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Hamiltonian formulation of bond graph models ?

At the First IFAC workshop NOLCOS, Capri, Italy June, 1989 discussion with
Arjan around the version of the paper that | submitted:, "Geometrical
formulation of the Bond— Graph dynamics with application to mechanisms”,
Journal of the Franklin Institute, vol. 328, No 5/ 6, pp. 723— 740, 1991.
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FiG. 7. Diagram of the symplectic construction of the bond graph dynamics.
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Hamiltonian formulation of network models : port
Hamiltonian systems

@ B. M. Maschke, A. J. van der Schaft and P. C. Breedveld, "An intrinsic
Hamiltonian formulation of network dynamics: non— standard Poisson structures
and gyrators’, Journal of the Franklin Institute, Vol. 329, n. 5, pp. 923- 966,
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@ B. M. Maschke, A. J. van der Schaft and P. C. Breedveld, "An intrinsic
Hamiltonian formulation of the dynamics of LC—circuits”, Trans. IEEE on
Circuits and Systems, | : Fundamental Theory and Applications, Vol. 42, n2 2,
pp. 73— 82, February 1995

@ A.J. van der Schaft and B.M. Maschke, Port-Hamiltonian systems on graphs,
SIAM J. of Control and Optimization, vol. 51, n°2, pp. 906-937, 2013
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Port Hamiltonian systems

The fundamental conservation laws :

mass
momentum

energy

electric field induction
magnetic field induction

coupled by closure relations :

thermodynamic properties
reversible and irreversible laws of fluxes

Complex systems are obtained by coupling through geometric
boundaries, multiphase systems, multilevel systems
Systems of balance equations on

continuous spatial domains : infinite-dimensional Port
Hamiltonian systems

discrete spatial domains: port Hamiltonian systems defined on
k-complexes and networks
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Examples of systems with bond graph / port Hamiltonian mo

Some examples of Port Hamiltonian models

Some examples of Port Hamiltonian

B. Maschke Port-Hamiltonian systems : introduction



Examples of systems with bond graph / port Hamiltonian mo

Pressure swing adsorption process : scheme

Is constituted by:
@ a column packed with
o bidispersed particules of adsorbants

macroporous binder of
@ small microporous crystals

Flowing fluid

Figure: Schematic representation of a column a), packed with absorbent

pellets b), themselves constituted by crystals c), associated with the
three scales
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Pressure swing adsorption process : 3 level model

It is represented by 3-level mathematical model:
@ a fluid flow dynamics at the column scale
o diffusion phenomena at the macroporous medium scale

@ diffusion phenomena at the microporous medium scale

Inlet motar flow for a and b outlet molar flow for a and b

=
Chemical potential for aand b Extragranular volume | Chemical potential for a and b
Molar flow of a and b @ Difference of chemical potential for a and b

Intragranular volume

Molar flow of b I Difference of chemical botential fo b

Adsorbent
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Pressure swing adsorption process : 2 scale diffusion

Dispersed two-phase heterogeneous mixture with component a and
B.
The B-phase is dispersed in the o one.

Assume there is a volume vy, characterized by a length L, for the
o-phase for which:

A«a << La << /\a and AﬁNlaj (1)

where:
@ A; is the distance over which ¢; varies significantly

@ A; is the characteristic length of the i-phase
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Pressure swing adsorption process:mass transport model
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Application to the identification of diffusion parameters

The experimental set-up of LAGEP :

(b)

“““ Sortie du procédé
Sortie du modele

i i i i i i
50 100 150 200 250 300 350
Temps (s)

Figure: Pressure Swing Adsoprtion Process of LAGEP
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Model of a microchannel

Model of a microchannel
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A 1-D model of fluid flow: shallow water equations

One-dimensional fluid flow: the shallow water equation

. momentum
@ state variables: x(t) = < p >

q section area of the water

bpg

e total energy : Ho(p, q) = q + = qp 2dz

@ co-energy variables :
qap .
SHy ( D ) volumic flow

S - 2 .
x %p + prq hydrodynamic pressure
@ Port Hamiltonian systems w.r.t. canonical Stokes-Dirac
structure
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Shallow water equations : control design

@ The control acts through motion of the gates : inversion of the
weir equation

@ The control design is to “shaping the energy in closed-loop” by
using Casimir functions :

e the total volume
o the total kinetic momentum

Controller :

@ The feed-forward action shapes the energy of the system and
stabilizes the total volume and momentum of the system

@ the feedback action introduce a proportional correction for the
closed loop (shaping the Dirac structure)

@ an integral action is added
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Shallow water equations : experimental results
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ionic polymer metal composite
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A polyelectrolyte gel (electro-active polymers (EAPs)) between
metal electrodes

Distributed
elecrical system

Metal electrode
with rough surface

Cation
Voltage supply @

Water molecule

Ionic conductive
polymer gel

Bending @

Fig. 2. Physical structure of IPMC. Fig. 1. IPMC (left:
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The IPMC : physical phenomena

Model is the coupling of physical phenomena at three spatial scales

@ the electric double layer on the interface between the polymer
and the metal electrodes: spatial scale is of the order of
nanometers, and the time constant is about 0.001[s](Na™)
—1[s](TEAT)

@ the electro-stress diffusion coupling with bending and
relaxation dynamics that describe polyelectrolyte gels: scale of
100[pm], and their time constant is about 1[s](Na™)
—100[s](TEA™)

o large mechnical deformations : beam model: scale is 10[cm],
and their time constant is about 0.03]s].

: conservation laws coupled by
interface relations on pairs of extensive-intensive variables.
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The IPMC : bond graph

Bond graph submodels
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Experimental results: setup

Fig. 1. IPMC (left: actuation with power supply, right: dimensions).

Potentio Stat
(Amplifier)

IPMC

nooo

Laser sensor

Fig. 4. Experimental setup.
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Experimental conditions

@ The IPMC sample was made of Nafion117 (DuPont Inc.).

@ The two faces in the xy-plane of the IPMC were plated with
gold Au five times.

@ The dimensions of the IPMC were 45 [mm] length L, 5[mm]
width b, and about 0.20 [mm] membrane thickness h.

@ The deflection w at about 35 [mm] from the fixed end was
measured with a laser displacement meter.

@ The IPMC actuator was operated in air. In order to hydrate
the IPMC sufficiently, we used a pipette for dropping deionized
water during the experiment. The excess water was wiped by a
disposable nonwoven fabric.

@ The counterions were exchanged by soaking the sample in
0.1[mol/I] NaOH solution or 0.2 [mol/I] TEA-CI solution for
more than 12 hours.
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Experimental results: parameters

Table 1
Physical parameters (Bar-Cohen, 2004; Yamaue et al., 2005).
Na* TEA®
z 1 1
c(/m*) 2487 x 107 3.228 x 10?7
(4.131 mol/l) (5.363 mol/l)
q(Q) 1,602 x 10~'° 1,602 x 10~'°
s 07 07
a(nm) 0.164 0260
& (nm) 096 088
p (glem?) 1.633 1.633
Y (MPa) 90 90
v 03 03
Table 2
Calculated parameters.
Na* TEA"
5o @ jcm) 03334 03274
7 9.654 x10°° 16.60 x 10°°
K 5487 x 10718 8530 x 10718
D 3262 x 10710 1375 x 10"
Table 3
Identified parameters.
T (s) Rm (Q cm?) C; (mF/em?)
Na* 0.0308 138 225
TEA* 173 714 242
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Experimental results: TEA+
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Experimental results: TEA+ versus Na+
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Tokamak : Thermo-Magneto- Hydro- dynamical model
(Lefévre and Vu)

Thermo- Magneto- Hydro- dynamical model
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Tokamak : word Bond graph

Inductive
current

Electromagnetic
Domain

Transformer coil Fixed volume integ: ation domain

0rent Joule
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Moving material integration doma,

Vertical
field coils

Material Domain
Heat =

flow Mechanics

’ Toroidal —
field coil \;

Thermodynamics

Plasma current Plasma Magnetic field line
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Tokamak : Bond graph
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Tokamak : experimental results
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Port Hamiltonian systems for a robotic system playing
trombone [N. Lopes, IRCAM, Ph.D. defense 15 June 2016].

Bouche artificielle

Actionneurs

Trombone —iﬂb ouchure
\ [ linéaires

Cgv Cum Cr1 Cra Bouche/ Cr
Mouth(M) Instrument (I)

Electro-
Valve
(EV)

Cavité
Buccale

Embouchure
/Mouthpiece
(MP)

Pg
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Heat and mass transfert in catalytic foams

Heat and mass transfer in catalytic foams
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Motivational example 1 : foam structures for catalytic
reactors

@ Continuous material with high porosity avoiding pressure loss
and enhancing solide ffective heat conductivity in reactors .

B. Maschke Port-Hamiltonian systems : introduction



Examples of systems with bond graph / port Hamiltonian mo

Foams : from X-Ray tomograph to Graph representation

obtained by Pierre Gueth (LIRIS) and David Coeurjoly (LIRIS),
Foam pieces experimented and provided by Marie-Line Zanota
(LGPC) and Isabelle Pitault (LAGEP) during the ANR
DIGITALFOAM project (2013-2015)
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Foam structures : test banks

Mass, energy and momentum balance equa-
tions

© Chemical Engineering pathway :

@ Consider the packing as an
isotropic media

@® estimate state and parameters
fails for highly exo-
(endo-)thermic reactors

@ Fluid Mechanics” pathway :

@ discretization of balance
equations over meshing

@ extreme refinement of meshing
at contact points
fails to simulate complete bed
and pressure drop

From 60.10° to 700.10% PDEs for “solid”
phases and 6.10° and 70.10% PDEs for
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