system defined by the strict contact vector field with respect to the
contact form θd

X = XK0 + αXKc = X̂K

1 generated by Kd = K0 +XK0(F ) + α(Kc +XKc (F )) :
non-equilibrium

2 leaving invariant the Legendre submanifold LUd generated by
the closed-loop generating function Ud : equilibrium
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2 cells with thermostat as a port contact system

Thermodynamic phase space has the coordinates:
energy x0, entropies x i ∈N = R2 , temperature
pi ∈ T ∗SN ≈ R2

with contact form θ = dx0−pidx
i

a Legendre submanifold L 3
(
U, S i , Ti

)
generated by the

internal energy U(S)
the internal contact Hamiltonian:

K0 =−Rp>JT − (T2−p2)λe
p2
T2

, Kc = e
−λe

(
p2
T2
−1
)
−1 (38)

the control Hamiltonian:

Kc (x ,p) = e
−λe

(
p2
T2
−1
)
−1 (39)
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2 cells with thermostat: control

A structure preserving output feedback α = Φ′(y) is:

α (x2,p2) = Φ′ ◦Kc (x2,p2) = β

(
λe

p2−T2

T2

)
, β ∈ C∞ (R)

The actual state feedback is restricted to the closed-loop Legendre
submanifold LUd

defined with respect to the generating function Ud (x):

u (x1,x2) = β

λe

∂Ud
∂x2

(x1,x2)−T2 (x2)

T2 (x2)︸ ︷︷ ︸
control entropy flux


which may be interpreted as a nonlinear function of a “control” entropy
flux into the compartment 2 induced by a (thermostat) control
temperature ∂Ud

∂x2
(x1,x2) defined by the closed-loop Legendre submanifold

LUd .
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Control contact systems on Thermodynamic Phase Space

Implicit formulation of balance equations including energy and entropy
balance. Alternative formulations

energy formulation dU = TdS + (−P)dV + µdN

D. Eberard, B.M. Maschke, and A.J. van der Schaft. An extension
of pseudo-Hamiltonian systems to the thermodynamic space :
towards a geometry of non-equilibrium thermodynamics. Reports on
Mathematical Physics, 60(2) :175–198, 2007
H. Ramırez Estay , B. Maschke and D. Sbarbaro, Irreversible
port-Hamiltonian systems : A general formulation of irreversible
processes with application to the CSTR, Chemical Engineering
Science, Volume 89, pp. 223-234 15 February 2013

entropy formulation dS = 1
T dU + P

T dV − µt

T dn

Favache, D. Dochain and B. Maschke, An entropy-based
formulation of irreversible processes based on contact structures,
Chemical Engineering Science, vol. 65, pp. 5204-5216, 2010

Conservative control contact sytems describe quasi-reversible processes.
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The result about the state feedback of control contact systems :
qualifies the control contact Hamiltonian Kc as natural output
imposes a closed-loop contact structure different from
open-loop one

H. Ramırez Estay , B. Maschke and D. Sbarbaro, Feedback equivalence of
input-output contact systems, Systems and Control Letters, Volume 62, Issue
6, pp. 475-481, June 2013
H. Ramirez, B. Maschke and Daniel Sbarbaro, Partial stabilization of
input-output contact systems on a Legendre submanifold , IEEE Transaction
on Automatic Control, Vol. 62, n°3, pp. 1431 - 1437, March 2017
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Remains to consider the control design in order to :
shape the losed-loop contact Hamiltonian function/the
closed-loop Legendre submanifold
apply to chemical reactor

Generalize to:
more general closed-loop contact forms than θd = θ +dF (q,p)

closed-loop contact systems which do not leave invariant any
Legendre submanifold and lead to dynamic feedback.
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