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Motivation

Design of controlled physical systems using network -based
modelling

modular model building : network of subsystems
physically consistent models : energy, balance equations, power
flows ...
physically consistent numerical simulation schemes
physically consistent control design
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Reminder about stability of dynamical systems

Consider a dynamical system defined on a domain D ⊂ Rn 3 x by
the differential equation :

dx

dt
= f (x)

where f : D→ Rn is a locally Lipschtitz function.
Denote by Φ(t, x0) the solution x (t) with initial condition x0 ∈ D.

Assume that x∗ = 0 ∈ D is an equilibrium point. It is :
stable if ∀ε > 0, ∃δ > 0 tel que :
‖x0‖< δ ⇒ ‖Φ(x0, t)‖< ε ∀t ≥ 0
unstable otherwise
asymptotically stable if it is stable and ∃δ > 0 such that :
‖x0‖< δ ⇒ limt→+∞ Φ(x0, t) = 0
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Lyapunov’s second method of analysis of stability

Théorème

Let V : D→ R be a continuously differentiable (C 1) function
satisfying :
(i) V positive definite : V (0) = 0 and V (x) > 0, x ∈ D \{0}
(ii) Lf V (x)≤ 0
then x∗ = 0 ∈ D is a stable equilibrium point.
if :
(iii) Lf V (x) < 0, x ∈ D \{0}
then x∗ = 0 ∈ D is a asymptotically stable equilibrium point.

Définition
The function V (x) satisfying these assumptions, is called Lyapunov
function.
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Domain of attraction

Définition
The domain of attraction of the stable equilibrium point x∗ = 0 ∈D
is :

Dx∗ =

{
x ∈ D / lim

t→+∞
Φ(t, x) = x∗

}

Théorème
The level sets of the Lyapunov function :
Ωc = {x ∈ Rn /V (x) < c}, where c > 0 contained in the domain of
definition D and bounded :
(i) are positively invariant : ∀x0 ∈ Ωc : φ (t, x0) ∈ Ωc , ∀t ∈ R∗+
(ii) give an estimate of the domain of attraction : Ωc ⊂ Dx∗
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Global stability : theorem of Barbashin-Krasovskii

Définition
The equilibrium point x∗is said globally asymptotically stable if it is
asymptotically stable with domain of attraction Dx∗ = Rn.

Théorème

Let V : D→ R be a continuously differentiable (C 1) function
satisfying :
(i) V positive definite : V (0) = 0 and V (x) > 0, x ∈ D \{0}
(ii) V is radially unbounded : lim‖x‖→+∞ V (x) = +∞

(iii) Lf V (x) < 0
then x∗ = 0 ∈ D is a globally asymptotically stable equilibrium
point.
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Unstability : Chetaev’s theorem

Théorème

Let V : D→ R be a continuously differentiable (C 1) function
satisfying :
(i) V (0) = 0
(ii) ∀ε ∈ R∗+, ∃x ∈ D \{0} , ‖x‖< ε andV (x) > 0
and consider a positive real number r > 0 and the set
Ur = {x ∈ D / ‖x‖< r and V (x) > 0}, then Lf V (x) > 0, ∀x ∈ Ur

implies that x∗ = 0 ∈ D is an unstable equilibrium point.
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LaSalle’s theorem

Théorème
Let Ω⊂ D be a compact set, positively invariant. And let
V : D→ R be a continuously differentiable (C 1) function satisfying
such that Lf V (x)≤ 0 in Ω. Define
(i) the set of states E = {x ∈ Ω; Lf V (x) = 0} and
(ii) M ⊂ E the largest set in E which is positively invariant
(∀x0 ∈M : φ (t, x0) ∈M, ∀t ∈ R∗+), then :

lim
t→+∞

dist (Φ(x0, t) ,M) = 0

Note that here V (x) needs not to be positive !

The the set Ω may be the level set of a Lyapunov function if it is
bounded (hence compact).
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Construction of Lyapunov functions

It might be difficult to find a Lyapunov function.

Construction using the gradient method : one looks for a vector
field k (x)

deriving from a potential : k (x) = ∂V
∂x , i.e. satisfying :

∂ki
∂xj

=
∂kj
∂xi

such that Lf V (x) = kt (x) f (x) < 0
and compute

V (x) =
∫ x1

0
k1 (χ1, 0 .. , ,0)dχ1 +

∫ x2

0
k1 (x1, χ2 0 .. , ,0)dχ2 + ..

finally check if V (x) is positive definite.
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Stabilization by control Lyapunov functions

Stabilization by control Lyapunov functions
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Asymptotic stabilization of a stable control system

Consider a nonlinear control system affine in the inputs :

dx

dt
= f (x) +

m

∑
i=1

gi (x)ui

where the drift vector field f : D ⊂ Rn→ Rn and the input vector fields
gi (x) , i = 1, .. ,m are smooth.

Assume that the drift vector field f (x) has a stable equilibrium point
x∗ = 0 ∈ D with Lyapunov function V (x).

Théorème
The state feedback : ui (x) =−LgiV (x) locally asymptotically stabilizes
the equilibrium point if :
(i) the function V (x) satisfies Lf V (x)≤ 0, x ∈ D and ∂V

∂x (x) 6= 0, x ∈ D
(ii) the accessibility distribution
D (x) = span

{
f (x) , adk

f gi (x) , i = 1, . ..,m, k ∈ N
}
satisfies : dimD = n
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Lyapunov functions and stabilization

In the previous results the nonlinear control modified the
time-variation of the original Lyapunov function in closed-loop :

dV

dt
= Lf V (x)−

m

∑
i=1

[LgiV (x)]2

and hence restrict the invariant set to subset of :

E = {x ∈ D /Lf V (x) = 0 and LgiV (x) = 0, i = 1, ..m}

However remains the problems :
find a open-loop Lyapunov function
design a closed-loop Lyapunov function in order to stabilize
unstable points.
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Optimal stabilizing control and inverse design

Optimal stabilizing control and inverse optimal
control design
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Optimal control problem

Control Lyapunov functions may be defined through the optimal
control problem.

Définition
Consider the nonlinear system : ẋ = f (x) +g (x)u , find a feedback
u (x) such that :
(a) the closed-loop system is asymptotically stable at x∗ = 0
(b) the feedback minimizes the cost functional :

J =
∫ +∞

0

(
l (x) +uT R (x) u

)
dt

where l (x)≥ 0 and R (x) = RT (x) > 0
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Optimal stabilizing control

Théorème

Assume that there is a C 1 semi-definite real function V (x) satisfies
V (0) = 0 and the Hamilton-Jacobi-Bellman equation :

l (x) +Lf V (x)− 1
4

(LgV (x))t R (x)−1 (LgV (x)) = 0

such that the feedback : u∗ (x) =−1
2R (x)−1LgV (x) stabilizes the

system at x∗ = 0. Then u∗ (x) solves the optimal control problem
and V (x) is the optimal value function.

The function V (x) may often be checked to be a Lyapunov
function, depending on the choice of the cost function J.
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Inverse optimal control design

One may invert the design process by choosing :
a desired closed-loop Lyapunov function V (x)

a symmetric positive definite matrix R (x)

such that the control u (x) =−1
4R (x)−1LgV (x) ensures :

dV
dt = Lf V (x)− 1

4 (LgV (x))T R (x)−1LgV (x)≤ 0 .

amounts to defining the control :
u∗ (x) = 2u (x) =−1

2R (x)−1LgV (x) as the solution of some
optimal control problem with :

l (x) = 1
4 (LgV (x))t R (x)−1 (LgV (x))−Lf V (x)≥ 0

which remains to be checked.
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Control Lyapunov function

The problem is to generate a control Lyapunov function allowing to
stabilize the system.

Théorème

A continuously differentiable (C 1) positive definte [event. radially
unbounded] function V (x) is a control Lyapunov function for the
system : ẋ = f (x) +g (x)u if : LgV (x) = 0 ⇒ Lf V (x) < 0

This means that its variation may be rendered negative definite by
feedback.

There exist different method to construct such functions :
backstepping ....
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Dissipative control systems

Dissipative control systems
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Dissipative control systems

Disipative control systems are :
related to the models of physical systems in the sense that
they explicitely write a balance equation
the fundamental extension of Lyapunov-stable dynamical
systems to control systems

Consider a nonlinear control system :

Σ

{
dx
dt = f (x , u)
y = h (x , u)

with state x (t) ∈ Rn, input u (t) ∈ Rm, output y (t) ∈ Rm,
f ∈ C∞ (Rn×Rm, Rn) and h ∈ C∞ (Rn×Rm, Rm)
and denote by φ (x0, u (.) , t) the solution of the system with initial
condition x0 and input u (t).
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Dissipative (control) systems : definition

Définition
The nonlinear system Σ is a dissipative system with :

(i) storage function S ∈ C∞ (Rn, R) , a positive function

(ii) supply rate s ∈ C∞ (Rm×Rm, R)

iif it satifies the dissipation inequality for any solution
x (t) = φ (x0, u (.) , t) t > 0 and time instants t1 ≥ t0 :

S (x (t1))≤ S (x (t0)) +
∫ t1

t0
s (u (t) , y (t))dt

It is said lossless if the equality is satisfied :

S (x (t1))=S (x (t0)) +
∫ t1

t0
s (u (t) , y (t))dt
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Passive systems

Définition
Depending on the supply rate s (u (t) , y (t)) the dissipative system
is said :
(i) passive if : s (u (t) , y (t)) = y tu

(i) strictly input passive if : s (u (t) , y (t)) = y tu− δ ‖u‖2

(i) strictly output passive if : s (u (t) , y (t)) = y tu− ε ‖y‖2

The physical interpretation is :
inputs and outputs are impedance variables
the disspativity inequality is associated with energy balance :

S (x (t1))︸ ︷︷ ︸
energy at t1

≤ S (x (t0))︸ ︷︷ ︸
energy at t0

+
∫ t1

t0
y tu︸︷︷︸
power

dt

︸ ︷︷ ︸
supplied energy
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Dissipative systems with L2-gain

Définition
A dissipative system is said to have L2-gain ≤ γ if it admits the
supply rate :

s (u (t) , y (t)) =
1
2

γ ‖u‖2−‖y‖2

It is said inner if it is lossless with s (u (t) , y (t)) = 1
2 ‖u‖

2−‖y‖2.

It is related to the scattering variables and the balance equation :

S (x (t1))︸ ︷︷ ︸
energy at t1

≤ S (x (t0))︸ ︷︷ ︸
energy at t0

+
∫ t1

t0
‖u‖2︸︷︷︸

incoming power

− ‖y‖2︸︷︷︸
outgoing power

dt

︸ ︷︷ ︸
supplied energy
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Dissipative systems for control

Dissipative systems:
may be stabilized using the storage function as Lyapunov
function
are closed under feedback interconnection, for instance with
passive controller.

One may also construct a closed-loop Lyapunov function Vc (x) by
finding feedback such that:

Vc (x) = S (x)−S (x∗)−
∫ t1

t0
s (u (x) , h (x))dt

Port Hamiltonian are endowed with additional structure which
allows a methodology for the construction of such feedbacks.
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Use formulation as port Hamiltonian systems

In the sequel we shall use a decompostion of the drift vector field
stemming from port-based modelling as a port Hamiltonian system
is written: and the system:

ẋ = (J(x)−R (x))
∂H0

∂x︸ ︷︷ ︸
=f (x)

+ ∑
m
i=1 uigi (x)

yi = gi (x)t ∂H0
∂x portconjugatedoutputs

a smooth Hamiltonian function H0(x)

a skew-symmetric matrix J(x) ∈ Rn×n and a positive symetric
matrix R(x) ∈ Rn×n

m inputs ui ∈ Rp and outputs yi ∈ Rp

m input vector fields gi (x) ∈ Rn
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Port Hamiltonian systems for modelling and control
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Context and motivation

Use physical insight explicitely in the :
physically-based modelling making use of physical invariants
physically-based control design : design control Lyapunov
functions but also of flows of energy in the system
simultaneous design of process an control
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Synthesis of Irreversible Thermodynamics and Analytical
Mathematics

Irreversible Thermodynamics : systems of balance equations (conservation
laws with source terms) in interaction by phenomenological laws
Analytical Mechanics : geometry of points or configuration with
variational formulation leads to Lagrangian and Hamiltonian formulations
The synthesis of the Thermodynamics and Analytical Mechanics :

uses extensive variables as state variables (versus configurations and
their derivatives)
uses pairs of conjuguated intensive and (time derivative of)
extensive variables
gives a geometric formulation to the coupling relations between the
phenomenological laws and conservation laws

Finally the coupling relations are related to network type of coupling
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Lagrangian and symplectic Hamiltonian systems

Lagrangian and symplectic Hamiltonian systems
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Lagrangian systems

It is a mechanical perspective to physics !

Definition
A Lagrangian system with external forces is defined by:
(i) configuration manifold Q = Rn 3 q of the generalized
coordinates
(ii) manifold of generalized velocities TQ = R2n 3 (q, q̇) its tangent
manifold
(iii) Lagrangian function L(q, q̇), from the tangent space TQ to R
and the Lagrangian equations:

d

dt

(
∂L

∂ q̇
(q, q̇)

)
− ∂L

∂q
(q, q̇) = F

with F ∈ Rn is the vector of generalized forces.
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Losslessness of Lagrangian systems with external force

A Lagrangian system with external forces satisfies the following
power balance equation:

FT q̇ =
dH

dt

where the Hamiltonian H is obtained by the Legendre
transformation of the Lagrangian function L(q, q̇) with respect to
the generalized velocity q̇ :

H(q,p) = q̇Tp−L(q, q̇)

where p is the vector of generalized momenta:

p(q, q̇) =

(
∂L

∂ q̇
(q, q̇)

)

and the Lagrangian function is assumed to be hyperregular.
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Lagrangian control system

Definition
Consider a configuration space Q = Rn and its tangent space
TQ = R2n, an input vector space U = Rp.
A Lagrangian control systems is defined by a real function L(q, q̇,u)
from TQ×U to R, and the equations:

d

dt

(
∂L

∂ q̇
(q, q̇,u)

)
− ∂L

∂q
(q, q̇,u) = 0 (1)
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Lagrangian control system: example

Consider the harmonic oscillator and assume that the basis of the
spring is moving with controlled position u1 and that there is a
force u2 = F2 exerted on the mass.

33

COMPARISON WITH HAMILTONIAN

INPUT–OUTPUT SYSTEMS:

HYBRID BOUNDARY CONDITIONS

Mass–spring system with hybrid boundary conditions:

The port–controlled Hamiltonian system is:

The input vectorfields are Hamiltonian:

where

where

Comparison of outputs:

port–outputs:

Hamiltonian outputs:  

But:

The generalized coordinate is the position q ∈ R of the mass with
respect to an inertial frame and the Lagrangian function:

L(q, q̇,u) =
1
2
m(q̇)2− 1

2
k(q−u1)2 +qu2

one obtains the Lagrangian control system:

mq̈+k(q−u1)−u2 = 0

This system has two inputs and one generalized coordinate.
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Losslessness of Lagrangian control systems

A Lagrangian control system satisfies the power balance equation:

uT z =
dE

dt

where:

zi =−
n

∑
i=1

∂ 2H

∂qj∂ui

∂H

∂pj
+

n

∑
i=1

∂ 2H

∂pj∂ui

∂H

∂qj

and the real function E is obtained by the Legendre transformation
of the Lagrangian function L(q, q̇) with respect to the generalized
velocity q̇ and the inputs and is defined by:

E (q,p,u) = H(q,p,u)−uT
∂H

∂u

with H(q,p,u) = q̇Tp−L(q, q̇,u) where p is the vector of
generalized momenta: p(q, q̇,u) =

(
∂L
∂ q̇ (q, q̇)

)
.
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An LC circuit of order 3

Consider the following LC circuit:

35

EXAMPLE: SCALAR NETWORKS

A

B

v

0

Third order port–controlled Hamiltonian system:

– Hamiltonian function is energy function
– structure matrix given by the interconnections

–input field is not Hamiltonian: 

current through the inductor

velocity of mass 1

what are the generalized coordinates ?

Multiple Lagragian formulations but all are not natural and in
correspondence with electrical formulations !
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Legendre transformation of a Lagrangian system

Consider a Lagrangian system with external forces and define the
vector of generalized momenta:

p(q, q̇) =

(
∂L

∂ q̇
(q, q̇)

)
∈ Rn

and define the Legendre transformation with respect to q̇ of the
Lagrangian function, called Hamiltonian function:

H0(q,p) = q̇Tp−L(q, q̇)

then the Lagrangian system with external forces is equivalent to the
following symplectic Hamiltonian system:

q̇ = ∂H0
∂p

ṗ =− ∂H0
∂q +F
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Control Hamiltonian system with external force

There is an alternative way of writing these equations as follows:




q̇

ṗ


= Js




∂H0(q,p)
∂q

∂H0(q,p)
∂p


+




0n

In


F = Js




∂H(q,p,u)
∂q

∂H(q,p,u)
∂p




where H(q,p,u) = H0(q,p)−qTF andJs is the following matrix,
called symplectic matrix:

Js =

(
0n In
−In 0n

)

his symplectic matrix is the local representation, in canonical
coordinates, of the symplectic Poisson tensor field.
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Losslessness and Poisson bracket

A Hamiltonian system with external forces satisfies the following
power balance equation: FT q̇ = dH0

dt wich is computed as:

dH0

dt
=

(
∂H0 (q,p)

∂q
,

∂H0 (q,p)

∂p

)
Js




∂H(q,p,u)
∂q

∂H(q,p,u)
∂p




︸ ︷︷ ︸
 q̇

ṗ




which is the Poisson bracket between the functions H0 and H:

{H0, H}
It is the fundamental geometric structure of Hamiltonian systems
and their control !.
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Hamiltonian systems

Hamiltonian systems
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Poisson bracket

Let M be n-dimensional differentiable manifold with space of smooth
real function C∞(M ).

Definition
A Poisson bracket is a mapping:

{ , } : C∞(M )×C∞(M ) 7→ C∞(M )
(F ,G ) → {F , G} satisfying:

bilinearity
skew-symmetry: {F , G}=−{G , F}
Jacobi identities:
{F ,{G ,H}}+{G ,{H,F}}+{H,{F ,G}}= 0, ∀F ,G ,H
Leibniz rule: {F , G H}= {F , G}H +G{F , H}
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Poisson tensor

It may be shown that the Poisson bracket {F , G} depends only on
the differentials dF and dG such that:

Λ(dF ,dG ) = {F , G}

Extending this tensor to all 1-forms, one associates with any
Poisson bracket the Poisson tensor (field):

Λ : Ω1(M )×Ω1(M ) → C∞(M )
(ω1, ω2) 7→ r

is two times contravariant, skew-symmetric tensor field
and satisfies the Jacobi identities.
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Poisson bundle morphism

With the Poisson tensor, one may define a morphism of vector
bundle:

Λ] : T ∗M → TM
ω 7→ X = Λ] (ω)

such that:
Λ](ω)(α) = Λ(α, ω), ∀α ∈ Ω1(M )
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Poisson structure matrix

Using some coordinates: x1, ..,xn the Poisson tensor is defined by
the structure matrix J:

Jij = {xi , xj}

which is:
1 skew-symmetric
2 satisfies the Jacobi identities, for any i , j , k = 1, ..,n:

n

∑
l=1

(
Jlj(x)

∂Jik
∂xl

+Jli (x)
∂Jkj
∂xl

+Jlk(x)
∂Jji
∂xl

)
= 0

B. Maschke Port-Hamiltonian systems



Motivation and objectives
Modelling origins of Port Hamiltonian systems

Control of Port Hamiltonian systems
Irreversible port Hamiltonian systems

Conclusion

Lagrangian and Hamiltonian systems
Control Hamiltonian systems
Port Hamiltonian systems
Port Hamiltonian systems
Examples of Port-Hamiltonian systems
Properties of Port Hamiltonian systems

Poisson bundle morphism in coordinates

Using the structure matrix J(x) in some coordinates: x1, ..,xn and
dual basis for TM and T ∗M , where:

the 1-forms are: ω = ∑
n
i=1ωi dxi and

the vector fields: X = ∑
n
i=1 χi

∂

∂xi

the bundle morphism Λ] which defines the vector field X = Λ](ω) is
represented in coordinates by the structure matrix:




χ1
..
χn


(x) = J(x)




ω1
..

ωn


(x)
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Jacobi identities

The Jacobi identities are integrability conditions.

The rank of the bracket at x ∈M is: rankJ(x) and is even:
rankJ(x) = 2k .

If n = 2k , then the bracket is symplectic.

Then there exist canonical coordinates (q1, ..,qk ,p1, ..,pk , r1, .., rl)
with l = n−2k such that:

J(x) =




0 Ik 0
−Ik 0 0
0 0 0



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Casimir functions

The coordinates (functions) r generate Casimir functions
C (x) = φ (r):

{C , F}= 0, ∀F ∈ C∞(M)

Casimir functions are defined by the kernel of the Poisson bracket
and in coordinates satisfy:

∂C

∂x
∈ kerJ (x)

If the Jacobi identities are not satisfied: {, } is a pseudo-Poisson
bracket: kerJ (x) defines a co-distribution which is not integrable
and there are no canonical coordinates.
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Example: Lie-Poisson bracket for Euler-Poinsot problem

Consider as state variable the rotations in R3 , called special
orthogonal group SO(3).

The angular velocities are represented by skew-symmetric matrices
in so(3) and endowed with

Lie bracket: [ω1,ω2] = ω1ω2−ω2ω1.

There is a canonical Lie-Poisson bracket on
the momenta p ∈ so∗(3): {F , G}(p) = 〈p, [dF , dG ]〉

In Plücker coordinates, the structure matrix is:

J(p) =




0 −pz py
pz 0 −px
−py px 0




Casimir function is total momentum: r(x) = p2x +p2y +p2z
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Hamiltonian systems w.r.t. Poisson brackets

A Hamiltonian system is defined by:
1 on a differentiable manifold M 3 x with Poisson bracket {, }

(and Λ the Poisson tensor)
2 the internal Hamiltonian function H0 ∈ C∞ (M )

3 and the differential equations:

ẋ = {x , H0}= Λ](dH0), XH0

Using the structure matrix J(x) in some coordinates (x1, ..,xn) :

dx

dt
= J (x)

∂H0

∂x
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Invariants of Hamiltonian systems

There are two types of invariants due to the geometry (Poisson
bracket):

Hamiltonian function due to the skew-symmetry of the bracket:

dH0

dt
= {H0, H0}= 0

the Casimir functions (non-symplectic case):

dC

dt
= {C , H0}= 0 ∀H0 ∈ C∞ (M )

For physical (lossless) systems: the energy is generating function
H0 and is conserved.
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A network origin of Poisson brackets

A network origin of Poisson brackets
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A network origin of Poisson brackets

In Mathematical Physics Hamiltonian systems arize from :
variational calculus, Lagrangian systems and their Legendre
transformation : standard Hamiltonian systems defined with
respect to symplectic Poisson bracket
reduction of Hamiltonian systems with symmetries defined on
Lie groups : Lie-Poisson bracket.

In Control Engineering the Poisson bracket are generated by
interconnection structure :

Kirchhoff’s laws, kine-static models, stoichiometry
coupling between reversible phenomena
feedback interconnection
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An LC circuit without elements in excess

Consider the following LC-circuit:
1 composed of 2 inductors and a capacitor in paralell

2 with total energy: H0 =
Q2

C
2C +

φ2
L1

2L1
+

φ2
L2

2L2

25

 EXAMPLE : LC CIRCUIT OF ORDER 3

AB AB

State variables: energy variables 

– rate variables: 

Hamiltonian function: 
electromagnetic energy of the circuit:

 

– coenergy variables: 

Hamiltonian system of order 3:

Casimir functions:

1 2

Poisson bracket = Kirchhoff’s laws:
 interconnection structure
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An LC circuit: Kirchoff’s laws and Poisson bracket

Consider the spanning tree consiting of the capacitor {C} :

25

 EXAMPLE : LC CIRCUIT OF ORDER 3

AB AB

State variables: energy variables 

– rate variables: 

Hamiltonian function: 
electromagnetic energy of the circuit:

 

– coenergy variables: 

Hamiltonian system of order 3:

Casimir functions:

1 2

Poisson bracket = Kirchhoff’s laws:
 interconnection structure

25

 EXAMPLE : LC CIRCUIT OF ORDER 3

AB AB

State variables: energy variables 

– rate variables: 

Hamiltonian function: 
electromagnetic energy of the circuit:

 

– coenergy variables: 

Hamiltonian system of order 3:

Casimir functions:

1 2

Poisson bracket = Kirchhoff’s laws:
 interconnection structure

Kirchhoff’s laws:




iC
vL1
vL2


=




0 1 −1
−1 0 0
1 0 0




︸ ︷︷ ︸
J




vC
iL1
iL2


 define a

constant skew-symmetric matrix J.
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An LC circuit: Poisson bracket and Tellegen’s theorem

Virtual power for any pair of co-energy variables:
skew-symmetric tensor:

Λ






vC
iL1
iL2


 ,




v ′C
i ′L1
i ′L2




 =

(
vC , iL1 , iL2

)
J




v ′C
i ′L1
i ′L2




= vC

(
i ′L1
− i ′L2

)
− iL1v

′
C + iL2v

′
C

This is the foundation of Poisson bracket.

Skew-symmetry is equivalent to Tellegen’s theorem:

(
vC , iL1 , iL2

)
J




vC
iL1
iL2




︸ ︷︷ ︸
admissible variables

=
(
vC , iL1 , iL2

)



iC
vL1
vL2


= 0
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An LC circuit: Hamiltonian formulation
Identifying the circuit variables:




iC
vL1
vL2


=

d

dt




QC

φL1
φL2


 and




vC
iL1
iL2


=




∂H0
∂QC
∂H0
∂φL1
∂H0
∂φL2




The dynamics of the LC-circuit is a Hamiltonian system:

d

dt




qC
φL1
φL2


=




0 1 −1
−1 0 0
1 0 0




︸ ︷︷ ︸
J




∂H0
∂qC
∂H0
∂φL1
∂H0
∂φL2




with respect to the Poisson bracket with structure matrix J

generated by the Hamiltonian: H0 =
Q2

C
2C +

φ2
L1

2L1
+

φ2
L2

2L2
, the total

electromagnetic energy
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Circuit realization of the Poisson bracket
Using the thermodynamical classification of circuit variables:

extensive variables:




iC
vL1
vL2


=

d

dt




QC

φL1
φL2


 intensive variables:




vC
iL1
iL2


=




∂H0
∂QC
∂H0
∂φL1
∂H0
∂φL2




The Poisson tensor



iC
vL1
vL2


=




0 1 −1
−1 0 0
1 0 0




︸ ︷︷ ︸
J




vC
iL1
iL2


 has the

circuit realization:

22

vCiL

– Fig.  4 – Réalisation de l’oscillateur LC en utilisant un gyrateur

 Ce circuit est une représentation réseau du système hamiltonien (2.57). En effet la matrice de

structure du crochet est représentée par le gyrateur symplectique alors que l’énergie totale est

représentée par les deux capacités. Les éléments capacitifs n’indiquent plus le type d’énergie

accumulée, mais uniquement l’accumulation d’énergie. Le fait que le système soit composé de

deux type d’énergie en interaction est maintenant indiqué par la connexion des éléments capaci-

tifs aux ports du gyrateur.

Pour des circuit LC généraux, une généralisation triviale de la procédure présentée dans l’exem-

ple précédent, consiste à dualiser toutes les inductances. Alors le réseau, constitué des gyrateurs

symplectiques interconnectés par le graphe du circuit, impose des relations entre ses variables

de port qui correspondent exactement à la matrice de structure du crochet de Poisson associé au

circuit. Nous avons montré qu’on pouvait aller un peu plus loin en proposant une réalisation avec

un nombre minimal de gyrateurs symplectiques [R.4]. Pour cela il faut dualiser les variables du

graphe d’interconnexion non seulement aux ports des inductances, mais en général aussi sur un

ensemble d’arêtes du graphe d’interconnexion, ce que nous illustrons sur l’exemple simple sui-

vant.

Exemple: circuit LC d’ordre 3. Considérons le circuit de la figure  5 composé d’une capacité en

parallèle avec un sous–circuit composé deux inductances en parallèle. En appliquant la procé-

dure de transformation des inductances en des capacités, la réalisation avec le nombre minimal

de gyrateur est donné également sur la figure  5 . Ce circuit est composé d’une capacité connectée

par un gyrateur symplectique à un sous–circuit formé de deux capacités en série. La dualisation

des variables de cycle et de cocycle a eu pour effet de dualiser la jonction parallèle en jonction

série.

A

B

– Fig.  5 – Circuit LC d’ordre 3 et sa réalisation par symétrisation des éléments L et C
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An LC circuit: Casimir function and invariants

The structure matrix J =




0 1 −1
−1 0 0
1 0 0


 has rank 2 , hence

admits one generating Casimir function.

The kernel of the structure matrix J is : ker J = Span





0
1
1





A Casimir function satisfies :




∂C
∂QC
∂C

∂φL1
∂C

∂φL2


=




0
1
1




for instance C (Q,Φ1,Φ2) = Φ1 + Φ2 which is the total magnetic
flux through the inductors.
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An LC circuit: canonical coordinates
Consider the change of coordinates:



q
p
r


=




1 0 0
0 1

2 − 1
2

0 1
2

1
2




︸ ︷︷ ︸
=T




QC

Φ1
Φ2




Casimir function r (x) = 1
2 (Φ1 + Φ2)

hence: d
dt




q
p
r


= T d

dt




QC

Φ1
Φ2


 and




∂H0
∂QC
∂H0
∂φL1
∂H0
∂φL2


= T t




∂ H̄0
∂q

∂ H̄0
∂p

∂ H̄0
∂ r


 with:

H̄0 (q, p, r) = q2

2C + (p+r)2

2L1
+ (r−p)2

2L2

and the Hamiltonian system becomes:

d

dt




q
p
r


=




0 1 0
−1 0 0
0 0 0




︸ ︷︷ ︸
=TJT t




∂ H̄0
∂q

∂ H̄0
∂p

∂ H̄0
∂ r




B. Maschke Port-Hamiltonian systems



Motivation and objectives
Modelling origins of Port Hamiltonian systems

Control of Port Hamiltonian systems
Irreversible port Hamiltonian systems

Conclusion

Lagrangian and Hamiltonian systems
Control Hamiltonian systems
Port Hamiltonian systems
Port Hamiltonian systems
Examples of Port-Hamiltonian systems
Properties of Port Hamiltonian systems

References and alternative formulations of LC-circuits
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B.M. Maschke, A.J. van der Schaft and P.C. Breedveld, ”An intrinsic Hamiltonian formulation of
network dynamics: non–standard Poisson structures and gyrators”, Journal of the Franklin Institute, Vol.
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Nevertheless there are alternative formulations:

Lagrangian or standard Hamiltonian systems
G.M. Bernstein and M.A. Lieberman, ”A method for obtaining a canonical Hamiltonian for
nonlinear LC circuits, IEEE Trans. on Circuits and Systems, CAS–35, 3, 411–420,1989

Brayton-Moser equations (or pseudo- gradient systems)
R.K. Brayton and J.K. Moser, ”A Theory of Nonlinear Networks–I and II”, Quartely of
Applied Mathematics, Vol.22, nº1, pp.1–33, April 1964 and nº2, pp.81–104, July 1964
S. Smale, ”On the Mathematical Foundations of Electrical Circuit Theory”, J. of
Differential Geometry, Vol.7, pp.193–210, 1972
D. Jeltsema, R. Ortega, J.M.A. Scherpen, On passivity and power-balance inequalities of
nonlinear RLC circuits, IEEE Trans. Circuits and Systems Part-I Fund Theory Appl. 50 (9)
(2003) 1174–1179.

Contact systems
D. Eberard, B.M. Maschke and A.J. van der Schaft, Energy-conserving formulation of
RLC-circuits with linear resistors, Proc. 7th International Symposium on Mathematical
Theory of Networks and Systems, Kyoto, Japan, July 24-28, 2006
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Control Hamiltonian systems

Control Hamiltonian systems
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Interaction in Hamiltonian systems : a potential function

In Physics the interaction is defined by an interaction potential.

The water molecule may be considered as 3 mass points in
interaction through e.g. the Lennard-Jones potential.1

19 novembre 2009 22:42:29http://upload.wikimedia.org/wikipedia/commons/e/e9/Water_molecule_dimensions.svg

5Water models

18 novembre 2009 23:54:04http://www1.lsbu.ac.uk/water/models.html

components, up to hexadecapole, in order to achieve the correct ferroelectric structures for the ordered ice phases
[1051]. In a studyattempting to combine diffraction, infrared and x-ray absorption data, it was concluded that current
water models show poor fit [1159]. Altogether, it is clear that in spite of water appearing to be a very simple molecule, it
remains very difficult to model realistically.

In the light of these observations, it is unsurprising that contemporarywater models are relatively poor predictors for the
conformation and hydration of biological molecules in solution (for example, [596]) and it may be useful to develop water
models specifically for use with biomolecular solvation. [Back to Top ]

Footnotes

a Note, however that water is not a spherically symmetrical molecule as judged by the variation in the van der Waals radii
[206]. Also, in these models the Lennard-Jones interaction exerts a repulsiveeffect on hydrogen bonding whereas some
report it is attractive [548] even at this closecontact. The Lennard-Jones potential is made up of a twelfthpower

repulsive term and a sixth power attractive term (rij = distance apart of the ith and jth atoms, with ! and " definedbelow)

:

It is likely that the repulsive term is too repulsive and in reality the repulsion is somewhat softer, allowing somewhat
easier close molecular contact [1245].

Shown right is the Lennard-Jones potential for the SPC/E model
(solid red line). The ! parameter gives the molecularseparation for
zero interaction energy. The minimum energy (-") lies12% further

at !x21/6 Å.

Also shown (dotted blue line) is an equivalent Buckingham

potential (! 3.55 Å, " 0.65 kJ mol-1, # 12.75); the ! parameter in

the Buckingham potential gives the !x21/6 position in the Lennard-
Jones potential.

[859] [Back]

b Models may be checked for agreement with gas phase clusters (for example, water dimers) before use in liquid water
simulations. Such compliance, however, should not be a necessary prerequisite for accurate liquid water predictions as
they tend to be biased towards internal hydrogen bond maximization, and surface unconnected ('dangling') hydrogen
bonding capability minimization, due to their relatively large surface area. Thus, they are not representative of real bulk
liquid water structuring. [Back]

c Molecular polarization may be electronic (caused by the redistribution of its electrons), geometric (causedby changes
in the bond lengths and angles) and/or orientational (caused by the rotation of the whole molecule) [867]. This paper
[867] describes Charge-On-Spring polarizable force fields (for example, COS/G3) as most suitable for aqueous solutions
of proteins. Alternatively, a model possessing out-of-plane polarization and fluctuating charges (POL5/TZ) is proposed
best for comparison with experimental vibrational data [878]. [Back]

d One model describes the water molecule solely in terms of dipoles and polarizabilities on the atoms and a quadrupole
on the oxygen atom [736]. [Back]

e It may be that the quadrupole (and higher multipole) interactions are also very important [1228]. These multipole
moments of the models are generally far lower than the calculated values for liquid water.
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Interaction in Hamiltonian systems : a potential function

The configuration are the positions of the mass points with
respect to an inertial frame :
Q = (q1, q2, q3) ∈ R3×R3×R3 = Q,
the state space is the cotangent bundle T ∗Q with its
canonical symplectic Poisson bracket
the dynamics is a standard Hamiltonian system generated by
Hamiltonian function :

H (Q, P) =

(
‖p1‖2
2MO

+
‖p2‖2
2MH

+
‖p3‖2
2MH

)

︸ ︷︷ ︸
kinetic energy

+ V (Q)︸ ︷︷ ︸
interaction potential
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Control Hamiltonian systems

For control Hamiltonian systems the interaction potential describes
the interaction with the environment using a control variable u (t) !
It is defined by :

a differentiable manifold M 3 x with Poisson bracket {, }
m inputs ui
a Hamiltonian function: H (x , ui )

Often the Hamiltonian function is the sum:

H (x , ui ) = H0 (x)+Hint (x , ui )

where:
1 H0 (x) defines the Hamiltonian drift vector field
2 Hint (x , ui ) defines the interaction with the environment

In the sequel linear in control : Hint (x , ui ) = ∑
m
i=1Hi (x) ui (t) .
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Input-output Hamiltonian systems

An input-output Hamiltonian system is defined by:

on a differentiable manifold M 3 x with Poisson bracket {, }
(and Λ the Poisson tensor)

the internal Hamiltonian function H0 ∈ C∞ (M )

m inputs ui and outputs ỹi
m interaction Hamiltonian functions
Hi ∈ C∞ (M ) , i ∈ {1, . . . ,m}

and the system:

Σio

{
ẋ (t) = XH0 (x)−∑

m
i=1 ui (t)J (x)XHI

(x)
ỹi (t) = Hi (x (t)) naturaloutputs
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Input-output Hamiltonian systems : in coordinates

An input-output Hamiltonian system is defined by:

a skew-symmetric structure matrix J(x) ∈ Rn×n satisfying the
Jacobi identities
the internal Hamiltonian function H0 ∈ C∞ (M )

m inputs ui and outputs ỹi
m interaction Hamiltonian functions
Hi ∈ C∞ (M ) , i ∈ {1, . . . ,m}

and the system:

Σio

{
ẋ (t) = J (x) ∂H0

∂x (x)−∑
m
i=1 ui (t)J (x) ∂Hi

∂x (x)
ỹi (t) = Hi (x (t)) naturaloutputs
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Example: mass-spring with mixed boundary conditions

Consider the mass-spring system with mixed boundary conditions:

33

COMPARISON WITH HAMILTONIAN

INPUT–OUTPUT SYSTEMS:

HYBRID BOUNDARY CONDITIONS

Mass–spring system with hybrid boundary conditions:

The port–controlled Hamiltonian system is:

The input vectorfields are Hamiltonian:

where

where

Comparison of outputs:

port–outputs:

Hamiltonian outputs:  

But:

where m is the mass and k the stiffness

external force F applied on the mass
controlled velocity v of the basis.

The dynamical system is:

d

dt

(
q
p

)
=

(
0 1
−1 0

)

︸ ︷︷ ︸
interdomain coupling

(
k q
p
m

)

︸ ︷︷ ︸
driving force

−v
(

1
0

)
+F

(
0
1

)

︸ ︷︷ ︸
generalized external forces
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Hamiltonian formulation of the mass-spring with mixed
boundary conditions

The internal Hamiltonian is the total energy:
H0(q,p) = 1

2mp2 + 1
2k q

2 .

Define the interaction Hamiltonians:
H1(q,p) = p with the controlled velocity v of the basis
H2(q,p) = q with the external force F applied on the mass

The formulation as input-output Hamiltonian system is:




d

dt

(
q
p

)
=

(
0 1
−1 0

)

︸ ︷︷ ︸
symplectic bracket




(
∂H0
∂q

∂H0
∂p

)

︸ ︷︷ ︸
internal driving force

−v
(

∂H1
∂q

∂H1
∂p

)
+F

(
∂H2
∂q

∂H2
∂p

)

︸ ︷︷ ︸
external driving forces




(
ỹ1
ỹ1

)
=

(
p
q

)
totalmomentum
relativedisplacement
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Input-output Hamiltonian systems: power balance equation

For any interaction Hamiltonian Hj , j ∈ {1, . . . ,m}:

˙̃yj =
dHj

dt
= {Hj ,H0}−

m

∑
i=1

ui {Hj ,Hi}

Using the skew-symmetry of the Poisson bracket
({Hj ,Hi}=−{Hi ,Hj}):

dH0

dt
= {H0,H0}−

m

∑
j=1

uj {H0,Hj}

becomes the power balance equation:

dH0

dt
=

m

∑
j=1

uj ˙̃yj

If the internal energy is bounded from below H0 (x)≥ Hmin, the
input-output Hamiltonian systems is losslessB. Maschke Port-Hamiltonian systems
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Concluding remarks and references

Input-output Hamiltonian systems enjoy numerous properties, however
we shall see that they do not cover lot of engineering problems.

R.W.Brockett, Control theory and analytical mechanics,in Geometric
Control Theory, C.Martin and R.Herman eds., pp.1–46, Vol. VII of Lie
groups: History, Frontiers and Applications, Math.Sci.Press, Brookline,
1977

A.J. van der Schaft, System Theoretic Description of Physical Systems,
CWI Tracts, Mathematisch Centrum, Amsterdam, 1984

A.J. van der Schaft, System Theory and Mechanics, in Three Decades of
Mathematical System Theory, H.Nijmeijer and J.M.Schumacher eds.,
Lect. Notes Contr. Inf. Sci.,Vol.135, pp. 426–452, Springer, Berlin, 1989

J.E.Marsden, Lecture Notes on Mechanics, London Math. Soc. Lecture
Notes Series, 174, Cambridge Un. Press, Great Britain, 1992
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Modelling origins and definition of Port Hamiltonian systems

Modelling origins and definition of Port Hamiltonian
systems
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Port Hamiltonian systems

Port Hamiltonian systems
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Port Hamiltonian systems : definition

A port Hamiltonian system is defined by:

1 on a differentiable manifold M 3 x with pseudo-Poisson bracket {, }
(and Λ the pseudo-Poisson tensor)

2 the internal Hamiltonian function H0 ∈ C∞ (M )

3 m inputs ui ∈U and outputs yi ∈U ∗

4 m input vector fields gi

5 and the system:

Σphs

{
ẋ = XH0 + ∑

m
i=1 uigi

yi = 〈gi , H0〉= LgiH0 portconjugatedoutputs

where 〈X , ω〉 denotes the pairing between vector fields and 1-forms
(and Lg the Lie derivative w.r.t. g).
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Port Hamiltonian systems : in coordinates

In coordinates (x1, ..,xn) a port Hamiltonian system is written:

a skew-symmetric structure matrix J(x) ∈ Rn×n

a smooth Hamiltonian function H0(x)

m inputs ui ∈ Rp and outputs yi ∈ Rp

m input vector fields gi (x) ∈ Rn

and the system:

ẋ = J(x) ∂H0
∂x + ∑

m
i=1 uigi (x)

yi = gi (x)t ∂H0
∂x portconjugatedoutputs
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Example: elementary storage of elastic energy

Consider a translational spring:

q̇ = f

e = ∂H
∂q (q)

(2)

with:
q the displacement vector,
f the velocity,
e the elastic force of the spring with potential energy H(q).

It is a port Hamiltonian system defined with respect to the Poisson
structure matrix J = 0 and with g = 1.
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Example: elementary storage of kinetic energy

Consider point mass:

ṗ = f

e = 1
mp

, p, f ,e ∈ R3 (3)

where
p is the vector of momenta,
m is the mass,
f is the vector of external forces, and
e denotes the velocity of the point mass.

It is a port Hamiltonian system with Poisson structure matrix
J = 0, D = 0 and H(p) = 1

2m ‖ p ‖2 the kinetic energy.
B. Maschke Port-Hamiltonian systems
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LC circuit with voltage source

LC-circuit with voltage source
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LC circuit with voltage source

Consider the following LC-circuit:

35

EXAMPLE: SCALAR NETWORKS

A

B

v

0

Third order port–controlled Hamiltonian system:

– Hamiltonian function is energy function
– structure matrix given by the interconnections

–input field is not Hamiltonian: 

current through the inductor

velocity of mass 1

with total energy: H0 =
Q2

C
2C +

φ2
L1

2L1
+

φ2
L2

2L2
and voltage source vs .
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LC circuit with voltage source: Kirchhoff’s laws

The circuit :

35

EXAMPLE: SCALAR NETWORKS

A

B

v

0

Third order port–controlled Hamiltonian system:

– Hamiltonian function is energy function
– structure matrix given by the interconnections

–input field is not Hamiltonian: 

current through the inductor

velocity of mass 1

admits the Kirchhoff’s laws:




iC
vL1
vL2
−is


=




0 1 −1 0
−1 0 0 1
1 0 0 0
0 −1 0 0




︸ ︷︷ ︸
skew-symmetric




vC
iL1
iL2
vs



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LC circuit with voltage source: port Hamiltonian system

The port Hamiltonian formulation of the electrical circuit with
source




d

dt




qC
φL1

φL2


 =

Poissonbracket︷ ︸︸ ︷


0 1 −1
−1 0 0
1 0 0




dH0︷ ︸︸ ︷


vC
iL1
iL2


+




0
1
0




︸ ︷︷ ︸
input vectorfield

vs

is = (0,1,0)︸ ︷︷ ︸
〈g ,




vC
iL1
iL2




︸ ︷︷ ︸
dH0〉

B. Maschke Port-Hamiltonian systems



Motivation and objectives
Modelling origins of Port Hamiltonian systems

Control of Port Hamiltonian systems
Irreversible port Hamiltonian systems

Conclusion

Lagrangian and Hamiltonian systems
Control Hamiltonian systems
Port Hamiltonian systems
Port Hamiltonian systems
Examples of Port-Hamiltonian systems
Properties of Port Hamiltonian systems

Spinning body with one actuating wrench

Spinning body with actuating wrench




d

dt




px
py
pz


 =

Lie−Poissonbracket︷ ︸︸ ︷


0 −pz py
pz 0 −px
−py px 0




dK︷ ︸︸ ︷


vx
vy
vz


+




0
1
0




︸ ︷︷ ︸
input vectorfield

γ

y = (0,1,0)︸ ︷︷ ︸
〈g ,




vx
vy
vz




︸ ︷︷ ︸
dH0〉

where K (p) = 1
2p

tJ−1p is the kinetic energy and dK (p) is the
velocity.
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Port Hamiltonian systems: skew-symmetry

The port Hamiltonian systems is defined by: pseudo-Poisson tensor
and two dual input-output relations.

This extends the skew-symmetric map Λ] to the map TΛ],gi :

T ∗x M ×Rn −→ TxM ×Rn
(

dH0(x)
u

)
7−→

(
X
−y

)
=

(
Λ] (dH0(x))+∑

m
i=1 uigi

−LgiH0(x)

)

It is linear and skew-symmetric.
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Port Hamiltonian systems: skew-symmetry

It is better seen in coordinates where the map TΛ],gi becomes:

T ∗x M ×Rn −→ TxM ×Rn
(

∂H0(x)
∂x
u

)
7−→

(
X
−y

)
=

(
J (x) g (x)
−g t (x) 0

)

︸ ︷︷ ︸
skew-symmetric

(
∂H0(x)

∂x
u

)

Recall Kirchhoff’s laws for the LC-circuit with voltage source:



iC
vL1
vL2
−is


=




0 1 −1 0
−1 0 0 1
1 0 0 0
0 −1 0 0




︸ ︷︷ ︸
skew-symmetric




vC
iL1
iL2
vs



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Skew-symmetry and balance equation

The time derivative of the internal Hamiltonian function is:

dH0

dt
= 〈dH0, XH0〉+

m

∑
j=1

uj〈dH0, gi 〉

which by skew-symmetry of the map TΛ],gi becomes the power
balance equation:

dH0

dt
=

m

∑
j=1

ujyj

If H0 is bounded from below, the system is lossless.

For any Casimir function C (x) there is a balance equation:
dC
dt = ∑

m
j=1 uj 〈dC , XH0〉.
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Dissipative Port Hamiltonian systems

Dissipative Port Hamiltonian systems
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Example of an RLC circuit

Consider the RLC circuit with its interconnection graph :

CAUSALITÉ DE SJS GRAPHIQUE:
EXEMPLE DE CIRCUIT ÉLECTRIQUE (5)

Diagramme iconique Graphe d’interconnexion

11 0
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RLC circuit, spanning tree and Kirchhoff’s laws

Consider the following spanning tree {C1, R} :

LOIS DE KIRCHHOFF :

STRUCTURE DE JONCTION SIMPLE

Exemple de circuit électrique:

Diagramme iconique Graphe d’interconnexion

Arbre maximal:

Structure de jonction simple:

0 01

1

cocycle

cocycle
cycle

cycle

admits the Kirchhoff’s laws:



iC1

vL1
vL2
iR


=




0 1 0 0
−1 0 0 1
0 0 0 −1
0 −1 1 0




︸ ︷︷ ︸
skew-symmetric




vC1

iL1
iL2
vR



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RLC circuit as Port Hamiltonian system with dissipation

The circuit variables corresponding to the resistor are considered as
port variables :




d

dt




qC1

φL1

φL2


 =

Poissonbracket︷ ︸︸ ︷


0 1 0
−1 0 0
0 0 0




dH0︷ ︸︸ ︷


vC1

iL1
iL2


+




0
1
−1




︸ ︷︷ ︸
input vectorfield gR

vR

iR = (0,−1, 1)︸ ︷︷ ︸
〈gR ,




vC1

iL1
iL2




︸ ︷︷ ︸
dH0〉

subject to Ohm’ law : vR = R iR
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RLC circuit as dissipative Port Hamiltonian system

Eliminating the dissipative relation vR = R iR one obtains :

d

dt




qC1
φL1
φL2


=

Poissonbracket︷ ︸︸ ︷


0 1 0
−1 0 0
0 0 0




dH0︷ ︸︸ ︷


vC1
iL1
iL2




︸ ︷︷ ︸
Hamiltonianvectorfield

−

pseudometric︷ ︸︸ ︷


0
1
−1


R (0,1,−1)

dH0︷ ︸︸ ︷


vC1
iL1
iL2




︸ ︷︷ ︸
gradientvectorfield

the sum of a Hamiltonian and a gradient vector field.

As the generating functions are equal : H0 (x), one may write :

d

dt




qC1

φL1

φL2


=

Leibnizbracket︷ ︸︸ ︷


0 1 0
−1 −R R
0 R −R




dH0︷ ︸︸ ︷


vC1

iL1
iL2




called dissipative Hamiltonian system.B. Maschke Port-Hamiltonian systems
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Port Hamiltonian systems with dissipation in coordinates

Consider Port Hamiltonian system with structure matrix J (x) and
Hamiltonian function H0 (x):

port variables (u,y) ∈ Rm×Rm

dissipation port variables(uR ,yR) ∈ Rp×Rp:




ẋ = J(x) ∂H0
∂x + ∑

m
i=1 uigi (x)+∑

p
i=1 u

R
i g

R
i (x)

yi = gi (x) ∂H0
∂x

yRj = gR
j (x)t ∂H0

∂x

and dissipative closure equation defined by a symmetric matrix
R] (x) and:

uR = R](x) yR
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Dissipative Port Hamiltonian systems

Eliminating the dissipation port variables, one obtains a dissipative
Port Hamiltonian system:

Definition
A dissipative Port Hamiltonian system on Rn is defined by:
(i) a skew-symmetric structure matrix J (x) =−Jt (x)
(ii) a symmetric (positive) structure matrix R (x) = Rt (x)≥ 0
(iii) a Hamiltonian function H0 (x)
and the dynamical equations:

{
ẋ = [J(x)−R (x)] ∂H0

∂x + ∑
m
i=1 uigi (x)

yi = gi (x) ∂H0
∂x

where R (x) = gRR]
(
gR
)t .
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Port Hamiltonian systems with dissipation: intrinsic
formulation

Consider Port Hamiltonian system with
port variables (u,y) ∈U ×U ∗ where U and U ∗ are vector
bundle on M

dissipation port variables(uR ,yR) ∈UR ×U ∗
Rwhere UR and

U ∗
R are vector bundle on M :





ẋ = XH0 + ∑
m
i=1 uigi+∑

p
j=1 u

R
i g

R
i

yi = 〈dH0, gi 〉
yRj = 〈dH0, g

R
i 〉

and dissipative closure equation uR = R]
x(yR) defined by a

symmetric (positive) contravariant positive tensor R with R] is
the associated vector bundle morphism.
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Elimination of dissipation port variables and Leibniz bracket

Definition
The Leibniz bracket [ , ] Λ,gR ,R is defined by:

[F ,G ] Λ,gR ,R = Λ(F ,G )−〈dF ,R(x)〈dG ,g〉g〉

and has in coordinates the structure matrix:

J(x)− (gR)t R(x)gR(x)

Neither skew-symmetric nor symmetric it defines a left bundle
morphism:

M]
L : T ∗M → TM

ω 7→ X = M]
L (ω)

such that: M]
L(ω)(α) = [F ,G ] Λ,gR ,R(α, ω), ∀α ∈ Ω1(M )
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Power balance equation

The port Hamiltonian system with dissipation:
{

ẋ = [x ,H0]Λ,gR ,R + ∑
m
i=1 uigi

yi = 〈dH0, gi 〉

satisfies the power balance equation:

dH0

dt
=

m

∑
j=1

ujyj − [H0,H0]Λ,g ,R

which depends only on the symmetric part of the bracket, in
coordinates:

dH0

dt
=

m

∑
j=1

ujyj −
∂H0

∂x

t

(gR)
t
R(x)gR(x)

∂H0

∂x
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Examples of Port-Hamiltonian systems

Examples of Port Hamiltonian systems
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1-D mechanical systems

1-dimensional mechanical systems are analogous to circuits :
relative velocities are cycle variables
forces are cocycle variables

Consider the mechanical system :

1–D MECHANICAL SYSTEMS

Schematic diagram: port connection

graph

Elements:

Kirchhoff’s and Tellegen’s laws apply:

kinematic and static relations.

– across variables = velocities

– through variables = forces.

Port connection graph:

relation between through and across variables

– fundamental cycle matrix: 

– relation:  .

write the the port-Hamiltonian systems obtained from Lagrange
and Euler modelling and compare.
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The levitating ball : total energy

Consider the iron ball levitating in a magnetic field :

Passive control examples

Magnetic levitation system

m y

φ

g

u i

Equations of motion

φ̇ = −Ri + u

ẏ = v

mv̇ = Fm + mg

with φ = L(y)i the linkage flux, R the resistance of the coil, and Fm the magnetic force.

EURON/GEOPLEX Summer School on Modelling and Control of Complex Dynamical Systems: from Ports to Robotics, Bertinoro, July 6-12 2003 – p.38/59

The total energy is : H0(x) = 1
2L(x2)x1

2 + 1
2mx3

2−mgx2

where : x1 = φ is the total magnetic flux, x2 = y is the displacement of
the ball and x3 is the kinetic momentum of the ball, m is the mass, g the
gravitational constant and L(x2) = L∞ + k

(a+x2) , L∞ > 0, a> 0, k > 0.
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The levitating ball : the port Hamiltonian model

The port Hamiltonian model is obtained as :

dx

dt
=







0 0 0
0 0 1
0 −1 0




︸ ︷︷ ︸
J

−




R 0 0
0 0 0
0 0 0




︸ ︷︷ ︸
R




∂H0

∂x
(x) +




1
0
0




︸ ︷︷ ︸
g

u

with u the input voltage, R is the electric resistance in the coil and:

∂H0

∂x
(x) =




x1
L(x2)
x3
m

− 1
2

dL
dx2

(x2)
(

x1
L(x2)

)2
−mg




current through the coil I
velocity of the ball
electro-motive+gravity force

and conjugated output: y = ∂H0
∂x1

= I
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The levitating ball : coupling through energy

The coupling between the mechanical and magnetic domain :
does not occur through the structure matrices as :

J−R =



−R 0 0
0 0 1
0 −1 0




magneticdomain
mechanical potential domain
mechanical kinetic domain

is bloc-diagonal
occur through the Hamiltonian which is not separated :

H0(x) =
1

2L(x2)
x1

2+
1
2m

x3
2−mgx2
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A microphone: the total energy

Consider the model of microphone:

geometric structures play a role: the internal interconnection structure given by J(x), and an
additional resistive structure given by R(x), which is determined by the port structure gR(x)
and the linear constitutive relations uR = −SyR of the resistive elements.

Regarding Casimir functions for a port-Hamiltonian system with dissipation (33) we con-
sider functions C : X → R satisfying the set of p.d.e.’s

∂T C

∂x
(x) [J(x) − R(x)] = 0, x ∈ X , (35)

implying that the time-derivative of C along solutions of the system (33) for u = 0 is zero
(irrespective of the Hamiltonian H).
A stronger notion of Casimir functions is obtained by considering functions C : X → R which
are Casimir functions for both geometric structures defined by J(x) and R(x), that is

∂T C
∂x (x)J(x) = 0

∂T C
∂x (x)R(x) = 0

(36)

If (36) holds for independent functions C1, . . . , Cr, then in any set of local coordinates (z,C) =
(z1, . . . zl, C1, . . . Cr) the dynamics (33) for u = 0 takes the form

[
ż

Ċ

]
=

([
J̃(z,C) 0

0 0

]
−

[
R̃(z,C) 0

0 0

])


∂H
∂z

∂H
∂C


 , (37)

which can be restricted on any multi-level set {x ∈ X|(C1(x), . . . , Cr(x)) = c ∈ Rr} to

ż =
[
J̃(z,C = c) − R̃(z,C = c)

] ∂H

∂z
(z,C = c) (38)

E

F

C

R

Figure 2: Capacitor microphone

Example 2.6. ([35]) Consider the capacitor microphone depicted in Figure 2. Here the
capacitance C(q) of the capacitor is varying as a function of the displacement q of the right
plate (with mass m), which is attached to a spring (with spring constant k > 0 ) and a damper
(with constant c > 0), and affected by a mechanical force F (air pressure arising from sound).

11

The total energy is: H (q, p, Q) = 1
2k (q− q̄)2 + 1

2m p2 + 1
2C (q)Q

2

where q is the displacement, p the momentum of the plate, Q the charge
of the condensator and C (q) = ε0

S
q , ε0 is the permittivity of the air.
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A microphone: port Hamiltonian model

The port-Hamiltonian model is:

d

dt




q
p
Q


=







0 1 0
−1 0 0
0 0 0




︸ ︷︷ ︸
J

−




0 0 0
0 ν 0
0 0 1

R




︸ ︷︷ ︸
R]




∂H

∂x
(x)+




0
1
0


F+




0
0
1
R


E

where F is the force exerted by acoustic pressure and E is the input
voltage, with conjugated outputs:

yF =
∂H

∂p
= q̇ yE =

1
R

∂H

∂Q
= I
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A microphone : coupling through energy

The coupling between the mechanical and magnetic domain :
1 does not occur through the structure matrices as :

J−R =




0 1 0
−1 0 0
0 0 0− 1

R




mechanical potential domain
mechanical kinetic domain
electricaldomain

is bloc-diagonal
2 occur through the Hamiltonian which is not separated :

H (q, p, Q) =
1
2
k (q− q̄)2 +

1
2m

p2 +
1

2C (q)
Q2
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Permanent Magnet Synchronous Motor

In the dq coordinates the dynamic model is:

Ld
did
dt = −Rs id + ωLq iq + vd

Lq
diq
dt = −Rs iq + ωLdΦ + vq

Idω

dt = nP ((Ld −Lq) id iq + Φ iq− τl)

where:
1 iq and ip are the current in dq coordinates,
2 ω the angular velocity
3 nP is the number of pole pairs, Ld and Lq are stator

inductances in the dq frame,Rs is stator winding resistance, τl

is a constant unknown load torque, Φ is back emf constant
and I the moment of inertia.
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P M S Motor: Hamiltonian formulation

The total energy is: H0 (x) = 1
2
x21
Ld

+ 1
2
x22
Lq

+ 1
2

x23
(I/nP)

with conserved variables: φd = x1 and φq = x2 the magnetic fluxes
in dq coordinates and the kinetic momentum p.

The PMSM admits a port-Hamiltonian formulation:

dx

dt
= (J (x)−R)

∂H0

∂x
+




1 0
0 1
0 0



(

vd
vq

)
+




0
0
− 1

nP


τl

with structure matrices:

J (x) =




0 0 x2
0 0 −(x1 + Φ)
−x2 (x1 + Φ) 0


 and R =




Rs 0 0
0 Rs 0
0 0 0



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A power converter: boost converter

Consider the boost converter:

3.3. Modeling of DC–to–DC Converters with Ideal Switches 25

In correspondence with the nonconservative switched Lagrangian function we
may also introduce the set of switched EL parameters as a set of functions
parameterized by which are consistent, in the sense described above, with respect to the
EL parameters of the systems and for each corresponding value of . Similarly, the
definition can also be extended, in an obvious manner, to comprise the dynamical switched
model of the switched system to be a model, parameterized by , which is consistent
with and for each corresponding value of .

A switched system arising from the EL systems and is a switched EL system
whenever it is completely characterized by its set of switched EL parameters

(3.4)

The basic problem in an EL approach to the modeling of switched systems, arising
from individual EL systems, is the following:

Definition 3.3 [Modeling Problem for Switched EL Systems]
Given two EL systems and characterized by EL parameters, and

, respectively, determine a consistent parameterization of the EL parame-
ters, in terms of the switch position , with corresponding nonconserva-
tive switched Lagrangian , such that the model obtained by direct application of the
EL equations (2.2) on , results in a parameterized model , which is consistent with

and .

Consistent parameterizations of the EL parameters, by means of the switch position
parameter , may be, generally speaking, carried out in an infinite number of ways. We
follow here the rules given in [57] to define such parameterizations, where the authors
propose to respect the essential nature of the fundamental physical laws that intervene.

The following section gives some applications of the above result to the derivation of
switched models of DC–to–DC power converters. The proposedmethodology is shown in
detail for the case of the boost converter, then the results for other converters are summa-
rized in a form of tables containing the main points treated in the methodology.

3 Modeling of DC–to–DC Converters with Ideal Switches

3.1 The “Boost” converter circuit

Consider the switch–regulated “Boost” converter circuit of Figure 3.1.

u = 1

-

L

+ -

RC

+

C R

-

1 u

0
-

L
+

L

+

-

+

-

+

C R

u = 0

-

+

E E E

Figure 3.1: The “Boost” Converter Circuit.

The differential equations describing the circuit were derived in [49] using the classic
Kirchoff laws. Such set of equations are given by

The averaged model controlled by Pulse Width Modulation with slew rate
u ∈ [0, 1] may be written as Port Hamiltonian system :

dx

dt
= [J (u)−R]

∂H0
∂x

+

(
1
0

)

︸ ︷︷ ︸
g

E yE =
∂H0
∂x1

=
x1
L︸︷︷︸

current in source

with :
state variables : x1 magnetic flux and x2 the electrical charge
Hamiltonian (the electro-magnetic energy) : H0 (x) =

1
2
x2
1
L + 1

2
x2
2
L

structure matrices : J (u) =
(

0 −u
u 0

)
and R =

(
0 0
0 1

R

)
where R is

the output load resistance
port input : the voltage source E
input slew rate u ∈ [0, 1] : is not power input but modulates
interconnection
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Comparison with input-output Hamiltonian systems
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Comparison with input-output Hamiltonian systems

Port Hamiltonian systems weaken the structure compared to
input-output Hamiltonian systems :

the skew-symmetric bracket (structure matrix J (x)) may not
satisfy the Jacobi identities
the input vector fields are not Hamiltonian :
@Hi (x) s.t. : gi (x) = J (x) ∂Hi

∂x

the bracket may include dissipation :J (x)−R (x)

outputs are different

ẋ = [J(x)−R (x)] ∂H0
∂x + ∑

m
i=1 uigi (x)

yi = gi (x) ∂H0
∂x︸ ︷︷ ︸

port Hamiltonian system

ẋ (t) = J(x) ∂H0
∂x + ∑

m
i=1 ui

[
J(x) ∂Hi

∂x

]

ỹi (t) = Hi (x (t))
︸ ︷︷ ︸

Input-output Hamiltonian system
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Input vector fields are not Hamiltonian for networks (1)

Consider the LC circuit wih voltage source :

35

EXAMPLE: SCALAR NETWORKS

A

B

v

0

Third order port–controlled Hamiltonian system:

– Hamiltonian function is energy function
– structure matrix given by the interconnections

–input field is not Hamiltonian: 

current through the inductor

velocity of mass 1
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Interconnection of Port Hamiltonian systems

Interconnection of Port Hamiltonian systems
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Feedback interconnection of Port Hamiltonian Systems : in
coordinates

Consider two Port Hamiltonian systems, k = 1,2 with structure
matrices Jk , input vector fields gk

i , interconnection vector fieldsγki
and Hamiltonian functions Hk

0
(
xk
)
:





ẋk = Jk
(
xk
)

∂Hk
0

∂xk
+ ∑

mk

i=1 u
k
i g

k
i

(
xk
)

+ ∑
m
i=1 v

k
i γki

(
xk
)

yki =
(
gk
i

)t ∂Hk
0

∂xk

ιki =
(
γki

)t ∂Hk
0

∂xk

with feedback interconnection:
γ1i = ι2i
γ2i = −ι1i

Note that it is power continuous: γ1i ι1i + γ2i ι2i = 0
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Feedback interconnection of Port Hamiltonian Systems

Consider two Port Hamiltonian systems, k = 1,2 with
pseudo-Poisson tensor Λk , input vector fields gk

i , interconnection
vector fieldsγki and Hamiltonian functions Hk

0
(
xk
)
:





ẋk = XHk
0

+ ∑
mk

i=1 u
k
i g

k
i + ∑

m
i=1 v

k
i γki

yki = 〈dHk
0 , g

k
i 〉

ιki = 〈dHk
0 , γki 〉

with feedback interconnection:
γ1i = ι2i
γ2i = −ι1i

Note that it is power continuous: γ1i ι1i + γ2i ι2i = 0
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Composed Port Hamiltonian System

Composed port Hamiltonian system:
on product manifold M 1×M 2

endowed with composed pseudo-Poisson bracket { , }:

{F , G}= Λ1 (dx1F , dx1G)+Λ2 (dx2F , dx2G)+
〈
dx1F ,

〈
dx2G , γ

2
i

〉
γ
1
i

〉
−
〈
dx2F ,

〈
dx1G , γ

2
i

〉
γ
1
i

〉

generated by total Hamiltonian: H (x1, x2) = H1
0 (x1) +H2

0 (x2)

with product input vector fields g = g1⊗g2
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Composed Port Hamiltonian System

Composed port Hamiltonian system generated by total Hamiltonian:

H0 (x1, x2) = H1
0 (x1) +H2

0 (x2)

is given by:

d
dt

(
x1

x2

)
=

(
J1
(
x1
)

γ1
(
x1
)(

γ2
)t (

x2
)

−γ2
(
x2
)(

γ1
)t (

x1
)

J2
(
x2
)

)(
∂H0
∂x1
∂H0
∂x2

)

+ ∑
m1
i=1 u

1
i

(
g1i
(
x1
)

0

)
+ ∑

m1
i=1 u

2
i

(
0

g2i
(
x2
)
)

y1i =
(
g1i
)t ∂H0

∂x1

y2i =
(
g2i
)t ∂H0

∂x2
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Conclusion

Port Hamiltonian systems are an extension of Hamiltonian systems:
extend the Poisson bracket from generalized velocities/forces
to include a pair of conjugated port variables
relax the integrability conditions : Jacobi identities and
Hamiltonian input vector fields
allows to write balance equations including energy flows from
the environment
allows for interconnection (or composition) of Hamiltonian
systems
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Control of Port Hamiltonian systems
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Stabilization using the port Hamiltonian structure : 2 routes

In the sequel we present two ways of using the port Hamiltonian
structure for nonlinear regulation :

1 Control by interconnection : derive the state feeedback
u = u (x) from the feedback interconnection of the PHS with a
virtual controller as PHS and reduction using Casimir
functions.

2 Interconnection and Damping Assignment-Passivity-Based
Control (IDA-PBC) : find state feeedback u = u (x) such that
closed-system is port Hamiltonian with assigned structure
matrices and Hamiltonian :

dx

dt
= (Jd (x)−Rd (x))

∂Hd

∂x
(x)
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Embedding by interconnection

Consider a Port Hamiltonian System on x (t) ∈ Rn with structure
matrices J (x) =−Jt (x), R (x) = Rt (x)≥ 0, inputs u (t) ∈ Rm and
outputs y (t) ∈ Rm :

Σ

{
ẋ = (J(x)−R (x)) ∂H0

∂x +g(x)u

y = g (x) ∂H0
∂x

and a controller system being a simple integrator xc ∈ Rm with
Hamiltonian Hc (xc) :

Σc

{
ẋc = uc
yc = ∂Hc

∂xc

with feedback interconnection :
(

u
uc

)
=

(
0 1
−1 0

)(
y
yc

)
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Embedding system

The embedding system is :

d
dt

(
x
xc

)
=

(
J (x)−R (x) g (x)
−g t (x) 0

)(
∂Hcl
∂x

∂Hcl
∂xc

)
+

(
g (x)
0

)
u

y =
(
g (x)t , 0

)
(

∂Hcl
∂x

∂Hcl
∂xc

)

with closed-loopHamiltonian :Hcl (x , xc) = H0 (x) +Hc (xc).

Note that Je =

(
J (x) g (x)
−g t (x) 0

)
is the extension of the

pseudo-Poisson bracket defined by J (x) including the port-variables !
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Reduction by Casimir function : shaping the Hamiltonian

Assume that the extended structure matrix :

Je =

(
J (x)−R (x) g (x)
−g t (x) 0

)

admits m (left-)Casimir functions Ci (x , xc) :

(
∂C

∂x

t

,
∂C

∂xc

t)
Je = 0

and assume that they are of the type :

C (x , xc) = F (x)−xc
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Interpretation of the Casimir function of the augmented
bracket

A Casimir function C (x , xc) satisfies :
(

∂F

∂x

t

, −Im
)(

J (x)−R (x) g (x)
−g t (x) 0

)
= 0

or satisfies :

1 the input vector fields are g (x) = (J (x) +R (x)) ∂F
∂x dissipative

Hamiltonian w.r.t. (J (x)+R (x))

2 transversality condition with respect to input distribution :
∂F
∂x

t
g (x) = LgF (x) = 0
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Reduction by Casimir function : shaping the Hamiltonian

Then on the invariant submanifold C (x , xc) = 0 the dynamics is :
dx
dt = (J (x)−R (x)) ∂H0

∂x +g (x) ∂Hc
∂xc

(F (x))

= (J (x)−R (x)) ∂H0
∂x +

=g(x)︷ ︸︸ ︷
(J (x)+R (x))

∂F

∂x
∂Hc
∂xc
◦F (x)

= (J (x)−R (x)) ∂

∂x (H0 +Hc ◦F )+2R (x) ∂

∂x (Hc ◦F )

If R (x) ∂F
∂x = 0, then the reduced dynamics is :

dx

dt
= (J (x)−R (x))

∂Hd

∂x

and the state feedback : u (x) = ∂Hc
∂xc
◦F (x) shapes the

Hamiltonian : Hd (x) = H0 (x) +Hc ◦F (x)
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Equivalent conditions : dissipation obstacle

The previous conditions are equivalent to :

1 the input vector fields are g (x) = (J (x) +R (x)) ∂F
∂x dissipative

Hamiltonian w.r.t. (J (x)+R (x))

2 transversality condition with respect to input distribution :
∂F
∂x

t
g (x) = LgF (x) = 0

3 the dissipation obstacle is not present R (x) ∂F
∂x = 0 : the

function C (x , xc) is a left and right Casimir function
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Design of the stabilizing controller

Assuming that (J (x)−R (x)) admits a (left) Casimir function,

design the control u (x) = ∂Hc
∂xc
◦F (x) + v :

1 choose Hc such that Hd (x) = H0 (x) +Hc ◦F admits a
minimum at some state x∗ and is a closed-loop Lyapunov
function

2 use dissipative feedback :
v =−Rc g (x)t ∂Hd

∂x

(
=−Rc g (x)t ∂H0

∂x

)

then the power balance equation is :

dHd
dt =− ∂Hd

∂x

t
R ∂Hd

∂x −
∂Hd
∂x g (x) Rc g

t (x) ∂H0
∂x

= − ∂Hd
∂x

t
(R +g (x) Rc g

t (x)) ∂Hd
∂x

and apply Lasalle’s theorem.
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Discussion

1 The feedback modifies the closed-loop Hamiltonian but not
the structure matrices :

dx

dt
=(J (x)−R (x))

∂

∂x
(H0+Hc ◦F )

2 It resembles completely to the feedback of input-output
systems :

u (x) =
∂Hc

∂xc
◦Hi (x) + v

where Hi (x) is the interaction Hamiltonian but generalizes to
Leibniz bracket : (J (x)−R (x))
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Example : series RLCS circuit (model)

Consider the circuit :

Finite dissipation example

1
1C

1
L

1C

L

u

2R

qC

ϕL

State x
!
= [qC , φL]", energy H(x) = 1

2C x2
1 + 1

2Lx2
2.

Remarks:
• Equil: x∗ = [x1∗, 0]" ⇒ zero extracted power!
• Only need to “shape" x1

– p. 39/137

with port Hamiltonian model with state variables x = [qC ,φL]> the
charge in the capacitor and the flux in the inductance :

d
dt

(
qC
φl

)
=

(
0 1
−1 −R

)( ∂H0
∂qc
∂H0
∂φL

)
+

(
0
1

)
u

y =
(
0 1

)
(

∂H0
∂qc
∂H0
∂φL

)

with Hamiltonian: H0 (qC ,φL) =
q2C
2C +

φ2
L
2L , the total electromagnetic
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Example : series RLCS circuit (energy shaping)

The conditions for energy shaping by interconnection are :
1 the input vector field is dissipative Hamiltonian :

g (qC ,φL) =

(
0
1

)
=

(
0 1
−1 −R

)( ∂F
∂qc
∂F
∂φL

)
with :

F (qC ,φL) =−qC
.

2 transversality condition satisfied :(
∂F
∂qc

∂F
∂φL

)
g (qC ,φL) =

(
−1 0

)( 0
1

)
= 0

3 the dissipation obstacle is not present

R (qC ,φL)

(
∂F
∂qc
∂F
∂φL

)
=

(
0 0
0 −R

)(
−1
0

)
= 0
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Example : series RLCS circuit (stabilization)

Hence the Hamiltonian may be shaped to :

Hd (qC ,φL) = H0 (xqC ,φL) +Hc ◦F (qC ,φL) =
q2C
2C

+
φ2
L

2L
+Hc (qc)

and has a minimum at (qC ,φL)∗ = (q∗C ,0) by choosing :

Hc(qC ) =
1

2Ca
q2C −

(
1
C

+
1
Ca

)
q∗C qC + κ Ca >−C ; κ ∈ R

and apply dissipative control:

v =−Rc

(
0 1

)
( (

1
C + 1

Ca

)
(qC −q∗C )

φL
L

)
=−Rc

φL

L

only changes value of Ohm’s dissipation to R +Rc but stabilizes.
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Example : paralell RLCS circuit (model)

Consider the circuit :

Infinite dissipation example

1
L

1Cu 2R 1

L

1C
q C

ϕL

Remarks
• Only the dissipation has changed.
• x∗ = [Cu∗, L

Ru∗]" ⇒ nonzero power (∀u∗ #= 0) ⇒

limt→∞ |
∫ t

0
u(s)y(s)ds| = ∞

for any stabilizing controller (run down the battery!)

– p. 42/137

with port Hamiltonian model with state variables x = [qC ,φL]> the
charge in the capacitor and the flux in the inductance :

d
dt

(
qC
φl

)
=

(
− 1

R 1
−1 0

)( ∂H0
∂qc
∂H0
∂φL

)
+

(
0
1

)
u

y =
(
0 1

)
(

∂H0
∂qc
∂H0
∂φL

)

with Hamiltonian: H0 (qC ,φL) =
q2C
2C +

φ2
L
2L , the total electromagnetic

energy.
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Example : series RLCS circuit (dissipation obstacle)

The conditions for energy shaping by interconnection are :
1 the input vector field is dissipative Hamiltonian :

g (qC ,φL) =

(
0
1

)
=

(
− 1

R 1
−1 0

)( ∂F
∂qc
∂F
∂φL

)
⇐⇒

{
∂F
∂qc

=−1
∂F
∂φL

=− 1
R

⇐⇒F (qC ,φL) =−qC +−φL

R
+κ0

2 transversality condition not satisfied :(
∂F
∂qc

∂F
∂φL

)
g (qC ,φL) =

(
−1 − 1

R

)( 0
1

)
6= 0

3 the dissipation obstacle is present

R (qC ,φL)

(
∂F
∂qc
∂F
∂φL

)
=

(
− 1

R 0
0 0

)(
−1
− 1

R

)
6= 0
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Example : pendulum (model)

Consider the pendulum without damping

q̇ =
p

m
ṗ = −mg sinq+u

with state variables x = [q,p]T with q the configuration and p the
momentum.
The port Hamiltonian model is:

d
dt

(
q
p

)
=

(
0 1
−1 0

)

︸ ︷︷ ︸
J

(
∂H0
∂q

∂H0
∂p

)
+

(
0
1

)

︸ ︷︷ ︸
g

u

y = (01)

(
∂H0
∂q

∂H0
∂p

)
= p

m

with Hamiltonian :H0(q, p) = mg(1− cosq) + 1
2mp2

B. Maschke Port-Hamiltonian systems



Motivation and objectives
Modelling origins of Port Hamiltonian systems

Control of Port Hamiltonian systems
Irreversible port Hamiltonian systems

Conclusion

Rationale
Control by constant interconnection : definition
Control by constant interconnection : examples
Control by assignment of structure matrices and energy : definition
Control by assignment of structure matrices and energy : examples

Example : pendulum (extended Casimir functions)

Recall : we look for Casimir functions such as :

C (q, p, xc) = F (q, p)−xc

that is functions F (q, p) satisfying :
1 input vector field is Hamiltonian :

g =

(
0
1

)
= J (x) ∂F

∂x =

(
∂F
∂p

− ∂F
∂q

)

2 the gradient of F is transversal to g :
LgF (x) = 0 = ∂F

∂x

t
g (x) = ∂F

∂p

hence a generating function is : F (q, p) =−q
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Example : pendulum (control)

For the controller design we choose a function HC (xc) such that
Hd (x) = H0 (x) +Hc ◦F has a minimum at the desired equilibrium
x∗ = (x∗1 ,0).
The simplest choice is given by

HC (xc) = cosxc +
1
2

(xc + x∗1)2

The control is finally obtained is:

u =−∂HC

∂xc
(xc) |xc=−q = sinq− (q−x∗1)

which is the well-known “proportional plus gravity compensation
control"
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Control by assignment of structure matrices and energy

Control by assignment of structure matrices and
energy :
IDA-PBC
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Objectives of IDA-PBC : closed-loop PHS

Consider a Port Hamiltonian System on x (t) ∈ Rn with structure
matrices J (x) =−Jt (x), R (x) = Rt (x)≥ 0, inputs u (t) ∈ Rm and
outputs y (t) ∈ Rm :

Σ

{
ẋ = (J(x)−R (x)) ∂H0

∂x +g(x)u

y = g (x) ∂H0
∂x

find a static state-feedback control u = β (x) such that the
closed-loop dynamics is a Port Hamiltonian system with dissipation:

Σd : ẋ = [Jd(x)−Rd(x)]
∂Hd

∂x
(x) +g(x)v

with skew-symmetric matrix Jd(x), any positive-semidefinite matrix
Rc(x).
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Objectives of IDA-PBC : matching equation

Set :

Ja(x) = Jd(x)−J(x) and Ra(x) = Rd(x)−R(x)

and :
K (x) =

∂Hd

∂x
(x)− ∂H0

∂x
(x) =

∂Ha

∂x
(x)

then the desired closed-loop behaviour leads to the matching
equation :

−(Ja−Ra)
∂H0

∂x
(x) +g (x)β (x) = [(J (x) +Ja (x))− (R (x) +Ra (x))]

∂Ha

∂x
(x)

with design parameters Ja(x), Ra(x) and Ha(x) .
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IDA-PBC with assigned structure matrices

In this procedure one :
1 fixes some structure matrices Ja(x) and Ra(x)
2 solves a PDE in Ha(x) obtained by pre-multiplying the

matching equation by a left annihilator g⊥ (x) of g (x) (full -rank
m×n matrix satisfying g⊥ (x)g (x) = 0):

−g⊥ (x)(Ja−Ra)
∂H0
∂x

(x)= g⊥ (x) [(J (x)+Ja (x))− (R (x)+Ra (x))]
∂Ha

∂x
(x)

3 computes the control:

β (x) =
[
g t (x)g (x)

]−1
g t (x){

[(J (x)+Ja (x))− (R (x)+Ra (x))]
∂Ha
∂x (x)+(Ja−Ra)

∂H0
∂x (x)

}
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Objectives of IDA-PBC : stabilization

Assume that the control objective is to stabilize the system at the
state x∗and that the IDA-PBC has a solution such that :

1 Hd (x) is a Lyapunov function with strict minimum at x∗

2 the largest invariant set in closed-loop contained in{
x ∈ Rn/ ∂Hd

∂x

t
(x)Rd (x) ∂Hd

∂x (x) = 0
}

is {x∗}

then the point x∗ is asymptotically stable in closed-loop

with estimated domain of attraction by larget bounded level set of
Hd (x) .
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Example : parallel RLCS circuit (model)

Consider the circuit :

Infinite dissipation example

1
L

1Cu 2R 1

L

1C
q C

ϕL

Remarks
• Only the dissipation has changed.
• x∗ = [Cu∗, L

Ru∗]" ⇒ nonzero power (∀u∗ #= 0) ⇒

limt→∞ |
∫ t

0
u(s)y(s)ds| = ∞

for any stabilizing controller (run down the battery!)

– p. 42/137

with port Hamiltonian model with state variables x = [qC ,φL]> the
charge in the capacitor and the flux in the inductance :

d
dt

(
qC
φl

)
=

(
− 1

R 1
−1 0

)( ∂H0
∂qc
∂H0
∂φL

)
+

(
0
1

)
u

y =
(
0 1

)
(

∂H0
∂qc
∂H0
∂φL

)

with Hamiltonian: H0 (qC ,φL) =
q2C
2C +

φ2
L
2L , the total electromagnetic

energy.
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Parallel RLCS circuit : matching equation

Choice of structure matrices and associated added Hamiltonian
Ha (x) :

1 choose added structure matrices

Ja(x) =

(
0 0
0 0

)
and Ra(x) =

(
0 0
0 Ra

)
Ra >−R

2 solve a PDE in Ha(x) using the left annihilator

g⊥ (x) =
(
1 0

)
of g (x) =

(
0
1

)
, the matching equation :

−g⊥ (x)(Ja−Ra)
∂H0
∂x

(x)= g⊥ (x) [(J (x)+Ja (x))− (R (x)+Ra (x))]
∂Ha

∂x
(x)

becomes :

0 =
(
− 1

R 1
)
(

∂Ha
∂qc
∂Ha
∂φL

)
=− 1

R

∂Ha

∂qc
+

∂Ha

∂φL
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Parallel RLCS circuit : closed-loop equilibria

The solutions of the matching equation are :

Ha (qc , φL) = H (R qc + φL) H ∈ C∞ (R)

hence the closed-loop Hamiltonian is

Hd (qC ,φL) =H0 (qC ,φL)+H (R qc + φL) =
q2C
2C

+
φ2
L

2L
+H (R qc + φL)

The equilibrium in closed-loop is given by:

R
φ ∗L
L
− q∗C

C
= 0 and

φ ∗L
L

+
∂H

∂ξ

([
1+

R2C

L

]
φ
∗
L

)
= 0
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Parallel RLCS circuit : two possible H

1 Case 1 : H (ξ ) = k ξ2

2 then :

φ
∗ ∈ R and k =−

(
L+R2C

)

L2
< 0

and H (ξ ) is concave !

2 Case 2 : H (ξ ) = k ξ4

4 then :

φ
∗ =± 1√

(−k)(L+R2C )
and k =∈ R∗−

and H (ξ ) is again concave !
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Parallel RLCS circuit : local positivity of Hd

Consider the Hessian of Hd at the quilibrium :

∂ 2Hd

∂qc ,φ2
L

=

(
1
C +R2 ∂2H

∂ξ2

(
Rq∗c + φ ∗2L

)
R ∂2H

∂ξ2

(
Rq∗c + φ ∗2L

)

R ∂2H
∂ξ2

(
Rq∗c + φ ∗2L

) 1
L + ∂2H

∂ξ2

(
Rq∗c + φ ∗2L

)
)

is definite positive iff :
1 either : 1

C +R2 ∂2H
∂ξ2

(
Rq∗c + φ2

L

)
> 0 or :

1
L + ∂2H

∂ξ2

(
Rq∗c + φ ∗2L

)
> 0

2 and det ∂2Hd

∂qc ,φ2
L
> 0 i.e. :

1
LC

(
1+
[
L+R2C

]
∂2H
∂ξ2

(
Rq∗c + φ ∗2L

))
> 0

which reduces to : ∂2H
∂ξ2

(
Rq∗c + φ2

L

)
>− 1

(R2C+L)
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Parallel RLCS circuit : two possible H

Check for the two exemples the condition :
∂2H
∂ξ2

(
Rq∗c + φ2

L

)
>− 1

(R2C+L)

1 Case 1 : H (ξ ) = k ξ2

2 the condition reduces to :

(
L+R2C

)2
< L2

which is wrong !
2 Case 2 : H (ξ ) = k ξ4

4 then :

(−k) <
1

(L+R2C )
(

φ∗L
L

)2

which leads to a solution !
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Parallel RLCS circuit : IDA-PBC control

The control law is given by :

β (x) =
[
g t (x)g (x)

]−1
g t (x){

[(J (x)+Ja (x))− (R (x)+Ra (x))]
∂Ha
∂x (x)+(Ja−Ra)

∂H0
∂x (x)

}

which becomes :

β (qC ,φL) = 1
(
0 1

)
[(
− 1

R 1
−1 −Ra

)(
R ∂H

∂ξ
(R qC ,+φL)

∂H
∂ξ

(R qC ,+φL)

)

−
(

0 0
0 Ra

)( qC
C
φL

L

)]

or :
β (qC ,φL) = (R−Ra) ∂H

∂ξ
(R qC ,+φL)−Ra

φL
L
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The levitating ball : the port Hamiltonian model

Consider the iron ball levitating in a magnetic field :

dx

dt
=







0 0 0
0 0 1
0 −1 0




︸ ︷︷ ︸
J

−




R 0 0
0 0 0
0 0 0




︸ ︷︷ ︸
R




∂H0

∂x
(x) +




1
0
0




︸ ︷︷ ︸
g

u

y =
(
1 0 0

) ∂H0

∂x
(x) =

∂H0

∂x1
= I

with total energy is : H0(x) = 1
2L(x2)x1

2 + 1
2mx3

2−mgx2

where : x1 = φ is the total magnetic flux, x2 = y is the displacement of
the ball and x3 is the kinetic momentum of the ball, m is the mass, g the
gravitational constant and L(x2) = L∞ + k

(a+x2) , L∞ > 0, a> 0, k > 0.
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The levitating ball : open-loop equilibria

The equilibria are given by (x∗, u∗) such that:

(J−R)
∂H0

∂x
(x∗) +g u∗ =




R
x∗1

L(x∗2)
+u∗

x∗3
m

− 1
2

dL
dx2

(x∗2 )

(
x∗1

L(x∗2)

)2

−mg




= 0

and may be parametrized by the current: y∗ = ∂H0
∂x1

(x∗) = I ∗:




x∗1
x∗2
x∗3


=




L∞y
∗+
√
2mg

−a+
√

k
2mg

0
y∗


 and u∗ = R y∗

are unstable: see linearized system.
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The levitating ball : matching equation

Choice of structure matrices and associated added Hamiltonian
Ha (x) :

1 choose added structure matrices :

Ja(x) =




0 0 α

0 0 0
−α 0 0


 and Ra(x) = 03

2 Use the left annihilator g⊥ (x) =

(
0 1 0
0 0 1

)
, establish the

PDE in Ha :

−
(

0 0 0
−α 0 0

)



∂H0
∂x1
∂H0
∂x2
∂H0
∂x3


=

(
0 0 1
−α −1 0

)



∂Ha
∂x1
∂Ha
∂x2
∂Ha
∂x3



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The levitating ball : added Hamiltonian

From : ∂Ha
∂x3

= 0 the added potential is a function Ha (x1, x2) which
does not depend on the velocity and satisfies :

α
∂H0

∂x1
=−α

∂Ha

∂x1
− ∂Ha

∂x2

with solution :

Ha (x1, x2) =−
∫ x1

0

χ

L
(
x2− (χ−x1)

α

)dχ +H
(
x2−

x1
α

)

For instance, if L(x2) = k
(x2+a) then

Ha (x1, x2) = 1
2k

(
x31
3α
−x21 (x2 +a)

)
+H

(
x2− x1

α

)
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The levitating ball : IDA-PBC control

The control law is given by :

β (x) = 1
(
1 0 0

)
︸ ︷︷ ︸

=[g tg ]−1g t





−R 0 α

0 0 1
−α −1 0


 ∂Ha

∂x (x)

+




0 0 α

0 0 0
−α 0 0


 ∂H0

∂x (x)




or :
β (x) = −R ∂Ha

∂x1
(x) + α

∂Ha
∂x3

(x) + α
∂H0
∂x3

(x)

= R x1
L(x2) + α

x3
m + R

α
H ′
(
x2− x1

α

)
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Conclusion

Hamiltonian methods for the control of physical systems:
1 use the interconnection of Port Hamiltonian systems and

Casimir functions
2 assign closed-loop Hamiltonian function and structure

matrices.
A control synthesis based on insight of desired physical behaviour in
closed-loop :

1 design directly interconnection of the system with environment
and indirectly the controller

2 design the closed-loop port Hamiltonian behaviour and deduce
the controller
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Irreversible Port Hamiltonian systems

Irreversible Port Hamiltonian systems
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Introduction and motivation

Introduction and motivation
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Structured models for thermodynamics based control

The dynamics of the CSTR and more generally irreversible
thermodynamic systems has been the object of numerous
suggestions concerning their systematic formulation in view of
systems’ and control.

This formulations embeds both the energy and the entropy balance
equations and often lead to consider systems defined as the sum of
Hamiltonian and gradient systems such as GENERIC etc ...[Hangos,
K.M.,1999, Favache and Dochain, 2010; Favache et al., 2011,
Grmela and Öttinger, 1997; Öttinger and Grmela, 1997; Mushik et
al., 2000; Hoang et al., 2011, 2012; Ramirez et al., 2009; Johnsen
et al., 2008 ]

Here we suggest a quasi-Hamiltonian formulation making
appear explicitely the stoichiometric matrix and the entropy
creation term

we suggest a procedure to derive feedback control extending some
methods developed for electro-mechanical systems.
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Two cells exchanging heat flow
The model

Thermodynamic model given by Gibbs’ relation : dUi = Ti dSi
where Ti = ∂Ui

∂Si
(Si ), i = 1,2

Heat flux due to conducting wall : Q̇1→2 = λ (T1−T2) with λ the
heat conduction coefficient
Continuity of heat flux : Q̇1→2 =−T1

dSi
dt = T2

dS2
dt
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Entropy balance equations
Entropy balance equations for each cell : a quasi-Hamiltonian formulation

The Hamiltonian-like formulation :

d

dt

(
S1
S2

)
= λ

(
1
T2
− 1

T1

)(
0 −1
1 0

)

︸ ︷︷ ︸
J(T )

(
T1
T2

)

with Ti = ∂(U1+U2)
∂Si

(S) = ∂Ui
∂Si

(Si ).
1 J (T ) is skew-symmetric but depend on the temperature and

not the entropy.
2 the map from the gradient of the internal energy ∂ (U1+U2)

∂S to
the generalized velocities is not linear !
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Balance equations of the total energy and the total entropy
Energy and entropy balance equations

When considering the thermal domain, the non-linearity is
unavoidable :

1 Conservation of the total internal energy due to the
skew-symmetry of J (T ) :

d

dt
(U1 +U2) =(T1, T2)λ

(
1
T2
− 1

T1

)(
0 −1
1 0

)(
T1
T2

)
= 0

2 Increase of the total entropy due to the non-linear map :

d
dt (S1+S2)=(1,1)λ

(
1
T2
− 1

T1

)

 0 −1

1 0




 T1

T2


=λ

(T1−T2)2

T1T2
≥0
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Irreversible Hamiltonian systems

The quasi-PHS is defined by the following dynamic equation

ẋ = R
(
x , ∂U

∂x ,
∂S
∂x

)
J

∂U

∂x
(x)

where
1 x ∈ Rn is the vector of extensive variables,
2 generated bythe total energy U(x) : C ∞(Rn)→ R
3 a constant skew-symmetric matrix J ∈ Rn×Rn

4 R = R
(
x , ∂U

∂x ,
∂S
∂x

)
is function depending on the total entropy

S (x) and total energy U (x):

R
(
x , ∂U

∂x ,
∂S
∂x

)
= γ

(
x , ∂U

∂x

)(
∂S

∂x
(x)T J

∂U

∂x
(x)

)
(4)

with γ(x , ∂U
∂x ), a positive definite function.
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2 cells as Port Hamiltonian system

The quasi-Hamiltonian formulation is :

d
dt

(
S1
S2

)
= λ

(
1
T1
− 1

T2

)[0 −1
1 0

][
T1
T2

]

=
λ

T1T2︸ ︷︷ ︸
=γ

(T1−T2)︸ ︷︷ ︸
={S ,U}J

[
0 −1
1 0

]

︸ ︷︷ ︸
=J

[
∂U
∂S1
∂U
∂S2

]

with :
internal energy U, co-energy variables : ∂U

∂Si
= Ti (Si )

entropy function : S = S1 +S2 and

∂S
∂x

>
J ∂U

∂x =

[
1
1

]>[0 −1
1 0

][
T1
T2

]
= T1−T2

positive function : γ

(
∂U
∂S

)
= λ

T1T2
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Irreversible port Hamiltonian systems : add conjugate
external variables

The Irreversible Port Hamiltonian System augments the dynamic
equation with a pair of port variables (u, y)

ẋ = R
(
x , ∂U

∂x ,
∂S
∂x

)
J

∂U

∂x
(x)+W

(
x , ∂U

∂x

)
+g

(
x , ∂U

∂x

)
u(t)

and the conjugated output

y = g(x)>
∂U

∂x
(x)

Energy balance and entropy balance with irreversible entropy
creation.

dU

dt
= ∂U

∂x

>
(W +gu) ,

dS

dt
= σ + ∂U

∂x

>
(W +gu)
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2 cells interacting with a thermostat

The pseudo-Hamiltonian formulation is :

d
dt

(
S1
S2

)
= λ

(
1
T1
− 1

T2

)[0 −1
1 0

][
T1
T2

]
+λe

[
0

u(t)−T2(S2)
T2(S2)

]

=
λ

T1T2︸ ︷︷ ︸
=γ

(T1−T2)︸ ︷︷ ︸
={S ,U}J

[
0 −1
1 0

]

︸ ︷︷ ︸
=J

[
∂U
∂S1
∂U
∂S2

]
−λe

[
0
1

]

︸ ︷︷ ︸
W

+
λe

∂U
∂x2

[
0
1

]

︸ ︷︷ ︸
g

u

with u (t), the temperature of the thermostat and λe the heat
conduction coefficient of the external wall.
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The gas - piston system

The gas - piston system
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The gas - piston system: energy

Author's personal copy

internal contact Hamiltonian function:

f0 ¼"
@ ~S
@X

"pX

 !t

bFth

and the following interaction contact Hamiltonian function:

fint ¼
@ ~S
@U

"pU

 !
½ð _XeÞtg _Xeþ _Q þFth! _Xe'þ

@ ~S
@X

"pX

 !t

! _Xe

¼
@ ~S
@U

"pU

 !

½ð _XeÞtg _Xeþ _Q '"ðpXþpUFthÞ
t! _Xe

It should be noted again that the contact Hamiltonian functions
are tensor products, defined by the matrix b for the internal
contact Hamiltonian function and by the matrix ! for the control
contact Hamiltonian function, both with the dimension of an
entropy flow. The term containing ! is linear in the intensive
variables and cancels out when calculating the entropy produc-
tion using the expression of the x0-component of the contact
vector field (7):

dS
dt

¼
dx0
dt

!!!!
L
¼"pU

@ðf0þ fintÞ
@pU

!!!!
L
"pX

@ðf0þ fintÞ
@pX

!!!!
L

¼
1
T
½ð _XeÞtgt _Xeþ _Q þFtthbFth'

As expected, the entropy variation is due to the dissipative effects
(via the terms containing b and g) and to the heat exchange. By
comparison with (24), the dissipation D represents the entropy
variation that is not due to heat transfer.

4. Case study: the adiabatic piston

In this section, we shall illustrate the contact formalism by
considering the example of a gas in an adiabatic isolated cylinder
closed by a piston (Fig. 1). When the piston moves, friction effects
cause transformation of mechanical energy into heat. The system
cannot exchange heat with the environment, but a heat transfer
between the gas and the piston can take place.

This example has already been used in order to illustrate the
GENERIC and Matrix formalism and to emphasize some relations
with dissipative port-Hamiltonian systems in Jongschaap and
Öttinger (2004). It is a very simple example and hence the contact,
GENERIC and Matrix models of this system are easy to build.
However it is sufficient to illustrate the differences and to
highlight the advantages of the contact model from the point of
view of control. Indeed it is an open system and it can be seen as a
complex system composed of two subsystems: the piston and the
enclosed gas.

The piston is considered as a solid and its volume is considered
to be constant. Furthermore its mass is constant as it is subject to
no mass exchange. Finally we assume that the temperature

distribution in the piston is uniform. Hence it will be described as
a simple thermodynamic system in motion, closed and under-
going isochore transformations. The displacements of the piston
are assumed to be small enough so that the center of mass of the
gas does not undergo significant motion. We shall also consider
the additional assumption that there is no mass exchange with
the environment.

As a consequence of the above assumptions, the state of the
system can be described by d¼ 5 variables (2 degrees of freedom
for the gas, 3 degrees of freedom for the piston). For instance, the
following set of variables can define the state of the system:

( for the piston: the internal energy Upis, the momentum q and
the position z;

( for the gas: the internal energy Ugas and the volume V.

Remark 4. For the sake of clarity in the notations, the super-
scripts ‘‘gas’’ and ‘‘pis’’ are not used when it is obvious to which
system the quantity applies. For example we are not considering
the motion of the center of mass of the gas, and thus the only
momentum we have to consider is the one of the piston.
Consequently we shall use the notation q instead of qgas.

4.1. Contact formulation as a compartmental system

We shall consider the gas–piston system as a compartmental
system composed of the piston and the gas in the cylinder.
According to Section 2.3, we first give the contact formulation of
each subsystem and then gather them through interconnection
relations. Both subsystems, the gas and the piston, are considered
as simple homogeneous thermodynamic systems.

4.1.1. The compartment gas
The thermodynamic model and its description in the thermo-

dynamic phase space has been given in Example 1. However
considering that there is no mass exchange with the environment,
and for the sake of simplicity, the vector of extensive variable may
be reduced to xgas¼(Ugas, Vgas) with the internal energy Ugas and
volume Vgas. The thermodynamic phase space becomes R5 3
ðx0,Ugas,Vgas,pU ,pV Þ with intensive variable of the gas pgas¼(pU, pV)
and the entropy function of the gas: ~S

gas
ðUgas,VgasÞ may be used as

generating function of the Legendre submanifold associated with
the thermodynamic properties of the gas.

The dynamical model is given by the balance equation on the
extensive variables xgas¼(Ugas, Vgas). The internal energy balance
equation is the sum of the heat flow coming from the piston and
the mechanical power due to the displacement of the piston:

dUgas

dt
¼ _Q p-g"AvwallP ð26aÞ

where vwall denotes the velocity of the surface, of area A, in
contact with the piston and P denotes the pressure of the gas:

P¼"
@Sgas

@V
@Sgas

@Ugas

" #"1

:

The ‘‘balance’’ equation on the volume is equal to

dV
dt

¼ Avwall ð26bÞ

The formulation as a control contact system on the whole
thermodynamic phase space is then obtained in accordance with
Section 2.3 by using the balance equation in the definition of
generated by the contact Hamiltonian function:

f gasðxgas,pgas,ZgasÞ ¼ @
~S
gas

@Ugas
"pgasU

 !
_Q p-g"vwallAP

$ %

Fig. 1. Study case: the adiabatic piston.
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Total energy

H0(x) =U((S ,V ))+Hmec(z ,p)

with mechnical energy

Hmec (z , p) =
1
2m

p2 +mgz

and internal energy

dU = T dS−PdV
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The gas - piston system: dynamical equations

dS
dt = 1

T Frv = 1
T νv2 , σint ≥ 0 entropy balance

dV
dt = Av volume balance

dz
dt = v kinematic equation

dp
dt = −mg +AP−νv momentum balance

in matrix form

d

dt




S
V
z
p


=




0 0 0 νv
T

0 0 0 A
0 0 0 1
−νv

T −A −1 0




︸ ︷︷ ︸
Jirr (T ,v)




T
−P
F
v


 (5)
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The gas - piston system: Irreversible PHS

ẋ = Jirr (x) ∂H0
∂x (x)

whereJirr (x) = J0 + ∑
p
i=1 γi

(
x , ∂H0

∂x

)(
∂S
∂x

>
Ji

∂H0
∂x

)
Ji

with structure matrices

J0 =




0 0 0 0
0 0 0 A
0 0 0 1
0 −A −1 0


 and J1 =




0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0




and entropy function S (x) = x1 = S and function γ1 (x) = ν

T (S)

and driving force
(

∂S
∂x

>
J1

∂U
∂x

)
=
[
1 0 0 0

]
J1




T
−P
F
v


= v
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The CSTR: model formulation

The CSTR: model formulation
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The CSTR: single reaction case

For simplicity consider a single reaction

ν1A1 + . . .+ νm−1Am−1
 νmAm

ν1, . . . ,νm : stoichiometric coefficients
A1, . . . ,Am : chemical species

and denote the reaction rate: r(A ,T ) = rf (Af ,T )− rr (Ar ,T )

with A the affinity vector of the reaction.
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The CSTR: mass and entropy balance equations

The balance equations

ṅi = Fei −Fsi + riV︸ ︷︷ ︸
mass

Ṡ =
m

∑
i=1

(Fei sei −Fsi si ) +
u(t)

Tw
+ σ

︸ ︷︷ ︸
entropy

,

with
Fei ,Fsi input and output molar flows, sei ,si molar entropies,
Tw jacket temperature and
u(t) input heat flow flux.
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The CSTR: as an Irreversible Port Hamiltonian system

ẋ = γ{S ,U}JJ
∂U

∂x
(x)

︸ ︷︷ ︸
quasi-Hamiltonian

+W
(
x , ∂U

∂x

)
+g

(
x , ∂U

∂x

)
u(t)

︸ ︷︷ ︸
external flow

with U = the internal energy

J =




0 . . . 0 ν̄1

0 . . . 0
...

0 . . . 0 ν̄m

−ν̄1 . . . −ν̄m 0




︸ ︷︷ ︸
stoichiometric matrix

,W =




Fe1−Fs2
...

Fem−Fsm
1
T ∑

m
i=1(Fei sei −Fsi si )




︸ ︷︷ ︸
Mass transfer

, gu =




0
...
0
1




1
T
,

{S ,U}J is the reactions driving force, the affinity of reaction A

{S ,U}J = A =−
m

∑
i=1

ν̄i µi γ =
rV

TA
≥ 0, µ1, . . . ,µm : chemical pot.

rV : molar flow
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An alternative pseudo-gradient-Hamiltonian representation
of the CSTR

ẋ =
1
T


Jf (x1, T )︸ ︷︷ ︸

skew-sym.

+η1

(
x1,

∂S

∂x1

)
M

︸ ︷︷ ︸
symmetric




∂S

∂x
(x) +g

(
∂S

∂x

)
u

with vector of extensive variables
x1 = [n1, . . . ,nm,U]> = [n>,U]> and
the entropy function S (n,U) is used as generating function.
Its gradient is then ∂S

∂x1
=
[(
− µ1

T

)
, . . . ,

(
− µm

T

)
, 1
T

]>
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An alternative pseudo-gradient-Hamiltonian representation
of the CSTR

structure matrices:

Jf =




0 0 0 fn1
...

...
...

...
0 0 0 fnm
−fn1 . . . −fnm 0


 , M =




0 0 0 0
...

...
...

...
0 0 0 0
0 . . . 0 1




with fni = Fei −Fsi (n,T ) +V ν̄i r (n,T )and

η1

(
n,

µ

T
,
1
T

)
= T

m

∑
i=1

(
Fei sei −Fsi si −

µi

T
ν̄i r (n,T )V

)
,
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Thermodynamics-based control of the CSTR

Thermodynamics-based control of the CSTR
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Energy based availability function

Numerous stabilizing controllers are based on the use of the
convexity of the entropy function (for single phase systems) in
Chemical Engineering [Alonso & Ydstie (1996); Ydstie & Alonso (1997);
Alonso & Ydstie (2001); Ydstie (2002); Hoang et al. (2011, 2012)]

Here we use the convexity of the internal energy function and use
the energy-based availability function

A(x ,x∗) = U(x)−
[
U(x∗) +

∂U

∂x
(x∗)>(x−x∗)

]
≥ 0

where x∗ is a reference and possibly a desired equilibrium.
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Stabilization by assignment of entropy source and structure
matrix: control objective

The desired closed-loop dynamic is

ẋ =
(
−σdM +RdJd

)
∂A

∂x

with M(x)≥ 0 and Jd(x) =−J>d (x), scalar functions γd > 0,
σd = γd {S ,A}2Jd and Rd = γd {S ,A}Jd
for which the balance equation of the availability function is

dA(x ,x∗)
dt

=−σd

(
∂A

∂x

>
M

∂A

∂x

)
≤ 0

.
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Stabilization by assignment of entropy source and structure
matrix: control law

The desired closed-loop dynamic achieved by the state- feedback

u(x) = g†(x)
(
RdJd−σdM

)(
∂U

∂x
(x)− ∂U

∂x
(x∗)

)
−g†(x)RJ

∂U

∂x
(x),

with pseudo-inverse g†(x) = [g>(x)g(x)]−1g>(x)

if the following matching equation is satisfied

g⊥(x)
(
RdJd −σdM

)(
∂U

∂x
(x)− ∂U

∂x
(x∗)

)
−g⊥(x)RJ

∂U

∂x
(x) = 0
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Stabilization of the CSTR: a simple solution

Choose : Jd = J,M = diag(0, . . . ,0,1),and a positive function
γd (x),the only the entropy balance equation is changed

Ṡ =−γd

m

∑
i=1

νi (µi (x)−µi (x
∗))−σd(T −T ∗).

then the matching equation is equivalent to the expression of De
Donder’s extent of reaction

n0i −ni
ν̄i

= ξ .

And the balance equation of the energy-based avalaibility becomes
dA

dt
=−σd(T −T ∗)2,

=−γd(A −A ∗)2(T −T ∗)2.
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