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Introduction

Context and motivation

Use in the :
@ physically-based modelling making use of physical invariants

@ physically-based control design : design control Lyapunov
functions using physical invariants

© simultaneous design of process an control using physical
analogy of the controller or the closed-loop system
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Introduction

Competing formulations for physical systems’ dynamics and
control

Competing formulations for open physical systems
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Introduction

Mechanical systems’ dynamics and control

The structure of the dynamical equations may be related to
Mathematical Physics : Lagrangian and Hamiltonian systems
defined on T*Q, Q configuration manifold and augmented with
input-output maps.

@ R.W.Brockett, Control theory and analytical mechanics,in Geometric Control
Theory, C.Martin and R.Herman eds., pp.1-46, Vol. VIl of Lie groups: History,
Frontiers and Applications, Math.Sci.Press, Brookline, 1977

@ A.J. van der Schaft, System Theoretic Description of Physical Systems, CWI
Tracts, Mathematisch Centrum, Amsterdam, 1984

@ A.J. van der Schaft, System Theory and Mechanics, in Three Decades of
Mathematical System Theory, H.Nijmeijer and J.M.Schumacher eds., Lect.
Notes Contr. Inf. Sci.,Vol.135, pp. 426-452, Springer, Berlin, 1989

@ J.E.Marsden, Lecture Notes on Mechanics, London Math. Soc. Lecture Notes
Series, 174, Cambridge Un. Press, Great Britain, 1992
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Introduction

Network systems’ dynamics and control

Port/standard Hamiltonian systems,
pseudo-gradient systems: Kirchoff's laws and n-port elements

@ Hamiltonian systems

@ G.M. Bernstein and M.A. Lieberman, "A method for obtaining a canonical
Hamiltonian for nonlinear LC circuits, IEEE Trans. on Circuits and
Systems, CAS-35, 3, 411-420,1989

@ B.M. Maschke, A.J. van der Schaft and P.C. Breedveld, "An intrinsic
Hamiltonian formulation of network dynamics: non—standard Poisson
structures and gyrators’, Journal of the Franklin Institute, Vol. 329, n.
5, pp. 923-966, 1992

@ Brayton-Moser equations (or pseudo- gradient systems)

@ R.K. Brayton and J.K. Moser, "A Theory of Nonlinear Networks—I and 11",
Quartely of Applied Mathematics, Vol.22, n®1, pp.1-33, April 1964 and
n22, pp.81-104, July 1964

@ S. Smale, "On the Mathematical Foundations of Electrical Circuit
Theory', J. of Differential Geometry, Vol.7, pp.193-210, 1972

@ D. Jeltsema, R. Ortega, J.M.A. Scherpen, On passivity and power-balance

inequalities of nonlinear RLC circuits, IEEE Trans. Circuits and Systems
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Introduction

Dissipative systems’ dynamics and control

controlled
Lagrangian and Hamiltonian systems with dissipation, dissipative port
Hamiltonian systems

@ A.J. van der Schaft, System Theory and Mechanics, in Three Decades of
Mathematical System Theory, H.Nijmeijer and J.M.Schumacher eds., Lect.
Notes Contr. Inf. Sci.,Vol.135, pp. 426—452, Springer, Berlin, 1989

@ van der Schaft, A., Maschke, B., The Hamiltonian formulation of energy
conserving physical systems with external ports. Arch. fiir Elektronik und
Ubertragungstech. 49, 362-371, 1995

gradient systems, GENERIC systems,
irreversible port contact systems

@ Otero-Muras, |., Szederkényi, G., Alonso, A.A., Hangos, K.M., Local dissipative
Hamiltonian description of reversible reaction networks. Syst. ControlLett. 57,
554-560, 2008.

@ H., Grmela, M., Dynamics and thermodynamics of complex fluids. ii.
Illustrations of a general formalism. Phys. Rev. E56, 6633-6655, 1997..
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Introduction

Contact geometry for open thermodynamic systems

For thermodynamical systems one has to consider simulataneously
the energy balance and the entropy balance equation with the
irreversible entropy creation term. This is not encompassed in
(dissipative) Hamiltonian systems.

The objective is to develop a similar control theory for irreversible
Thermodynamic systems :

@ intrinsic structure of state space is contact manifold
@ the dynamics is described by contact vector fields.

inspired by work of M. Grmela and R. Mrugata
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The geometry of Thermodynamics Zhermodynamical Properties
ontact geometry
Reversible transformations
Irreversible transformations
2 cells exchanging heat flow

The geometry of Thermodynamics

The geometry of Thermodynamics
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The geometry of Thermodynamics ghermodynamlcal RGPS LIS
ontact geometry
Reversible transformations
Irreversible transformations
2 cells exchanging heat flow

Thermodynamical properties

Thermodynamical properties
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Thermodynamical Properties
Contact geometry

Reversible transformations
Irreversible transformations
2 cells exchanging heat flow

The geometry of Thermodynamics

Equilibrium Thermodynamics

Equilibrium Thermodynamics characterizes the thermodynamical
properties of matter (extremely diverse and complex) : constitutive
remations with respect to energy (or any thermodynamical
potenetial function)

In general there are not given by a real-valued function, like in
mechanics but given in the Thermodynamical Phase Space
consisting of :

@ n+1 extensive variables denoted (xo, x1, ...,x”)
@ n intensive variables denoted (p1, ..., pn)
by Gibbs' relation : dx®=Y"_, p; dx’

This gives a canonical geometric structure to thermodynamial
systems called contact structure.
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The geometry of Thermodynamics ghermodynamlcal RGPS LIS
ontact geometry

Reversible transformations
Irreversible transformations
2 cells exchanging heat flow

Thermodynamical properties : Gibbs" fundamental relation

They are defined on n+ 1-dimensional space of extensive
variables ¥ ~ R"t1:

@ cnergy xR

@ remaining extensive variables x € R”

© the fundamental equation: x° = U(x)
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Thermodynamical Properties
Contact geometry

Reversible transformations
Irreversible transformations
2 cells exchanging heat flow

The geometry of Thermodynamics

Thermodynamical properties : Gibbs' equations

Thermodynamic Phase space 7 ~ R?>"*1, the space of 1-jets
over 4:

@ additional intensive variables p € R"
e Gibb’s relation: dx° =Y ; p;dx’
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Thermodynamical Properties
Contact geometry

Reversible transformations
Irreversible transformations
2 cells exchanging heat flow

The geometry of Thermodynamics

Thermodynamical properties

For a simple Thermodynamic System:
@ extensive variables: energy U, entropy S, volume V, number of
moles N
@ intensive variables: temperature T, pressure P, chemical potential u
@ Gibbs' relation dU = TdS + (—P)dV + pdN
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The geometry of Thermodynamics 'IC'I'lermodynamTcaI Properties
ontact geometry
Reversible transformations
Irreversible transformations
2 cells exchanging heat flow

Contact geometry and Thermodynamics

Contact geometry and Thermodynamics
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Thermodynamical Properties
Contact geometry

Reversible transformations
Irreversible transformations
2 cells exchanging heat flow

The geometry of Thermodynamics

Intrinsic definitions : contact structure

Definition
A contact structure on a manifold .# is determined by a 1-form 6

of constant class (2n+1). The pair (.#,0) is then called a contact
manifold, and 6 a contact form.

According to Darboux’s theorem there exists a set of canonical
coordinates (xp,x,p) € R x R" x R" of .# where the contact form
0 is given by : 0 =dxo—Y."_; pidx;

Definition

The Reeb vector field E associated with the contact form 0 is the
unique vector field satisfying ir0 =1 and igd6 =0

where jg denotes the contraction by the vector field E of

differential form
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Thermodynamical Properties
Contact geometry

Reversible transformations
Irreversible transformations
2 cells exchanging heat flow

The geometry of Thermodynamics

The geometry of Equilibrium Thermodynamics

some references

@ C.Carathéodory, Untersuchungen iiber die Grundlagen der
Thermodynamik, Math. Ann., 1909

@ Gibbs, J.W.,Collected Works : | : Thermodynamics,
Longmans, 1928

© Herman, R., Geometry, Physics and Systems, Dekker, 1973

@ R. Mrugata, Geometrical formulation of equilibrium
phenomenological Thermodynamics, Reports on
Mathematical Physics, 1978
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The geometry of Thermodynamics 'Ic'hermodynamical Properties
ontact geometry
Reversible transformations
Irreversible transformations
2 cells exchanging heat flow

Thermodynamical properties: a geometric perspective

The solutions to a Pfaffian equation :

9\$:dx0—p;dxi|$:0 (1)

are given by a
Legendre submanifold .Z which is defined, in a given set of
canonical coordinates (x°,x*,....,x", p1,...,pn) by:

@ a partition /U J of the set of indices {1,...,n}

e a differentiable function F(x',p;) of n variables, i € I,j € J
@ and the equations:

O p_pdF o F IF

aps’ “opy P oK
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Thermodynamical Properties
Contact geometry

Reversible transformations
Irreversible transformations
2 cells exchanging heat flow

The geometry of Thermodynamics

Pure monoatomic perfect gas
generated by the free energy

@ the thermodynamical phase space:
energy x9 = U, extensive variables: x' = S.V,N,
intensive variables: p;=T,P,u

@ Gibbs' form 6 =dU—-TdS+PdV —udN

© the Legendre submanifold is generated by the free energy:
G(T,—P,N)=
5/2NRT(1—In(T/To))— NT(so— RIn(P/Py)) where R is
the constant of perfect gases and Ty, Py, sp are constants:

U(T,—P,N) = gNRT

T P
S(T,-P,N)= Ns= Nsp+ §NRln(—)f NRIn(—=-)
2 To Po
NRT
P

u(T,—P,N) = gRTf Ts
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The geometry of Thermodynamics Zhermodynamlcal Properties
ontact geometry

Reversible transformations
Irreversible transformations
2 cells exchanging heat flow

Reversible transformations

Reversible transformations
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Thermodynamical Properties
Contact geometry

Reversible transformations
Irreversible transformations
2 cells exchanging heat flow

The geometry of Thermodynamics

Contact vector fields: definition

Definition

A (smooth) vector field X on the contact manifold .# is a contact
vector field with respect to a contact form 0 if and only if there
exists a smooth function p € C*(.#) such that Lx6 = p#6,

where Lx- denotes the Lie derivative with respect to the vector field
X.

The map ®(X) = ix0 defines an isomorphism from the vector
space of contact vector fields in the space of smooth real functions
on the contact manifold.

The function K = ®(X) is called contact Hamiltonian
the function p is p = igdK where E is the Reeb vector field.
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Thermodynamical Properties
Contact geometry

Reversible transformations
Irreversible transformations
2 cells exchanging heat flow

The geometry of Thermodynamics

Contact vector field in coordinates

Theorem

In a set of canonical coordinates (x°,x*,...,x",p1,...,pn), the

contact vector field is expressed by:

Kl o o —p'] |55
Xe(x)=0|+|0 0 —I,| |2
0 p I, O oK

where [, denotes the n x n identity matrix.
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Thermodynamical Properties
Contact geometry
Reversible transformations

The geometry of Thermodynamics

Irreversible transformations
2 cells exchanging heat flow

Decomposition of vector fields (., 6)

The tangent bundle T.# may be decomposed into
T =kerdO & ker 6 (2)

where kerd@ , called vertical bundle , is of rank 1 and is generated
by the Reeb vector field and ker 0 , called horizontal bundle, is of
rank 2n .

Every vector field X on .# may be decomposed in a unique way
into

X =(ix8) E+ (X (ix0)E) (3)
—_
ckerdd  =(X)ckerb6=%¢

where (ix6) E is horizontal and (X — (ix0) E) is horizontal and is
denoted by .77 (X) .
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Thermodynamical Properties
Contact geometry

Reversible transformations
Irreversible transformations
2 cells exchanging heat flow

The geometry of Thermodynamics

Decomposition of contact vector fields (., 0)

®7L(F) = Xp = f E+ 0% (df — (igdf) 0) (4)

where f E is the vertical and 8% (df — (izdf) @) is the horizontal
components of the contact vector field.

Note that if the contact Hamiltonian f is is a first integral of the
Reeb vector field (i.e. satisfies igdf =0 or in other words, it
differential df is semi-basic), then

Xr = f E+ 6% (df)

and leaves invariant the contact form and is called strict contact
vector field.
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Thermodynamical Properties
Contact geometry

Reversible transformations
Irreversible transformations
2 cells exchanging heat flow

The geometry of Thermodynamics

Contact vector fields leaving invariant a Legendre
submanifold

Consider a Legendre submanifold .

[Mrugata, 1991] Then Xk is tangent to £ if and only if Kis
identically zero on £ :

< c K(0)

This characterizes contact fields which leave invariant some
thermodynamical properties.

For instance: reversible thermodynamic transformations are
generated by the state equations.
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Thermodynamical Properties
Contact geometry

Reversible transformations
Irreversible transformations
2 cells exchanging heat flow

The geometry of Thermodynamics

Reversible transformation of a perfect gas

Consider as contact Hamiltonian function the state equation
K(U,S,V,B,—T,P,—u)=U-(3/2)NRT
The associated contact vector field is :

d d d 3 J 3 d d d

Thus the integral curves of Xy are isochore reversible
transformations of the closed system

U(t):ert, T(t): T()et7 P(t):Poet, [J(t):[.Loet—%RToet./
S(t)=So+3NoRt, V(t)=Vo, N(t)=No

Since . C K71(0), Xk is tangent to .Z:
the thermodynamical properties of the ideal gas
are preserved along the integral curves.



The geometry of Thermodynamics Zhermodynanﬁcal Properties
ontact geometry
Reversible transformations
Irreversible transformations
2 cells exchanging heat flow

The dynamics of Irreversible Thermodynamics

The dynamics of Irreversible Thermodynamics

B. Maschke Port contact systems



Thermodynamical Properties
Contact geometry

Reversible transformations
Irreversible transformations
2 cells exchanging heat flow

The geometry of Thermodynamics

The geometry of Irreversible Thermodynamics

Irreversible Thermodynamics deals with systems subject to
irreversible phenomena

© mass transport through diffusion
@ heat transport through conduction ...
due to non-equilibrium condition between subsystems or with the

environment.

We shall use contact vector fields naturally defined on contact
structure for a geometrically consistent definition of the dynamic
equations of irreversible, open processes.
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Thermodynamical Properties
Contact geometry

Reversible transformations
Irreversible transformations

2 cells exchanging heat flow

The geometry of Thermodynamics

Conservative system on a contact manifold

A conservative system on a contact manifold is defined by:

@ a strictly contact manifold .#Z with contact form 6 (the
Thermodynamic Phase Space)

@ a Legendre submanifold .Z (the Thermodynamic properties)

@ a contact Hamiltonian Kp (the potential generating the fluxes)
and satisfying the invariance condition:

O the differential equation: &£ = Xj,

E
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The geometry of Thermodynamics Zhermodynamlcal Properties
ontact geometry

Reversible transformations
Irreversible transformations
2 cells exchanging heat flow

Two cells exchanging heat

Two cells exchanging heat
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Thermodynamical Properties
Contact geometry

Reversible transformations
Irreversible transformations
2 cells exchanging heat flow

The geometry of Thermodynamics

Two cells exchanging heat

Two cells exchanging heat : the paradigm of coupled entropy balance equations

Ul, S]. Tl U‘_), »_‘2. 1.2
7, %

Thermodynamic model given by Gibbs’ relation : dU; = T; dS;
where T; = as Yi(s), i=1,2 .

Heat flux due to conducting wall : Q2 =4 (T1 — T) with A the
heat conduction coefficien_t
Continuity of heat flux : Q10 = —

dS; _ T.dS:
t T2 dt
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Thermodynamical Properties
Contact geometry

Reversible transformations
Irreversible transformations
2 cells exchanging heat flow

The geometry of Thermodynamics

Dynamics of the 2 cells lift to a contact sytem

Thermodynamic phase space has the coordinates:
@ energy x°
@ entropies x' € A4 =R?
© temperatures p; € TiN ~ R2
with contact form 6 = dx® — p;dx’
a Legendre submanifold .¥ > (U, s T,-) generated by U(S)
the contact Hamiltonian Ko(p, T) = —R(T (x),p)p' Js T(x), with

R(T(x).p) =1 (8:42)

satisfies the invariance condition and has the dimension of power.

B. Maschke Port contact systems



The geometry of Thermodynamics Zhermodynamlcal Properties
ontact geometry

Reversible transformations
Irreversible transformations

2 cells exchanging heat flow

Dynamics of the 2 cells on the Thermodynamic Phase Space

The energy coordinate dynamics:

dx® p1 as - U
dt _/l(Tsz)(Bx J)(” Jax) )
—_———
l#=0

The entropy coordinate dynamics:

dq i (popa) (0 <L) |(r 90N as, (35 Y au
dt*A(T1T2)<1 0><J8 wt G )% (©)
S——— S————
| =0 =p1—p2

The temperature coordinate dynamics :

dpi (1 ,0U\ 0 p1— P2 s’ pP1L— P2 IS+ 22U
dr (” 1o )ax 1PUET ) Lax P T ) Lok ) e 0P
S——— ——

|o=0 =p1—p2
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The geometry of Thermodynamics Zhermodynamlcal Properties
ontact geometry

Reversible transformations
Irreversible transformations

2 cells exchanging heat flow

Dynamics of the 2 cells on the Legendre submanifold

The energy balance equation:

dx®

dt

L a (8)

The local energy balance (expressed on temperatures) :

dpi
dt

_dT; ( —Cy1 *A(T1—T2) )
& dt C\/zill(Tlf Tz)

The entropy balance equation :

SESERE ) e

axi
dt
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Controlled conservative contact systems
Controlled contact systems 2 cells with thermostat

The CSTR

References

Controlled contact systems

Controlled contact systems
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Controlled conservative contact systems
Controlled contact systems 2 cells with thermostat

The CSTR

References

Controlled conservative contact system

Definition

A control contact system is defined by:

@ a contact manifold R2"*+1 with contact form 6
@ a Legendre submanifold £

© m+1 a contact Hamiltonians: Kj internal and Kj interaction
Hamiltonian
satisfying the invariance condition:

K/|2:0’J2077m
O the differential equation: X = Xio + L7211 uj Xk;
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Controlled conservative contact systems
Controlled contact systems 2 cells with thermostat

The CSTR

References

2 cells with thermostat

Two simple thermodynamic systems 1 and 2 interact through a
heat conducting conducting wall and system 2 interacts with a
thermostat at temperature T, = u.

Zz77777 7 e, 7777 7777

Qil2 Q2 &8

—» T

S, T U,,S,,T, |u(),T,

192 =12 =i

B. Maschke Port contact systems



Controlled conservative contact systems
Controlled contact systems 2 cells with thermostat

The CSTR

References

2 cells with thermostat: pseudo-Hamiltonian formulation

The control pseudo PHS is defined by:

x = R(x, T(X))Jaag(x)—i— W+g(T)u

where W + g(T)u represent the external “forces” is then :

: 0

51] ( L )[0 —1] [35“ ]

X = 2 — T+ | L _1fu
U U U e

[52 7 s ) L 014, LI
1 1 \[o -1]( Ae

= A(au_au) [1 0] [%Sd +—Ae 9]+ 9] v,

95, 95 95> Iy %,.«
R=R(x,T(x)) -
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Controlled conservative contact systems
Controlled contact systems 2 cells with thermostat

The CSTR

References

2 cells with thermostat as a port contact system

@ Thermodynamic phase space has the coordinates:
energy x°, entropies x' € 4 =R? | temperature
pi € TeN = R?
e with contact form 6 = dx°® — p;dx’
@ a Legendre submanifold ¥ > (U, s T,-) generated by U(S)
@ the internal contact Hamiltonian:Ko(p, T)= -2 (%) p JsT(x),

@ the control Hamiltonian:

KC(X.p): ( *%)AE(T67PI2) (11)
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Controlled conservative contact systems
Controlled contact systems 2 cells with thermostat
The CSTR

References

2 cells with thermostat: contact system in coordinates

The energy coordinate dynamics:

&0 (p S LU
dt—ﬂ( Tsz)(aX J><p Jax>+“ —p) (12)
————

| =0

The entropy coordinate dynamics :

dx; - 0 -1 U as 0
£a(5e2) (1 3) |5 () (3 Jrrnm
——— ———

T2
| =0 =p1—pP2
(13)
The temperature coordinate dynamics :
dxt;|_dS; 1 1 0 -1 T1 0
22l (B ) o
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Controlled conservative contact systems
Controlled contact systems 2 cells with thermostat

The CSTR

References

2 cells with thermostat: restriction to the Legendre
submanifold

The energy balance equation:

6
dt

g—E—le(Te_TZ) (15)

The entropy balance equation :

_ds (1 1\[o0 -1 T 0
R (A [E- DN RFRE I

The local energy balance (expressed on temperatures) :

dxt;
dt

_dTi [ —Cy1*A(T1-T2)

dp1; _ _ ( )+( 0 )
o dt Cva TA(T1—T2) Cya 1 Ae(Te — T2)

dt

(17)
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Controlled conservative contact systems
Controlled contact systems 2 cells with thermostat

The CSTR

References

The CSTR

The Continuous Stirred Tank Reactor

B. Maschke Port contact systems



Controlled conservative contact systems
Controlled contact systems 2 cells with thermostat

The CSTR

References

Continuous Stirred Tank Reactor

Assume a chemical reaction in a CSTR with the following reversible
reaction scheme

V1A1—|—...—{—V/A/:‘V/+1A/+1—|—...—{—VmAm, m>/>1.

and assume V the volume in the reactor as well as the pressure P
are constant.

The contact formulation is obtained by lifting the Irreversible Port
Hamiltonian formulation

) U Q
U 9S
x=R <x, 5 Tx) J—ax (x)+ W(x,Fe)+g—=* (18)

on the Thermodynamic phase space R?™1 5 (xg, x, p) with
x=[nS]".
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Controlled conservative contact systems
Controlled contact systems 2 cells with thermostat

The CSTR

References

CSTR: Thermodynamic Properties

The thermodynamic properties of the mixture in the reactor (with
assumption of constant volume and pressure) may be defined by
the Legendre submanifold of the TPS R?"*1 5 (xo, x, p) ,
generated by the internal energy function U(n,S)

Xp = U(n,S)
Ly x=[n,S]|" (19)
p=[u(nS), T(n75)]T
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Controlled conservative contact systems
Controlled contact systems 2 cells with thermostat

The CSTR

References

CSTR: internal contact Hamiltonian

Internal contact Hamiltonian

U
KO = _PTRe (Xv%vgiivp) Ji(x)

ox
with
R (. 32.38.p) = LD DYy ). (20)

Virtual energy balance due to chemical reaction

K (W), 7, (1), T)V |17 (p) = pT 7 (1)
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Controlled conservative contact systems
Controlled contact systems 2 cells with thermostat

The CSTR

References

CSTR: control contact Hamiltonian

Control contact Hamiltonian
! U Q7 i
K. = (——p) {W(X,a—x,p)—i—gf} with

Fel*Fs2( ’Bx)

Fsm( a) |
lym, <Fe,$e,_Fsl( TU)S( ))

@ mass exchange with the environment
Z(#l Pi ( e Fi(X7%>>

@ (thermal) energy exchange with environment

(700 (8 (ron rutera(x22)) 4 )

=1
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Controlled conservative contact systems
Controlled contact systems 2 cells with thermostat
The CSTR

References

Some references

© R. Mrugata. On a special family of thermodynamic processes and
their invariants. Reports in Mathematical Physics,
46(3) :461-468, 2000

© Grmela, M., Reciprocity relations in thermodynamics, Physica A,
2002

© D. Eberard, B.M. Maschke, and A.J. van der Schaft. An extension
of pseudo-Hamiltonian systems to the thermodynamic space :
towards a geometry of non-equilibrium thermodynamics. Reports
on Mathematical Physics, 60(2) :175-198, 2007

@ H. Ramirez Estay , B. Maschke and D. Sbarbaro, Irreversible
port-Hamiltonian systems : A general formulation of irreversible

processes with application to the CSTR, Chemical Engineering
Science, Volume 89, pp. 223-234 15 February 2013
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An alternative definition of port contact Hamiltonian systems

Variational contact systems

Control contact systems: a variational approach
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An alternative definition of port contact Hamiltonian systems

Alternative definition of contact vector fields

Definition
A contact vector field Xx generated by the Hamiltonian function

K (X) is the unique vector field satisfying

ix0 = K (21)

ixdd = —dK(H#(X))=—(dK —(igdK)0)

In a set of canonical coordinates (x%,x%,...,x", p1,...,pn), the

contact vector field is expressed by:

IK

K 0 0 —p' %0
Xgk(x)=1|0|+|0 0 —I, ';T’g
0 p ol O ||
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An alternative definition of port contact Hamiltonian systems

Variational contact systems [Merker et al. 2013]

A variational control contact system on (. ,6), is defined by

(i) output variables defined by the vector bundle E > y over.# with
flat covariant derivative V

(ii) a bundle map A: T*.# — E with A(6) =0

(ii) conjugated input variables is the dual bundle E* > u over.#
(iii) input map defined by the adjoint bundle map A*: E* — T.#
(iv) internal contact Hamiltonian function Ky (X)

and the dynamical system % = X (X, u, y) with the unique vector
field X (X, u, y) satisfying

i(X—A*u)dG +dK0 =0
0(X)=ix0 =Ko+ (u, y) (22)
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An alternative definition of port contact Hamiltonian systems

Reminder on decomposition of vector fields

The tangent bundle T.# may be decomposed into
T # =kerdO @ kerb

where kerd@ , called vertical bundle , is of rank 1 and is generated
by the Reeb vector field
ker @ , called horizontal bundle, is of rank 2n .

Every vector field X on .# may be decomposed in a unique way
into

X = (ix8) E+ (X — (ix6) E)

where (ix0) E € kerd® is vertical and
(X —(ixB8)E) = (X) € ker@ = € is horizontal with respect to
the contact form 6 .
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An alternative definition of port contact Hamiltonian systems

Variational contact systems as explicit nonlinear system (1)

Using the decomposition of the tangent manifold
T . # = kerd6 @ ker 0, the variational contact system is

—_—— ———
ckerd = (X)ecker0=¢
(Kot () E+ (i) + A'u
errgz(@” (23)
- XKo +<U,y>E+ \A U,

drift contact vect. field ckerdd Eker 6=%

control vect. field
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An alternative definition of port contact Hamiltonian systems

Variational contact systems as explicit nonlinear system (1)

The output variable y satisfies

%y:Aode(X(i, u,y)) (24)
But
do(X(X,u,y)) = IX(%,u,y)d0
= ix,d0+(u, y)iicl'_e/—kde (A* u)
— (dKo—(iedKo) 8)+ d6 (A" u)
hence the dynamics of the output becomes
4y = —A(dKo)+(AodBoA*)u
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An alternative definition of port contact Hamiltonian systems

Relation with input-output contact systems

The conservative contact input-output system with internal contact
Hamiltonian Kj(X) and control contact Hamiltonians —K; (X) is a
variational control contact system with internal contact Hamiltonian
Ko (X) and bundle map A: T*.# — R" x .# defined by

AR) = (Ai(A)iz1,m = (A (X)) iz, m (25
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Feedback invariance of control contact systems

Feedback invariance of control contact systems
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Objectives

We would like to investigate the abstract problem about
state-feedback of single input control contact systems, affine in the
input :

under which conditions is the closed-loop system again a contact
system 7

Based on

© H. Ramirez Estay , B. Maschke and D. Sbarbaro, Feedback equivalence of
input-output contact systems, Systems and Control Letters, Volume 62,
Issue 6, pp. 475-481, June 2013

@ H. Ramirez, B. Maschke and Daniel Sbarbaro, Partial stabilization of
input-output contact systems on a Legendre submanifold , IEEE
Transaction on Automatic Control, Vol. 62, n°3, pp. 1431 - 1437, March
2017
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Controlled contact systems and their feedback

Control contact systems

Control contact systems are defined by contact Hamiltonians which
depend not only on the state variables X but also on a time
dependent input function u(t) € L (R,.) as control Hamiltonian
systems.

Definition

Control contact systems affine in the input are defined by %)? =X

X = XKo +XKCU (26)

where Ko € C*(.#) is the internal contact Hamiltonian and

K. € C*(.#) is the interaction (or control) contact Hamiltonian
and where Xk, and Xk, are contact vector fields with respect to
the canonical contact form 6.
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Structure preserving feedback

Structure preserving feedback
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Feedback invariance of control contact systems
Structure preserving feedback

Matching equation for strict contact vector fields
Stabilizing feedback

Control of 2 cells

Controlled contact systems and their feedback

State feedback leaving the contact form invariant

When does a state feedback v = a(X), with a € C*(.#), generates
a closed-loop vector field X = Xk, + Xk_o that is again a contact
vector field with respect to the contact form 6 7

Theorem

Consider the controlled contact system with the condition that K.
vanishes on a submanifold of measure O (that is, is fully actuated)
and the feedback u = o(X) being a smooth function of the state
variables. The closed loop vector field X is a contact vector field
with respect to the canonical contact form 0 if and only if

0(X) = Qcte is constant.
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Controlled contact systems and their feedback

Proof

Using Cartan's formula: Lx- = ixd - +dix-., one obtains:

Lx0 = Lxy,+axc 0 = (Po+0pc) 0 + Kcdar (27)

where pg = iedKy and p. = igdK..

This is equivalent to the existence of a function ¢ € C*(.#) such
that: K.da = ¢6.

In canonical coordinates, we may write

n n n
Ke (%dX°+kZI§§"kka +k21§,§"kdpk> =00 ), puoxt,

which by smoothness of the functions and as K. vanishes on a
submanifold of measure 0 leads to aax S Pk and 2% =,
which implies that o is constant.

B. Maschke Port contact systems
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Feedback equivalence with a contact vector field with
respect to a different contact form

When does a state feedback u = o/(X) define the closed-loop
contact vector field X = Xk, + Xk ot , as a contact vector field
with respect to a new contact form 64 7

Therefore we consider the equivalent condition of the existence of a
function Pd € Coo(//) such that Lx68y = pg6y4.

The problem is formulated : under which conditions there exist a
contact form 6y, a function py € C*(.#) and a feedback

u=a € C(.#) such that the following matching equation is
satisfied

Pdbq = LXK09d+(XLXKC Qd—l-(l'XKCQd)dOC. (28)
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Matching equation for strict contact vector fields
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Matching equation for strict contact vector fields

We assume in the sequel that the internal and control contact
Hamiltonian and the closed-loop contact Hamiltonian do not
depend on the coordinate xp hence py = po = p. = 0.

This is not a restrictive assumption since for contact systems arising
from the modelling of physical systems, the contact Hamiltonian
indeed do not depend on the xp coordinate representing the energy
(or more generally a thermodynamic potential) .

Under this assumption the matching equation (28) is reduced to a
relation on the feedback o and the closed-loop contact structure 64

LXKOGd—i-OtLXKCed—i-(iXKCQd)d(X:0. (29)
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Controlled contact systems and their feedback

Matching to a contact form obtained by adding an exact
form

We shall restrict the closed-loop contact form 64 defined as

64 = 6 dF, (30)
with F € C*(.#) satisfying igdF = 0.

Note that the condition iedF = 0 is equivalent in canonical
coordinates to assume that the function F depends only on (x, p)
and not on xg.

The 1-form defined by (30) is a contact form.
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Controlled contact systems and their feedback

Proof (1)

Recall that 6, is a contact form if it is a Pfaffian form of class
2n+1, satisfying ,

Od/\(ded)” #0, (31)
04 A (d6g)" ™t =0. (32)

Consider first the inequality (31). Note that using d>F = 0 one has
that

04 A (d64)" = (8 +dF) A(d( + dF))"
= (0+dF)A(d6)"
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Proof (2)

Now proceed by contradiction and assume that 64 A (d64)" = 0.
Then, using the fact that ig is a A antiderivation and the properties
of the Reeb vector field:

e [Gd A (d@d)n]
=ig[(6+dF)A(dB)"]
=ig(0+dF)A(dO)"+(-1)(0+dF)Nig((dO)™)
= (1+igdF)A(d6)"

and igdF =0, implies that (d0)” = 0 which is contradicting the
fact that 0 is of class 2n+1.
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Proof (3) and interpretation of the closed-loop contact
structure

To check 64 A (d64)™! = 0 notice that (d0)"*1 is full rank, hence
dF A (d8)"1 =0 no matter the choice of F and

04 A (dBy)" Tt =0 A (d6)" T +dF A(d6)"H?
=0A(dO)"t =0

The closed-loop contact form is thus given by

6y =0+dF = (dXO— Zp;dX;) +dF,

=d(x+F)— Zp,dx,
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Matching equation in terms of feedback and added form

The matching equation may finally be rewritten as the following
matching equation in the feedback o and the function F
d(X(F))+ Kcda=0. (33)

Taking the exterior derivative of (33) we get dK. A doe = 0 which
leads to consider o = @ o K.

The closed-loop vector fieldX may be defined as a contact vector
field with respect to the contact form 64

X =Xk, + 0 Xk, = )%K (34)
and generated by K = Ko+ Xk, (F) + (K. + Xk_(F)) .
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Decoupling the matching equation

Theorem

Define Ko, K¢, F € €= (.#), satisfying ig. =0, with closed-loop
contact form 64 = 0 + dF and state-feedback

a=@oK.

where ¢ € C*(R), then
X = Xk, + 0Xkc is contact vector field with respect to 04 iff

XKo(F) +(¢po Kc)[Kc+XKC(F)] —boK.=cF

with ®(1) = fo- @ (1) dy.
Furthermore the closed-loop Hamiltonian is K = Ky + ® o K.
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Some remarks on control synthesis

We have shown that the control is defined by a function ¢ € C*(R)
as: a=@okK..

Once the choice of this function ¢ is made one has still to consider
the matching equation n F:

Xio(F) 4+ (9o K)[Ke + Xk (F)] —PoKe =cr

which is written in canonical coordinates :

3Ko_(q) K)BKC
8K0 +((P K)aKC +((pOKC)Kc_¢OK =0. (35)

and is a quasi-linear PDE in F .
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Stabilizing structure preserving feedback control

Stabilizing structure preserving feedback control
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On the stability of contact vector fields

On the stability of contact vector fields
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Equilibria of a contact system: reminder

Theorem

Consider a contact manifold (.# ,0) and a strict contact vector
field Xk generated by the contact Hamiltonian K (X) € C=(.#)
(satifying iedK = 0). and the contact system defined by

d

—X = Xk (X 36
S8 =X (%) (36)
then a point X* € ./ is an equilibrium point of the contact system
if and only if it satisfies

K(%)=0

dK (%) =0
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The submanifold of the zeros of the contact Hamiltonian

S=K1(0)
In the sequel we shall consider the set
S=K1(0)

and assume some regularity of Hamiltonian K (X).

The set S= K~1(0) is a differentiable manifold of constant
dimension 2n.

Note that the set S contains:
@ all equilibrium points
@ the Legendre submanifold £y defining the thermodynamic
properties for a conservative system
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Invariance of the submanifold S = K~1(0)

Proposition

The contact vector field Xk with contact Hamiltonian K being an
invariant of the Reeb vector field, leaves any submanifold K~ (c),
¢ € R invariant.

Using the Jacobi bracket [, ], induced by 6, one has
Lx K = ix dK = [K, K]y +K igdK =0
0
=0 =

as the Jacobi bracket is anti-symmetric and the contact
Hamiltonian is an invariant of the Reeb vector field, that is:
irdK =0.
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About the stability of equilibria points relatively to
S=K1(0)

In the sequel we shall analyze

the stability relatively to the invariant manifold S = K~1(0),

i.e. the stability of the restriction Xx = Xk|g of the strict contact
vector field on the submanifold S = K=1(0)

Let X* € S be an hyperbolic critical point of the restriction Xk of
the strict contact vector field on the submanifold S = K=1(0). The
stable manifold St ({X*}) and the unstable manifold S= ({X*}) are
Legendre submanifolds of (. ,0).
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Proof (1)

By assumption, the vector field Xk is complete and denote by ¢;
its integral flow.
As it is the restriction of the contact vector field Xi, one has

0(s) (Xk (s)) = 0 (9 (s)) (@e (5), Xk (5))
Vse ST({%*}), t e Ry.

As the vector field X generates an orbit converging to the
equilibrium point X*,

lim @ (s), Xk(s) =0

t—r oo
hence

0(s) (Xk(s)) =0 VseST({x'}), Xk € T.ST({%'})  (37)
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Proof (2)

As a consequence, the stable manifold by S* ({X*}) is an integral
manifold of 6 of dimension less or equal than n.

It may be shown with similar arguments (but reversing the time
limit) that the unstable manifold S~ ({X*}) is also an integral
manifold of 6 and has dimension less or equal than n.

As the equilibrium point is assumed to be hyperbolic, the stable
and unstable submanifolds have complementary dimensions in

S = K~1(0) which by assumption has dimension 2n.

Hence both the stable and unstable submanifolds have the maximal
dimension n and are Legendre submanifolds.
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Partial stabilization on a Legendre submanifold

Partial stabilization on a Legendre submanifold
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Control objective: stabilization

As a consequence, any state-feedback control
a=@oK.

which preserves the contact strucure in the sense that the
closed-loop system is again a conservative contact system defined
by the strict contact vector field

X = XKo + o Xk

is contact vector field with respect to 8y = 6 + dF may at most
stabilize the input-output contact system on a Legendre
submanifold being the stable manifold by ST ({%*}) of X.
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Control objective: shaping the equilibrium and
non-equilibrium properties

Hence we shall state-feedback control
o=@oK.

such that the closed-loop system is again a conservative contact

system defined by the strict contact vector field with respect to the
contact form 64

X = XKo + O{XKC = )%K
@ generated by Ky = Ko+ Xk, (F) + a(Kc + Xk (F)) :
non-equilibrium
@ leaving invariant the Legendre submanifold £y generated by
the closed-loop generating function
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2 cells with thermostat as a port contact system

@ Thermodynamic phase space has the coordinates:

energy x°, entropies x' € .4/ =R? , temperature

pi€ TeN ~R2
@ with contact form 6 = dx® — p;dx’
@ a Legendre submanifold £ > (U, S', T;) generated by the

internal energy U(S)
@ the internal contact Hamiltonian:

_ P2
Ko=Rp JT—(Ta-p) 2, Ke=e™(B 1 (ag)
2

@ the control Hamiltonian:

Ke(xp)=e ™(B1) 1 (39)
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2 cells with thermostat: control

A structure preserving output feedback a = ®'(y) is:

(X(Xz,pg) = (D/O Kc (XQ,pz) :ﬁ (lepz7_27-2) 5 B € Cm(R)

The actual state feedback is restricted to the closed-loop Legendre
submanifold .Zy, defined with respect to the generating function Uy (x):

control entropy flux

which may be interpreted as a nonlinear function of a “control” entropy

flux into the compartment 2 induced by a (thermostat) control

temperature % (x1,x2) defined by the closed-loop Legendre submanifold

Lud -
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Control contact systems on Thermodynamic Phase Space

. Alternative formulations

@ energy formulation dU = TdS + (—P)dV + udN

e D. Eberard, B.M. Maschke, and A.J. van der Schaft. An extension
of pseudo-Hamiltonian systems to the thermodynamic space :
towards a geometry of non-equilibrium thermodynamics. Reports on
Mathematical Physics, 60(2) :175-198, 2007

o H. Ramirez Estay , B. Maschke and D. Sbarbaro, /Irreversible
port-Hamiltonian systems : A general formulation of irreversible
processes with application to the CSTR, Chemical Engineering
Science, Volume 89, pp. 223-234 15 February 2013

@ entropy formulation dS = +dU+ £dV — “—Ttdn

o Favache, D. Dochain and B. Maschke, An entropy-based
formulation of irreversible processes based on contact structures,
Chemical Engineering Science, vol. 65, pp. 5204-5216, 2010

Conservative control contact sytems describe quasi-reversible processes.
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Conclusion

Structure preserving control

The result about the state feedback of control contact systems :
@ qualifies the control contact Hamiltonian K. as natural output

@ imposes a closed-loop contact structure different from
open-loop one
H. Ramirez Estay , B. Maschke and D. Sbarbaro, Feedback equivalence of

input-output contact systems, Systems and Control Letters, Volume 62, Issue
6, pp. 475-481, June 2013

H. Ramirez, B. Maschke and Daniel Sbarbaro, Partial stabilization of
input-output contact systems on a Legendre submanifold , IEEE Transaction
on Automatic Control, Vol. 62, n°3, pp. 1431 - 1437, March 2017
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Conclusion

Structure preserving control

Remains to consider the control design in order to :

@ shape the losed-loop contact Hamiltonian function/the
closed-loop Legendre submanifold

@ apply to chemical reactor
Generalize to:
@ more general closed-loop contact forms than 64 = 6 + dF (q, p)

@ closed-loop contact systems which do not leave invariant any
Legendre submanifold and lead to dynamic feedback.
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