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Motivation

Design of controlled physical systems using network -based
modelling

@ modular model building : network of subsystems

@ physically consistent models : energy, balance equations, power
flows ...

@ physically consistent numerical simulation schemes

@ physically consistent control design
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Reminder about stability of dynamical systems

Consider a dynamical system defined on a domain D C R" > x by
the differential equation :

dx
E—f(x)

where f : D — R" is a locally Lipschtitz function.
Denote by @ (t, xp) the solution x(t) with initial condition xo € D.
Assume that x* =0¢& D is an s
° if Ve > 0,38 > 0 tel que :
IIxo]] <6 = ||®(x0, )| <€ Vt>0
@ unstable otherwise
° if it is stable and 36 > 0 such that :
x|l <0 = limis o ®(x0,t) =0
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Lyapunov's second method of analysis of stability

Théoréme

Let V : D — R be a continuously differentiable (C*) function
satisfying :

(i) V positive definite : V (0) =0 and V (x) >0, x € D\ {0}
(i) LeV (x) <0

then x* =0 € D is a stable equilibrium point.

if :

(i) LV (x) <0, x € D\ {0}

then x* =0 € D is a asymptotically stable equilibrium point.

Définition

The function V/(x) satisfying these assumptions, is called Lyapunov
function.
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Domain of attraction

The domain of attraction of the stable equilibrium point x*=0¢€ D
is :

DX* = {Xe D/ tE)qu)(t, X) _X*}

Théoréme

The .

Q. ={xeR"/V(x) < c}, where c >0 contained in the domain of
definition D and bounded :

(i) are positively invariant : Vxg € Q¢ @ ¢ (t, x0) € Qc, Vt € RY,

(ii) give an estimate of the domain of attraction : Q¢ C Dy
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Global stability : theorem of Barbashin-Krasovskii

The equilibrium point x*is said globally asymptotically stable if it is
asymptotically stable with domain of attraction D,« = R”".

Théoréme

Let V : D — R be a continuously differentiable (C*) function
satisfying :

(i) V positive definite : V (0) =0 and V (x) >0, x € D\ {0}

(i) V is radially unbounded : limj|_ 4o V (x) = 400

(i) LV (x) <0

then x* =0 € D is a globally asymptotically stable equilibrium
point.
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Unstability : Chetaev's theorem

Théoréme

Let V : D — R be a continuously differentiable (C*) function
satisfying :

(i) V(0)=0

(ii) Ve € R%, 3x € D\ {0}, ||x|| < €and V (x) >0

and consider a positive real number r > 0 and the set

U ={xeD/|x| <randV(x) >0}, then LV (x) >0, Vx € U,
implies that x* =0 € D is an unstable equilibrium point.
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LaSalle's theorem

Théoréme

Let Q C D be a compact set, positively invariant. And let

V : D — R be a continuously differentiable (C*) function satisfying
such that L¢V (x) <0 in Q. Define

(i) the set of states E = {x € Q; L¢V (x) =0} and

(i) M C E the largest set in E which is positively invariant

(Vxo € M : ¢ (t,x0) € M,Vt €R), then :

lim dist (®(x0,t), M)=0

t—s-o00

Note that here V/ (x) needs not to be positive !

The the set Q may be the if it is
bounded (hence compact).
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Construction of Lyapunov functions

Construction using the gradient method : one looks for a vector
field k(x)
A

e deriving from a potential : k(x) = 57, i.e. satisfying :

@ such that LfV (x) =

and compute

X1 X2
V(x):/o ka (21,0, ,O)dxl—i-/o ki (41, 220-.,,0) do + -
finally check if V' (x) is positive definite.
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Stabilization by control Lyapunov functions

Stabilization by control Lyapunov functions
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Asymptotic stabilization of a stable control system

Consider a nonlinear control system affine in the inputs :

dx
dt x)+ Z g (x)u

where the drift vector field f : D C R" — R" and the input vector fields
gi(x),i=1,..,m are smooth.

Assume that

x* =0 € D with Lyapunov function V (x).

Théoréme
The state feedback : u;(x) =
the equilibrium point if :
(i) the function V (x) satisfies L¢V (x) <0, x € D and %—Z (x)#0,xeD
(ii) the accessibility d/str/but/on

—Lg, V (x) locally asymptotically stabilizes
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Lyapunov functions and stabilization

In the previous results the nonlinear control
in closed-loop :

dv
E == Lfv X) Z [L V(X
and hence to subset of :
E={xeD/ and LgV(x)=0,i=1,..m}

However remains the problems :
@ find a open-loop Lyapunov function

@ design a closed-loop Lyapunov function in order to stabilize
unstable points.
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Optimal stabilizing control and inverse design

Optimal stabilizing control and inverse optimal
control design
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Optimal control problem

Control Lyapunov functions may be defined through the optimal
control problem.

Définition

Consider the nonlinear system : x = f (x)+g(x)u , find a feedback
u(x) such that :

(a) the closed-loop system is asymptotically stable at x* =0

(b) the feedback minimizes the cost functional :

J:/OJroo (I(x)+uTR(X) u) dt

where /(x) >0 and R(x) =R (x) >0
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Optimal stabilizing control

Théoréme

Assume that there is a C1 semi-definite real function V (x) satisfies
V (0) =0 and the Hamilton-Jacobi-Bellman equation :

1 _
1(x)+LeV (%) = 7 (LgV () R (x) " (LgV (x)) =0
such that the feedback : u* (x) = —%F\’(x)*1 Ly V (x) stabilizes the

system at x* =0. Then u* (x) solves the optimal control problem
and V/ (x) is the optimal value function.

The function V/ (x) may often be checked to be a Lyapunov
function, depending on the choice of the cost function J.
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Inverse optimal control design

One may invert the design process by choosing :

@ a desired closed-loop Lyapunov function V' (x)

@ a symmetric positive definite matrix R (x)
such that the control u(x) = —%F\’(x)*1 LgV (x) ensures :
Y — LV (x) =1 (LV(x)TR(x) " LgV(x) <0.
amounts to defining the control :
ut(x)=2u(x)= —%R’(x)*1 LgV (x) as the solution of some
optimal control problem with :

o 1(x) =2 (LgV(x) R() ™ (LgV (x)) = LV (x) = 0
which remains to be checked.
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Control Lyapunov function

The problem is to generate a control Lyapunov function allowing to
stabilize the system.

Théoréme

A continuously differentiable (C') positive definte [event. radially
unbounded] function V (x) is a control Lyapunov function for the
system : x=f(x)+g(x)uif: LgV(x)=0 = LV (x)<O0

This means that its variation may be rendered negative definite by
feedback.

There exist different method to construct such functions :
backstepping ....
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Dissipative control systems

Dissipative control systems
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Dissipative control systems

Disipative control systems are :
o related to the models of physical systems in the sense that
they explicitely write a
@ the

Consider a nonlinear control system :
y % = f(Xv U)
y = h(x,u)
with state x(t) € R", input u(t) € R™, output y(t) € R™,
f e C*(R"xR™ R") and he C=(R" x R™, R™)
and denote by ¢ (xo, u(.), t) the solution of the system with initial
condition xg and input u(t).
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Dissipative (control) systems : definition

Définition

The nonlinear system ¥ is a dissipative system with :

(i) Se C*(R",R), a positive function

(ii) se C*(R™ xR™ R)

iif it satifies the dissipation inequality for any solution

x(t)=¢(x0,u(.),t) t>0 and time instants t; > tp :
t1

S(x(t1)) <S(x(t0))+ | s(u(t),y(t))dt

to

It is said lossless if the equality is satisfied :
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Passive systems

Définition
Depending on the supply rate s(u(t), y(t)) the dissipative system
is said :

(i) passive if : s(u(t),y(t))=ytu
(i) strictly input passive if : s(u(t), y(t)) = ytu— 8| ul]?

(i) strictly output passive if : s(u(t),y(t)) = ytu— |y

The physical interpretation is :
@ inputs and outputs are

@ the disspativity inequality is associated with

t1
S(x(t) < Stx()+ [ y'u e
M Y~ o~~~
energy at ty energy at to power
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Dissipative systems with Ly-gain

A dissipative system is said to have Ly-gain < y if it admits the
supply rate :

s(u(t), y (8) = S 7llul Iy 2

It is said if it is lossless with s(u(t), y(t)) = 3 |Jull” —|ly]*.

It is related to the and the balance equation :

S St [ [uE - P e
—_— to ~— ~~

energy at ty energy at to incoming power  outgoing power

supplied energy
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Dissipative systems for control

Dissipative systems:

@ may be stabilized using the storage function as Lyapunov
function

@ are closed under feedback interconnection, for instance with
passive controller.

One may also construct a closed-loop Lyapunov function V. (x) by
finding feedback such that:

t1

Ve (x) = 5(X)—5(X*)—/ s(u(x), h(x))dt

to

Port Hamiltonian are endowed with additional structure which
allows a methodology for the construction of such feedbacks.
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Use formulation as port Hamiltonian systems

In the sequel we shall use a decompostion of the drift vector field
stemming from port-based modelling as a port Hamiltonian system
is written: and the system:

: dH, m
% = ()= RO G2 +ET, uigi(x)
=f(x)
yi = g,-(x)faa% portconjugated outputs

@ a smooth Hamiltonian function Hp(x)

@ a skew-symmetric matrix J(x) € R"*" and a positive symetric
matrix R(x) € R"™"

@ m inputs u; € RP and outputs y; € RP

e m input vector fields gi(x) € R"
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Context and motivation

Use physical insight explicitely in the :
@ physically-based modelling making use of

@ physically-based control design : design control Lyapunov
functions but also of

@ simultaneous design of process an control
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Synthesis of Irreversible Thermodynamics and Analytical
Mathematics

: systems of balance equations (conservation
laws with source terms) in interaction by phenomenological laws
: geometry of points or configuration with

variational formulation leads to Lagrangian and Hamiltonian formulations

The synthesis of the Thermodynamics and Analytical Mechanics :

@ uses extensive variables as state variables (versus configurations and
their derivatives)

@ uses pairs of conjuguated intensive and (time derivative of)
extensive variables

@ gives a geometric formulation to the coupling relations between the
phenomenological laws and conservation laws

Finally the coupling relations are related to
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Lagrangian systems

It is a mechanical perspective to physics!

Definition

A Lagrangian system with external forces is defined by:

(i) configuration manifold @ =R" > g of the generalized
coordinates

(i) manifold of generalized velocities TQ = R2" > (g, §) its tangent
manifold

(iii) Lagrangian function L(gq,g), from the tangent space TQ to R
and the Lagrangian equations:

d /[dL . oL, .
o <aq(q7q)> - yq(q,q) =F

with F € R" is the vector of generalized forces.
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Losslessness of Lagrangian systems with external force

A Lagrangian system with external forces satisfies the following
power balance equation:

_dH
T odt
where the Hamiltonian H is obtained by the Legendre
transformation of the Lagrangian function L(q,q) with respect to
the generalized velocity ¢ :

H(q,p)=¢"p—L(q,9)

where p is the vector of generalized momenta:
. aL, .
p(q,q) = (ac.l(q,q))

and the Lagrangian function is assumed to be hyperregular.
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Lagrangian control system

Definition

Consider a configuration space @ = R" and its tangent space

TQ =R?", an input vector space U = RP.

A Lagrangian control systems is defined by a real function L(q, g, u)
from TQ x U to R, and the equations:

% <§g(q7q7u)) _gz(qadvu)_o (1)
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Lagrangian control system: example

Consider the harmonic oscillator and assume that the basis of the
spring is moving with controlled position u; and that there is a
force up = Fo exerted on the mass.

k
-m|—>
F2

V1

The generalized coordinate is the position g € R of the mass with
respect to an inertial frame and the Lagrangian function:

. 1 . 1
L(q,q,u) = Em(CI)2 - Ek(q— Ul)2 +qua

one obtains the Lagrangian control system:

mG+k(q—u1)—u> =0

B. Maschke Port-Hamiltonian systems




Lagrangian and Hamiltonian systems
Control Hamiltonian systems

Port Hamiltonian systems

Port Hamiltonian systems

Examples of Port-Hamiltonian systems
Properties of Port Hamiltonian systems

Modelling origins of Port Hamiltonian systems

Losslessness of Lagrangian control systems

A Lagrangian control system satisfies the power balance equation:
T dE

YIS
where:
i 9%H aH L 9°H JH
8qj8u,8pj Iprjau,ﬂqj

and the real function E is obtained by the Legendre transformation
of the Lagrangian function L(q,§) with respect to the generalized
velocity ¢ and the inputs and is defined by:

E(qapv U) = H(qapa U) - uTaal:l

with H(q,p,u) = ¢"p— L(q,q,u) where p is the vector of

2

generalized momenta: p(q,q,u) = (%2(q,q)
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An LC circuit of order 3

Consider the following LC circuit:

B

Ll C + L2
Q - ¢,

A

v

what are the generalized coordinates ?

Multiple Lagragian formulations but all are not natural and in
correspondence with electrical formulations !
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Legendre transformation of a Lagrangian system

Consider a Lagrangian system with external forces and define the
vector of generalized momenta:

aL
’ 7) = Ry ) . € Rn
p(q,q) (aq(q q))
and define the Legendre transformation with respect to ¢ of the
Lagrangian function, called Hamiltonian function:

Ho(g,p) =¢" p—L(q,4q)

then the Lagrangian system with external forces is equivalent to the
following symplectic Hamiltonian system:

g=29k
p=—%b+F
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Control Hamiltonian system with external force

There is an alternative way of writing these equations as follows:

) dHo(q, dH(q,p,

g %(:’7 p) 0, (gqp u)
=Js + F=Js

) 9Ho(a.p) 9H(g.p,u)

p PE In =

where H(q,p,u) = Ho(q,p) —q" F andJ; is the following matrix,
called symplectic matrix:

J — On ln

g —I, 0,
his symplectic matrix is the local representation, in canonical
coordinates, of the symplectic Poisson tensor field.

B. Maschke Port-Hamiltonian systems



Lagrangian and Hamiltonian systems
Control Hamiltonian systems

Port Hamiltonian systems

Port Hamiltonian systems

Examples of Port-Hamiltonian systems
Properties of Port Hamiltonian systems

Modelling origins of Port Hamiltonian systems

Losslessness and Poisson bracket

A Hamiltonian system with external forces satisfies the following

power balance equation: FT¢g = % wich is computed as:
dH(q,p,u)
dHo <8Ho(q,p) 3Ho(q,p)>J Jq
- 9 S
dt 9q Ip 2H(g.p.0)
Jp

g
p
which is the Poisson bracket between the functions Hp and H:
{H07 H}

It is the fundamental geometric structure of Hamiltonian systems
and their control !.
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Poisson bracket

Let .# be n-dimensional differentiable manifold with space of smooth
real function C*(.#).

A Poisson bracket is a mapping:

{,}: C(A)xC(AH) — C=(A)

(F,G)  {F,G} satisfying:

bilinearity

skew-symmetry: {F, G} =—{G, F}

Jacobi identities:
{F,{G,H}}+{G,{H,F}}+{H,{F,G}} =0, VF,G,H
Leibniz rule: {F, GH} ={F, G} H+ G{F, H}
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Poisson tensor

It may be shown that the Poisson bracket {F, G} depends only on
the differentials dF and dG such that:

A(dF,dG) = {F, G}

Extending this tensor to all 1-forms, one associates with any
Poisson bracket the Poisson tensor (field):

N QUMYX QY (H) — C°(A)
(o, @) — r

is two times contravariant, skew-symmetric tensor field
and satisfies the Jacobi identities.
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Poisson bundle morphism

With the Poisson tensor, one may define a morphism of vector
bundle:
N-T o — T
o — X=N(0)
such that:
N(w)(a) = Ao, o), Yo € QY ()
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Poisson structure matrix

Using some coordinates: xi,..,x, the Poisson tensor is defined by
the structure matrix J:

Jij = {xi, x}

which is:
@ skew-symmetric

@ satisfies the Jacobi identities, for any i, j, k=1,..,n

n 8J, 0Ji; dJ;
Z(JIJ(X k+J/,( )a J—i—J/k( )8;,>:0

=1

~

B. Maschke Port-Hamiltonian systems



Lagrangian and Hamiltonian systems
Control Hamiltonian systems

Port Hamiltonian systems

Port Hamiltonian systems

Examples of Port-Hamiltonian systems
Properties of Port Hamiltonian systems

Modelling origins of Port Hamiltonian systems

Poisson bundle morphism in coordinates

Using the structure matrix J(x) in some coordinates: xi,..,x, and
dual basis for T.# and T*.#, where:

o the 1-forms are: w =Y ; w;jdx; and
o the vector fields: X =Y, xi %

the bundle morphism A* which defines the vector field X = Af(®) is
represented in coordinates by the structure matrix:

X1 (]

Xn Wn
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Jacobi identities

The Jacobi identities are integrability conditions.

The rank of the bracket at x € . is: rankJ(x) and is even:
rankJ(x) = 2k.

If n =2k, then the bracket is symplectic.

Then there exist canonical coordinates (qu,.., Gk, P1, -+ Pks s - 1)
with / = n— 2k such that:

0 Ik O
J(X): —Ik 0 0
0 0 O
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Casimir functions

The coordinates (functions) r generate Casimir functions

C(x)=¢(r):
(C,F} =0, YFeC™(M)

Casimir functions are defined by the kernel of the Poisson bracket
and in coordinates satisfy:

aC

Ix € ker J (x)

If the Jacobi identities are not satisfied: {, } is a pseudo-Poisson
bracket: ker J(x) defines a co-distribution which is not integrable
and there are no canonical coordinates.

B. Maschke Port-Hamiltonian systems



Lagrangian and Hamiltonian systems
Control Hamiltonian systems

Port Hamiltonian systems

Port Hamiltonian systems

Examples of Port-Hamiltonian systems
Properties of Port Hamiltonian systems

Modelling origins of Port Hamiltonian systems

Example: Lie-Poisson bracket for Euler-Poinsot problem

Consider as state variable the rotations in R3 , called special
orthogonal group SO(3).

The angular velocities are represented by skew-symmetric matrices
in so(3) and endowed with
Lie bracket: [m1, @] = @1 0, — @ ;.

There is a canonical Lie-Poisson bracket on
the momenta p € so*(3): {F, G}(p) = (p, [dF, dG])

In Pliicker coordinates, the structure matrix is:

0 —pz py
J(p) = Pz 0 —Px
—Py  Px 0

. _ 2 2 2
. r(X)_px+py+pz
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Hamiltonian systems w.r.t. Poisson brackets

A Hamiltonian system is defined by:

@ on a differentiable manifold .#Z > x with Poisson bracket {, }
(and A the Poisson tensor)

@ the internal Hamiltonian function Hy € C* ()
© and the differential equations:

x = {x, Ho} = N*(dHp) £ Xy,
Using the structure matrix J(x) in some coordinates (x1,..,X5) :

dX_ 3/‘/0
pri e
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Invariants of Hamiltonian systems

There are two types of invariants due to the geometry (Poisson

bracket):
@ Hamiltonian function due to the skew-symmetry of the bracket:
dHy
—— ={Hy, Hp} =0

dt { 0 0}

@ the Casimir functions (non-symplectic case):

CC’sz{c, Hol =0 VHo € C* ()

For physical (lossless) systems: the energy is generating function
Ho and is conserved.
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Some references

R. Abraham and J.E. Marsden, Foundations of Mechanics,
2nd ed., Benjamin Cummings, Reading, MA, USA, 1978

o V.I. Arnold, Mathematical Methods of Classical
Mechanics, Springer, Berlin, 1978

@ V.Guillemin and S.Sternberg, Symplectic Techniques in
Physics, Cambridge University Press, 1984

P. Libermann and C.M. Marle, Symplectic Geometry and
Analytical Mechanics, Reidel, Dordrecht, 1987

o J.E.Marsden, Lecture Notes on Mechanics, London Math.
Soc. Lecture Notes Series, 174, Cambridge Un. Press,
Cambridge, 1992
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A network origin of Poisson brackets

In Mathematical Physics Hamiltonian systems arize from :

@ variational calculus, Lagrangian systems and their Legendre
transformation : standard Hamiltonian systems defined with
respect to symplectic Poisson bracket

@ reduction of Hamiltonian systems with symmetries defined on
Lie groups : Lie-Poisson bracket.

the Poisson bracket are generated by

° , kine-static models, stoichiometry
@ coupling between reversible phenomena
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An LC circuit without elements in excess

Consider the following LC-circuit:

@ composed of 2 inductors and a capacitor in paralell

2
@ with total energy: Hp = + Z)ill + fi
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An LC circuit: Kirchoff's laws and Poisson bracket

Consider the spanning tree consiting of the capacitor {C} :

-1 Ve

Kirchhoff's laws: VL =1 -1 define a

1
Vi, 1

O O =
o

constant skew-symmetric matrix J.
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An LC circuit: Poisson bracket and Tellegen's theorem

Virtual power for any pair of co-energy variables:
skew-symmetric tensor:

vc VE V/C
- Ha . . Ha
A iy || L. = (ve,ig, i) J | i,
i il il
L2 Ly L

H H H / H /
= vc (’L1 — le) — i, Vet ve

This is the foundation of Poisson bracket.

Skew-symmetry is equivalent to Tellegen's theorem:

ve ic
(veyitgita) J | L = (ve,itgit) | vy | =0
IL2 VL2

admissible variables

B. Maschke Port-Hamiltonian systems



Lagrangian and Hamiltonian systems
Control Hamiltonian systems

Port Hamiltonian systems

Port Hamiltonian systems

Examples of Port-Hamiltonian systems
Properties of Port Hamiltonian systems

Modelling origins of Port Hamiltonian systems

An LC circuit: Hamiltonian formulation

Identifying the circuit variables:

9Ho
vV 9Qc
ic d Qc ve o
Vi, — | 9 and i | =| do,
dt . o
Vip (pLz I, pr o
Lo

The dynamics of the LC-circuit is a Hamiltonian system:

gﬂ
0 1 -1 qc
d [ 9c¢ Ho
a\g )V o )|
(1]

t2 [N 7 9P,

@ with respect to the Poisson bracket with structure matrix J
. . o7 z
@ generated by the Hamiltonian: Hy = + Ll + iizz the total
electromagnetic energy
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Circuit realization of the Poisson bracket

Using the thermodynamical classification of circuit variables:

9Ho.
ic d [ Qc vc IQe
extensive variables: Vi, = 7t (T intensive variables: iLy = 3¢L:
VL oL iL 9Ho
2 2 2 a¢l_2
_ ic 0 1 -1 ve
The Poisson tensor | v, |=( -1 0 o ir, | has the
Vi, 1 0 0 iy
—_—
. . . . J
circuit realization:
Vi=Vs3 i

L J_\Ll .
1 Lig C
Tx. Pd T

L, —'—Tiz
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An LC circuit: Casimir function and invariants

0O 1 -1

The structure matrix J=| —1 0 0 has rank 2 , hence
1 0 0

admits one generating Casimir function.

The kernel of the structure matrix J is : ker J = Span{ 1

A Casimir function satisfies : 90, =11

for instance C (Q,®1,P2) = $;1 + d2 which is the total magnetic
flux through the inductors.
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An LC circuit: canonical coordinates

Consider the change of coordinates:

q 1 0 0 Qc
p =20 % —3 N1
r o I 1 P! Casimir functionr (x) = 3 (1 + ®2)
=T
9Ho ElL!
q Qc 7c 9|
hence: | p |=T&( & |and| G [=T7| 2= | with:
r (0% dHo 9dHo
99, ar

— 2 r2 r— 2
Fo(a,p.r)= o+ B~ 4 (5P5

and the Hamiltonian system becomes:

A
d 0 Tgo

— 0 38H0
dt \ 0 00 A

N—
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References and alternative formulations of LC-circuits

The Poisson bracket arize naturally from Kirchhoff's laws:

B.M. Maschke, A.J. van der Schaft and P.C. Breedveld, " An intrinsic Hamiltonian formulation of
network dynamics: non—standard Poisson structures and gyrators’, Journal of the Franklin Institute, Vol.
329, n. 5, pp. 923-966, 1992

Nevertheless there are alternative formulations:

@ Lagrangian or standard Hamiltonian systems
G.M. Bernstein and M.A. Lieberman, "A method for obtaining a canonical Hamiltonian for
nonlinear LC circuits, |IEEE Trans. on Circuits and Systems, CAS-35, 3, 411-420,1989

@ Brayton-Moser equations (or pseudo- gradient systems)

@ R.K. Brayton and J.K. Moser, "A Theory of Nonlinear Networks—I and II”, Quartely of
Applied Mathematics, Vol.22, n21, pp.1-33, April 1964 and n®2, pp.81-104, July 1964

@ S. Smale, "On the Mathematical Foundations of Electrical Circuit Theory', J. of
Differential Geometry, Vol.7, pp.193-210, 1972

@ D. Jeltsema, R. Ortega, J.M.A. Scherpen, On passivity and power-balance inequalities of
nonlinear RLC circuits, IEEE Trans. Circuits and Systems Part-1 Fund Theory Appl. 50 (9)
(2003) 1174-1179.

@ Contact systems

@ D. Eberard, B.M. Maschke and A.J. van der Schaft, Energy-conserving formulation of
RL C-circuits with linear resistors, Proc. 7th International Symposium on Mathematical
Theory of Networks and Systems, Kyoto, Japan, July 24-28, 2006
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Interaction in Hamiltonian systems : a potential function

In Physics the interaction is defined by an interaction potential.

The water molecule may be considered as 3 mass points in
interaction through e.g. the Lennard-Jones potential.
H

104.45°

G Gaw |

[

0.9584 A n s
0--0 distance, A
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Interaction in Hamiltonian systems : a potential function

° are the positions of the mass points with
respect to an inertial frame :
Q:(q17q21q3) ER?’XR?,XR?’:Q'

o the state space is the cotangent bundle T*2 with its
canonical symplectic Poisson bracket

@ the dynamics is a standard Hamiltonian system generated by
Hamiltonian function :

2 2 2
lpll”  llp2ll” | llpsl]

Vv
oMo T 2My T 2mMy | T J,@

H(Q, P)=

interaction potential

kinetic energy
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Control Hamiltonian systems

For control Hamiltonian systems the interaction potential describes
the interaction with the environment using a control variable u(t)!
It is defined by :

e a differentiable manifold .Z > x with {,}

@ m inputs u;

@ a Hamiltonian function: H(x, u;)

Often the Hamiltonian function is the sum:
H (x, uj) = Ho (x) +Hin (x, uj)

where:

@ Ho(x) defines the Hamiltonian drift vector field

@ Hine(x, u;) defines the interaction with the environment
In the sequel linear in control : Hiy (x, uj) = Y101 Hi (x) ui(t) .
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An input-output Hamiltonian system is defined by:

@ on a differentiable manifold .Z > x with {,}
(and A the Poisson tensor)
e the internal Ho € C=(A)

@ m inputs u; and outputs y;
@ m interaction Hamiltonian functions
HieC=(#),ie{l,...,m}

and the system:

5. { x(t) = Xup (x) = L%y wi(£)J (x) Xy, (%)
© H; (x(t)) natural outputs

=<t

~
~

N
Il
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Input-output Hamiltonian systems : in coordinates

An input-output Hamiltonian system is defined by:

@ a skew-symmetric structure matrix J(x) € R"*" satisfying the
Jacobi identities

e the internal Ho € C=(A)
e m inputs u; and outputs y;

@ m interaction Hamiltonian functions

Hie C= (), iell,....,m}

and the system:

J(x) %l (x) = X7y ui (£) I (x) FE (%)
H; (x(t)) natural outputs

™M
5
—
=< X
—~
a2
Il
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Example: mass-spring with mixed boundary conditions

Consider the mass-spring system with mixed boundary conditions:

k
-m|_>
F2

v . .
1 where m is the mass and k the stiffness

@ external force F applied on the mass
° v of the basis.

The dynamical system is:

2(2)- (53) ()= (D) ()

interdomain coupling driving force generalized external forces
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Hamiltonian formulation of the mass-spring with mixed
boundary conditions

The internal Hamiltonian is the total energy:
Ho(q,p) = 5P° + 5k q* .
Define the interaction Hamiltonians:
e Hi(qg,p) = p with the controlled velocity v of the basis
e Hy(q,p) = g with the external force F applied on the mass

The is:

q 0 1 dHo JdHy JdH>
— d J J
p>_(—1 0) <,;,j°)v<§,§’l>+F<a,jz>

ap dp dp
————
symplectic bracket

internal driving force external driving forces
%1 o p total momentum
n - q relative displacement
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Input-output Hamiltonian systems: power balance equation

For any interaction Hamiltonian H;, j € {1,...,m}:

o dH m
Yi :(th = {Hj, Ho} — Y ui {H;, H;}
=1

Using the skew-symmetry of the Poisson bracket
({H;, Hi} = ={Hi. Hj}):

dH,
— = (Ho.Ho} - Zluj{Ho,H}
J_

becomes the power balance equation:
dHy &

7*2,1 JyJ
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Concluding remarks and references

@ R.W.Brockett, Control theory and analytical mechanics,in Geometric
Control Theory, C.Martin and R.Herman eds., pp.1-46, Vol. VII of Lie
groups: History, Frontiers and Applications, Math.Sci.Press, Brookline,
1977

@ A.J. van der Schaft, System Theoretic Description of Physical Systems,
CWI Tracts, Mathematisch Centrum, Amsterdam, 1984

@ A.J. van der Schaft, System Theory and Mechanics, in Three Decades of
Mathematical System Theory, H.Nijmeijer and J.M.Schumacher eds.,
Lect. Notes Contr. Inf. Sci.,Vol.135, pp. 426-452, Springer, Berlin, 1989

@ J.E.Marsden, Lecture Notes on Mechanics, London Math. Soc. Lecture
Notes Series, 174, Cambridge Un. Press, Great Britain, 1992
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Modelling origins and definition of Port Hamiltonian
systems
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Port Hamiltonian systems : definition

A port Hamiltonian system is defined by:

© on a differentiable manifold .# > x with pseudo-Poisson bracket {, }
(and A the pseudo-Poisson tensor)
@ the internal Hamiltonian function Hy € C*(.#)

© minputs u; € % and outputs y; € %*
@ m input vector fields g;

© and the system:

z X = XHO + Z/mzl uigf
Phs Ay, (gi, Ho) = Lg;Ho  portconjugated outputs

where (X, @) denotes the pairing between vector fields and 1-forms
(and Lg the Lie derivative w.r.t. g).
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Port Hamiltonian systems : in coordinates

In coordinates (xi,..,x,) a port Hamiltonian system is written:

a skew-symmetric structure matrix J(x) € R"*"
a smooth Hamiltonian function Hp(x)

o
o
@ m inputs u; € RP and outputs y; € RP
o

m input vector fields gij(x) € R"

and the system:

X o= J)GR AT uigi(x)
yi = g(x)* % portconjugated outputs
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Example: elementary storage of elastic energy

Consider a translational spring:

-

g =

with:
@ ¢ the displacement vector,
o f the velocity,
@ e the elastic force of the spring with potential energy H(q).

It is a port Hamiltonian system defined with respect to the Poisson
structure matrix J =0 and with g =1,
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Example: elementary storage of kinetic energy

Consider point mass:

p = f
. p.f,ecR3 (3)

o
Il
3|~

o

where
@ p is the vector of momenta,
@ m is the mass,
e f is the vector of external forces, and
@ e denotes the velocity of the point mass.

It is a port Hamiltonian system with Poisson structure matrix
J=0,D=0and H(p) = 5= || p ||? the kinetic energy.
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LC circuit with voltage source

L C-circuit with voltage source
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LC circuit with voltage source

Consider the following LC-circuit:

¢L1

9%
+ 21>

e with total energy: Hy = TC- +3

@ and voltage source vs.
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LC circuit with voltage source: Kirchhoff's laws

The circuit : admits the Kirchhoff's laws:

173 -1 0 0
vi,b | | 1 0 0
—is 0 -1 0

~
skew-symmetric
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LC circuit with voltage source: port Hamiltonian system

The port Hamiltonian formulation of the electrical circuit with

source
Poissonbracket dHp
——

d qdc 0 1 -1 Ve 0
wlow ] = -100 i |+ 1] w
oL, 1 0 O iL, 0

———
input vector field
vc
s = (0,1,0) | i,
—— .
(& L2
————
dHo)
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Spinning body with one actuating wrench

Spinning body with actuating wrench

Lie—Poisson bracket dK
7\ 7\
d Px 0 —Pz Py Vix 0
dat Py = Pz 0 —Px vy |+ 1 Y
Pz —Py  Px 0 Vz 0
———
input vector field
Vx
y = (0,1,0) | v,
& N2/
,
dHo)

where K(p) = %th_lp is the kinetic energy and dK(p) is the
velocity.
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Port Hamiltonian systems: skew-symmetry

The port Hamiltonian systems is defined by: pseudo-Poisson tensor
and two dual input-output relations.

This extends the skew-symmetric map A! to the map Tnt g

Tl xR — Tl xR"

< dH(L)’(x) ) R ( _Xy > _ < Au(dHi(f;Lt(ng;lu;g; )

It is linear and skew-symmetric.
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Port Hamiltonian systems: skew-symmetry

It is better seen in coordinates where the map T: ,. becomes:

Til xR" — Tl xR"

dHo(x) 9Ho(x)

(%) = (5)-(50 %) ()
u y g (x) 0 u

skew-symmetric

Recall Kirchhoff's laws for the LC-circuit with voltage source:

ic 0 1 -10 ve
Vi, . -1 0 0 1 iLl
v, | 1 0 o0 o0 iL,
—is 0 -1 0 0 Ve

skew-symmetric
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Skew-symmetry and balance equation

Modelling origins of Port Hamiltonian systems

The time derivative of the internal Hamiltonian function is:

dHo

dt <dH0> XHo + Z uj dHo, gl)

j=1

which by skew-symmetry of the map T ,. becomes the power
balance equation:
dHy &
T ML
j=1
If Hy is bounded from below, the system is lossless.
For any Casimir function C(x) there is a balance equation:

dC __ vm X
gt T Lj=1 UJ <dC, XH0>.
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Example of an RLC circuit

Consider the RLC circuit with its interconnection graph :
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RLC circuit, spanning tree and Kirchhoff's laws

Modelling origins of Port Hamiltonian systems

Consider the following spanning tree {C1, R} :

ic, 0 1 0 0 ve,
viy | | -1 0 0 1 i,
Vi, a 0 0 0 -1 i Lo
IR 0 -1 1 0 VR
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RLC circuit as Port Hamiltonian system with dissipation

The circuit variables corresponding to the resistor are considered as
port variables :

P01sson bracket 0
d a¢ 0 0
a ¢L1 = -1 0 0 + 1 VR
L, 0 -1
———
input vector field gr
iR - (07 - 17
<gR-
dHo

subject to Ohm' law : vg = Rig
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RLC circuit as dissipative Port Hamiltonian system

Eliminating the dissipative relation vg = Rig one obtains :

Poissonbracket dHgp pseudo metric dHp
—_—
Jd [ 9a 0 10 Ve 0 Ve
dt ¢L1 = -1 00 I.Ll - 1 R(0717 _1) ’.Ll
¢L2 0 0 0 L5 -1 I
Hamiltonian vector field gradient vector field

the sum of a Hamiltonian and a gradient vector field.

As the generating functions are equal : Hyp(x), one may write :

Leibnizbracket dHop
d qa 0 1 0 7
Zlow |- 1 kR R L,

O, 0 R —R iy

B. Maschke Port-Hamiltonian systems



Lagrangian and Hamiltonian systems
Control Hamiltonian systems

Port Hamiltonian systems

Port Hamiltonian systems

Examples of Port-Hamiltonian systems
Properties of Port Hamiltonian systems

Modelling origins of Port Hamiltonian systems

Port Hamiltonian systems with dissipation in coordinates

Consider Port Hamiltonian system with structure matrix J(x) and
Hamiltonian function Hp (x):

@ port variables (u,y) € R™ x R™
o dissipation port variables(u®,yR) € RP x RP:

J(x) %2 + Ly uigi(x)+ L, ufef ()

x =

vi = glx )‘93?
H

ij —_ ij(X)tho

and dissipative closure equation defined by a symmetric matrix
R*(x) and:
= R()y"
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Dissipative Port Hamiltonian systems

Eliminating the dissipation port variables, one obtains a dissipative
Port Hamiltonian system:

Definition
A dissipative Port Hamiltonian system on R” is defined by:
(i) a skew-symmetric structure matrix J(x) = —J*(x)

(i) a symmetric (positive) structure matrix R(x) = R*(x) >0
(iii) a Hamiltonian function Hp(x)
and the dynamical equations:

= [J)—R()IYR+E", uigi(x)
vi = gi(x)%k

t
where R(x) = gRR* (gR)".



Lagrangian and Hamiltonian systems
Control Hamiltonian systems

Port Hamiltonian systems

Port Hamiltonian systems

Examples of Port-Hamiltonian systems
Properties of Port Hamiltonian systems

Modelling origins of Port Hamiltonian systems

Port Hamiltonian systems with dissipation: intrinsic

formulation

Consider Port Hamiltonian system with
@ port variables (u,y) € % x %* where % and % * are vector
bundle on .#
o dissipation port variables(u®,yR) € %g x Wgwhere %R and
Wy are vector bundle on .-

x = XHO "‘27;1 uigi+ Zf:l U,Rg,'R
yi = (dHo, gi)
ij - <dH07 giR>

and dissipative closure equation uR = R:(yR) defined by a
symmetric (positive) contravariant positive tensor R with R is
the associated vector bundle morphism.
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Elimination of dissipation port variables and Leibniz bracket

The Leibniz bracket [, ] 5 zr gis defined by:
[F7 G] ANgR.R — /\(F7 G) - <dF> R(X)<dG,g>g>
and has in coordinates the structure matrix:

J(x) — (&%) R(x) g" (x)

Neither skew-symmetric nor symmetric it defines a left bundle
morphism:

MiT — T
0 — X:Mi(a))
such that: M’ (0)(a)=[F,G Aok g0, @), Yo € QY (A

A
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Power balance equation

The port Hamiltonian system with dissipation:

{X = [X;Ho]/\gR,R%—Z,'-ilu,-g,-
yi = (dHo, &)

satisfies the power balance equation:
dHy &
el Y ujyj —[Ho, Holag.r
j=1

which depends only on the symmetric part of the bracket, in
coordinates:
dHo

dHo & OHo, gyt R
F—J;“JYJ*W (67) R(x)g (X)W
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Some references

@ A. J. van der Schaft : L>-Gain and Passivity Techniques in Nonlinear
Control, Springer, London 2000

@ B. Brogliato, R. Lozano, B. Maschke and O. Egeland, Dissipative
Systems Analysis and Control, Communications and Control Engineering
Series, Springer Verlag, London, 2007, ISBN 10: 1-84628-516-X 2nd ed,
2007

@ Modeling and Control of Complex Physical Systems - The
Port-Hamiltonian Approach, Duindam, V., Macchelli, A., Stramigioli, S.,
Bruyninckx, H. (eds.), ISBN 978-3-642-03195-3.,Springer , Sept. 2009
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Properties of Port Hamiltonian systems

1-D mechanical systems

1-dimensional mechanical systems are analogous to circuits :
@ relative velocities are cycle variables
@ forces are cocycle variables

Consider the mechanical system :

write the the port-Hamiltonian systems obtained from Lagrange
and Euler modelling and compare.
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The levitating ball : total energy

Consider the iron ball levitating in a magnetic field :

Ly _

K

The total energy is : Hp(x) = 2L(X2)X12 + 2m><32 — mgx

where : x; = ¢ is the total magnetic flux, x =y is the displacement of

the ball and x3 is the kinetic momentum of the ball, m is the mass, g the

Port-Hamiltonian systems

v Pl —
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The levitating ball : the port Hamiltonian model

Modelling origins of Port Hamiltonian systems

The port Hamiltonian model is obtained as :

0 R
1{-1]0
0 0

¢ o oo

with u the input voltage, R is the electric resistance in the coil and:

x1
oOH L(XX32) current through the coil /
a—o(x) = m ) velocity of the ball
X ! c%z () ( i ) —mg | electro-motive+gravity force

and conjugated output: y = IHo _
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The levitating ball : coupling through energy

The coupling between the mechanical and magnetic domain :

@ does not occur through the structure matrices as :

—-R 0 O magnetic domain
J—R= 0 0 1 mechanical potential domain
0 -1 0 mechanical kinetic domain

is bloc-diagonal
@ occur through the Hamiltonian which is not separated :

1 1
H = P —x3%—
o(x) 5 L(Xz)Xl +2mX3 mgxa
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A microphone: the total energy

Consider the model of microphone:

NN

The total energy is:  H(q, p, Q) = %k(qf 67)2 + ﬁ p>+ %(q)ﬁﬂ

where g is the displacement, p the momentum of the plate, @ the charge
of the condensator and C(q) = 50% , & is the permittivity of the air.
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A microphone: port Hamiltonian model

The port-Hamiltonian model is:

q 0 10 00 07,4 0 0
di p |= -1 0 0|—-]0 v O a—(x)+ 1 |F+| 0 |E
"\ @ 0 0 00 % x 0 L

where F is the force exerted by acoustic pressure and E is the input
voltage, with conjugated outputs:

_9H _. _10H
YF—ap—q yE_RaQ
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A microphone : coupling through energy

The coupling between the mechanical and magnetic domain :

@ does not occur through the structure matrices as :

0o 1 0 mechanical potential domain
J—-R=1| -1 0 0 mechanical kinetic domain
0 0 0-— lR electrical domain

is bloc-diagonal
@ occur through the Hamiltonian which is not separated :

1 1 1
H{(a, p, Q):Ek(Q*q)2+ﬁP2+T(q)QZ
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Permanent Magnet Synchronous Motor

In the dq coordinates the dynamic model is:

Lg9e = —Rsig+olgig+vg
Lo = —Ryig+ols®d+v,
192 = np((Lg—Lq)igig+Pig—1)

where:
© iy and iy are the current in dq coordinates,
@ o the angular velocity

© np is the number of pole pairs, Ly and Lq are stator
inductances in the dq frame,R; is stator winding resistance, T
is a constant unknown load torque, ® is back emf constant
and T the moment of inertia.
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P M S Motor: Hamiltonian formulation

2 2 2
The total energy is: Hyp(x) = %% + %% + % (H/X:p)

with conserved variables: ¢4 = x; and ¢q = x> the magnetic fluxes
in dq coordinates and the kinetic momentum p.

The PMSM admits a port-Hamiltonian formulation:

10 0
H
%:(J(x)—R)Q—&- 01 S IS I
dt ox 00

Vq

with structure matrices:

0 0 X2 Rs 0 O
J(x)= 0 0 —(x1+®) and R=| 0 Rs O
o (a+ ) 0 0 0 0
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A power converter: boost converter

Consider the boost converter:
The averaged model controlled by Pulse Width Modulation with slew rate
u € [0, 1] may be written as Port Hamiltonian system :

dx aHo 1 8H0 X1
— =1J R E -
SUW-RGE (o )E we=Go- X
~—
g current in source
with :
@ state variables : x; magnetic flux and x, the electrical charge
2
@ Hamiltonian (the electro-magnetic energy) : Ho(x) =57} + 35 1 37
@ structure matrices : J(u) = ( 0 —u ) and R= ( 0 ? ) where R is
u 0 0 R

the output load resistance

A o
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Comparison with input-output Hamiltonian systems
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Comparison with input-output Hamiltonian systems

Port Hamiltonian systems weaken the structure compared to
input-output Hamiltonian systems :

@ the skew-symmetric bracket (structure matrix J(x)) may

@ the input vector fields are not Hamiltonian :
. _ IH;

AH; (x) s.t. - g (x) = J(x) 5

@ the bracket may include dissipation :J(x) — R (x)

@ outputs are different

. OH, JdH;
= VWSROI st X0 = J0Beru[I00%]
i = &i(x)%e Ji(t) = Hi(x(1))

port Hamiltonian system Input-output Hamiltonian system
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Input vector fields are not Hamiltonian for networks (1)

Consider the LC circuit wih voltage source :
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Interconnection of Port Hamiltonian systems
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Feedback interconnection of Port Hamiltonian Systems : i
coordinates

Consider two Port Hamiltonian systems, k = 1,2 with structure
matrices JX, input vector fields g,-k, interconnection vector fieldsyik
and Hamiltonian functions Hé‘ (xk):

).(k = Jk (Xk) 33’;(,2 +ZI_1 u; g/ ( ) +Z:-n=1 vik%!( (Xk)

k _ t OHX

Yi = (&) 3XE

k o k\t dH,

L = (%) 5
with feedback interconnection: }/’2 B Ill
o=l

Note that it is power continuous: }/,-1 l,-1 —i—}’,-21,-2 =
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Feedback interconnection of Port Hamiltonian Systems

Consider two Port Hamiltonian systems, k = 1,2 with
pseudo-Poisson tensor AX, input vector fields gF, interconnection
vector fieldsyX and Hamiltonian functions Hg (x*):

)k = ka+z,_ ukgk + T vEyk

L = <dH07 Yi >
with feedback interconnection: ‘! "
yiz = -

Note that it is power continuous: y* 1} +¥?12 =
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Composed Port Hamiltonian System

Composed port Hamiltonian system:

@ on product manifold .#Z* x .4
e endowed with composed pseudo-Poisson bracket {, }:

{F, G} =N (dgy F,duy G)+ A% (do F, dsy G) +(dsy F, (o G, V) 1) — (da F, {dy G, ) 7}

e generated by total Hamiltonian: H (x1, x2) = H3 (x1) + H3 (x2)
e with product input vector fields g = g' ® g°
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Composed Port Hamiltonian System

Composed port Hamiltonian system generated by total Hamiltonian:
Ho (Xl, X2) = H& (Xl) + Hg (X2)

is given by:

d xt
AN

Il
/
|
Y
<
>
—_~T
<. X
N>
=
—
X
=
N
~<»—\
—
X
« =
N
—_~
X,
—
—
X
N
-
N———
VS
;(\_;%QJ
Nétxwg:
N———

o= (gil)ZE%
i = (&) 52
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Conclusion

Port Hamiltonian systems are an extension of Hamiltonian systems:

@ extend the Poisson bracket from generalized velocities/forces
to include a pair of conjugated port variables

@ relax the integrability conditions : Jacobi identities and
Hamiltonian input vector fields

@ allows to write balance equations including energy flows from
the environment

@ allows for interconnection (or composition) of Hamiltonian
systems
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Stabilization using the port Hamiltonian structure : 2 routes

In the sequel we present two ways of using the port Hamiltonian
structure for nonlinear regulation :

@ Control by interconnection : derive the state feeedback
u = u(x) from the feedback interconnection of the PHS with a
virtual controller as PHS and reduction using Casimir
functions.

@ Interconnection and Damping Assignment-Passivity-Based
Control (IDA-PBC) : find state feeedback u = u(x) such that
closed-system is port Hamiltonian with assigned structure
matrices and Hamiltonian :

X (s Ra () 22 (x)
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Some general references

@ B. Maschke, R. Ortega, and A. van der Schaft, Energy-based Lyapunov
functions for forced Hamiltonian systems with dissipation, |IEEE Trans.
Automat. Control, vol. 45, no. 8, pp. 1498-1502, Aug. 2000

Q R Ortega, A. van der Schaft, |. Mareels, and B. Maschke, Putting energy back
in control, IEEE Control Syst. Mag., vol. 21, no. 2, pp. 18-33, Apr. 2001

Q R Ortega, A. van der Schaft, B. Maschke, and G. Escobar, Interconnection and
damping assignment passivity-based control of port-controlled Hamiltonian
systems, Automatica, vol. 38, no. 4, pp. 585-596, Apr. 2002.

Q R Ortega, A. van der Schaft, F. Castafios, and A. Astolfi, Control by
Interconnection and Standard Passivity-Based Control of Port-Hamiltonian
Systems, IEEE Control Syst. Mag., vol. 53, no. 11, 2008
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Embedding by interconnection

Consider a Port Hamiltonian System on x (t) € R" with structure
matrices J(x) = —J*(x), R(x) = R*(x) >0, inputs u(t) € R™ and
outputs y (t) e R™ :

s x = (J(X)a_ R(x)) 52 +g(x)u
y = g(x)%0
and a controller system being a simple integrator x. € R™ with
Hamiltonian Hc(x.) :

Xe = Uc
Ze: _ JdH.
Ye = 9x

with feedback interconnection : R 0 1 Y
Uc -1 0 Ve
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Embedding system

The embedding system is :

with closed-loopHamiltonian :Hg (x, xc) = Ho (x) + Hc (xc).
S8 )

Note that Je = ( —gt(x) 0
defined by J(x) !
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Reduction by Casimir function : shaping the Hamiltonian

Assume that the extended structure matrix :

- (P00 50

admits m (left-)Casimir functions C;(x, xc) :

dCt acCt
<ax’axc>fe:°

and assume that they are of the type :

C(x,xc) = F(x) —xc
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Interpretation of the Casimir function of the augmented
bracket

A Casimir function C(x, x.) satisfies :

() (R 59

or satisfies :

@ the input vector fields are g (x) = (J(x) + R(x)) ‘;—5 dissipative
Hamiltonian w.r.t. (J(x)+R(x))

@ transversality condition with respect to input distribution :
oFt
S g(x)=LgF(x)=0
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Reduction by Casimir function : shaping the Hamiltonian

Then on the invariant submanifold C(x, x.) = 0 the dynamics is :

% = (J)-R() % +g(x) G (F(x)
_€SX)

(J(x) = R(x)) %o+ (J (x )+R(X))g§‘§';'§oF(X)

= (J(x) = R(x)) & (Ho+HcoF)+2R(x) £ (Hc o F)

If R(x )TF =0, then the reduced dynamics is :

dx 8Hd
5 = ) =R()) 5~
and the : shapes the

Hamiltonian : Hy (x) = Ho (x) + Heo F (x)
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Equivalent conditions : dissipation obstacle

The previous conditions are equivalent to :

@ the input vector fields are g(x) = (J(x)+ R(x)) g—f dissipative
Hamiltonian w.r.t. (J(x)+R(x))

@ transversality condition with respect to input distribution :
JFt
9% 8(x)=LgF(x)=0

© the dissipation obstacle is not present R (x) g—g =0: the

function C(x, xc) is a left and right Casimir function
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Design of the stabilizing controller

Assuming that (J(x) — R(x)) admits a (left) Casimir function,

design the control u(x) = %’ZC oF(x)+v:

© choose H. such that Hy(x) = Ho (x) + Hco F admits a
minimum at some state x* and is a closed-loop Lyapunov
function

@ use dissipative feedback :

v=—Reg(x)' gk (=—Reg(x)' %2)
then the power balance equation is :

M _ aHd R&Hd 8Hdg( )ch ( )aHo

dt - Ox T Ox

= 2 (R+g(x) Reg' (x)) %k

and apply Lasalle's theorem.
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Discussion

@ The feedback modifies the closed-loop Hamiltonian but not
the structure matrices :

& (169 R(60) 2 (HotHeoF)

@ It resembles completely to the feedback of input-output

systems :

JoH,
u(x)= Ix oH;(x)+v

where H;(x) is the interaction Hamiltonian but generalizes to
Leibniz bracket : (J(x) —R(x))
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Example : series RLCS circuit (model)

Consider the circuit :
with port Hamiltonian model with state variables x = [g¢, ¢/] " the
charge in the capacitor and the flux in the inductance :

dH,
4 ( ac 0o 1 e (),
dat\ ¢ -1 —-R g% 1
dHp
Jqc
ECRN
9o

2 2
with Hamiltonian: Ho (gc,¢1) = g—g + % the total electromagnetic
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Example : series RLCS circuit (energy shaping)

The conditions for energy shaping by interconnection are :
@ the input vector field is dissipative Hamiltonian :

IF
0 0 1 5 .
g(qc.¢1) = ( 1 ) = ( 1 R) 9 | with :
I
F(qc,¢r) = —qac

@ transversality condition satisfied :

IF  IF 0
< dgc 99, )g(QCa¢L):( -10 )( 1 ) -
© the dissipation obstacle is not present

JF
Racod % |=(o %) (o )=

oL
B. Maschke Port-Hamiltonian systems




Rationale
Control by constant interconnection : definition
Control of Port Hamiltonian systems Control by constant interconnection : examples
Control by assignment of structure matrices and energy : def
Control by assignment of structure matrices and energy : ex

Example : series RLCS circuit (stabilization)

Hence the Hamiltonian may be shaped to :

Ha(qc,¢1) = Ho(xqc,91) + Heo F(qc, ¢1) = 2C §2+H( <)

and has a minimum at (g¢, ¢;)" = (g5,0) by choosing :

1 2 11
Hc(qc) = 2C <C C>chc+1< CG,>-C; xkeR

and apply dissipative control:

v=—R: (0 1 )( (%%—é)(qc—q’g) ) :_Rcﬂ

o L
L

only changes value of Ohm’s dissipation to R + R, but stabilizes.
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Example : paralell RLCS circuit (model)

Consider the circuit :
with port Hamiltonian model with state variables x = [g¢, ¢/]" the
charge in the capacitor and the flux in the inductance :

JH,
d ac — _% 1 3(73 + 0 u
t\ ¢ -1 0 %—g’f 1

y = (0 1) g

2
with Hamiltonian: Ho(qc,91) = 5% + 5 ¢L , the total electromagnetic
energy.
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Example : series RLCS circuit (dissipation obstacle)

The conditions for energy shaping by interconnection are :

@ the input vector field is dissipative Hamiltonian :

0 _1 9 gF gF _
g(qC,¢L)=<1>=<’f 0) 375 = g‘j’é =
oL [ R

@ transversality condition not satisfied :

JF JF
( Jac  d6r >g(QC7¢L):( -1 —% )( )#0
© the dissipation obstacle is present

JF 1 .
R(qc,o0) | %% =< OR 8)(_})7&0
oL R

0
1

Q|
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Example : pendulum (model)

Consider the pendulum without damping
p

i =L
m

p = —mgsing+u
with state variables x = [g,p] " with g the configuration and p the

momentum.
The port Hamiltonian model is:

JdH
a\ p -1 0 dHo 1
[ E——— Ip ———
g

y = O0{ 5% |=4
dp

with Hamiltonian :Hy(qg. p) =
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Example : pendulum (extended Casimir functions)

Recall : we look for Casimir functions such as :
C(q7 P, XC) = F(q7 p) — Xc

that is functions F (g, p) satisfying :
@ input vector field is Hamiltonian :

0 E %
aq

@ the gradient of F is transversal to g :

t
LeF () =0= 5 () = 95

hence a generating function is : F(q, p) = —¢q
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Example : pendulum (control)

For the controller design we choose a function Hc(xc) such that
Hg4(x) = Ho (x) + Hc o F has a minimum at the desired equilibrium
X« = (x1,0).

The simplest choice is given by

1
He(xe) = cosxe + i(xc —H(f)2

The control is finally obtained is:

_ dHc
0xc

u= (Xc) lxe=—g =sing—(q—x7)

which is the well-known “proportional plus gravity compensation

control"
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Control by assignment of structure matrices and energy

Control by assignment of structure matrices and

energy :
IDA-PBC
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Objectives of IDA-PBC : closed-loop PHS

Consider a Port Hamiltonian System on x (t) € R" with structure
matrices J(x) = —J*(x), R(x) = R*(x) >0, inputs u(t) € R™ and
outputs y (t) e R™ :

X = x) — R (x)) & xX)u
Z{ ‘o ;J((X))aHf( ) %% + g(x)

find a static state-feedback control u = f(x) such that the
closed-loop dynamics is a Port Hamiltonian system with dissipation:

Y4 x=[Ja(x)— Ry(x) aalld(x) +g(x)v

with skew-symmetric matrix J4(x), any positive-semidefinite matrix
Rc(x).
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Objectives of IDA-PBC : matching equation

Set :
Ja(x) = Ja(x) —J(x) and Ra(x) = R4(x)— R(x)

and :
K ()= 278 ()~ 200 ) = Ol

then the desired closed-loop behaviour leads to the matching
equation :

dH,

%(X)+g(x)/3 (x) =[(J () + Ja (x)) = (R(x) + Ra (x))] 5~ ()

dx
with design parameters J,(x), Ra(x) and H,(x) .
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IDA-PBC with assigned structure matrices

In this procedure one :

Q fixes some structure matrices J,(x) and R,(x)

@ solves a PDE in H,(x) obtained by pre-multiplying the
matching equation by a left annihilator g+ (x) of g (x) (full -rank
m x n matrix satisfying g (x) g (x) = 0):

dHo

8" (0 (s~ Ra) 0 (1) = g () [ 5) + 45 () ~ (R () + Ra ()] 22

(x)
© computes the control:

B)= [g"()g(x)] "g*(x)
{60 +42(x0) = (R() + Ra ()] 5

)+ (s — Ra) % (x)}
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Control by assignment of structure matrices and energy : ex

Objectives of IDA-PBC : stabilization

Assume that the control objective is to stabilize the system at the
state x*and that the IDA-PBC has a solution such that :

@ Hy(x) is a Lyapunov function with strict minimum at x*
@ the largest invariant set in closed-loop contained in

{xe R ' (x)Ra(x) S(x) = 0} is {x'}

then the point x* is asymptotically stable in closed-loop

with estimated domain of attraction by larget bounded level set of
Hd (X) .
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Example : parallel RLCS circuit (model)

Consider the circuit :
with port Hamiltonian model with state variables x = [g¢, ¢/]" the
charge in the capacitor and the flux in the inductance :

JH,
d ac — _% 1 3(73 + 0 u
t\ ¢ -1 0 %—g’f 1

y = (0 1) g

2
with Hamiltonian: Ho(qc,91) = 5% + 5 ¢L , the total electromagnetic
energy.
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Parallel RLCS circuit : matching equation

Choice of structure matrices and associated added Hamiltonian
H,(x) :

@ choose added structure matrices

Ja(x)—<8 8) and Ra(x)—<8 RS>R3>—R

@ solve a PDE in H,(x) using the left annihilator
gr(x)=(1 0)ofg(x)= ( (1) ) , the matching equation :

5 () U o) 0 ) =g ()0 06) +-Ja () — (R(x) 4 Ro ()] 12 ()
becomes :
IH,
N 10H, OJH
e —l aqc I a a
0*( R 1) Raqc+8¢L
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Control by constant interconnection : definition

Control by constant interconnection : examples

Control by assignment of structure matrices and energy : def
Control by assignment of structure matrices and energy : exa

Control of Port Hamiltonian systems

Parallel RLCS circuit : closed-loop equilibria

The solutions of the matching equation are :
Ha(qCa¢L):H(ch+¢L) H e CM(R)

hence the closed-loop Hamiltonian is

2 2
Ha(gc.00) = Ho(ac 90+ H(Rac +90) = 2 + 2L 4 H(Rac + 00)

The equilibrium in closed-loop is given by:

oL 9c _ 9r , oH RCY o) =
RL C—O and L+8<§ 1+ [ ¢, ) =0
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Control of Port Hamiltonian systems

Parallel RLCS circuit : two possible H

Q Casel: H(é)zk% then :

L+R2C
and H (&) is concave!
Q Case 2: H(é):k% then :

1
0=+ and k=€ R"

(—k)(L+ R2C)

and H (&) is again concave !
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Parallel RLCS circuit : local positivity of Hy

Consider the Hessian of Hy at the quilibrium :

_ 5 (Ra:+¢;2)

82Hd C+R28§2 (ch+¢ ) R
9qc, 97 RI#H (Raz+9;2) %+f(ch+¢ ?)

is definite positive iff
(1) elther LR 5 (ch—i—d)L) >0 or:
I+5 agz % (Raz+97%) >

@ and det ‘9:{;2

& (1+[L+RC) 34 (Ra:+ ;7)) >0

>0ie.:

which reduces to : g? (Rg:+97) > —m
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Control by assignment of structure matrices and energy : def
Control by assignment of structure matrices and energy : exa

Control of Port Hamiltonian systems

Parallel RLCS circuit : two possible H

C2|1eck for the two exemples the condition :
d°H * 2 1
527 (Raz+97) > — e

@ Casel: H(E) = k% the condition reduces to :
(L+RC)* <12

which is wrong!
Q Case 2: H(é):k% then :

1
(L+ R2C) ("’TL)Z

(—k) <

which leads to a solution !
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Control by constant interconnection : definition
Control of Port Hamiltonian systems Control by constant interconnection : examples

Control by assignment of structure matrices and energy : def

Control by assignment of structure matrices and energy : exa

Parallel RLCS circuit : IDA-PBC control

The control law is given by :

B(x)= [gf(x)e()] ‘gt (x)
{16+ 42 () = (R(x) + Rs (x))]

O (x) + (Js — Ra) %0 (x)}
which becomes :

pocen= 20 |( 4 5)( "
7(8 RO)(%L

B(ac,9r) = (R—R,) a—’g (Rgc,+¢1)— Ra¢L

—
=

V| QY

[ At g

(RqC>+¢L)
(RqC>+¢L)

=0
N—
[

or :

L
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The levitating ball : the port Hamiltonian model

Consider the iron ball levitating in a magnetic field :

0 0 0 R 0 0 1
%: 00 1|-|0 00 aaHO(X)—i-Ou
0 -1 0 0 00 X 0
7 R g
dHo, . dHo

y = (10 O)W(X)_Txl_'

with total energy is : Hop(x) = ﬁxf + %)@2 — mgxo
where : x; = ¢ is the total magnetic flux, x = y is the displacement of

the ball and x3 is the kinetic momentum of the ball, m is the mass, g the
k

gravitational constant and L(x2) = Lo+ Gia)” Lw>0,2a>0,k>0.
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The levitating ball : open-loop equilibria

The equilibria are given by (x*, u*) such that:

)
dH X3
O(X*)+gu*: o =0

(J—R) I

and may be parametrized by the current: y* = 9Ho (x*)=1":

X1
Xt Loy*++2mg
x5 | = —a+ ﬁ v and u*=Ry"*

*
X3 0
are unstable: see linearized system.
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The levitating ball : matching equation

Choice of structure matrices and associated added Hamiltonian

H,(x) :
@ choose added structure matrices :
0 0 «
Ja(x) = 000 and R,(x) =03
—a 0 0
o 1 010 )
@ Use the left annihilator g~ (x) = 00 1 , establish the
PDE in H; :
dHo dH,
_(000)3@;(001) o
- 0 0 gﬁ —a -1 0 ﬁ
dx3 dx3
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The levitating ball : added Hamiltonian

From : %H" = 0 the added potential is a function H,(x1, x2) which
does not depend on the velocity and satisfies :
dHo JdH, OJdH,
a =—a -
8x1 axl 8X2

with solution :

H,(x1, x2) = —/0X1 L()Q_)C()C_Oé)q))dx—i-H(Xz—);)

For instance, if L(x2) = ora) H) then
1 3 X1
Ha(XlaXZ) 2k (3a X1 (X2+a)> +H(X2_E)
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Control of Port Hamiltonian systems

The levitating ball : IDA-PBC control

The control law is given by :

-R 0 o
B(x)=1(1 0 0) 0 0 1 [%h(x)
—_— —a -1 0
=lgte] gt
0 0 «
+ 0 0 0 |2%he(x
-a 0 0
or IH, IH, IH
B(x) = —RE(x)+azz(x)+af2(x)

. X X R X
= Rpy+al+gH (e—%)
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Conclusion

Hamiltonian methods for the control of physical systems:
@ use the interconnection of Port Hamiltonian systems and
Casimir functions
@ assign closed-loop Hamiltonian function and structure
matrices.
A control synthesis based on insight of desired physical behaviour in
closed-loop :
@ design directly interconnection of the system with environment
and indirectly the controller
@ design the closed-loop port Hamiltonian behaviour and deduce
the controller

B. Maschke Port-Hamiltonian systems



Irreversible Port Hamiltonian systems
Other examples
Irreversible port Hamiltonian systems Control of IPHS

Irreversible Port Hamiltonian systems

Irreversible Port Hamiltonian systems
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Introduction and motivation

Introduction and motivation
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Structured models for thermodynamics based control

The dynamics of the CSTR and more generally irreversible
thermodynamic systems has been the object of numerous
suggestions concerning their systematic formulation in view of
systems’ and control.

This formulations embeds both the energy and the entropy balance
equations and often lead to consider systems defined as the

systems such as GENERIC etc ...[Hangos,
K.M.,1999, Favache and Dochain, 2010; Favache et al., 2011,
Grmela and Ottinger, 1997; Ottinger and Grmela, 1997; Mushik et
al., 2000; Hoang et al., 2011, 2012; Ramirez et al., 2009; Johnsen
et al., 2008 |
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Two cells exchanging heat flow
The model

Loz

Uy, 51,1y | U, S2, 1o

Thermodynamic model given by Gibbs’ relation : dU; = T; dS;
where T; = as Yi(s), i=1,2 .

Heat flux due to conducting wall : Q2 =4 (T1 — T) with A the
heat conduction coefficien_t
Continuity of heat flux : Q10 = —

% -Tp
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Entropy balance equations
Entropy balance equations for each cell : a quasi-Hamiltonian formulation

The Hamiltonian-like formulation :
i S1\ A 1 B 1 0 -1 T1
dt\ S ) "\, Ty 1 0 T2

with T; = AUtle) (5) — 9Us (s,
@ J(T) is skew-symmetric but depend on the temperature and
not the entropy.

&(U1+U2)

@ the map from the gradient of the internal energy to

the generalized velocities is not linear!
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Balance equations of the total energy and the total entropy
Energy and entropy balance equations

When considering the thermal domain, the non-linearity is
unavoidable :

@ Conservation of the total internal energy due to the
skew-symmetry of J(T) :

s~ (-2 ) () ) (7)o

@ Increase of the total entropy due to the non-linear map :

0 -1 T )2
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Irreversible Hamiltonian systems

The quasi-PHS is defined by the following dynamic equation

x':R(x,gg,gj)J‘y’( )

where
O x €R" is the vector of extensive variables,
@ generated bythe total energy U(x) : €°(R") = R
© a constant skew-symmetric matrix J € R” x R”

Q@ R=R <x, %—g, g—f) is function depending on the total entropy
S(x) and total energy U (x):

R(x3.5) =v(x3) (S070500) @

with y(x,%—g), a positive definite function.
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Irreversible port Hamiltonian systems

2 cells as Port Hamiltonian system

The quasi-Hamiltonian formulation is :

@\ s, nTT)1 0|
A 0 1] 9%
= Ti—T. 9
T, () [1 o} [gsUz
—, U T
with :
e internal energy U, co-energy variables : gg = T:(Si)
@ entropy function : . =51+ S, and
T
a7 T 9u _ |1 0 -1} (T _ .
Jax‘M [1 0| | =

ox

e positive function : y(%) = %
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Irreversible port Hamiltonian systems : add conjugate
external variables

The Irreversible Port Hamiltonian System augments the dynamic
equation with a pair of port variables (u, y)

au
oo U 39S U U
x=R (x, o a)() Jax (x)+wW (x./ BX) +g (x, &X)u(t)
and the conjugated output

U
y:g(X)Tx(X)

Energy balance and entropy balance with irreversible entropy
creation.
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2 cells interacting with a thermostat

The pseudo-Hamiltonian formulation is :

S1 0 —1]1[Ty 0
i<52> - l(Tll_le)L oHTz]Me “)TZ(SZ’]

T2(S2)

A 0 1] |42 0] , Ze [0
= o) [1 0] [gg “Ae +gI 1]”
M~ —(5.U}, —~— T~ 22
=Y =J w 4

with u(t), the temperature of the thermostat and A, the heat
conduction coefficient of the external wall.
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The gas - piston system

The gas - piston system
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The gas - piston system: energy

el

= Total energy
| _—enclosed gas
- Ho(x) = U((S, V) + Hmec(2, p)
P,V,T9%*

with mechnical energy

1
Hmee (2, p) = 5 p* + mgz

and internal energy

dU = TdS—PdV
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The gas - piston system: dynamical equations

as
dt

av
dt

dz
dt

dp  _
dt
in matrix form

da
dt

+Fv=2vv2£06,, >0 entropy balance

Av volume balance

v kinematic equation

—mg+ AP —vv momentum balance
S 0 0 0 ¥ T
-s e ally e
p -2 -A -1 0 v
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The gas - piston system: Irreversible PHS

X = Jirr( )198/10 (X)

-
whered (0= Jo+ T2y (x, 228) (357128
with structure matrices

0 0 0 0O 0 0 0 1
00 0 A 0 000
=10 o o 1| ™ h=|g 0 0 0
0 -A -1 0 -1 0 0 0
and entropy function S(x) =x; = S and function 71 (x) = T(VS)
T
d driving force (257 4 2UY =1 0 0 0|4 | S| =
and driving force (53 h 57 ) = [ ] 1l g | =V
14
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The CSTR: model formulation

The CSTR: model formulation
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The CSTR: single reaction case

For simplicity consider a single reaction
ViAi+.. 4 Vmo1Amo1 = VmAm

Vi,...,Vm: stoichiometric coefficients
A1,...,Am: chemical species

and denote the reaction rate: r(«/, T)=re(f, T)—r/(<7,, T)

with &7 the affinity vector of the reaction.
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The CSTR: mass and entropy balance equations

The balance equations

nj=Fe—Fsi+r;V

mass
LU u(t
S= Z(Feisei — FS;S,') -+ 7(_) + 0,
-1 w
entropy

with
@ F.j, Fs input and output molar flows, s.i,s; molar entropies,
e T, jacket temperature and

e u(t) input heat flow flux.
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The CSTR: as an Irreversible Port Hamiltonian system

x':y{s,U}JJg—g(x)JrW( ,ax)+g( ,ax)U(t)

quasi-Hamiltonian external flow

with U = the internal energy

0 0 Vi Fe1— Fso 0
: : 1
J=120 0 SlLw= : gu=|"| =,
0 0 Vm Fem — Fsm o| T
v —Vm 0 % Y"1 (Feisei — Fsisi) 1
stoichiometric matrix Mass transfer

{5, U} is the reactions driving force, the affinity of reaction .o/

IR - T rv Ui,...,Um: chemical pot.
(5.Uhy=o =~ Z Viki | Y= T — 20, rv: molar flow
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An alternative pseudo-gradient-Hamiltonian representation
of the CSTR

(= L S S S
X_7 \/f(xl7 T)—"_nl (Xl’aXl>M a)((X)+g<a)<> u
skew-sym. ~——

symmetric

@ with vector of extensive variables
x1 = [n1,...,nm, U]T =[nT,U]" and
@ the entropy function S(n,U) is used as generating function.
ot IS _ t Bm) 17T
Its gradient is then e = [(—f) b (_T) ’T]
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An alternative pseudo-gradient-Hamiltonian representation
of the CSTR

structure matrices:

—f1 ... —fam O

with foi = Fej — Fsi (n, T) + V¥;r(n, T)and
BN vy (pe pe M
m <n, T’ T) - T;221<Felsel FSISI _,_V, (n T) V)’
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Thermodynamics-based control of the CSTR

Thermodynamics-based control of the CSTR
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Energy based availability function

Numerous stabilizing controllers are based on the use of the
convexity of the entropy function (for single phase systems) in
Chemical Engineering [Alonso & Ydstie (1996); Ydstie & Alonso (1997);
Alonso & Ydstie (2001); Ydstie (2002); Hoang et al. (2011, 2012)]

Here we use the convexity of the internal energy function and use
the energy-based availability function

U

+ 5 0) (x| 2 0

A(x,x*) = U(x) — | U(x")

where x* is a reference and possibly a desired equilibrium.
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Stabilization by assignment of entropy source and structure
matrix: control objective

The desired closed-loop dynamic is

x= (—odM+Rde)‘;i‘

with M(x) >0 and Jy(x) = —J] (x), scalar functions y, > 0,

Od = Yd {S,A}?,d and Rd =Y {S’A}Jd
for which the balance equation of the availability function is

o), (947,98 g
dt d >
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Stabilization by assignment of entropy source and structure
matrix: control law

The desired closed-loop dynamic achieved by the state- feedback

aU U ) £ (x) aU

)= (0 (Rads—0at) (5200 - 56) )~ 0ORIG ),

with pseudo-inverse g'(x) = [g ' (x)g(x)] g (x)

if the following matching equation is satisfied

00 (Rads— 0s) (G200~ G206 ) ~ £ CORIGE (0 =0
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Stabilization of the CSTR: a simple solution

Choose : Jy = J,M = diag(0,...,0,1),and a positive function
Y4 (x),the only the entropy balance equation is changed

m
S= 3 Y Vi)~ i)~ 0a( T T),
i=1
then the matching equation is equivalent to the expression of De
Donder's extent of reaction
No;, — n; .
vi s
And the balance equation of the energy-based avalaibility becomes

dA
= o (T —T%)?
dt Gd( )7

*\2 *\2
= —Yy( — ") (T - TH)~.
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