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Chapter 1

Tools

1.1 Notation and Preliminaries

For vectors x ∈ Rn, z ∈ Rm, we let col(x, z) := (xT zT)T.

Norms and Function Spaces

Norms on finite-dimensional vector spaces X ∼= Rn are denoted by a single bar, | · | : X →
R≥0. This notation encompasses vector norms, |x| for x ∈ Rn, and matrix norms, |A| for
A ∈ Rm×n. Due to the fact that norms on finite-dimensional vector spaces are all equivalent,
norm types are left unspecified, unless explicitly noted. As a result, there is little loss of
generality in assuming that | · | : X → R≥0 is the euclidean norm on X , that is:

|x| = |x|2 :=

√√√√ n∑
i=1

x2i , x ∈ Rn , |A| = |A|2 := sup
x∈Rn
x 6=0

|Ax|2
|x|2

=
√
λmax (ATA) , A ∈ Rm×n

where λmax(M) denotes the largest eigenvalue of the matrix M ∈ Rn×n. Given a set
A ⊂ Rn, the norm on Rn with respect to A is defined as the point-to-set distance

|x|A := dist(x,A) := inf
ξ∈A
|x− ξ|

Conversely, for function spaces we distinguish several types of functional norms, denoted
by a double bar, ‖·‖ : U → R≥0, where U is a suitable space of functions. Functions spaces
that will be considered in this class are the spaces of k-times differentiable functions, with
k ∈ [0, 1, . . . ,∞]. Specifically,

CkI(X ) , k ∈ [0,∞] , I ⊂ (−∞,∞) , X ∼= Rn

denotes the space of k-times differentiable functions of a scalar variable defined on the
interval I of the real line, with codomain X . For example, C0[0,∞)(R

m) denotes the space

of continuous functions u(·) : t 7→ u(t) ∈ Rm, t ∈ [0,∞), whereas C1(0,∞)(R
m×n) denotes

the space of continuously differentiable matrix-valued functions u(·) : t 7→ u(t) ∈ Rm×n,
t ∈ (0,∞). Note that Ck+1

I (X ) ⊂ CkI(X ), for k = 0, 1, . . . ,∞. For economy of notation,
unless confusion may arise, we shall omit to specify the codomain. The following norms
will be used on CkI(X ):
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• ∞-norm: ‖u(·)‖∞ := supt∈I |u(t)|

• 2-norm: ‖u(·)‖2 :=
√∫
I |u(τ)|2dτ

If, for a given u(·) ∈ CkI(X ), ‖u(·)‖∞ < ∞, then the function u(·) is said to be bounded on
its domain. If ‖u(·)‖2 <∞, u(·) is said to have finite energy on its domain. Note that if I is
a compact interval (that is, I = [a, b] for some −∞ < a < b <∞), then both ‖u(·)‖∞ <∞
and ‖u(·)‖2 <∞ hold by continuity. Consequently, it makes sense to define

L∞(−∞,∞)(X ) :=
{
u(·) ∈ C0(−∞,∞)(X ) : ‖u(·)‖∞ <∞

}
L∞[0,∞)(X ) :=

{
u(·) ∈ C0[0,∞)(X ) : ‖u(·)‖∞ <∞

}
as the spaces of bounded functions defined over (−∞,∞) or [0,∞), and

L2(−∞,∞)(X ) :=
{
u(·) ∈ C0(−∞,∞)(X ) : ‖u(·)‖2 <∞

}
L2[0,∞)(X ) :=

{
u(·) ∈ C0[0,∞)(X ) : ‖u(·)‖2 <∞

}
as the spaces of square-integrable functions defined over (−∞,∞) or [0,∞). Again, the
domain of definition and the codomain will be dropped from the notation whenever con-
venient and appropriate, and use the simpler notation L∞ and L2. For a given function
u(·) ∈ CkI(X ), where either I = (−∞,∞) or I = [0,∞) and τ ∈ I, we define the truncation
of u(·) over (−∞, τ ] (or over [0, τ ]) as the function uτ (·) : I → X defined as

uτ (t) =

{
u(t) t ∈ I and t ≤ τ
0 t ≥ τ

On the basis of this definition, one defines the extended L∞ and L2 spaces respectively as
follows:

L∞,e(−∞,∞)(X ) :=
{
uτ (·) ∈ C0(−∞,∞)(X ) : ‖uτ (·)‖∞ <∞ for all τ ∈ R

}
L∞,e[0,∞)(X ) :=

{
uτ (·) ∈ C0[0,∞)(X ) : ‖uτ (·)‖∞ <∞ for all τ ≥ 0

}

and

L2,e(−∞,∞)(X ) :=
{
uτ (·) ∈ C0(−∞,∞)(X ) : ‖uτ (·)‖2 <∞ for all τ ∈ R

}
L2,e[0,∞)(X ) :=

{
uτ (·) ∈ C0[0,∞)(X ) : ‖uτ (·)‖2 <∞ for all τ ≥ 0

}
Clearly, L∞ ⊂ L∞,e and L2 ⊂ L2,e, but not vice versa.

GIven a signal u(·) ∈ Ck(−∞,∞)(X ), its asymptotic norm, ‖u(·)‖a, is defined as

‖u(·)‖a := lim sup
t→∞

|u(t)|
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Comparison Functions

Definition 1.1.1 (Class-K Functions) A function α(·) : R≥0 → R≥0 is said to be of
class-K if it is continuous, strictly increasing and satisfies α(0) = 0. A class-K function is
said to be of class-K∞ if, in addition, it satisfies lims→∞ α(s) = +∞.

Definition 1.1.2 (Class-N Functions) A function η(·) : R≥0 → R≥0 is said to be of
class-N if it is continuous and non-decreasing. Note that a class-N function η(·) does not
necessarily satisfy η(0) = 0.

Definition 1.1.3 (Class-KL Functions) A function β(·) : R≥0 × R≥0 → R≥0 is said to
be of class-KL if β(·, r) is a class-K function for all r ∈ R≥0 and, for all s ∈ R≥0, β(s, ·) is
a continuous strictly decreasing function satisfying limr→∞ β(s, r) = 0.

1.2 Stability Definitions

In what follows, we consider nonlinear nonautonomous systems of the form

ẋ = f(t, x)

x(t0) = x0
(1.1)

with state x ∈ Rn. The vector field f : R× Rn → Rn is assumed to be at least continuous
in t ∈ R, and locally Lipschitz in x ∈ Rn, uniformly in t (note that this implies that
supt≥0 |f(t, x)| < ∞, for all x belonging to arbitrary compact sets M ⊂ Rn.) Often, we
will add the further assumption that f is continuously differentiable, or even smooth. The
assumption on local Lipschitz continuity (uniformly in t) of the vector field f guarantees
that there exists a unique absolutely continuous solution x(t; t0, x0) of (1.1), which can
be extended over a maximal open interval It0,x0 = (t0 − δmin, t0 + δmax). If δmax = +∞,
(respectively, δmin = +∞) for all initial conditions x0 and all initial times t0, we say that
(1.1) is forward complete (respectively, backward complete). A system that is both backward
and forward complete is said to be complete. On the other hand, if δmax (respectively,
δmin) is finite, then the trajectory x(t; t0, x0) leaves any compact set M containing x0 as
t → t0 + δmax (respectively, t → t0 − δmin.) It is assumed that the origin x = 0 is an
equilibrium for (1.1), that is f(t, 0) = 0, for all t ∈ R.

Definition 1.2.1 (Uniform Stability) The origin of (1.1) is said to be uniformly stable
if for any ε > 0 there exists δε > 0 such that for any t0 ∈ R≥0 and any |x0| ≤ δε the solution
x(t; t0, x0) satisfies |x(t; t0, x0)| ≤ ε for all t ≥ t0.

Definition 1.2.2 (Uniform Global Stability) The origin of (1.1) is said to be uniformly
globally stable if there exists a class-K∞ function γ(·) such that for each (t0, x0) ∈ R≥0×Rn
the solution x(t; t0, x0) satisfies

|x(t; t0, x0)| ≤ γ(|x0|) , ∀ t ≥ t0 .

Note that the definition of uniform stability is different from that of uniform global stability,
as the latter embeds the notion of forward completeness, while the former does not.
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Definition 1.2.3 (Uniform Global Attractivity) The origin of (1.1) is said to be uni-
formly globally attractive if for any numbers R > 0 and ε > 0 there exists T > 0 (which
depends only on R and ε) such that for any t0 ∈ R≥0 and any |x0| ≤ R

|x(t; t0, x0)| ≤ ε , ∀ t ≥ t0 + T .

Definition 1.2.4 (Uniform Global Asymptotic Stability) The origin of (1.1) is said
to be uniformly globally asymptotically stable if it is uniformly stable and uniformly globally
attractive.

A well known result is the following:

Proposition 1.2.5 The origin of the system (1.1) is uniformly globally asymptotically sta-
ble if and only if there exists a class-KL function β(·, ·) such that all solutions of (1.1)
satisfy

|x(t; t0, x)| ≤ β(|x0|, t− t0) , ∀ t ≥ t0
for all (t0, x0) ∈ R≥0 × Rn.

Definition 1.2.6 (Exponential Convergence) The trajectories of the system (1.1) are
said to be (locally) exponentially convergent if there exists an open neighborhood of the
origin D such that for each pair of initial conditions (t0, x0) ∈ R≥0×D there exist constants
µ0 > 0, λ0 > 0 such that the solution x(t; t0, x0) satisfies

|x(t; t0, x)| ≤ µ0|x0|e−λ0(t−t0) , ∀ t ≥ t0 . (1.2)

The system (1.1) is said to be globally exponentially convergent if for each pair of initial
conditions (t0, x0) ∈ R≥0 × Rn there exist constants µ0 > 0, λ0 > 0 such that (1.2) is
satisfied.

Definition 1.2.7 (Exponential Stability) The origin of (1.1) said to be (locally) expo-
nentially stable if there exist constants µ > 0, λ > 0 and a neighborhood D of the origin
such that for any initial condition (t0, x0) ∈ R≥0 ×D the corresponding solutions satisfy

|x(t; t0, x)| ≤ µ|x0|e−λ(t−t0) , ∀ t ≥ t0 . (1.3)

The system (1.1) is said to be globally exponentially stable if there exist constants µ > 0,
λ > 0 such that (1.3) is satisfied for any (t0, x0) ∈ R≥0 × Rn.

1.3 Stability Theorems

In this section, we recall a few results on stability theory of the equilibrium of non-
autonomous nonlinear systems of the form (1.1). Almost all the results presented in this
section will be given without proof. The reader may refer to [5] for further details. The
reader should be familiar with Lyapunov stability theory for autonomous nonlinear systems.
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1.3.1 Lyapunov Theorems

Definition 1.3.2 (Lyapunov Function Candidates) A C1 function V : R×Rn → R≥0
is said to be a Lyapunov Function Candidate for (1.1) if there exist class-K∞ functions
α(·), α(·), such that

α(|x|) ≤ V (t, x) ≤ α(|x|) (1.4)

for all t ∈ R and all x ∈ Rn.

In particular, the lower bound in (1.4) establishes the fact that V (t, x) is positive definite
and radially unbounded, that is, V (t, x) > 0 for all t ∈ R and all x ∈ Rn − {0}, and

lim
|x|→∞

V (t, x) = +∞

Conversely, the upper bound establishes the property that V (t, x) is decrescent. The classic
Lyapunov Theorems for non-autonomous systems can be summarized as follows:

Theorem 1.3.3 Assume that the C1 function V : R × Rn → R≥0 a Lyapunov Function
Candidate for (1.1). Then, the equilibrium x = 0 of (1.1) is:

• Uniformly globally stable if

∂V

∂t
+
∂V

∂x
f(t, x) ≤ 0

for all t ≥ 0 and all x ∈ Rn;

• Uniformly globally asymptotically stable if there exists a class-K function α(·)
such that

∂V

∂t
+
∂V

∂x
f(t, x) ≤ −α(|x|) (1.5)

for all t ≥ 0 and all x ∈ Rn;

• Globally exponentially stable if (1.4) and (1.5) hold with quadratic functions,
that is,

α(s) = a s2 , α(s) = a s2 , α(s) = a s2

for some constants 0 < a ≤ a, a > 0;

• Uniformly globally asymptotically and locally exponentially stable if (1.4)
and (1.5) hold with locally quadratic functions, that is, there exist positive numbers δ,
a , a, a such that

α(s) ≥ a s2 , α(s) ≤ a s2 , α(s) ≥ a s2

for all s ∈ [0, δ].
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1.3.4 Converse Theorems and Related Results

We recall first some useful results on the inversion of the theorems of Lyapunov. Converse
Lyapunov theorems play a crucial role in modern nonlinear control theory, as the existence
of smooth Lyapunov functions is instrumental in assessing various forms of robustness with
respect to vanishing and persistent perturbations. In regard to this, a fundamental example
is given by the theorem of total stability, given later in the section. An introduction to the
classic contributions by Massera and Kurzweil, can be found in the textbooks [5, 22]. For
recent important results, the reader should consult [7] and [20], which also contain a very
nice discussion of early work on the subject as well as detailed and precise bibliographic
references. The first converse theorem is extremely important, and concerns the existence of
a smooth Lyapunov function for locally Lipschitz systems possessing a UGAS equilibrium.
For a proof, see [10] or [7].

Theorem 1.3.5 (Massera) Assume that in (1.1) the vector field f is locally Lipschitz in
x ∈ Rn, uniformly in t. Assume that the equilibrium x = 0 is uniformly globally asymptoti-
cally stable. Then, there exists a smooth function V : R≥0×Rn → R≥0, class-K∞ functions
α(·), α(·), and a class-K function α(·) such that

α(|x|) ≤ V (t, x) ≤ α(|x|)

∂V

∂t
+
∂V

∂x
f(t, x) ≤ −α(|x|)

for all t ≥ 0 and all x ∈ Rn.

Appropriate versions of the above converse theorem for uniform local asymptotic stability
and local exponential stability read as follows:

Theorem 1.3.6 Assume that in (1.1) the vector field f is continuously differentiable in
R≥0 × Br, where Br = {x ∈ Rn : |x| < r}, and that the Jacobian matrix ∂f/∂x is bounded
on Br uniformly in t. Assume that there exist a class-KL function β(·, ·) and a positive
number r0 satisfying β(r0, 0) < r such that the trajectories of (1.1) satisfy

|x(t, t0, x0)| ≤ β(|x0|, t− t0) , ∀x0 ∈ B(r0) , ∀ t ≥ t0 ≥ 0 .

Then, there exists a continuously differentiable function V : R≥0 × Br0 → Rn satisfying

α1(|x|) ≤ V (t, x) ≤ α2(|x|)

∂V

∂t
+
∂V

∂x
f(t, x) ≤ −α3(|x|)∣∣∣∣∂V∂x
∣∣∣∣ ≤ α4(|x|)

for some class-K functions αi(·), i = 1, . . . , 4, defined on [0, r0]. If, in addition, the sys-
tem (1.1) is autonomous, the function V can be chosen independent of t.

Theorem 1.3.7 Assume that in (1.1) the vector field f is continuously differentiable in
R≥0 × Br, where Br = {x ∈ Rn : |x| < r}, and that the Jacobian matrix ∂f/∂x is bounded
on Br uniformly in t. Assume that there exist positive constants κ, λ, r0, with r0 < r/κ
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such that for any initial condition (t0, x0) ∈ R≥0 × Br0 the corresponding solution of (1.1)
satisfies

|x(t; t0, x)| ≤ κ|x0|e−λ(t−t0) , ∀ t ≥ t0 .
Then, there exists a continuously differentiable function V : R≥0 × Br0 → Rn satisfying

c1|x|2 ≤ V (t, x) ≤ c2|x|2

∂V

∂t
+
∂V

∂x
f(t, x) ≤ −c3|x|2∣∣∣∣∂V∂x
∣∣∣∣ ≤ c4|x|

for some positive constants ci, i = 1, . . . , 4, for all t ≥ 0, and all x ∈ Br. If, in addition,
the equilibrium x = 0 is globally uniformly exponentially stable, the above inequalities hold
on Rn. Moreover, if the system is autonomous, the function V can be chosen independent
of t.

A proof of Theorem 1.3.6 and Theorem 1.3.7 can be found in [5] and [22]. It is worth not-
ing that Theorem 1.3.5 and Theorem 1.3.7 can be combined, retaining the more restrictive
assumptions on the regularity of the vector field f stated in Theorem 1.3.7, to obtain a con-
verse Lyapunov theorem for UGAS and LES equilibria yielding a continuously differentiable
Lyapunov function which is locally quadratic at the origin.

Theorem 1.3.8 Assume that in (1.1) the vector field f is continuously differentiable in
R≥0 × Rn, and the Jacobian matrix ∂f/∂x is bounded on any compact set, uniformly in t.
Then, the equilibrium x = 0 is uniformly globally asymptotically stable (UGAS) and locally
exponentially stable (LES) if and only if there exist a continuously differentiable function
V : R≥0 × Rn → R≥0, class-K∞ functions α(·), α(·), a class-K function α(·), and positive
numbers δ, a , a, a such that

α(|x|) ≤ V (t, x) ≤ α(|x|)

∂V

∂t
+
∂V

∂x
f(t, x) ≤ −α(|x|)

for all t ≥ 0 and all x ∈ Rn, and

α(s) ≥ a s2 , α(s) ≤ a s2 , α(s) ≥ a s2

for all s ∈ [0, δ].

A proof of Theorem 1.3.8 can be obtained following the same lines, mutatis mutandis,
of [4, Lemma 10.1.5]. For autonomous systems possessing a locally asymptotically stable
equilibrium, the following theorem due to Kurzweil [6] establishes the existence of a smooth
Lyapunov function which is proper on the domain of attraction, generalizing in a significant
way the classic theorem by Zubov [24]. A nice self-contained proof can be found in [5,
Theorem 4.17].
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Theorem 1.3.9 (Kurzweil) Assume that the system (1.1) is autonomous, and let f :
D → Rn be locally Lipschitz on the domain D ⊂ Rn containing the origin. Assume that the
origin is a (locally) asymptotically stable equilibrium, and denote with A ⊂ D its domain
of attraction. Then, there exists a smooth, positive definite function V : A → R≥0 and a
continuous, positive definite function W : A → R≥0 satisfying

lim
x→∂A

V (x) = +∞

∂V

∂x
f(x) ≤ −W (x) , ∀x ∈ A .

In particular, for any c > 0, the level set Ωc = {x ∈ Rn : V (x) ≤ c} is a positively invariant
compact subset of A.

1.3.10 Stability of Perturbed Systems

The following theorem, known as the Theorem of Total Stability, establishes the fact that
uniform asymptotic stability of an equilibrium of a nonlinear systems provides robustness
against small non-vanishing perturbations. In particular, the theorem establishes bounded-
ness of all trajectories of a perturbed system that originate sufficiently close to the equilib-
rium, if the perturbation is “sufficiently small” in a meaningful sense.

Theorem 1.3.11 (Total Stability)

Consider system (1.1), and assume that the vector field f is continuously differentiable in
R≥0 × Br, where Br = {x ∈ Rn : |x| < r}, that the Jacobian matrix ∂f/∂x is bounded
on Br uniformly in t, and that f(t, 0) = 0 for all t ≥ 0. Let g : R≥0 × Br → Rn be such
that g(t, x) is piecewise continuous in t and locally Lipschitz in x, uniformly in t. Assume,
in addition, that the equilibrium at the origin of (1.1) is (locally) uniformly asymptotically
stable. Then, given any ε > 0, there exists δ1 > 0 and δ2 > 0 such that if

|x0| ≤ δ1
|g(t, x)| ≤ δ2 ∀ t ≥ 0 ∀x ∈ Bε

then the trajectory x(t) = x(t; t0, x0) of the perturbed system

ẋ = f(t, x) + g(t, x)

x(t0) = x0

satisfies |x(t)| ≤ ε for all t ≥ t0 ≥ 0.

Next, we restrict our attention to systems affected by bounded external disturbances,
namely systems of the form

ẋ = f(t, x, d)

x(t0) = x0 (1.6)

where d(·) ∈ L∞(Rm). For these systems, we introduce and introduce a few important no-
tions related to bounded-input bounded-state stability. The first such notion is improperly
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referred to as a stability property, as it does not entail contractivity of the forward trajec-
tory over the semi-infinite interval (in terms of its L∞-norm) with respect to the L∞-norm
of the disturbance. It is, however, an important property related to unifirm boundedness
of trajectories in the face of bounded disturbances:

Definition 1.3.12 (Global Uniform Ultimate Boundedness) System (1.6) is said to
possess the global uniform ultimate boundedness property (GUUB) with respect to d if
there exists a class-N function η(·) such that for any initial condition (t0, x0) ∈ R×Rn and
any d(·) ∈ L∞(Rm), the forward solution x(t) := x(t; t0, x0, d[t0,t)), t ≥ t0, of (1.6) satisfies

‖x(·)‖a ≤ η(‖d(·)‖∞) , ‖d(·)‖∞ := sup
t≥t0
|d(t)| (1.7)

The GUUB property admits a (partial, as the converse statement does not hold) Lyapunov-
like characterization, as follows:

Theorem 1.3.13 Let V : R×Rn → R≥0 be a continuously differentiable function satisfying

α(|x|) ≤ V (t, x) ≤ α(|x|)
for all (t, x) ∈ R×Rn, where α(·) and α(·) are class-K∞ functions. Assume that there exists
a class-N -function χ(·) such that for all t ∈ R and all d ∈ Rm

|x| > χ(|d|) =⇒ ∂V

∂t
+
∂V

∂x
f(t, x, d) < 0 (1.8)

Then, system (1.6) has the GUUB property with respect to d. Morover, the bound (1.7)
holds with η(·) = α−1 ◦ α ◦ χ(·).
The second notion is a generalization of the concept of internal stability of an LTI system, as
it provides a complete characterization of bounded-input bounded-state behavior together
with global uniform asymtotic stability of the origin when the disturbance is inactive:

Definition 1.3.14 (Input-to-State Stability) System (1.6) is said to be input-to-state
stable (ISS) if there exist class-K functions γ0(·), γ(·) such that for any initial condition
(t0, x0) ∈ R × Rn and any d(·) ∈ L∞(Rm), the forward solution x(t) := x(t; t0, x0, d[t0,t)),
t ≥ t0, of (1.6) satisfies

‖x(·)‖∞ ≤ max {γ0(|x0|), γ(‖d(·)‖∞)}
‖x(·)‖a ≤ γ(‖d(·)‖a) (1.9)

where ‖x(·)‖∞ := supt≥t0 |x(t)| and ‖d(·)‖∞ := supt≥t0 |d(t)|.
The ISS property entails UGAS of the origin of the system when d = 0. The GUUB
property admits a complete Lyapunov-like characterization, as follows:

Theorem 1.3.15 System (1.6) ISS (with respect to d as an input) if and only if there exist
a continuously differentiable function V : R×Rn → R≥0, class-K∞ functions α(·) and α(·),
and a class-K-function χ(·) such that

α(|x|) ≤ V (t, x) ≤ α(|x|) (1.10)

for all (t, x) ∈ R× Rn and

|x| > χ(|d|) =⇒ ∂V

∂t
+
∂V

∂x
f(t, x, d) < 0 (1.11)

for all t ∈ R and all d ∈ Rm Morover, given (1.10) and (1.11), the bounds (1.9) hold with
γ0(·) = α−1 ◦ α(·) and γ(·) = α−1 ◦ α ◦ χ(·).
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1.3.16 Invariance-like Theorems

A peculiar characteristic of direct adaptive control techniques is that the Lie derivative
of certain candidate Lyapunov functions is rendered negative semi-definite by design. For
autonomous systems, this situation of usually handled resorting to La Salle’s invariance prin-
ciple and the theorem of Krasovskii and Barbashin. However, for non-autonomous systems,
the situation is far more complicated, and available results are in general much weaker. The
reason lies in the fact that ω-limit sets of bounded trajectories of non-autonomous systems
are not necessarily invariant, as it is indeed the case for autonomous or periodic systems.
Invariance of ω-limit sets is the fundamental technical result that enables a “reduction prin-
ciple” in determining the behavior of solutions when restricted to the zeroing manifold for
the derivative of a Lyapunov function candidate, and unfortunately this method of anal-
ysis can not be carried over to the non-autonomous case. However, a weaker extension
of La Salle’s invariance principle can be used to infer certain properties of the asymptotic
behavior of systems for which a Lyapunov-like function admitting a negative semi-definite
derivative can be found. We begin with a classic result, ubiquitous in the literature of
adaptive control, which is a key technical lemma in establishing convergence of integrable
signals.

Lemma 1.3.17 (Barbălat’s lemma) Let φ : R → R be a uniformly continuous function
over [0,∞). Assume also that limt→∞

∫ t
0 φ(τ)dτ exists and is finite. Then, limt→∞ φ(t) = 0.

The proof of Barbălat’s lemma can be found in nearly every book on adaptive control,
see for instance [3, Lemma 3.2.6], whereas a significant generalization has been recently
suggested in [19].

The main result on “invariance-like” theorems for non-autonomous systems is due to
Yoshizawa [23], and it is commonly referred to as the La Salle/Yoshizawa theorem.

Theorem 1.3.18 (La Salle/Yoshizawa) Consider the nonautonomous system (1.1) where
the vector field f(t, x) is piecewise continuous in t ∈ R, and locally Lipschitz in x ∈ Rn uni-
formly in t. Assume that x = 0 is an equilibrium point for (1.1), that is f(t, 0) = 0 for all
t. Let V : R≥0 × Rn → R≥0 be a continuously differentiable function satisfying

α(|x|) ≤ V (t, x) ≤ α(|x|) (1.12)

∂V

∂t
+
∂V

∂x
f(t, x) ≤ −W (x) (1.13)

for all t ≥ 0, for all x ∈ Rn, where α(·) and α(·) are class-K∞ functions, and W : Rn → R≥0
is a continuous positive semi-definite function. Then, system (1.1) is uniformly globally
stable, and satisfy

lim
t→∞

W (x(t)) = 0 .

Proof. Since f(t, x) is piecewise continuous in t and locally Lipschitz in x, the solution
x(t) := x(t : t0, x0) of (1.1) originating from any initial condition (t0, x0) ∈ R≥0 ×Rn exists
uniquely over a maximal interval I(t0, x0) = [t0, t0 + δmax). Next, we show that x(t) is
uniformly bounded over I(t0, x0), and thus I(t0, x0) = [t0,∞). Let

V (t) := V (t, x(t; t0, x0))
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and note that since V̇ (t) ≤ 0

V (t, x(t; t0, x0)) ≤ V (t0, x0) , ∀ t ∈ I(t0, x0) .

Therefore
|x(t)| ≤ (α−1 ◦ α)(|x0|) =: Bx0

for all t ∈ I(t0, x0), with t0 ∈ R≥0 and x0 ∈ Rn arbitrary. This shows that δmax = +∞, as
otherwise x(t) would leave the compact set {x : |x| ≤ Bx0} as t → t0 + δmax. Moreover,
letting ρ(·) = (α−1 ◦ α)(·), we obtain

|x(t; t0, x0)| ≤ ρ(|x0|) ,∀ t0 ≥ 0 , ∀ t ≥ t0
hence global uniform stability of the origin is established. Since V (t) is non increasing and
bounded from below, limt→∞ V (t) = V∞ exists and is finite. Since V̇ (t) ≤ −W (x(t)), it
turns out that ∫ t

t0

W (x(τ))dτ ≤ V (t0, x0)− V (t)

and thus limt→∞
∫ t
t0
W (x(τ))dτ exists and is finite. Next, we show that W (x(t)) is a uni-

formly continuous function of t over [t0,∞). Since, by definition,

x(t2; t0, x0) = x(t1; t0, x0) +

∫ t2

t1

f(τ, x(τ))dτ , ∀ t2 ≥ t1 ≥ t0

and by virtue of the uniform local Lipschitz property there exist L > 0 such that

|f(t, x)| ≤ L|x| , ∀ t ≥ t0 , ∀x : |x| ≤ Bx0
we obtain

|x(t2)− x(t1)| ≤
∫ t2

t1

L|x(τ)|dτ ≤ LBx0 |t1 − t2|

for all t2 ≥ t1 ≥ t0. Given any ε > 0, choose δ =
ε

LBx0
to obtain

|t1 − t2| < δ =⇒ |x(t1)− x(t2)| < ε ,

hence uniform continuity of x(t) is established. Since W (x) is a continuous function of x,
it is uniformly continuous over the compact set {x : |x| ≤ Bx0}. Therefore, W (x(t)) is a
uniformly continuous function of t, and the result of the theorem follows from Barbălat’s
lemma. 2

It is worth noting that the La Salle/Yoshizawa theorem yields a much weaker result than
its counterpart for autonomous systems (i.e., La Salle’s invariance principle), as in the non-
autonomous case the trajectory does not converge in general to an invariant set contained
in S := {x ∈ Rn : W (x) = 0}. Furthermore, since convergence is established by means of
Barbalăt’s lemma, the set S is not guaranteed to be uniformly attractive.

To determine the behavior of the trajectory on the set S, it may prove instrumental to
use an additional auxiliary function H : R × Rn, when appropriate conditions hold. The
first result, due to Anderson and Moore [1], employs the auxiliary function

H(t, x) =

∫ t+δ

t
V̇ (τ, χ(τ, t, x))dτ

13



where χ(τ, t, x) is the solution of (1.1) originating from the initial condition x at time t,
and δ > 0 is a given constant. For a proof, see [1] or [5, Theorem 8.5].

Theorem 1.3.19 (Anderson and Moore) Let the assumptions of Theorem 1.3.18 hold
for the system (1.1), with (1.13) replaced by the weaker condition

∂V

∂t
+
∂V

∂x
f(t, x) ≤ 0 ∀ (t, x) ∈ R× Rn

and assume, in addition, that there exist δ > 0 and λ ∈ (0, 1) such that∫ t+δ

t
V̇ (t, χ(τ ; t, x))dτ ≤ −λV (t, x)

for all t ∈ R≥0 and all x ∈ Rn, where χ(τ ; t, x) is the solution of (1.1) at time τ originating
from the initial condition x at the initial time t. Then, the equilibrium x = 0 is uniformly
globally asymptotically stable. Furthermore, if for some positive numbers a1, a2, and ρ the
comparison functions α(·) and α(·) satisfy

α(s) ≥ a1s2 , α(s) ≤ a2s2

for all s ∈ [0, ρ), then the equilibrium x = 0 is uniformly globally asymptotically and locally
exponentially stable.

The most important application of Theorem 1.3.19 regards the appropriate extension to the
time-varying case of the familiar notion that an observable LTI system having a convergent
output response under zero input is necessarily asymptotically stable.

Proposition 1.3.20 Consider the linear time-varying system

ẋ = A(t)x

y = C(t)x
(1.14)

where the mappings A : R≥0 → Rn×n and C : R → Rm×n are continuous and bounded.
Assume that (1.14) is uniformly completely observable1, that is, there exist constants δ > 0
and κ > 0 such that the observability gramian

W (t1, t2) =

∫ t2

t1

ΦT(τ, t1)C
T(τ)C(τ)Φ(τ, t1)dτ , t1 ≤ t2

satisfies
κ I ≤W (t, t+ δ) , ∀ t ≥ 0 .

Furthermore, assume that there exists a continuously differentiable, symmetric mapping
P : R→ Rn×n solution of the differential equation

Ṗ (t) +AT(t)P (t) + P (t)A(t) ≤ −CT(t)C(t)

satisfying
c1I ≤ P (t) ≤ c2I

for all t ≥ 0 and some c1 > 0, c2 > 0. Then, the origin is a uniformly (globally) asymptot-
ically stable equilibrium of (1.14).

1The reader should be aware of the fact that the definition given here is only valid for bounded realizations.
The reader should consult [2, 17] for the more general situation in which A(·) and C(·) are measurable and
locally essentially bounded.
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Proof. Consider the Lyapunov function candidate

V (t, x) = xTP (t)x

yielding, along trajectories of (1.14),

V̇ (t, x) ≤ −xTCT(t)C(t)x ≤ 0 .

It is easy to see that the assumptions of Theorem 1.3.18 are satisfied, and thus trajectories
of (1.14) are bounded, and satisfy limt→∞ y(t) = 0. Consider the auxiliary function

H(t, x) =

∫ t+δ

t
V̇ (τ, χ(τ, t, x))dτ

≤ −
∫ t+δ

t
χT(τ, t, x)CT(τ)C(τ)χT(τ, t, x)dτ

= −xT
∫ t+δ

t
ΦT(τ, t)CT(τ)C(τ)Φ(τ, t)dτ x ,

as χ(τ, t, x) = Φ(τ, t)x. Therefore,

H(t, x) ≤ −κ|x|2 ≤ − κ
c2
V (t, x) ,

and, since c2 can always be chosen to be such that c2 > κ, the result follows directly from
Theorem 1.3.19. 2

The second result on uniform asymptotic stability of systems having a Lyapunov func-
tion with negative semi-definite derivative is due to Matrosov [11], and it is presented here
in a simplified version. The interested reader is referred to [14] for the proof of a more
general version, and to [9] for recent important generalizations.

Theorem 1.3.21 (Matrosov) Consider the nonlinear system (1.1), where f is continuous
in t, and locally Lipschitz in x, uniformly in t. Assume that there exists a continuously
differentiable function V : R≥0 × Rn → R≥0 such that the assumptions of Theorem 1.3.18
hold. Assume, in addition, that there exists a continuously differentiable function H :
R≥0 × Rn → R with the following properties:

i. For any fixed x ∈ Rn, there exists a number M > 0 such that

|H(t, x)| ≤M ∀ t ≥ 0 .

i1. Let E be the set of all points x ∈ Rn such that x 6= 0 and W (x) = 0, that is,
E = {x : W (x) = 0} ∩ {x 6= 0}. Assume that E is nonempty2. Assume that the
function H(t, x) satisfies

Ḣ(t, x) :=
∂H

∂t
+
∂H

∂x
f(t, x) > 0 ∀ t ≥ 0 , ∀x ∈ E .

Then, the equilibrium x = 0 is globally uniformly asymptotically stable
2Note that this rules out the possibility that W (x) is positive definite.
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1.4 Passivity

Passivity theory plays a fundamental role in the analysis and design of adaptive systems.
Roughly speaking, the concept of passivity is a generalization of the notion of conservation of
energy, in the sense that the rate of change of the energy stored in the system does not exceed
the power supplied externally. Adaptive laws are usually designed to either exploit natural
passivity properties of given plant models (as in the case of Euler-Lagrange or Hamiltonian
systems) or to enforce passivity of the resulting closed-loop system. Passivity theory (or,
more generally, the theory of dissipative systems) is usually formulated for autonomous
systems, where, used in combination with La Salle’s invariance principle and specific notions
of observability, it yields a powerful tool to assess global asymptotic stability from Lyapunov
functions admitting negative semi-definite derivatives. Furthermore, passivity theory and
the related concept of finite L2-gain stability offer a natural extension to nonlinear systems
of the concept of H∞ norm of a stable transfer function, with all the advantages given by a
Lyapunov-like characterization. The excellent monograph [21] provides a standard reference
and a rewarding reading, while the reader interested in quickly grasping the fundamental
concepts will find a lucid introduction in [4, Sections 10.7–10.9] and [5, Chapter 6]. Here,
we will limit ourselves to giving only the most basic definitions and properties, extended to
non-autonomous systems, that will be used in the sequel, adopting a simpler (albeit more
restrictive) “differential” characterization of dissipativity.

Consider the following non-autonomous system in affine form

ẋ = f(t, x) + g(t, x)u

y = h(t, x)
(1.15)

with state x ∈ Rn, input u ∈ Rm, and output y ∈ Rm. It is assumed that f(t, x), g(t, x), and
h(t, x) are continuous in t and smooth in x. Also, assume that f(t, 0) = 0 and h(t, 0) = 0
for all t.

Definition 1.4.1 (Passivity) System (1.15) is said to be passive if there exists a smooth
nonnegative function V : R× Rn → R≥0 (usually called a storage function) satisfying

∂V

∂t
+
∂V

∂x
f(t, x) ≤ 0

∂V

∂x
g(t, x) = hT(t, x)

for all t ∈ R≥0, and all x ∈ Rn.

Definition 1.4.2 (Strict passivity) System (1.15) is said to be strictly passive if there
exists a smooth positive definite storage function V : R×Rn → R≥0, and a positive definite
function α(·) (called dissipation rate) satisfying

∂V

∂t
+
∂V

∂x
f(t, x) ≤ −α(x)

∂V

∂x
g(t, x) = hT(t, x)

for all t ∈ R≥0, and all x ∈ Rn.

16



u

y2

u1 y1

u2

yΣ1

Σ2

Figure 1.1: Feedback interconnection of passive systems

Corollary 1.4.3 Assume that (1.15) is passive with respect to a positive definite and de-
crescent storage function V (t, x), that is, such that

W1(x) ≤ V (t, x) ≤W2(x)

for all t ∈ R≥0 and all x ∈ Rn, for some positive definite functions W1(·), W2(·). Then, the
equilibrium x = 0 of the unforced system (that is, when u = 0) is uniformly stable.

Corollary 1.4.4 Assume that (1.15) is strictly passive with respect to a positive definite,
decrescent, and radially unbounded storage function V (t, x), that is, such that

γ1(|x|) ≤ V (t, x) ≤ γ2(|x|)

for all t ∈ R≥0 and all x ∈ Rn, for some class-K∞ functions γ1(·) and γ2(·). Then,
the equilibrium x = 0 of the unforced system (that is, when u = 0) is uniformly globally
asymptotically stable.

Among the desirable properties of passive systems, one of the most useful is the fact that
passivity is preserved under negative feedback interconnection. Specifically, let systems Σ1

and Σ2 be described respectively by

Σ1 :

 ẋ1 = f1(t, x1) + g1(t, x1)u1

y1 = h1(t, x1)

Σ2 :

 ẋ2 = f2(t, x2) + g2(t, x2)u2

y2 = h2(t, x2)

where x1 ∈ Rn1 , x2 ∈ Rn2 , u1 ∈ Rm, u2 ∈ Rm, y1 ∈ Rm, and y2 ∈ Rm. Consider the
negative feedback interconnection of Σ1 and Σ2, defined by the relations

u1 = −y2 + u

u2 = y1

y = y1

(1.16)

where u and y are the overall input and output of the feedback system (see Figure 1.1).

17



Proposition 1.4.5 Assume that Σ1 is passive with storage function V1(t, x1), and that Σ2

is passive with storage function V2(t, x2). Then, the negative feedback interconnection de-
fined by (1.16) is passive, with storage function V (t, x1, x2) = V1(t, x1) + V2(t, x2). If both
subsystems are strictly passive, with dissipation rates given by α1(x1) and α2(x2) respec-
tively, then the feedback interconnection defined by (1.16) is strictly passive, with storage
function V (t, x1, x2) = V1(t, x1)+V2(t, x2) and dissipation rate α(x1, x2) = α1(x1)+α2(x2).

Proposition 1.4.6 Assume that Σ1 is strictly passive with positive definite, decrescent and
radially unbounded storage function V1(t, x1) and dissipation rate α1(x1). Let Σ2 be passive
with positive definite and decrescent storage function V2(t, x2). Then, when u = 0, the
negative feedback interconnection defined by (1.16) has a uniformly stable equilibrium at the
origin (x1, x2) = (0, 0). Moreover, if V2(t, x2) is radially unbounded, then all trajectories
are uniformly bounded, and satisfy limt→∞ x1(t) = 0.

For LTI systems of the form

ẋ = Ax+Bu

y = Cx
(1.17)

with x ∈ Rn, u ∈ Rm, and y ∈ Rm, the following result applies.

Proposition 1.4.7 Consider system (1.17). Suppose there exist a symmetric positive def-
inite matrix P ∈ Rn×n and a symmetric positive semi-definite matrix Q ∈ Rn×n such that

ATP + PA ≤ −Q
PB = CT .

Then, system (1.17) is passive, and the pair (C,A) is detectable if and only if the pair (A,B)
is stabilizable. If, in addition, Q > 0, then the system is strictly passive.

Finally, we recall some useful results for LTI SISO systems with strictly proper transfer
function. The reader is referred to [3, Section 3.5] and [5, Chapter 6] for further details.
Consider again system (1.17), assume u ∈ R, y ∈ R, and let G(s) = C(sI − A)−1B denote
its transfer function.

Definition 1.4.8 A rational proper transfer function G(s) is called positive real (PR) if

(i) G(s) is real for real s.

(ii) Re[G(s)] ≥ 0 for all Re[s] > 0.

Furthermore, assume that G(s) is not identically zero. Then, G(s) is called strictly positive
real (SPR) if G(s− ε) is positive real for some ε > 0.

Lemma 1.4.9 A rational proper transfer function G(s) is PR if and only if

(i) G(s) is real for real s.

(ii) G(s) is analytic in Re[s] > 0, and the poles on the jω-axis are simple and such that
the associated residues are real and positive.
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(iii) For all real value ω for which s = jω is not a pole of G(s), one has Re[G(jω)] ≥ 0.

For a proof, see [3, Lemma 3.5.1]. The connection between (strict) positive realness of G(s)
and (strict) passivity of the realization (1.17) is given by the celebrated KYP lemma, and
its subsequent variations:

Lemma 1.4.10 (Kalman, Yakubovich, Popov) Assume that (1.17) is a minimal real-
ization of G(s). Then, G(s) is PR if and only if there exist a symmetric positive definite
matrix P ∈ Rn×n and a vector q ∈ Rn such that

ATP + PA = −qqT

PB = CT .

Lemma 1.4.11 (Meyer, Lefschetz, Kalman, Yakubovich) A necessary condition for
the transfer function G(s) = C(sI−A)−1B to be SPR is that for any positive definite matrix
L ∈ Rn×n there exist a symmetric positive definite matrix P ∈ Rn×n, a scalar ν > 0 and a
vector q ∈ Rn such that

ATP + PA = −qqT − νL
PB = CT .

If (1.17) is a minimal realization of G(s), the above condition is also sufficient.

The KYP and MLKY lemmas imply that for a minimal realization of a SISO system,
positive realness of G(s) (respectively, strictly positive realness) is equivalent to passivity
(respectively, strict passivity). In case the realization is not minimal, but the matrix A is
Hurwitz, strict positive realness implies strict passivity.
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Chapter 2

Stability of Adaptive Systems

2.1 Introduction

In this chapter, we introduce fundamental issues concerning stability of equilibria for classes
of systems that arise in direct adaptive control systems design. We start from a few mo-
tivating examples, and introduce a typical system structure that we regard as a standard
adaptive control problem. We then specialize the tools introduced in Chapter 1 to deal with
the stability analysis for the standard problem.

2.1.1 Adaptive Stabilization of Nonlinear Systems in Normal Form

Suppose we are given a parameterized family of nonlinear time-invariant systems of the
form

ẋ = f(x, µ) + g(x, µ)u (2.1)

with state x ∈ Rn, control input u ∈ R and unknown constant parameter vector µ ∈ Rq.
We make the usual assumptions on smoothness of the vector fields, and assume that the
origin x = 0 is an equilibrium of the unforced system, i.e., f(0, µ) = 0 for all µ ∈ Rq.

The problem we want to address is the design of controllers of fixed structure that
enforces certain properties for the trajectories of the closed-loop system, regardless of the
actual value of the unknown parameter vector. The simplest (and most fundamental)
problem that can be carved out from the above setup is the design of a (possibly dynamic)
state-feedback controller, that is, a system of the form

ξ̇ = α(ξ, x)

u = β(ξ, x)
(2.2)

that renders the origin of the closed-loop system (2.1)-(2.2) a globally uniformly asymptot-
ically stable equilibrium, robustly with respect to µ. Note that it is explicitly assumed that
the entire state vector is available for feedback. Clearly, a general solution of the above
problem is not available unless more structure is specified for the plant model. In partic-
ular, the problem can be considerably simplified if additional properties hold, namely the
existence of a globally defined normal form in which the uncertain parameters enter linearly.
Specifically, we make the following (quite restrictive) assumption:
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Assumption 2.1.2 There exists a globally-defined diffeomorphism1 Φ : Rn → Rn, which
preserves the origin, such that the system in the new coordinates z = Φ(x) reads as

ż =
∂Φ

∂x
f(Φ−1(z), µ) +

∂Φ

∂x
g(Φ−1(z), µ)u

= Abz +Bb
[
φT(z)θ + u

] (2.3)

where Ab, Bb are in Brunovsky form, i.e.,

Ab =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

0 0 0 · · · 0


, Bb =



0

0
...

0

1


,

the function φ(·) : Rn → Rp is known, and θ ∈ Rp, with p ≥ q, is a re-parametrization of
the vector µ, that is, a continuous map θ : µ 7→ θ(µ).

If this is the case, if the actual value of the parameter vector θ was available, the obvious
memoryless control law that globally asymptotically (and exponentially) stabilizes the origin
would be given by

u = Kz − φT(z)θ (2.4)

with K ∈ R1×n chosen in such a way that Ab + BbK is Hurwitz. Since θ is unknown,
one may resort to the principle of certainty equivalence, and substitute θ in (2.4) with an
estimate θ̂, and apply the control

u = Kz − φT(z)θ̂(t)

instead. The design must then be completed by a suitable update law

˙̂
θ = ϕ(θ̂, z) (2.5)

that guarantees stability of the closed-loop system, and, hopefully, convergence of z(t) to
the origin, and of θ̂(t) to θ. To find such an update law, let P be the symmetric, positive
definite solution of the Lyapunov matrix equation

P (Ab +BbK) + (Ab +BbK)TP = −I

and consider the Lyapunov function candidate

V (z, θ̃) = zTPz + 1
γ θ̃

Tθ̃

where γ > 0 is a positive constant that plays the role of an adaptation gain, and θ̃ = θ− θ̂ is
a change of coordinates that shifts the origin of the coordinate system for the state of (2.5)

1That is, a continuously differentiable map whose inverse exists and is continuously differentiable as well.
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to the “true” value of the parameter vector. Evaluating the derivative of V along solutions
of (2.3)-(2.4) yields

V̇ (z, θ̃) = −|z|2 + 2zTPBbφ
T(z)θ̃ + 2

γ θ̃
˙̃
θ

from which, keeping in mind that
˙̃
θ = − ˙̂

θ, one obtains

V̇ (z, θ̃) = −|z|2 + 2
γ

[
γφ(z)BT

b Pz − ϕ(θ̂, z)
]
.

The obvious choice
˙̂
θ = γφ(z)BT

b Pz

yields
V̇ (z, θ̃) = −|z|2 , (2.6)

and this renders the equilibrium (z, θ̃) = (0, 0) uniformly globally stable, as for any initial
condition (z0, θ̃0) ∈ Rn × Rp the corresponding trajectory of the closed-loop system

ż = (Ab +BbK)z +Bbφ
T(z)θ̃

˙̃
θ = −γφ(z)BT

b Pz
(2.7)

satisfies
V (z(t), θ̃(t)) ≤ V (z0, θ̃0) , ∀ t ≥ 0

and thus
|(z(t), θ̃(t))| ≤ a |(z0, θ̃0)| , ∀ t ≥ 0

for some a > 0 which depends only on the given choice of the controller parameters K and γ.
The asymptotic properties of the trajectories of (2.7), on the other hand, can be determined
by a simple application of La Salle’s invariance principle, as (2.7) is an autonomous system.
In particular, trajectories converge to the largest invariant set M contained in the set
S = {(z, θ̃) ∈ Rn × Rp : V̇ = 0}. It is easy to see that any trajectory (z?(t), θ̃?(t)) which
originates in M remains in M for all t ≥ 0 (recall that (2.7) is forward complete) and
satisfies

z?(t) ≡ 0 , θ̃?(t) = θ̃? = const .

As a result, the set M is given by

M = {(z, θ̃) ∈ Rn × Rp : z = 0 , φT(0)θ̃ = 0} .

Note thatM is a closed set, but in general not compact. As a matter of fact, the only case
in which M is compact is when p = 1 and φ(0) 6= 0, and thus M = {(0, 0)}. As a result, it
is not possible to conclude that the origin is an asymptotically stable equilibrium of (2.7),
apart from the rather trivial case discussed above. The only conclusions that can be drawn
are the following:

a.) The origin is a (uniformly) globally stable equilibrium of (2.7).

b.) The closed set M is globally attractive2.

2It is worth noting that convergence to M is not guaranteed to be uniform, since M is not compact.
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Assuming that p > 1, the closed-loop system achieves boundedness of all trajectories and
regulation of z(t) in place of global asymptotic stability of the origin in Rn+p, which may still
seem a reasonable outcome. In the literature, this result is referred to as “partial stabiliza-
tion,” that is, regulation of a certain subset of the state variables to zero, while preserving
boundedness of all trajectories. The problem is that this is not enough to guarantee that
(2.7) possesses even the mildest form of robustness ensured by the theorem of total stabil-
ity. In particular, trajectories of (2.7) may grow unbounded in presence of arbitrarily small
non-vanishing perturbations, as will be shown later in this chapter.

The question is whether (2.6) can be used to assess uniform global asymptotic stability
of the equilibrium setM, as opposed to asymptotic stability of the equilibrium at the origin.
As a matter of fact, it is true that the Lyapunov function candidate V admits a class-K∞
estimate from below which is a function of the point-to-set distance from M alone, as

V (z, θ̃) ≥ zTPz ≥ λmin (P )|z|2 = λmin (P )|(z, θ̃)|2M ,

and that obviously the estimate

V̇ (z, θ̃) ≤ −|(z, θ̃)|2M

holds for the derivative of V along (2.7). However, the function V does not admit a class-
K∞ estimate from above which is a function of |z| alone, thus missing a crucial ingredient in
the Lyapunov characterization of global uniform asymptotic stability with respect to a set.
The following counterexample shows that, indeed, equation (2.6) does not imply stability
of M in the sense of Lyapunov, and thus, for the system (2.7), a Lyapunov function with
respect to the set M does not exist.

Example 2.1.3 Consider the simple problem of global asymptotic stabilization of the ori-
gin of the scalar system

ẋ = µx2 + u

where µ > 0 is an unknown parameter. The origin is semi-globally stabilizable by means of
the simple high-gain feedback u = −kx, k > 0, meaning that the origin is rendered locally
asymptotically stable, with domain of attraction given by the open interval A = (−∞, k/µ).
However, it is clear that global asymptotic stabilization is not attainable by linear feedback
alone. Applying the principle of certainty equivalence, a candidate controller is given by
the control law

u = −kx− θ̂x2 , k > 0

with update law
˙̂
θ = γx3 , γ > 0

obtained using the obvious Lyapunov function candidate V (x, θ̃) = x2 + γ−1θ̃2, where
θ̃ = θ̂− µ. Clearly, in this case we have adopted the trivial re-parametrization θ(µ) = µ for
the unknown plant parameter.

Application of La Salle’s invariance principle shows that trajectories of the closed-loop
system

ẋ = −kx− x2θ̃
˙̃
θ = γx3

(2.8)
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are bounded, and converge asymptotically to the equilibrium set M = {0} × R. We will
first show that, while the set M is obviously attractive, it is not stable in the sense of
Lyapunov. Recall that, for the set M to be stable in the sense of Lyapunov, for any ε > 0
there must exist δ > 0 so that for any initial condition (x0, θ̃0) satisfying |(x0, θ̃0)|M ≤ δ
the corresponding trajectory (x(t), θ̃(t)) satisfies |(x(t), θ̃(t))|M ≤ ε for all t ≥ 0.

Fix k > 0 and γ > 0, and consider the set S1 = {(x, θ̃) : x ≥ 0, x θ̃ ≥ −k}. This set is
forward invariant for the closed-loop system (2.8), as the lower boundary {x = 0} is made of
trajectories (the setM, which is an equilibrium set), whereas on the boundary {x θ̃ = −k}
the vector fields point inward (note that ẋ = 0 and

˙̃
θ > 0 on {x θ = −k}.) On the other

hand, the set S2 = {(x, θ̃) : x ≥ 0, x θ̃ < −k} is backward invariant. Choose, arbitrarily,
ε > 0 and an initial condition p(0) = (x(0), θ̃(0)) such that |p(0)|M > ε. Without loss
of generality, assume that p(0) lies on the first quadrant, so that x θ̃ > 0 (see Figure 2.1).
Since dx/dθ̃ < 0 on S1, the trajectory p(t) originating from p(0) remains in S1 and converge
asymptotically to M. Note also that the trajectory in question approaches M along the
normal direction to the set, since dx/dθ̃ → −∞ as x→ 0. Integrating the system backward
from the initial condition p moves the trajectory towards the boundary {x θ̃ = −k}, since
in this case

dx

d(−t) = kx+ x2θ̃ and
dθ̃

d(−t) = −γx3

Since x(t) is increasing in backward time, it is bounded away from zero, and so is dθ̃/d(−t).
As a result, there exists a finite time −τ such that x(−τ)θ̃(−τ) = −k. At the boundary, the
vector field of the backward system points inward S2. Once the backward trajectory has
entered the invariant set S2, the sign of dx/d(−t) is reversed, and thus limt→−∞ x(t) = 0.
This implies that for any 0 < δ < ε there exists T > 0 such that |p(−T )|M < δ. Therefore,
the forward trajectory originating from p(−T ) leaves the ball {p : |p|M ≤ ε} in finite time.
By virtue of the fact that δ is arbitrary, this implies that the set M is not stable in the
sense of Lyapunov. 2

The Role of Passivity

The structure of the closed-loop system (2.7) lends itself to an interpretation that is of
fundamental importance in the analysis of adaptive systems: system (2.7) can be seen as
the negative feedback interconnection, shown in Figure 2.2, between the system

Σ1 :

 ż = Az +BφT(z)u1

y1 = φ(z)Cz ,

where A = (Ab +BbK), B = Bb, and C = BT
b P , and the system

Σ2 :


˙̃
θ = γ u2

y2 = θ̃ .

Note that, by construction, the triplet (A,B,C) is strictly positive real, since it possesses
the KYP property,3 and that the system Σ1 is strictly passive, with positive definite and

3See Lemma 3.5.2, Lemma 3.5.3, and Lemma 3.5.4 in [3].
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Figure 2.1: Example 2.8
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Figure 2.2: Adaptive feedback loop

proper storage function given precisely by V1(z) = zTPz. Also, the system Σ2 is readily seen
to be passive, with a positive definite and proper storage function given by V2(θ̃) = γ−1θ̃Tθ̃.
By virtue of Proposition 1.4.5, the feedback interconnection between Σ1 and Σ2 shown in
Figure 2.2 is passive with respect to the input/output pair (v, y2), and when v = 0 the state
trajectories of Σ1 converge to the origin by virtue of Proposition 1.4.6.

2.1.4 Model-Reference Adaptive Control of Scalar Linear Systems

As a second example, consider the SISO linear system defined by the I/O representation

ȳ(s) =
b

s+ a
ū(s)

or, equivalently, by the state-space realization

ẏ = −ay + bu , y(0) = y0 (2.9)
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with y, u ∈ R. It is assumed that the parameter vector θ = col(a, b) is unknown; however,
the sign of b is known. In particular, without loss of generality, we let b ≥ b0 for some
b0 > 0. Note that the system (2.9) has unitary relative degree.

The problem we want to address is the following: Given an exponentially stable reference
model of the form

ẏm = −amym + bmur , ym(0) = 0 (2.10)

where am, bm > 0 and ur(·) ∈ L∞[0,∞), find a control law for (2.9) to achieve asymptotic model

matching between the two systems, that is, to let limt→∞ |y(t)−ym(t)| = 0, regardless of the
unknown value of the model parameter vector θ. To solve the problem, we appeal once again
to the certainty equivalence principle, and first devise the solution under the assumption
that θ is known. To this end, we postulate the following structure for the controller

u = k1y + k2r (2.11)

which is comprised of a feedback and a feedforward term, and derive matching conditions
relating the vector of controller gains, k = col(k1, k2), with θ to ensure fulfillment of the
control objectives. To this end, the dynamics of the model matching error e := y − ym is
easily derived as

ė = −ame+ (bk1 + am − a)y + (bk2 − bm)r (2.12)

Consequently, setting

k1 = k∗1 :=
a− am
b

, k2 = k∗2 :=
bm
b

(2.13)

yields the converging dynamics ė = −ame, hence the solution to the asymptotic model
matching problem. The identities (2.13) are precisely the matching conditions mentioned
above. The second step is to replace the fixed gains in the certainty equivalence con-
troller (2.11) with tunable gains, k̂ = col(k̂1, k̂2) and propose, in place of (2.11), the dynamic
controller

k̇ = τ

u = k̂1y + k̂2r (2.14)

where τ ∈ R2 is an update law to be determined. This yields the formulation of the
asymptotic model matching problem as an adaptive control problem, commonly known as
the Model Reference Adaptive Control (MRAC) problem. Two strategies may be pursued:
In the first one, direct adaptation of the tunable gain vector k̂ is sought, on the basis of
the minimization of a quadratic functional of the model matching error (or, as we will
see, to enforce stability of the ensuing error system). This is referred to as direct MRAC.
The second strategy consists in obtaining an estimate θ̂ = col(â, b̂) of the plant parameter
vector θ through on-line system identification techniques, and then computing the tunable
gains from the matching conditions, that is, by letting

k̂1(θ̂) :=
â− am
b̂

, k̂2(θ̂) :=
bm

b̂
(2.15)

This approach is referred to as indirect MRAC. Note that in the indirect approach one needs
to bound the estimate b̂(t) away from the singularity at b̂ = 0. This is usually accomplished
by means of projection techniques, where the assumption made previously that b ≥ b0 > 0
becomes instrumental.
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Direct Approach

Using the matching conditions, one readily obtains for the closed-loop system

ė = −ay + b(k̂1 − k∗1 + k∗1)y + b(k̂2 − k∗2 + k∗2)r + amym − bmr
= −ame+ b(k̂1 − k∗1)y + b(k̂2 − k∗2)r

= −ame+ bφT(t, e)k̃ (2.16)

where k̃ := k̂ − k∗ is the parameter estimate error, and φT(t, e) :=
(
e+ ym(t) r(t)

)
is a

known regressor. Note that the dependence of the regressor on the reference signal, r(·),
and the output of the reference model, ym(·), has been regarded as an explicit dependence
on time. Since b > 0, the function

V (e, k̃) := 1
2e

2 + 1
2bγ
−1k̃Tk̃

where γ > 0 is a gain parameter, is a Lyapunov function candidate for the closed-loop
system. Evaluation of the derivative of V along the vector field of the closed-loop system

yields (recall that
˙̃
k =

˙̂
k)

V̇ = −ame+ b
γ [τ + γφ(t, e)e]

leading to the obvious choice
τ = −γφ(t, e)e

for the update law. Application of La Salle/ Yoshizawa Theorem (Theorem 1.3.18), yields
global uniform stability of (e, k̃) = (0, 0), boundedness of all trajectories, and asympttotic
convergence of e(t) to zero.

Note that, at this point, we do not have enough tools yet to ascertain whether the origin
(e, k̃) = (0, 0) is a uniformly asymptotically stable equilibrium, which is not ruled out by
the conclusions of La Salle/ Yoshizawa Theorem. The following examples show that the
possibility of achieving uniform asymptotic stability of the origin of the error system

ė = −ame+ bφT(t, e)k̃

˙̃
k = −γφ(t, e)e (2.17)

depends indeed on the properties of the reference signal r(·).
Example 1: The case of constant reference signals. Consider the case r(t) = r0 = const,
and – for the sake of simplicity – let am = 1, bm = 1 in the reference model (2.10). Letting
ỹm := ym − r0 one obtains the closed-loop error system in the form

˙̃ym = −ỹm
ė = −ame+ bφT(ỹm, e, r0)k̃

˙̃
k = −γφ(ỹm, e, r0)e (2.18)

where
φT(ỹm, e, r0) :=

(
e+ ỹm + r0 r0

)
is the regressor. Note that the overall system is autonomous, hence one can use La Salle’s
invariance principle instead of La Salle’s / Yoshizawa theorem to assess the asymptotic
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properties of its solutions. Note also that r0 is regarded as a constant parameter. It is
easily seen that the origin (ỹ, e, k̃) = (0, 0, 0), albeit stable in the sense of Lyapunov, is not
uniformly attractive, hence not uniformly asymptotically stable. This is a simple conse-
quence of the fact that the origin is not an isolated equilibrium point. As a matter of fact,
the system possess an equilibrium manifold (subspace) given by

M =
{

(ỹ, e, k̃) ∈ R× R× R2 : ỹ = 0, e = 0, k̃1 = −k̃2
}

Example 2: The case of sinusoidal reference signals. Consider this time the reference signal
r(t) = cos(ω0t), ω > 0. Let

y?m(t) :=

∫ t

−∞
eτ−t cos(ω0τ)dτ =

cos(ω0t) + ω0 sin(ω0t)

1 + ω2
0

be the steady-state solution of the reference model, where, once again, it has been assumed
that am = 1 and bm = 1. The change of coordinates ỹm := ym− y?m yields the error system

˙̃ym = −ỹm
ė = −ame+ bφT(t, ỹm, e)k̃

˙̃
k = −γφ(t, ỹm, e)e (2.19)

where
φT(t, ỹm, e) :=

(
e+ ỹm + y?m(t) r(t)

)
is the new regressor. Note that both the reference signal and the steady-state of the reference
model can be generated by the autonomous linear system (a so-called exosystem)(

ẇ1

ẇ2

)
=

(
0 ω0

−ω0 0

)(
w1

w2

)
,

(
r

y?m

)
=

 0 1
ω0

ω2
0+1

1
ω2
0+1

(w1

w2

)
(2.20)

with initial condition w1(0) = 0, w2(0) = 1. Note also that the equilibrium (w1, w2) = (0, 0)
of the exosystem is stable in the sense of Lyapunov, all trajectories of the exosystem are
bounded, and that the state matrix is skew-symmetric. As a result, La Salle’s invariance
principle applies to the closed-loop error system augmented with the exosystem, with Lya-
punov function candidate given by

V (w, ỹm, e, k̃) := wTw + 1
2 ỹ

2
m + 1

2e
2 + 1

2bγ
−1k̃Tk̃

where w = (w1, w2). A simple analysis shows that the trajectories of the closed-loop sys-
tem (2.19)–(2.20) converge to the largest invariant set M⊂ R2 × R× R× R2 contained in
the set

E :=
{

(w, ỹm, e, k̃) ∈ R2 × R× R× R2 : ỹm = 0, e = 0
}

This invariant set is obviously comprised of the trajectory w(t) = (r(t), y?m(t)) and trajec-
tories k̃(t) = k̃? = const satisfying(

cos(ω0t) + ω0 sin(ω0t)

1 + ω2
0

cos(ω0t)

)(
k̃?1

k̃?2

)
= 0
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for all t ∈ R. Differentiation of both sided of the above identity yields the system of
equations

Q(t)k̃? = 0 ∀ t ∈ R

where

Q(t) :=


cos(ω0t) + ω0 sin(ω0t)

1 + ω2
0

cos(ω0t)

ω2
0 cos(ω0t)− ω0 sin(ω0t)

1+ω2
0

−ω0 sin(ω0t)


Since detQ(t) = −ω2

0/(1 + ω2
0), it is concluded that, necessarily, k̃? = 0. As a result, the

equilibrium (ỹ, e, k̃) = (0, 0, 0) of the time-varying system (2.19) is uniformly (globally)
stable in the sense of Lyapunov and globally attractive. Unfortunately, we are not still in
the position to conclude that the equilibrium is globally uniformly asymptotically stable, as
uniform (global) attractivity has not been determined. However, it is noted that asymptotic
convergence of the parameter estimates k̂(t) to the “true values” k? has been established.

Indirect Approach

In the indirect approach, we use a model estimator of the form

˙̂y = −ây + b̂u+ `(y − ŷ) (2.21)

where ` > 0 is the output injection gain. Next, define the model estimation error ỹ := ŷ−y,
with dynamics

˙̃y = −`ỹ − (â− a)y + (b̂− b)r (2.22)

and the estimated model mismatch error ê := ŷ − ym, with dynamics

˙̂e = −amê− `ỹ + (am − â)y − bmr + b̂u

Applying the certainty-equivalence control

u = k̂1(θ̂)y + k̂2(θ̂)r (2.23)

where the tunable gains are given in (2.15), yields

˙̂e = −amê− `ỹ (2.24)

Next, the equation of the ỹ-dynamics (2.22) is written in the more compact form

˙̃y = −`ỹ + ψT(t, ỹ, ê)θ̃ (2.25)

where θ̃ := θ̂ − θ is the parameter estimate error, and ψT(t, ỹ, ê) :=
(
ỹ − ê− ym(t) r(t)

)
is a known regressor. Following a similar reasoning as in the direct approach, consider the
Lyapunov function candidate

W (ê, ỹ, θ̃) := 1
2 ê

2 + λ
2

(
ỹ2 + γ−1θ̃Tθ̃

)
where λ > 0 is a scaling factor to be determined. Scaling the term in parenthesis in the
Lyapunov function candiate above allows one to take into account the coupling between the
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ê- and the ỹ-subsystems in (2.24). Evaluation of the derivative of W along the vector field
of the system one obtains

Ẇ = −amê2 − `êỹ + λ
(
−`ỹ2 + ỹψT(t, ỹ, ê)θ̃ + γ−1θ̃

˙̂
θ
)

Choosing
˙̂
θ = −γψ(t, ỹ, ê)ỹ

for the update law yields

Ẇ = −amê2 − `êỹ − λ`ỹ2 (2.26)

The selection λ > `/(4am) ensures that the quadratic form on the right-hand side of (2.26)
is negative definite. As a consequence, application of La Salle/ Yoshizawa Theorem yields
boundedness of all trajectories and asymptotic regulation of both ê(t) and ỹ(t), if one can
show that the control (2.23) is well-defined, for instance, if one can ensure that b̂(t) ≥ b0 for
all t ≥ 0. As we will see later in this chapter, this goal can be easily accomplished (at least
for this simple example) by projecting the estimate b̂(t) onto the convex set R := {b̂ ≥ b0}.

Comparing side-by-side the two controllers (and ignoring for the time being the issue of
possible singularity of b̂ in the indirect approach) yields

direct:


˙̂
k1 = −γ(y − ym)y

˙̂
k2 = −γ(y − ym)r

u = k̂1y + k̂2r

indirect:



˙̂y = −ây + b̂u+ `(y − ŷ)

˙̂a = γ(ŷ − y)y

˙̂
b = −γ(ŷ − y)u

u =
â− am
b̂

y +
bm

b̂
r

(2.27)

where γ > 0 and ` > 0 are the adaptation and the observer gains, respectively. It is clear that
the indirect approach is more complex, as it involves a controller of higher dimesionality and
requires an additional controller gain to be selected (the gain `). This may be a disadvantage
when the dimansion of the plant model is large, as the order of an indirect controller increases
roughly by a factor of two with respect to its direct counterpart. Nonetheless, the indirect
approach presents a clear advantage over the direct approach in the presence of bounded
control inputs. Specifically, consider again the plant model (2.9), and assume that the
control input is saturated, that is,

ẏ = −ay + b sat (u) , y(0) = y0 (2.28)

In this case, the direct design proceeds by ignoring the presence of the saturation function,
essentially regaring the effect of input saturations as an unmeasurable disturbance. As
a result, the ensuing direct controller is the same as the controller on the left in (2.27).
Conversely, using the indirect approach one has the luxury of providing to the parameter
estimator a model of the plant that incorporates the effect of the saturation. This task is
achieved by replacing the controller on the right of (2.27) with the modified controller

indirect (modified):



˙̂y = −ây + b̂ sat (u) + `(y − ŷ)

˙̂a = γ(ŷ − y)y

˙̂
b = −γ(ŷ − y)sat (u)

u =
â− am
b̂

y +
bm

b̂
r
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where, again, the issue of non-singularity of b̂ has been set aside. It can be verified that
this modification has a beneficial effect, similar to that of an anti-windup modification, as it
prevents the adaptation law from reacting erroneously to the occurrence of input saturation
(see the Matlab-Simulink example provided in the file repository.)

2.2 The Standard Adaptive Control Problem

It was shown in the previous sections that several adaptive control problems share a common
formulation in which one needs to study the stability of the interconnection between a
strictly passive and a passive system. We will refer to this particular setup as the standard
adaptive control problem, or simply as the standard problem. Namely, we will analyze the
stability of the equilibrium at the origin of a nonlinear time varying system of the form

ẋ1 = Ax1 +BφT(t, x)x2

ẋ2 = −γφ(t, x)Cx1 (2.29)

where x = col(x1, x2) ∈ Rn1+n2 and γ is a positive constant. The vector field φ : R≥0×Rn →
Rn2 , where n = n1 +n2, defined by the mapping (t, x) 7→ φ(t, x) is piecewise continuous in t
for any fixed x, and locally Lipschitz in x uniformly in t. In particular, we are interested in
determining under which conditions system (2.29) possesses a UGAS (and LES) equilibrium
a the origin. As we have already seen, the case in which the vector field φ depends only
on x1 and the triplet (A,B,C) is strictly passive or SPR can be easily dealt with using
La Salle’s invariance principle. A similar situation applies when the dependence on time is
due to signals which can be generated as trajectories of autonomous exogenous systems, as
in this case La Salle’s invariance principle also applies.

A more interesting situation occurs obviously when φ depends explicitly on time, hence
(2.29) is non-autonomous. We begin with considering the situation in which φ depends on
t but not on the state x, and thus (2.29) takes the form of a time-varying linear system.
Specifically, we consider first the linear time-varying system

ẋ1 = Ax1 +BφT(t)x2

ẋ2 = −γφ(t)Cx1 (2.30)

with the following standing assumptions:

Assumption 2.2.1 There exist P = PT > 0 and Q = QT > 0 such that

ATP + PA ≤ −Q
PB = CT .

Assumption 2.2.2 The function φ : R≥0 → Rn1 is bounded and globally Lipschitz.

Let Q = QT
1Q1, denote with Aa(·), C a, and P a respectively the mappings

Aa(t) =

(
A BφT(t)

−γφ(t)C 0

)
, C a =

(
Q1 0

)
, P a =

(
P 0

0 γ−1I

)
,

and endow system (2.30) with the output y = C ax. Then, the following holds:
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Proposition 2.2.3 The system (2.30) is globally exponentially stable if the pair (C a, Aa(·))
is uniformly completely observable.

Proof. The result follows directly from Proposition 1.3.20, using the Lyapunov function
candidate V (x) = xTP ax. 2

The main problem in applying Proposition 2.2.3 to a given system (2.30) is to assess uni-
form complete observability of the pair (C a, Aa(·)). A direct evaluation of the observability
gramian is a formidable task, as it requires the explicit computation of the transition ma-
trix of Aa(·). A useful result is provided by the following lemma, which states that uniform
complete observability is invariant under bounded output injection.

Lemma 2.2.4 Given bounded matrix-valued functions A : R≥0 → Rn×n, C : R≥0 → Rp×n
and N : R≥0 → Rn×p, the pair (C(·), A(·)) is uniformly completely observable if and only if
so is the pair (C(·), A(·)−N(·)C(·)).
Proof. See [3, Lemma 4.8.1]. 2

The above result can be used to replace the computation of the observability gramian
of the original system with that of the system under output injection, provided that the
latter takes a simpler form. For our purposes, it suffices to use

Na(t) =

 AQ−11

−γφ(t)CQ−11


to obtain

Aa(t)−Na(t)Ca =

(
0 BφT(t)

0 0

)
for which the transition matrix can be easily computed as

Φ(t, τ) =

(
I Bσ(t, τ)

0 I

)
, σ(t, τ) ,

∫ t

τ
φT(s)ds .

It follows that the observability gramian of (Ca(·), Aa(·)−Na(·)Ca(·)) reads as, after some
manipulations,

W (t1, t2) =

∫ t2

t1

(
Q QBσ(τ, t1)

σT(τ, t1)B
TQ σT(τ, t1)B

TQBσ(τ, t1)

)
dτ . (2.31)

Proposition 2.2.5 Assume that the function φ(·) is bounded and globally Lipschitz, and
that there exist constants κ > 0, δ > 0 such that∫ t+δ

t
φ(τ)φT(τ)dτ ≥ κI , ∀ t ≥ 0 . (2.32)

Then, there exists µ > 0 such that

W (t, t+ δ) ≥ µI , ∀ t ≥ 0

where W (·, ·) is the observability gramian in (2.31).
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Proof. See [3, Lemma 4.8.4]. 2

The condition (2.32) is commonly referred to as a persistence of excitation (PE) condition.
The PE condition plays a fundamental role in the analysis of the asymptotic properties
of adaptive systems. In a nutshell, it guarantees that the time-varying signal φ(·) yields
enough couplings between the trajectories x1(·) and x2(·) of (2.30) to obtain uniform com-
plete observability. The PE condition has been studied quite extensively in the adaptive
control literature. For a comprehensive survey of the properties of PE signals and their role
in control and system identification, the reader should consult [3], [8], [12], [15], and the
recent paper [13], which provides a nice review of earlier results.

The PE property (2.32), used in conjunction with Assumption 2.2.1 and Assump-
tion 2.2.2, yields a sufficient condition for global exponential stability of (2.30), established
by means of Proposition 1.3.20. The result is summarized as follows:

Theorem 2.2.6 Consider system (2.30), and let assumptions 2.2.1 and 2.2.2 hold. As-
sume, in addition, that the function φ(·) satisfies the PE condition (2.32). Then, the origin
is a globally exponentially stable equilibrium of (2.30).

Reverting back to the full nonlinear system (2.29), one may wonder to what extent the
result of Theorem 2.2.6 can be used to find conditions for global uniform asymptotic stability
of the origin, as opposed to the much weaker form of stability implied by La Salle/Yoshizawa
theorem. For this purpose, assume that Assumption 2.2.1 holds for the triplet (A,B,C)
in (2.29). As a result, by La Salle/Yoshizawa theorem, the origin is a uniformly globally
stable equilibrium, and thus for any initial condition (t0, x0) ∈ R × Rn the corresponding
trajectory x(t; t0, x0) is bounded for all t ≥ t0. Let the parameterized family of functions

φ̃(t0,x0)(·) , φ(·, x(· ; t0, x0)) , (t0, x0) ∈ R× Rn (2.33)

be defined as the function φ(·, ·) evaluated along the trajectories of (2.29), that is, as the
mapping

t 7→ φ(t, x(t; t0, x0)) , t ≥ t0
parameterized by the initial condition of (2.29). Note that since each single trajectory
x(t) , x(t; t0, x0) satisfies the differential equationẋ1(t)

ẋ2(t)

 =

(
A Bφ̃T(t0,x0)(t)

−γφ̃(t0,x0)(t)C 0

)x1(t)
x2(t)

 , (2.34)

to each trajectory of (2.29) one can associate a linear time-varying system, which can
in principle be used to study the asymptotic properties of that particular trajectory. In
particular, the standing assumptions on φ(·, ·) and boundedness of x(· ; t0, x0) imply that the
system (2.34) is well defined for for each pair (t0, x0). Note, however, that it is not possible
to replace (2.29) with (2.34), and that any conclusion about the asymptotic behavior of
x(t) drawn from (2.34) will be valid only for that particular trajectory, unless additional
conditions hold.

Theorem 2.2.7 Assume that, in addition to Assumption 2.2.1, the following conditions
hold:
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i.) For any (t0, x0) ∈ R× Rn, the function φ̃(t0,x0)(·) is globally Lipschitz.

ii.) The function φ̃(t0,x0)(·) satisfies a PE condition, that is, for each pair (t0, x0) ∈ R×Rn
there exist κ0 > 0 and δ0 > 0 such that∫ t+δ0

t
φ̃(t0,x0)(τ)φ̃T(t0,x0)(τ)dτ ≥ κ0I , ∀ t ≥ t0 .

Then, the system (2.29) is globally exponentially convergent (see Definition 1.2.6).

It is important to point out that Theorem 2.2.7 does not imply neither exponential stability
nor uniform asymptotic stability of the origin of (2.29). As a matter of fact, Theorem 2.2.7
only improves on the results of La Salle/Yoshizawa theorem establishing convergence of x(t)
to the origin (as opposed to that of x1(t) alone,) but the convergence need not be uniform.
Moreover, Theorem 2.2.7 may be difficult to apply, as in order to check the conditions i.)
and ii.) above, knowledge of the solution x(· ; t0, x0) may be required.

2.2.8 Uniform Asymptotic Stability of Adaptive Systems

From the above discussion, it is clear that for the prototype system (2.29) persistence of ex-
citation of the parameterized family of functions (2.33) plays an important role in extending
convergence to the origin of the trajectory x1(t), implied by LaSalle/Yoshizawa theorem,
to the whole trajectory x(t) = (x1(t), x2(t)). The result, stated formally in Theorem 2.2.7,
establishes “pointwise” convergence of each individual trajectory x(t; t0, x0), interpreted as
a parameterized family of functions indexed by the initial condition (t0, x0). A natural
question to ask is whether such a convergence can be made uniform with respect to all
(t0, x0) in any given set of the form R≥0 × B̄r, so that the result of Theorem 2.2.7 can be
extended to yield global uniform asymptotic stability of the origin, versus mere exponential
converge. Not surprisingly, the key to achieving this goal is an enhanced persistence of
excitation property for the family of functions φ̃(t0,x0) in (2.33), which holds uniformly with
respect to (t0, x0). In particular, the following definition is introduced in [13]:

Definition 2.2.9 Assume that the system (2.29) is forward complete. The parameterized
family of functions φ̃(t0,x0) in (2.33) is said to be uniformly persistently exciting (u-PE)
if for any r > 0 there exist κ > 0 and δ > 0 such that for any (t0, x0) ∈ R≥0 × B̄r the
corresponding trajectory x(t; t0, x0) of (2.29) satisfies∫ t+δ

t
φ̃(t0,x0)(τ)φ̃T(t0,x0)(τ)dτ ≥ κI , ∀ t ≥ t0 .

Applying the definition of u-PE directly to a system of the form (2.29) appears to be of
limited use, as one needs to know a priori the solutions of (2.29) to be able to check that
the given conditions are satisfied. However, it is possible to infer the u-PE property without
solving explicitly the differential equation if appropriate conditions on the solutions of (2.29)
and on the vector field φ(t, x) hold.

Proposition 2.2.10 Let φ(·, x) be piecewise continuous for each x ∈ Rn, and let φ(t, ·) be
locally Lipschitz uniformly in t. Consider a system of the form (2.29), and assume that
there exist:
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i. A number µ > 0 such that for any initial condition (t0, x0) ∈ R≥0 × Rn the corre-
sponding solution x(·; t0, x0) satisfies max {‖x‖∞ , ‖x1‖2} ≤ µ|x0|;

ii. A function φ̄ : R≥0 → Rn2 which is bounded and satisfies the PE condition (2.32) for
some κ > 0 and some λ > 0.

iii. A nondecreasing function ψ : R≥0 → R≥0 and nonnegative constants c1 and c2 satis-
fying c1 + c2 > 0 such that for any unitary vector ξ ∈ Rn2

|φT0 (t, x) ξ| ≥ [ c1 + c2ψ(|x2|)|x2| ] |φ̄T(t)ξ| (2.35)

where φ0(t, x) = φ(t, x)|x1=0.

Then, the parameterized family of functions φ̃(t0,x0)(·) in (2.33) is u-PE. Moreover, if (2.35)
holds with c1 > 0, the function φ̄ is not required to be bounded

Proof. See [13, Prop.2]. 2

A simplified version of the above result holds for the important case in which the vec-
tor field φ(t, x) does not depend on the component x2, and the realization (A,B,C) is
strictly passive.

Corollary 2.2.11 For the given system (2.29), let Assumption 2.2.1 hold. Assume that
the vector field φ(t, x) does not depend on x2, that is, let φ(t, x) = φ(t, x1). Then, if the
function φ0 : R≥0 → Rn2 defined as φ0(t) = φ(t, 0) is PE, then the parameterized family of
functions φ̃(t0,x0)(·) , φ(·, x1(· ; t0, x0)) is u-PE.

The concept of u-PE is instrumental in deriving a sufficient condition for global uniform
asymptotic stability of system (2.29). Specifically, the following result can be proven using
the arguments in [13, Theorem 1]:

Theorem 2.2.12 Consider the system (2.29), where the vector field φ(t, x) is such that
φ(·, x) is bounded for each fixed x ∈ Rn, and φ(t, ·) is locally Lipschitz uniformly in t. Let
Assumption 2.2.1 hold. If, in addition:

i.) There exists a nondecreasing function ρ : R≥0 → R≥0 such that

max

{∥∥∥∥∂φ∂x
∥∥∥∥ , ∣∣∣∣∂φ∂t

∣∣∣∣ } ≤ ρ(|x|)

for all (t, x) ∈ R≥0 × Rn;

ii.) The parameterized family of functions φ̃(t0,x0)(·) in (2.33) is u-PE.

Then, the origin is a uniformly globally asymptotically and locally exponentially stable equi-
librium of system (2.29).
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2.3 The Issue of Robustness

Consider again the standard adaptive control system (2.29), endowed with Assumptions 2.2.1
and 2.2.2. Let us consider the presence of external disturbance signals d = col(d1, d2), with
d1(·) ∈ L∞(Rn1) and d2(·) ∈ L∞(Rn2) as follows

ẋ1 = Ax1 +BφT(t, x)x2 + d1(t)

ẋ2 = −γφ(t, x)Cx1 + d2(t) (2.36)

The aim of this section is to investigate the effect of bounded disturbances on the tra-
jectories of system (2.36), in particular on the properties of boundedness and asymptotic
regulation of x1(t), which are guaranteed by La Salle/Yoshizawa theoerm in absence of
model perturbation. The first result is a direct consequence of the theorem of total stability
(Theorem 1.3.11), which is behind the raison d’être for uniform global asymptotic stability:

Corollary 2.3.1 Assume that the assumptions of Theorem 2.2.12 hold for system (2.36).
Then, for any ε > 0 there exist δ1 > 0 and δ2 > 0 such that for all t0 ∈ R, all x0 ∈ B̄δ1 ⊂ Rn
and all d(·) ∈ L∞(Rn) such that ‖d‖∞ ≤ δ2, the forward solution x(t) := x(t; t0, x0, d[t0,t)),
t ≥ t0, of (2.36) satisfies ‖x(·)‖∞ ≤ ε.

The above result establishes the property of small-signal bounded-input bounded-state sta-
biliy for the perturbed system (2.36), under the assumption of UGAS and LES of the
equilibrium at the origin of the unforced system (2.29). It must be noted that the above
result is local in nature (that is, it is only valid for “small” values of the L∞-norm of the dis-
turbance and the norm of the initial condition). The following example serves the purpose
of clarifying this issue.

Example 2.3.2 Consider again the one-dimensional direct MRAC problem of Section 2.1.4,
with the following assumptions:

1. The control input coefficient b is known (without loss of generality, let b = 1;)

2. The reference model is the identity operator, ym(t) = r(t), t ≥ 0;

3. The reference signal is constant, r(t) = r0, t ≥ 0, where r0 ≥ 0.

4. The adaptation gain is selected as γ = 1;

5. The tracking error dynamics is affected by a constant disturbance, d(t) = −d0, t ≥ 0,
where d0 ≥ 0.

Under these assumptions, the equations of the closed-loop system read as

ė = −e+ (e+ r0)k̃ − d0
˙̃
k = −(e+ r0)e (2.37)

where k̃ := k̂ − k∗ is the estimation error, and k∗ = a− 1 (refer to Section 2.1.4.)
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Let us consider first the case in which r0 > 0. It is readily seen that (2.37) has a
unique equilibrium point at (e, k̃) = (0, d0/r0). Changing coordinates as θ := k̃ − d0/r0,
system (2.37) is written as

ė = −
(

1− d0
r0

)
e+ (e+ r0)θ

θ̇ = −(e+ r0)e (2.38)

where the equilibrium point has been shifted to the origin, (e, θ) = (0, 0). The jacobian
matrix of the vector field of the system evaluated at the origin reads as

A =

d0r0 − 1 r0

−r0 0


and its characteristic polynomial is pA(λ) = λ2 + (1 − d0/r0)λ + r20. Clearly, for r0 > d0
the equilibrium at the origin of (2.38) is LES, whereas for 0 < r0 < d0 the equilibrium is
unstable. To determine the global portrait of the solutions, consider first the case r0 > d0.
Using the Lyapunov function candidate V (e, θ) = e2 + θ2, one obtains

V̇ (e, θ) = −2

(
1− d0

r0

)
e2 ≤ 0

Application of La Salle’s invariance principle (notice that the system is autonomous) yields
that the only invariant set contained in the set {(e, θ) ∈ R2 : V̇ (e, θ) = 0} is the origin,
hence the origin is a globally asymptotically and locally exponentially stable equilibrium.
Clearly, this situation also includes the case in which d0 = 0, where in this case θ = k̃.

For the case 0 < r0 < d0, let us consider the backward solutions of (2.38), which are
obtained as the forward solutions of system

ė =

(
1− d0

r0

)
e− (e+ r0)θ

θ̇ = (e+ r0)e (2.39)

Once again, using the Lyapunov function candidate V (e, θ) = e2 + θ2, one obtains

V̇ (e, θ) = 2

(
1− d0

r0

)
e2 ≤ 0

hence, using the same reasoning as before, one concludes that the origin is a globally
asymptotically stable equilibrium of (2.39). Consequently, reverting back to system (2.38),
it is concluded that for any ε > 0 and any R > 0, there exists Tε,R > 0 such that for all initial
conditions x(0) := col(e(0), θ(0)) ∈ B̄R the corresponding backward trajectory satisfies
x(t) := col(e(t), θ(t)) ∈ B̄ε for all t ≤ −Tε,R. This implies that all forward trajectories
of (2.38), except the one originating at x(0) = 0, satisfy limt→+∞ |x(t)| = +∞.

Finally, for the case 0 < r0 = d0, it is readily seen that the function V (e, θ) is a first
integral of motion for the system (that is, V̇ (e, θ) = 0 for all (e, θ) ∈ R2), hence the solutions
generate a family of closed orbits given by the level curves V (e, θ) = c, c ≥ 0.

To summarize the behavior of the solutions of (2.38) when r0 > 0:
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• For r0 > d0, the origin is GAS and LES;

• For 0 < r0 < d0, the origin is unstable, and solutions originating away from the origin
diverge as t→∞;

• For 0 < r0 = d0, solutions are bounded, as solutions originating away from the origin
describe a closed orbit.

It is clear that µ := 1− d0/r0 ∈ (−∞,∞) plays the role of a bifurcation parameter for the
system, with µ = 0 corresponding to the critical case. It is also clear that the stability
margin of the system (in the sense of robustness of the stability of the equilibrium at the
origin with respect to the constant disturbance d0) depends on r0: the larger the value of
r0, the larger the disturbance that can be accommodated by the system. As r0 → 0, the
system loses robustness to constant disturbances. In particular, when r0 = 0 and d0 = 0,
system (2.38) possesses an equilibrium manifold A := {(e, k̃) ∈ R2 : e = 0} that is globally
attractive but not stable in the sense of Lyapunov (see the discussion in Example 2.1.3.)
In this case, there is no robustness whatsoever, and even an infinitesimally small positive
constant disturbance results in unbounded forward trajectories (note that when r0 = 0 and
d0 > 0 the system does not have equilibrium points, hence no closed orbits either.)

The previous discussion has highlighted two important issues related to robustness of adap-
tive systems in the standard form (2.29) with respect to external disturbances:

• When the equilibrium x = 0 is UGAS and LES, there is robustness to “small enough”
external disturbance signals, for solutions originating within a neighborhood of the
origin, as provided by the theorem of total stability;

• In absence of a UGAS equilibrium at the origin (that is, when only the weaker prop-
erties provided by the La Salle/ Yoshizawa theorem hold) there is no guaranteed
robustness to external disturbances.

Clearly, these issues make the application of adaptive control techniques less than ideal,
especially in all those cases (which are indeed typical) when uniform persistence of excita-
tion of the regressor can not be guaranteed. This lack of robustness to model perturbations
has prompted the development of robust update laws, that is, modifications of the stan-
dard passivity-based update laws aiming at providing robustness to external disturbance of
arbitrarily large magnitude. This will be the topic of the next section.

2.4 Robust Modifications of Passivity-based Update Laws

The aim of this section is to introduce three different strategies aimed at providing ro-
bustness of adaptive control systems to external bounded disturbances. For notational
convenience, we write the standard adaptive control problem in the following form

ż = Az +BφT(t, z, θ̂)θ̃ + d1

˙̂
θ = τ + d2

e = Cz (2.40)
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where z ∈ Rn1 comprise the state of the plant model and that of the controller, θ̂ ∈ Rn2 is the
vector of parameter estimates, θ̃ := θ̂− θ∗ is the parameter estimate error, d = col(d1, d2) ∈
Rn1+n2 is an external disturbance, e ∈ R is the error to be regulated and τ ∈ Rn2 is an
update law to be designed. The regressor φ : R×Rn1 ×Rn2 → Rn2 defined by the mapping
(t, z, θ̂) 7→ φ(t, z, θ̂) is continuous and bounded in t for any fixed z and θ̂, and locally
Lipschitz in z and θ̂, uniformly in t. Furthermore, it is assumed that the triplet {C,A,B}
defines a strictly passive system with positive definite storage function V1(z) = zTPz and
negative definite supply rate W (z) = −zTQz. It has been shown in the previous sections
that the passivity-based update law

τ = −γφ(t, z, θ̂)Cz (2.41)

achieves boundedness of all trajectories and asymptotic regulation of e(t) when d = 0,
but does not ensure robustness (in the sense of bounded-input bounded-state behavior) to
arbitrary disturbance signals d ∈ L∞(Rn). To achieve the goal of ensuring bounded-input
bounded-state behavior (and, possibly, preserving asymptotic regulation when d = 0), we
will consider three modifications to the update law (2.41), namely leakage, leakage with
dead-zone, and parameter projection.

2.4.1 Update Laws with Leakage

The first and simplest modification consists in adding a dissipation term (a so-called leakage)
to the update law, namely to replace (2.41) with

τ = −γφ(t, z, θ̂)Cz − σγθ̂ (2.42)

where σ > 0 is a small gain parameter, resulting in the closed-loop system

ż = Az +BφT(t, z, θ̂)θ̃ + d1

˙̃
θ = −γφ(t, z, θ̂)Cz − σγθ̃ − σγθ∗ + d2 (2.43)

It is noted that the addition of the leakage term destroys the property of the closed-loop
system possessing an equilibrium in (z, z̃) = (0, 0) when d = 0, due to the presence of the
constant term −σγθ∗ on the equation of the θ̃-dynamics. This is the reason why the gain of
the leakage term should not be chosen too large in order to prevent an unduly deterioration
of regulation performance.

Stability Analysis

As customary, consider the Lyapunov function candidate

V (z, θ̃) = 1
2z

TPz + 1
2γ θ̃

Tθ̃ (2.44)

and evaluate its derivative along the vector field of (2.43) to obtain

V̇ (z, θ̃) = −1
2z

TQz + zTPd1 − σθ̃Tθ̃ − σθ̃Tθ∗ + γ−1θ̃Td2

≤ −λmin

2
|z|2 − σ|θ̃|2 + |z||P ||d1|+ γ−1|θ̃||d2|+ σ|θ̃||θ∗| (2.45)
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where λmin > 0 is the smallest eigenvalue of Q. Letting x := col(z, θ̃), one obtains (with a
minor abuse of notation)

V̇ (x) ≤ −λ0|x|2 + µ0|x||d|+ σ|x||θ∗| (2.46)

where λ0 := min{λmin/2, σ} and µ0 := |P |+ γ−1. Using Young’s inequality4 in the expres-
sion

−λ0|x|2 +
√

λ0
2 |x|

√
2
λ0
µ0|d|+

√
λ0
2 |x|

√
2
λ0
σ|θ∗|

which is equivalent to the right-hand side of (2.46), one obtains

V̇ (x) ≤ −λ0
2 |x|2 +

µ20
λ0
|d|2 + σ2

λ0
|θ∗|2 (2.47)

Defining the class-N function χ(·) as

χ(s) =

√
2µ20
λ20

s2 +
2σ2

λ20
|θ∗|2

from (2.47) one obtains
|x| > χ(|d|) =⇒ V̇ (x) < 0

therefore, by Theorem 1.3.13 the perturbed system (2.43) has the GUUB property when
d(·) ∈ L∞.

2.4.2 Update Laws with Leakage and Dead-zone Modification

As mentioned, the leakage modification to the passivity-based update law has the undesired
effect of destroying the equilibrium at the origin of the closed-loop system in the coordi-
nates (z, θ̃) in absence of the disturbance. To remedy the situation, a further modification
is introduced via the use of a dead-zone function that “switches off” the leakage when the
estimation error is inside a given compact set.

To begin, we need a preliminary assumption:

Assumption 2.4.3 The parameter vector θ∗ ranges over the interior a known compact and
convex set, Θ ⊂ Rn2, that is, θ∗ ∈ intΘ.

Fix a number ` > 0 such that

` > max
θ∈Θ
{|θ1|, |θ2|, . . . , |θn2 |}

and consider the decentralized multivariable dead-zone function dz`(·) : Rn2 → Rn2 , de-
fined as

dz`(ϑ) =


dz`(ϑ1)

dz`(ϑ2)
...

dz`(ϑn2)

 , dz`(ϑi) = ϑi − ` sat

(
ϑi
`

)
, sat (ϑi) =


−1 ϑi ≤ −1

ϑi |ϑi| < 1

1 ϑi ≥ 1

The decentralized dead-zone (hereby simply referred to as “dead-zone”) with the given
choice of the level ` has the following properties:

4Given a ≥ 0 and b ≥ 0, ab ≤ a2/2 + b2/2.
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• For all ϑ ∈ Rn2 and all θ ∈ Θ

ϑTdz`(ϑ+ θ) ≥ 0 (2.48)

• There exist constants c1 > 0 and c2 > 0 such that for all ϑ ∈ Rn2 satisfying |ϑ| ≥ c1
and all θ ∈ Θ

ϑTdz`(ϑ+ θ) ≥ c2|ϑ|2 (2.49)

Note also that dz`(θ) = 0 for all θ ∈ Θ. The leakage with dead-zone modification of the
passivity-based update law (2.41) is defined as

τ = −γφ(t, z, θ̂)Cz − σγ dz`(θ̂) , σ > 0 (2.50)

resulting in the closed-loop system

ż = Az +BφT(t, z, θ̂)θ̃ + d1

˙̃
θ = −γφ(t, z, θ̂)Cz − σγ dz`(θ̃ + θ∗) + d2 (2.51)

Note that, as opposed to the standard leakage modification, when d = 0 the system preserves
the equilibrium at (z, θ̃) = (0, 0), due to the fact that θ∗ ∈ Θ by assumption.

Stability Analysis

Consider the Lyapunov function candidate (2.44), and evaluate its derivative along the
vector field of (2.51) to obtain

V̇ (z, θ̃) = −1
2z

TQz + zTPd1 − σθ̃Tdz`(θ̃ + θ∗) + γ−1θ̃Td2 (2.52)

≤ −λmin

2
|z|2 + |z||P ||d1|+ γ−1|θ̃||d2| − σθ̃Tdz`(θ̃ + θ∗) (2.53)

where λmin > 0 is the smallest eigenvalue of Q. As before, let x := col(z, θ̃). First, consider
the case |θ̃| ≤ c1, which together with (2.48) and (2.53) implies

V̇ (z, θ̃) ≤ −λmin

2
|z|2 + |z||P ||d1|+

c1
γ
|d2|

Applying Young’s inequality to the right-hand side of the above inequality, and using the
fact that |di| ≤ |d|, i = 1, 2, one obtains

V̇ (z, θ̃) ≤ −λmin

4
|z|2 +

|P |2
λmin

|d|2 +
c1
γ
|d| (2.54)

Defining the class-K∞ function χ1(·) as follows

χ1(s) =

√
4|P |2
λ2min

s2 +
4c1
λminγ

s

one obtains, from (2.54) and the assumption |θ̃| ≤ c1,

|z| > χ1(|d|) and |θ̃| ≤ c1 =⇒ V̇ (z, θ̃) < 0 (2.55)
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Assume now that |θ̃| > c1. Using (2.49), the right-hand side of (2.52) can be bounded as

V̇ (z, θ̃) ≤ −λmin

2
|z|2 + |z||P ||d1| − c2σ|θ̃|2 + γ−1|θ̃||d2|

≤ −λmin

4
|z|2 +

|P |2
λmin

|d1|2 −
c2σ

2
|θ̃|2 +

1

2c2σγ2
|d2|2 (2.56)

where we have made again use of Young’s inequality. Letting x := col(z, θ̃), one obtains

V̇ (x) ≤ −λ0|x|2 + µ0|d|2 (2.57)

where λ0 := min{λmin/4, c2σ/2} and µ0 := |P |2/λmin + (2c2σγ
2)−1. As a result, defining

the class-K∞ function χ2(·) as

χ2(s) =

√
µ0
λ0
s

one obtains
|x| > χ2(|d|) and |θ̃| > c1 =⇒ V̇ (x) < 0 (2.58)

Next, we combine the two conditions (2.55) and (2.58) into a single one involving a class-N
function. Let the class-N function χ(·) be defined as

χ(s) =
√
c21 + χ2

1(s) + χ2
2(s)

and notice that |x| > χ(|d|) implies |x| > χ2(|d|), and that |x| > χ(|d|) implies |x|2 >
c21 + χ2

1(|d|). In particular, when |θ̃| ≤ c1 one obtains

c21 + χ2
1(|d|) < |x|2 =⇒ c21 + χ2

1(|d|) < |z|2 + |θ̃|2 ≤ |z|2 + c21 =⇒ χ2
1(|d|) < |z|2

hence

|θ̃| ≤ c1 and |x| > χ(|d|) =⇒ |θ̃| ≤ c1 and |z| > χ1(|d|) =⇒ V̇ (x) < 0

Conversely,

|θ̃| > c1 and |x| > χ(|d|) =⇒ |θ̃| > c1 and |z| > χ2(|d|) =⇒ V̇ (x) < 0

therefore, by Theorem 1.3.13 the perturbed system (2.51) has the GUUB property when
d(·) ∈ L∞.

2.4.4 Update Laws with Parameter Projection

The last modification of the standard passivity-based update law presented in this sec-
tion is applicable to those cases in which the disturbance affects only the z-dynamics of
system (2.40), that is, when d2 = 0. As in the previous section, it is assumed that Assump-
tion 2.4.3 holds. Note that convexity of the parameter set Θ is a strict requirement, along
with compactness. In this regard, we pose an additional requirement:

Assumption 2.4.5 The set Θ is given by

Θ = {θ ∈ Rn2 : Π(θ) ≤ 0}

where Π(·) : Rn2 → R is a convex and differentiable function.
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Denote with∇Π(·) the gradient of Π(·), that is∇Π(θ) =
(
∂Π
∂θ1

(θ) ∂Π
∂θ2

(θ) · · · ∂Π
∂θn2

(θ)
)T

,

and define the projection operator onto Θ as follows:

Proj
θ̂∈Θ
{τ} =


τ if θ̂ ∈ intΘ or {θ̂ ∈ ∂Θ and ∇ΠT(θ̂)τ ≤ 0}(
I − ∇Π(θ̂)∇ΠT(θ̂)

|∇Π(θ̂)|2

)
τ if θ̂ ∈ ∂Θ and ∇ΠT(θ̂)τ > 0

The dynamics of the parameter vector estimate is selected as

˙̂
θ = Proj

θ̂∈Θ
{τ} , θ̂(0) ∈ intΘ (2.59)

where τ is the passivity-based update law (2.41) resulting in the closed-loop system5

ż = Az +BφT(t, z, θ̂)θ̃ + d1

˙̃
θ = Proj

θ̂∈Θ

{
−γφ(t, z, θ̂)Cz

}
(2.60)

The use of parameter projection ensures the following properties:

Proposition 2.4.6 The set Θ is forward invariant under the flow of (2.59).

Proof. At each point θ̂ ∈ ∂Θ

∇ΠT(θ̂) Proj
θ̂∈Θ
{τ} =


∇ΠT(θ̂)τ if ∇ΠT(θ̂)τ ≤ 0}

∇ΠT(θ̂)

(
I − ∇Π(θ̂)∇ΠT(θ̂)

|∇Π(θ̂)|2

)
τ if ∇ΠT(θ̂)τ > 0

Clearly, if ∇ΠT(θ̂)τ ≤ 0, then ∇ΠT(θ̂) Projθ̂∈Θ {τ} ≤ 0 as well. Conversely, assume

∇ΠT(θ̂)τ > 0, and decompose τ along the direction of the vector ∇Π(θ̂) and a given
basis of the tangent plane to ∂Θ at θ̂, that is, let

τ = α∇Π(θ̂) + ψ

for some α > 0 and ψ ∈ {span∇Π(θ̂)}⊥. Then

∇ΠT(θ̂) Proj
θ̂∈Θ
{τ} = ∇ΠT(θ̂)

(
τ − ∇Π

T(θ̂)τ

|∇Π(θ̂)|2
∇Π(θ̂)

)

= ∇ΠT(θ̂)

(
α∇Π(θ̂) + ψ − α∇Π

T(θ̂)∇Π(θ̂)

|∇Π(θ̂)|2
∇Π(θ̂)− ∇Π

T(θ̂)ψ

|∇Π(θ̂)|2
∇Π(θ̂)

)
= ∇ΠT(θ̂)

(
α∇Π(θ̂) + ψ − α∇Π(θ̂)

)
= 0

As a consequence, ∇ΠT(θ̂) Projθ̂∈Θ {τ} ≤ 0 at each point θ̂ ∈ ∂Θ, hence the vector field of
system (2.59) points inward along the boundary of Θ. 2

5Recall that, by assumption, d2 = 0.
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Proposition 2.4.7 Let θ̃ := θ̂ − θ∗. Then, θ̃T Projθ̂∈Θ {τ} ≤ θ̃Tτ for all θ̃ ∈ Rn2 and all
θ∗ ∈ intΘ.

Proof. According to the definition of Projθ̂∈Θ {τ}, we only need to prove the proposition in

the case where θ̂ ∈ ∂Θ and ∇ΠT(θ̂)τ > 0. From the convexity of the function Π(·) and the
fact that θ∗ ∈ intΘ, it follows that

θ̃T∇Π(θ̂) = (θ̂ − θ∗)T∇Π(θ̂) ≥ 0 ∀ θ̂ ∈ ∂Θ

Consequently, if θ̂ ∈ ∂Θ and ∇ΠT(θ̂)τ > 0

θ̃T Proj
θ̂∈Θ
{τ} ≤ θ̃Tτ = θ̃Tτ − θ̃T∇Π(θ̂) ∇ΠT(θ̂)τ

|∇Π(θ̂)|2
≤ θ̃Tτ

2

Stability Analysis

Evaluation of the Lyapunov function candidate (2.44) along the vector field of the closed-
loop system (2.60) yields

V̇ (z, θ̃) = −1
2z

TQz + zTPBφT(t, z, θ̂) + zTPd1 + θ̃T Proj
θ̂∈Θ

{
−γφ(t, z, θ̂)Cz

}
≤ −1

2z
TQz + zTPd1

≤ −λmin

2
|z|2 + |z||P ||d1| (2.61)

where we have made use of Proposition 2.4.7. Adding and subtracting the term λmin|θ̃|2/2
to the right-hand side of the last inequality in (2.61), and recalling that the solution of (2.59)
satisfies θ̂(t) ∈ Θ for all t ≥ 0, one obtains

V̇ (z, θ̃) ≤ −λmin

2
|z|2 − λmin

2
|θ̃|2 + |z||P ||d1|+

λmin

2
|θ̃|2

≤ −λmin

2
|x|2 + |x||P ||d1|+

λmin

2
µ2 (2.62)

where µ = 2 maxθ∈Θ |θ|. Application of Young’s inequality yields

V̇ (x) ≤ −λmin

4
|x|2 +

|P |2
λmin

|d1|2 +
λmin

2
µ2

Consequently, defining the class-N function

χ(s) =

√
4|P |2
λ2min

s2 + 2µ2

one obtains
|x| > χ(|d1|) =⇒ V̇ (x) < 0

therefore, by Theorem 1.3.13 the perturbed system (2.60) has the GUUB property when
d1(·) ∈ L∞.
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Chapter 3

Model-Reference Adaptive Control

3.1 Design for Linear SISO Systems

Consider the parameterized family of single-input single-output LTI systems

ẋ = A(µ)x+B(µ)u

y = C(µ)x
(3.1)

with state x ∈ Rn, control input u ∈ R, and regulated output y ∈ R. It is assumed that A(·),
B(·) and C(·) are continuous matrix-valued function of the parameter vector µ, which is
assumed to range within a given compact set P ⊂ Rp. We begin with making the following
assumptions on the model (3.1):

Assumption 3.1.1 The pair (A(µ), B(µ)) is controllable and the pair (C(µ), A(µ)) is ob-
servable for any µ ∈ P.

Assumption 3.1.2 The model (3.1) has relative degree equal to one for any µ ∈ P. More-
over, the sign of the high-frequency gain b(µ) = C(µ)B(µ) is constant for any µ ∈ P, and
known.

It is worth noticing that Assumption 3.1.1 is stronger than what actually needed for the
solvability of the problem, as stabilizability and detectability would suffice. The stronger
assumption on the minimality of (3.1) is made with the only purpose of simplifying the
problem at this stage, and can be easily removed. On the other hand, removal of the
assumption on the relative degree of the model requires the development of additional
tools, and will be pursued in the next chapters.

It is well known that Assumption 3.1.2 implies that, by means of a change of coordinates,
system (3.1) can be written in the following form

ż = A11(µ)z +A12(µ)y

ẏ = A21(µ)z + a22(µ)y + b(µ)u
(3.2)

with z ∈ Rn−1, where, without loss of generality, it is assumed that there exists a given
constant b0 > 0 such that b(µ) ≥ b0 for all µ ∈ P. A reference model for the input/otput
behavior of (3.1) is given as a stable and minimum-phase transfer function

ȳr(s) = Wm(s)ūr(s)
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where ȳr(s) and ūr(s) denote the Laplace transform of the input and the output of the
reference model, respectively. It is assumed that ur(·) is a piecewise continuous and bounded
signal. Since for obvious reasons the reference model is required to have relative degree at
least equal to that of the plant, we consider the simplest such model, that is, a transfer
function with realization

ẏr = −αmyr + βmur ,

where αm > 0 and βm > 0. The reader will have no difficulty in extending the results of
this section to more general reference models within the considered class.

The problem we want to address is that of finding a controller for (3.1) that, processing
only information on the plant output y and the input and output pair (ur, yr), is capable
to let y(t) track yr(t) asymptotically, for any µ ∈ P. To approach the problem posed by
parameter uncertainty, we look for a certainty-equivalence adaptive controller, that is, a
parameterized family of controllers of the form

ξ̇ = Fc(θ̂)ξ +Gc(θ̂)y

u = Hc(θ̂)ξ +Kc(θ̂)y
(3.3)

with state ξ ∈ Rν and input y = col(y, ur, yr), endowed with an update law

˙̂
θ = ϕ(θ̂, ξ,y)

for the tunable parameter vector θ̂ ∈ Rm. A crucial assumption that ensures solvability of
the problem is that the plant model is minimum phase, robustly with respect to µ ∈ P.
More precisely, we assume the following:

Assumption 3.1.3 There exist a continuous, symmetric and positive definite matrix-valued
function P : Rp → R(n−1)×(n−1), and positive constants a1, a2 satisfying

a1I ≤ P (µ) ≤ a2I

AT
11(µ)P (µ) + P (µ)A11(µ) ≤ −I

for all µ ∈ P.

3.1.4 Design of the Certainty-Equivalence Controller

In what follows, the solution of the problem is derived under the assumption that the
actual value of the parameter vector µ is known. The structure of the solution will be then
exploited for the adaptive design. The starting point is to convert the tracking problem
into a regulation problem, introducing the tracking error e = y − yr and deriving the error
dynamics

ė = A21(µ)z + a22(µ)y + b(µ)u+ αmyr − βmur
= −αme+A21(µ)z + (a22(µ) + αm)y − βmur + b(µ)u.

From the equation above, it is clear that the control law that enforces convergence of the
tracking error (with the same dynamics of the reference model) is

u = − 1

b(µ)
[A21(µ)z + (a22(µ) + αm)y − βmur] . (3.4)
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As a matter of fact, the resulting closed-loop system (in the coordinates (yr, z, e)) reads as
the stable cascade interconnection

ẏr = −αmyr + βmur

ż = A12(µ)yr +A11(µ)z +A12(µ)e

ė = −αme ,

and thus the trajectory of the lower subsystem (the e-dynamics) converge asymptotically,
while the trajectories of the remaining subsystems are bounded, as the signal ur(·) is
bounded.

Remark 3.1.5 The certainty-equivalence control law (3.4) has an interesting interpretation
as the superposition u = uzd + ust of two distinct control actions, namely

uzd = − 1

b(µ)
[A21(µ)z + (a22(µ) + αm)yr − βmur]

and

ust = − 1

b(µ)
(a22(µ) + αm)e .

The control uzd is the unique control law that renders invariant the zero dynamics of the
augmented system

ẏr = −αmyr + βmur

ż = A11(µ)z +A12(µ)y

ẏ = A21(µ)z + a22(µ)y + b(µ)u

e = y − yr
with respect to the input u and the output e. In the given set of coordinates, the zero
dynamics of the augmented system is given precisely by the forced trajectories of the system

ẏr = −αmyr + βmur

ż = A12(µ)yr +A11(µ)z

evolving on an n-dimensional submanifold of the state space X = R×Rn−1×R of the aug-
mented system. The control ust, on the other hand, renders the zero dynamics submanifold
globally attractive, with assigned transversal dynamics. The fact that the control law is
designed to force the trajectories on the system onto its zero dynamics, explains why the
minimum-phase assumption is required. �

It is worth noting that the memoryless feedback law (3.4) is not yet in the desired form for
the certainty-equivalent design, since the state z is not available for feedback. We proceed
by modifying the control law (3.4) with the introduction of a reduced-order observer for z.
Using (3.2), the candidate observer is chosen a system of the form

ξ̇ = F (µ)ξ +G1(µ)y +G2(µ)u (3.5)

47



with state ξ ∈ Rn−1, where the matrices F and G , (G1 G2) are allowed – at this stage –
to depend explicitly on µ. As in every reduced-order observer design, the observation error
is defined as

χ = z − ξ − L(µ)y

where L(µ) ∈ R(n−1)×1 is an output-injection gain to be chosen. The dynamics of the
observation error yields (omitting the parameter vector µ to simplify the notation)

χ̇ = A11[χ+ ξ + Ly] +A12y − Fξ −G1y −G2u− LA21[χ+ ξ + Ly]

−a22Ly − bLu
= (A11 − LA21)χ+ (A11 − LA21 − F )ξ + (A12 −G1 − LA21L+A11L− a22L)y

−(G2 + bL)u .

Since the pair (C(µ), A(µ)) is assumed to be observable for any µ ∈ P, a simple application
of the PHB test reveals that the pair (A21(µ), A11(µ)) is also observable for any µ ∈ P. As
a result, given any Hurwitz polynomial

pd(λ) = λn−1 + dn−2λ
n−2 + · · ·+ d1λ+ d0

there exists L(µ) such that

det (A11(µ)− L(µ)A21(µ)− λI) = pd(λ) .

Fix µ ∈ P, and determine the corresponding output-injection gain such that the character-
istic polynomial of A11(µ)− L(µ)A21(µ) coincides with a given Hurwitz polynomial pd(λ).
Selecting the matrices of the reduced-order observer as

F (µ) = A11(µ)− L(µ)A21(µ)

G1(µ) = A12(µ)− L(µ)A21(µ)L(µ) +A11(µ)L(µ)− a22(µ)L(µ) (3.6)

G2(µ) = −b(µ)L(µ) ,

the observer error is assigned the dynamics of the autonomous asymptotically stable system

χ̇ = (A11(µ)− L(µ)A21(µ))χ .

Using the available signal ξ + L(µ)y to replace z in the certainty-equivalence control law,
one obtains

u = − 1

b(µ)
[A21(µ)ξ + (a22(µ) + αm +A21(µ)L(µ))y − βmur] (3.7)

= − 1

b(µ)
[A21(µ)z −A21(µ)χ+ (a22(µ) + αm)y − βmur] .

As a result, the closed-loop system, using for the observer the coordinates χ in place of ξ,
reads as

ẏr = −αmyr + βmur

ż = A12(µ)yr +A11(µ)z +A12(µ)e

χ̇ = (A11(µ)− L(µ)A21(µ))χ

ė = A21(µ)χ− αme ,
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and thus, by inspection, the trajectory (χ(t), e(t)) converges to the origin, while the trajec-
tory (yr(t), z(t)) remains bounded.

Finally, the expression of the controller (3.5)-(3.7) in the desired form (3.3) is obtained
replacing in the observer equation the expression of u, yielding the system

ξ̇ = A11(µ)ξ + [A11(µ)L(µ) +A12(µ) + αmL(µ)] y − βmL(µ)ur

u = − 1
b(µ) [A21(µ)ξ + (a22(µ) + αm +A21(µ)L(µ))y − βmur] .

(3.8)

It is worth noting the controller (3.8) is internally stable, as the matrix A11(µ) is Hurwitz
by assumption.

3.1.6 Controller Parametrization

The dynamic controller derived in the previous section, although it can expressed in the
form (3.3), does not lend itself easily to an adaptive redesign. The reason is that the
controller dynamics depend on the unknown parameter, which complicates the design of
the update law. A much preferable situation would occur if the dependence on the unknown
parameters was confined to the output map of the controller (that is, equation (3.7),) while
the dynamic equations were independent of µ. The approach we take in this section is to
find a different parametrization of the controller (3.8) for which this is indeed the case, and
thus an update law can be easily derived. We begin with reverting back to the controller
given by (3.5)-(3.7), and writing it in the form

ξ̇ = F (µ)ξ +G1(µ)y +G2(µ)u

u = H(µ)ξ +K1(µ)y +K2(µ)ur
(3.9)

where F , G1 and G2 are given in (3.6), and

H(µ) = − 1

b(µ)
A21(µ) , K1(µ) = − 1

b(µ)
[a22(µ) +αm +A21(µ)L(µ)] , K2(µ) =

βm
b(µ)

(3.10)

The controller is viewed as the interconnection, depicted in Figure 3.1, between the mem-
oryless system given by the feed-through terms K1y and K2ur, and the dynamic system
given by the triplet (F,G,H), with G = (G1 G2). Let W (s) = (W1(s) W2(s)) denote the
transfer function matrix of the dynamic system (F,G,H), that is, let

ū1(s) = W1(s)ȳ(s) +W2(s)ū(s)

denote the output (in the Laplace domain) of the dynamic part of the controller, where

W1(s) = H(µ)(sI − F (µ))−1G1(µ) , W2(s) = H(µ)(sI − F (µ))−1G2(µ) .

It is obvious that, in general, neither (F,G1, H) nor (F,G2, H) need to be minimal real-
izations of their respective transfer functions W1(s) and W2(s). However, since the matrix
F has been obtained by means of an output injection from the pair (A21, A11), it follows
that the pair (H,F ) is observable. This implies that the triplets (F,G,H), (F,G1, H), and
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ξ̇ = Fξ + G1y + G2u
u1 = Hξ

K1

K2

+

ur

y
u

+

Figure 3.1: Certainty-equivalence controller

(F,G2, H) are all observable realizations of W (s), W1(s), and W2(s), respectively. More-
over, if one assumes that pd(λ) and the characteristic polynomial of A11 are coprime (that
is, if the output injection A11 − LA21 does not leave any eigenvalue of A11 unchanged),
then the pair (F,G2) is controllable as well, and thus (F,G2, H) is a minimal realization of
W2(s). This is stated formally in the following assumption:

Assumption 3.1.7 The triplet (F,G2, H) is a minimal realization of W2(s).

Note that controllability of (F,G2) implies controllability of (F,G), and thus Assump-
tion 3.1.7 guarantees that (F,G,H) is a minimal realization of W (s).

The key for a successful adaptive redesign of the certainty-equivalence control law is
to find a realization of W (s) that avoids the dependence of the state equation on the un-
known parameter. This can accomplished simply by realizing W1(s) and W2(s) in controller
canonical form, an then obtaining the required realization of W (s) from their parallel in-
terconnection. More precisely, define the matrices in companion form

Φ =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . . 0

0 0 0 · · · 1

−d0 −d1 −d2 · · · −dn−2


, Γ =



0

0
...

0

1


and let the vectors θ1 ∈ Rn−1, θ2 ∈ Rn−1 be such that

W1(s) = θT1 (sI − Φ)−1Γ , W2(s) = θT2 (sI − Φ)−1Γ , (3.11)

which is possible, because (Φ, Γ ) is controllable and Φ and F have the same characteris-
tic polynomial. The required non-minimal realization of W (s) is given by the 2(n − 1)–
dimensional system

ζ̇1 = Φ ζ1 + Γy

ζ̇2 = Φ ζ2 + Γu

u1 = θT1 ζ1 + θT2 ζ2 .

(3.12)
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Finally, letting
θ3 = K1(µ) , θ4 = K2(µ) (3.13)

we write the new parametrization of the certainty equivalence controller as

ζ̇1 = Φ ζ1 + Γy

ζ̇2 = Φ ζ2 + Γu

u = θT1 ζ1 + θT2 ζ2 + θ3y + θ4ur ,

(3.14)

In the above system, the matrices Φ and Γ are known, while the controller parameter vector
θ ∈ R2n, given by

θ =
(
θT1 θT2 θ3 θ4

)T
,

depends on the plant parameter vector µ. The system (3.12) employs twice as many states
as needed to realize W (s). However, it is internally stable, and equivalent to (F,G,H) in
terms of the I/O response. Since the pair(

Φ 0

0 Φ

)
,

(
Γ 0

0 Γ

)

is controllable, it follows that the pair

(
θT1 θT2

)
,

(
Φ 0

0 Φ

)

is necessarily unobservable, and that the subspace of unobservable states, denoted by Vno,
has dimension equal to the number of excess states, that is dim(Vno) = n− 1. As a result,
system (3.12) can be decomposed with respect to observability by means of a change of
basis adapted to the subspace of unobservable states. To find the required decomposition,
we proceed first by noticing that, by virtue of Assumption 3.1.7, the triplet (Φ, Γ, θT2 ) is
a minimal realization of W2(s). Since all modes of the ζ2-dynamics are observable at the
output u1 of (3.12) (and reachable from the input u), the modal subspace

V = im

(
0

I

)

is an invariant subspace for (3.12) satisfying

V ∩ Vno = {0} ,

and thus Vno is necessarily complementary to V. Recalling that dimVno = n − 1, the
subspace in question can be expressed as

Vno = im

(
I

X

)
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where the matrix X ∈ R(n−1)×(n−1) satisfies(
Φ 0

0 Φ

)(
I

X

)
=

(
I

X

)
R ,

(
θT1 θT1

)( I
X

)
= 0

for some R ∈ R(n−1)×(n−1). The above conditions merely state the property that Vno is
the largest invariant subspace for (3.12) contained in ker (θT1 θT2 ). It is easy to see that
necessarily R = Φ, and thus X is computed as the solution of the linear equation

ΦX = XΦ

θT2X = −θT1 .

The change of coordinates ζ̄2 = ζ2−Xζ1 puts system (3.12) in the desired Kalman canonical
form ζ̇1

˙̄ζ2

 =

Φ 0

0 Φ

ζ1
ζ̄2

+

Γ 0

Γ̄ Γ

y
u


u1 =

(
0 θT2

)ζ1
ζ̄2

 ,

(3.15)

where Γ̄ = −XΓ . The observable and controllable system

˙̄ζ2 = Φζ̄2 + Γ̄ y + Γu

u1 = θT2 ζ̄2 ,

being a minimal realization of W (s), is related to (F,G,H) by means of a nonsingular
transformation (see [16]). Specifically, there exists an invertible matrix Y ∈ R(n−1)×(n−1)

such that
Y −1ΦY = F , Y −1Γ̄ = G1 , Y −1Γ = G2 , θT2 Y = H ,

from which the following important result is concluded.

Proposition 3.1.8 The change of coordinates

η1 = ζ1 η2 = Y −1ζ2 − Y −1Xζ1

puts (3.14) into the form

η̇1 = Φη1 + Γy

η̇2 = F (µ) η2 +G1(µ)y +G2(µ)u

u = H(µ)η2 +K1(µ)y +K2(µ)ur ,

(3.16)

from which it is seen that the new controller (3.14) embeds a diffeomorphic copy of the
original controller (3.9).
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In the terminology of output regulation theory, one would say that (3.9) is immersed into
(3.14). The additional dynamics introduced in (3.12) is unobservable from the output, and
the unobservable trajectory η1(t) remains bounded as long as y(t) is bounded. The intro-
duction of the unobservable dynamics has the remarkable effect of allowing a representation
of the controller for which the dependence on the uncertain parameters is shifted to the
output map, and collected into the parameter vector θ.

Consider now the plant model (3.2), augmented with the reference model, in closed-loop
with the certainty-equivalence controller (3.14)

ẏr = −αmyr + βmur

ζ̇1 = Φ ζ1 + Γy

ζ̇2 = Φ ζ2 + Γ [θT1 ζ1 + θT2 ζ2 + θ3y + θ4ur]

ż = A11(µ)z +A12(µ)y

ẏ = A21(µ)z + a22(µ)y + b(µ)[θT1 ζ1 + θT2 ζ2 + θ3y + θ4ur]

e = y − yr

(3.17)

The following result establishes the stability properties of the closed-loop system under the
non-minimal certainty-equivalence controller:

Proposition 3.1.9 Consider the closed-loop system (3.17), where the controller parameter
vector θ is such that equations (3.11) and (3.13) hold. Let Assumption 3.1.7 hold. Then,
for any µ ∈ P, the trajectory of (3.17) originating for any initial condition is bounded, and
satisfies limt→∞ e(t) = 0.

Proof. Apply the preliminary change of coordinates

η1 = ζ1 , η2 = Y −1ζ2 − Y −1Xζ1

and (3.11), (3.13) to obtain the equivalent expression of the closed-loop system

ẏr = −αmyr + βmur

η̇1 = Φη1 + Γy

η̇2 = F (µ) η2 +G1(µ)y +G2(µ)[H(µ)η2 +K1(µ)y +K2(µ)ur]

ż = A11(µ)z +A12(µ)y

ẏ = A21(µ)z + a22(µ)y + b(µ)[H(µ)η2 +K1(µ)y +K2(µ)ur] .

Changing again coordinates as

χ1 = η1 , χ2 = z − η2 − Ly , e = y − yr ,
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ẏr = −αmyr + βmur

ż = A11(µ)z + A12(µ)yr + A12(µ)e
χ̇1 = Φ χ1 + Γyr + Γe

χ̇2 = F (µ)χ2

ė = A21(µ)χ2 − αme

ur

Figure 3.2: Closed-loop system (3.18).

and recalling (3.6) and (3.10), one obtains

ẏr = −αmyr + βmur

ż = A11(µ)z +A12(µ)yr +A12(µ)e

χ̇1 = Φχ1 + Γyr + Γe

χ̇2 = F (µ)χ2

ė = A21(µ)χ2 − αme .

(3.18)

The above system is the cascade of two asymptotically stable systems, with the autonomous
(χ2, e)-dynamics driving the (yr, χ1, z)-dynamics, which is also forced by the bounded refer-
ence input ur (see Figure 3.2.) Consequently, the trajectories of the driving system converge
to zero, while the trajectories of the driven subsystem remain bounded, for any initial con-
dition. 2

It is interesting to investigate whether stronger conclusions on the stability properties of the
closed-loop system than boundedness of all trajectories and regulation of the tracking error
can be inferred. It is clear that the trajectories of the upper subsystem in (3.18) converge
to a unique trajectory, determined solely by the reference input ur, which represents the
steady-state behavior of the system. The steady-state in question for the trajectory yr(t)
is easily computed as

ȳr(t) =

∫ t

−∞
βme−αm(t−τ)ur(τ)dτ ,

while the steady-state for the trajectory (z(t), χ1(t)) is given by

z̄(t) =

∫ t

−∞
eA11(µ)(t−τ)A12(µ)ȳr(τ)dτ , χ̄1(t) =

∫ t

−∞
eΦ(t−τ)Γ ȳr(τ)dτ .

The integrals above are well-defined, as the signal ur is assumed bounded. Introducing the
deviations from steady-state as new state variables

ỹr = yr − ȳr(t) , z̃ = z − z̄(t) , χ̃1 = χ1 − χ̄1(t)
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one obtains from (3.18)

˙̃yr = −αmỹr
˙̃z = A11(µ)z̃ +A12(µ)ỹr +A12(µ)e

˙̃χ1 = Φ χ̃1 + Γ ỹr + Γe

χ̇2 = F (µ)χ2

ė = A21(µ)χ2 − αme .

(3.19)

Note that in the new coordinates the closed-loop system system is autonomous, and that
the matrix

A(µ) =



−αm 0 0 0 0

A12(µ) A11(µ) 0 0 A12(µ)

Γ 0 Φ 0 Γ

0 0 0 F (µ) 0

0 0 0 A21(µ) −αm


(3.20)

is Hurwitz for all µ ∈ P. As a result, it can be concluded that the origin is a globally
exponentially stable equilibrium of (3.19).

3.1.10 Adaptive Design

The controller (3.14) implicitly depends on the plant parameters µ by way of the parameter
vector θ. Obviously, if the actual value of µ is not available, so is the actual value of θ. To
implement the controller, we resort to the principle of certainty equivalence, and replace θ
with an estimate θ̂, and look for a suitable update law. To simplify the notation, denote
with φ(t, ζ, y) the regressor

φ(t, ζ, y) =


ζ1

ζ2

y

ur(t)


and write the controller (3.14) as

ζ̇1 = Φ ζ1 + Γy

ζ̇2 = Φ ζ2 + Γu

u = φT(t, ζ, y)θ̂ .

Note that in φ(t, ζ, y) the explicit dependence on time is due to the exogenous signal ur(·),
which is not a state variable of the closed-loop system. Using in place of (yr, z, ζ1, ζ2, y)
the coordinates (ỹr, z̃, χ̃1, χ2, e) defined in the previous section, and introducing the
“estimation error” θ̃ = θ̂ − θ, one obtains the following expression for the closed-loop
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system:
˙̃yr = −αmỹr
˙̃z = A11(µ)z̃ +A12(µ)ỹr +A12(µ)e

˙̃χ1 = Φ χ̃1 + Γ ỹr + Γe

χ̇2 = F (µ)χ2

ė = A21(µ)χ2 − αme+ b(µ)φT(t, ζ, y)θ̃ .

(3.21)

In writing the expression of the regressor φ(·) in the above system, we have kept the original
coordinates ζ and y, since they are directly available for feedback, and can be used to derive
the required update law for θ̂. As a matter of fact, note that the state χ2 can not be used
in the update law, as it depends on the unknown matrices X and Y . Finally, collecting all
state variables in the vector

x =
(
ỹr z̃ χ̃1 χ2 e

)T
and introducing the matrices

B(µ) =



0

0

0

0

b(µ)


, C =

(
0 0 0 0 1

)
,

the closed-loop system is written in the simpler form

ẋ = A(µ)x + B(µ)φT(t, ζ, y)θ̃

e = Cx ,

where A(µ) is given by (3.20).

Proposition 3.1.11 The triplet (A(µ),B(µ), C) is strictly passive for all µ ∈ P. In partic-
ular, there exist a continuous, symmetric and positive definite matrix-valued function Q(µ)
and positive constants c1, c2 satisfying

c1I ≤ Q(µ) ≤ c2I

and

AT(µ)Q(µ) +Q(µ)A(µ) ≤ −I
BT(µ)Q(µ) = C

for all µ ∈ P.

Proof. ... 2
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The above result suggests the use of the passivity-based update law

˙̂
θ = −γφ(t, ζ, y)e , γ > 0 ,

which yields the interconnection

ẋ = A(µ)x + B(µ)φT(t, ζ, y)θ̃

˙̃
θ = −γφ(t, ζ, y)Cx .

To analyze the behavior of the closed loop system, we begin with expressing the regressor
in terms of the new coordinates x and the exogenous signals as

φ(t, ζ, y) =


ζ1

ζ2

y

ur(t)

 =


χ̃1

Y [z̃ − χ2 − Le] +Xχ̃1

e+ ỹr

0

+


χ̄1(t)

Y [z̄(t)− Lȳr(t)] +Xχ̄1(t)

ȳr(t)

ur(t)

 .

As a result, the regressor can be expressed as a linear combination of the state variables x
and the components of the vector of exogenous signals w = (ur(t) ȳr(t) z̄(t) χ̄1(t))

T

φ(t, ζ, y) = M1x +M2w(t) ,

where

M1 =


0 0 I 0 0

0 Y X −Y −Y L
1 0 0 0 1

 , M2 =


0 0 I 0

−Y L Y X 0

1 0 0 0

0 0 0 1

 .

With a minor abuse of notation, we write the regressor as φ(t,x), with the understanding
that φ(t, 0) = M2w(t). This allows us to write the closed-loop system as the standard
adaptive control problem

ẋ = A(µ)x + B(µ)φT(t,x)θ̃

˙̃
θ = −γφ(t,x)Cx .

(3.22)

Theorem 3.1.12 For system (3.22), the following results hold:

(i) If ur ∈ L∞, for any µ ∈ P the origin is a globally uniformly stable equilibrium of
(3.22), and thus the trajectory (x(t), θ̃(t)) originating from any initial condition in
R3n−1 × R2n is bounded. Moreover, the trajectory x(t) satisfies limt→∞ x(t) = 0

(ii) If ur ∈ L∞, u̇r ∈ L∞, and w(·) is PE, then for any given µ ∈ P the origin is a globally
uniformly asymptotically stable and locally exponentially stable equilibrium of (3.22).

Proof. The proof is left as an exercise / exam problem. 2
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Chapter 4

Adaptive Observers

4.1 Observers for Linear Systems

Consider the strictly proper transfer function

G(s) =
n(s)

d(s)
=

bn−1s
s−1 + bn−2s

n−2 + . . .+ b1s+ b0
sn + an−1ss−1 + an−2sn−2 + . . .+ a1s+ a0

in which n(s) and d(s) are relatively coprime, i.e., they do not possess common factors. Note
that in case the relative degree of G(s) is greater than one, say 1 < r ≤ n, the numerator
polynomial satisfies bn−1 = bn−2 = . . . br−2 = 0. A minimal realization of G(s) in observer
canonical form is given by the system

ẋ = Aox+Bou

y = CT
o x

(4.1)

where

Ao =



−an−1 1 0 · · · 0

−an−2 0 1 · · · 0
...

...
...

. . .
...

−a1 0 0 · · · 1

−a0 0 0 · · · 0


, Bo =



bn−1

bn−2
...

b1

b0


, CT

o =
(

1 0 0 · · · 0
)
.

The problem we address in this section is the design of an asymptotic observer for the
state of (4.1) under the assumption that the coefficients of the polynomials n(s) and d(s)
(equivalently, the location of the zeros and the poles of G(s)) are not known precisely. At
this regard, let us collect the unknown coefficients b0, . . . , bn−1 and a0, . . . , an−1 into the
2n-dimensional parameter vector θ

θ =
(
bn−1 bn−2 · · · b0 an−1 an−2 · · · a0

)T
and write (4.1) as

ẋ = Abx+ Ψ(u, y)θ

y = Cbx
(4.2)
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where Ab, Cb are in Brunowsky form

Ab =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

0 0 0 · · · 0


, Cb = CT

o

and Ψ(u, y) ∈ Rn×2n is given by

Ψ(u, y) =


u 0 · · · 0 −y 0 · · · 0

0 u · · · 0 0 −y · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · u 0 0 · · · −y

 .

It is quite clear that, since the pair (Ab, Cb) is observable, if the parameter vector θ is known
exactly, an asymptotic observer for (4.2) is given by a system of the form

˙̂x = Abx̂+ Ψ(u, y)θ +K(y − Cbx̂)

with K =
(
kn−1 kn−2 · · · k0

)T
chosen in such a way that the characteristic polynomial

of Ab −KCb, i.e., the polynomial

sn + kn−1s
s−1 + kn−2s

n−2 + . . .+ k1s+ k0 (4.3)

has all roots in C−. If this is indeed the case, the dynamics of the observation error e = x−x̂
is governed by

ė = (Ab −KCb)e ,
therefore satisfying limt→∞ |e(t)| = 0. However, it is easy to see that the above condition
requires exact cancellation of the term Ψ(u, y)θ, as otherwise the error dynamics would not
possess an equilibrium at e = 0. In case the vector θ is not known exactly, we resort to the
principle of certainty equivalence, and look for an observer of the kind

˙̂x = Abx̂+ Ψ(u, y)θ̂(t) +K(y − Cbx̂)

in which the unknown parameter vector θ has been replaced by an “estimate” θ̂(t), whose dy-
namics is governed by a suitable update law that must guarantee boundedness of (e(t), θ̂(t))
and convergence of e(t) to the origin. We expect the design of the update law to be partic-
ularly challenging, as only the I/O pair (u(t), y(t)) of (4.2) is available for measurement.

4.1.1 Adaptive observer form

In this section, we will analyze a particular case for which the design of an adaptive observer
is almost straightforward, and convergence analysis follows directly from the results of the
previous chapter. Then, in the next section we will show how to extend the design to the
general case (4.2).
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Consider, in place of (4.2), the system

ż = Abz + d β(t)Tϑ

y = Cbz
(4.4)

where

4.4.a) ϑ ∈ Rp is a vector of unknown constant parameters,

4.4.b) β : R→ Rp is a known bounded vector-valued function of time,

4.4.c) dT =
(
dn−1 dn−2 · · · d0

)T
is a known vector such that the polynomial

dn−1s
s−1 + dn−2s

n−2 + . . .+ d1s+ d0

has all roots in C−, and dn−1 > 0.

Systems having the structure in (4.4) and satisfying 4.4.a-c are said to be in adaptive
observer form. Note that the transfer function

H(s) = Cb(sI −Ab)−1d =
dn−1s

s−1 + dn−2s
n−2 + . . .+ d1s+ d0
sn

is minimum phase by assumption, and its relative degree is equal to 1. Then, the following
result holds:

Proposition 4.1.2 Fix λ > 0 arbitrarily, and choose the vector K ∈ Rn as(
kn−1 kn−2 · · · k1 k0

)T
=

=
1

dn−1

(
dn−2 + λ dn−1 dn−3 + λ dn−2 · · · d0 + λ d1 λ d0

)T
.

(4.5)

The system
˙̂z = Abẑ + d β(t)Tϑ̂+K(y − Cbẑ)
˙̂
ϑ = γβ(t)(y − Cbẑ)

(4.6)

where K is chosen as in (4.5), and γ > 0 is an arbitrary design parameter, is an adaptive
observer for (4.4).

Proof. Changing coordinates as e = z − ẑ and ϑ̃ = ϑ− ϑ̂ we obtain the error system

ė = (Ab −KCb)e+ d β(t)Tϑ̃

˙̃
ϑ = −γβ(t)Cbe .

(4.7)

It is easy to see that, since

dn−1s
n + (dn−2 + λ dn−1)s

s−1 + . . .+ λ d0 = (s+ λ)(dn−1s
s−1 + dn−2s

n−2 + . . .+ d0)
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and the characteristic polynomial of the matrix Ab −KCb is exactly (4.3), we obtain

Cb(sI −Ab +KCb)
−1d =

1

s+ λ
.

Therefore, the triplet {(Ab−KCb), d, Cb} is SPR, and system (4.7) is precisely in the form
that we have studied in the previous chapters, that is, the negative feedback interconnection
of a strictly passive and a passive system. Since β(t) is assumed bounded, we conclude that
all trajectories (e(t), ϑ̃(t)) of (4.7) are bounded, and satisfy limt→∞ e(t) = 0. 2

It is clear that the role of the output injection vector K is that of inducing n − 1 sta-
ble pole-zero cancellations, and assigning the remaining pole to s = −λ, to render the
transfer function Cb(sI−Ab+KCb)

−1d strictly positive real. It is also worth noticing that,
apart from the obvious robustness issues, persistency of excitation of β(t) is not needed to
achieve asymptotic observation of z(t).

4.1.3 The general case

The result of the previous section shows how to choose the output injection gain and the
update law to build an adaptive observer for systems in the particular form (4.4). Clearly,
this result applies for the original system (4.1) only if the term Ψ(u(t), y(t))θ can be fac-
torized as Ψ(u(t), y(t))θ = d β(t)Tϑ, with β, ϑ and d satisfying 4.4.a-c, which does not hold
in general. As a matter of fact, it is not difficult to see that if the transfer function G(s)
has relative degree r > 1, or is non-minimum phase, a factorization like the one suggested
above can not be found at all. To overcome this difficulty, we will introduce a system aug-
mentation and a parameter-dependent change of coordinates that transform the augmented
system into a form compatible with the construction of the adaptive observer derived in
Proposition 4.1.2.

Consider again system (4.1), and perform a time-varying change of coordinates of the
form

z = x−M(t)θ (4.8)

where the matrix-valued function of time M : R→ Rn×2n, yet to be determined, is assumed
bounded. In the new coordinates z, system (4.1) reads as

ż = Ab z +
[
AbM(t) + Ψ(u, y)− Ṁ(t)

]
θ

y = Cbx .

Choose arbitrarily a vector dT =
(

1 dn−2 · · · d0

)T
such that the polynomial ss−1 +

dn−2s
n−2 + . . .+ d1s+ d0 has all roots in C−. Clearly, d defined in this way satisfies 4.4.c.

Also, note that Cb d = 1. Next, we look for a vector-valued function β : R2n → R such that

d β(t)T = AbM(t) + Ψ(u(t), y(t))− Ṁ(t). (4.9)

If β satisfying (4.9) exists, pre-multiplying each side of (4.9) by Cb, we obtain necessarily

β(t)T = CbAbM(t) + CbΨ(u(t), y(t)) + CbṀ(t) . (4.10)
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In order to solve (4.9) and (4.10) for β(t), we remove the appearance of Ṁ(t) in (4.10)
choosing

M(t) =

(
0

N(t)

)
(4.11)

with N(t) ∈ Rn−1×2n. This choice for M(t) implies that CbṀ(t) = 0, and thus (4.10) yields

β(t)T = CbAbM(t) + CbΨ(u(t), y(t)) . (4.12)

Substituting the expression of β(t) into (4.9), we obtain

Ṁ(t) = [Ab − dCbAb]M(t) + [I − dCb]Ψ(u(t), y(t))

which, in turn, gives the following expression for the matrix differential equation for N(t)

Ṅ(t) = AdN(t) +BdΨ(u(t), y(t)) (4.13)

where

Ad =


−dn−2 1 · · · 0 0

...
...

. . .
...

...

−d1 0 · · · 0 1

−d0 0 · · · 0 0

 , Bd =


−dn−2 1 · · · 0 0

...
...

. . .
...

...

−d1 0 · · · 1 0

−d0 0 · · · 0 1

 .

The matrix differential equation (4.13) can be thought as a set of 2n linear systems of the
form

ṅi = Adni +Bdψi(u(t), y(t)) , i = 1, . . . , 2n

where ni ∈ Rn−1 and ψi(u, y) ∈ Rn−1 are the i-th columns of N and Ψ(u, y), respectively.
Note that the matrix Ad is Hurwitz by assumption, as its characteristic polynomial coincides
with ss−1 + dn−2s

n−2 + . . .+ d1s+ d0. The change of variables (4.8), where M(t) satisfies
(4.11) and (4.13), is known as a filtered transformation. By virtue of (4.9), system (4.1) in
the coordinates z reads as

ż = Abz + d β(t)Tθ

y = Cbz
(4.14)

and is therefore in adaptive observer form. However, since this time the state z of (4.14)
is related to the original state x by means of a transformation involving the unknown
parameter vector, convergence of the estimates θ̂(t) to θ is indeed necessary to reconstruct
the state in the original coordinates.

Proposition 4.1.4 The output x̂(t) of the system

Ṅ = AdN +BdΨ(u(t), y(t))

˙̂z = Abẑ + d β(t)Tθ̂ +K(y − Cbẑ)
˙̂
θ = γβ(t)(y − Cbẑ)

x̂ = ẑ +

(
0

N

)
θ̂

(4.15)
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where K is chosen as in (4.5)1, γ > 0 is an arbitrary design parameter, and β(t) satisfies
(4.12) yields an asymptotic estimate of the state x(t) of system (4.1), provided that:

a. β(t) is bounded for all t ≥ 0,

b. β(t) satisfies the persistence of excitation condition.

The proof follows along the same lines of Proposition 4.1.2, and is therefore omitted. How-
ever, it must be stressed that, in order for the result to hold, the function β(t) must be
bounded. Since β(t) is obtaining filtering the input u(t) and the output y(t) of system (4.1)
by means of the stable filter (4.13) (see equation (4.10)), a sufficient condition for β(t) to
be a bounded function of time is that the system (4.1) is L∞-stable and u(·) ∈ L∞. This,
in turn, is equivalent to internal stability, since (4.1) is a minimal realization of G(s). If, in
addition to internal stability, the plant model is minimum phase, persistency of excitation
of β(t) is guaranteed if u(t) is sufficiently rich of order at least 2n, that is, the spectrum of
u(t) contains at least n sinusoids of distinct frequencies.

1Note that in this case dn−1 = 1.
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Chapter 5

Design Example: Control of a
6-DOF Model of a Fighter Jet

In this chapter, we describe the design of an adaptive controller for a 6-DOF model of a
mock fighter jet. The design of the controller is given as a design project to be carried out by
the reader. In the following sections, we describe the nonlinear aircraft model, the linearized
models and their Matlab-Simulink implementations, provided in the file repository. Then,
the various steps of the design process are explained, to be completed and implemented in
Matlab-Simulink by the reader.

5.1 Nonlinear Aircraft Model

The nonlinear aircraft model implemented in the file Jet_model.slx is the following [18,
Chapter 2]

ḣ = −eT3Reb(η)ν (5.1)

ν̇ = −ω × ν + 1
mFgrav + 1

mFA,base + 1
mFA,δ + 1

mFT (5.2)

η̇ = E(η)ω (5.3)

Jω̇ = −ω × Jω +MA,base +MA,δ (5.4)

The relevant nomenclature is given in Table 5.1. The model parameters are contained in
the file model_paramters.mat, whereas the initial conditions corresponding to the equi-
librium at Mach 1 must be loaded from the file initial_conditions.mat. The altitude
dynamics (5.1) is used only to derive the equilibrium point of the vehicle at a given Mach
number, and is not used in the control design. It is therefore assumed that the air density
and the local speed of sound are constant during the simulation time. The control input is
given by

(δT , δ) ∈ R4 (5.5)

corresponding respectively to the throttle setting δT (controlling F T ) and the deflection of
the three main aerodynamic control surfaces δ (controlling MA,δ). Limits are imposed to
the magnitude of the control inputs, as follows:

|δT | ≤ 5 , |δi| ≤ 0.75 [rad] , i = a, e, r
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Fe,Fb Earth-fixed and Body-fixed coordinate frames

Reb ∈ SO(3) Rotation matrix from Fb to Fe

ν = [u v w]T Translational velocity of the vehicle in Fb

ω = [p q r]T Angular velocity of the vehicle in Fb

η = [φ θ ψ]T Euler-angle parameterization of Reb

E(η) ∈ R3×3 Jacobian of the Euler-angle kinematic transformation

F grav ∈ R3 Gravity force

FA,base,MA,base ∈ R3 Baseline aerodynamic force and moment

FA,δ,MA,δ ∈ R3 Control aerodynamic force and moment

F T ∈ R3 Force due to engine thrust

VT =
√
u2 + v2 + w2 Airspeed

α = arctan(w/u) Angle-of-attack

β = arcsin(v/VT ) Sideslip angle

γ = θ − α Flight-path angle (FPA), assuming φ = 0

h Altitude

ρ(h) Air density

a(h) Local speed of sound

M∞ = VT /a(h) Mach number

m Mass

J ∈ R3×3 Inertia matrix, J = JT > 0

δT Throttle

δ = [δa δe δr]
T Aerodynamic control surface deflections (aileron, elevator, rudder)

Table 5.1: Nomenclature for the vehicle models

The force FA,δ generated by the aerosurfaces is regarded as a disturbance. Aerodynamic
forces and moments, as well as the propulsion forces, are nonlinear functions of Mach
number, angle-of-attack, sideslip angle and the control inputs; these functions are provided
in the form of look-up tables in the nonlinear model. The output to be regulated is given by

(M∞, γ, φ, ψ) ∈ R4 (5.6)

corresponding respectively to Mach number, flight-path angle (FPA), roll angle and yaw
angle. Specifically, we aim at tracking reference trajectories M∞ref(t), γref(t), ψref(t) gener-
ated by second-order reference models, while keeping φ(t) as small as possible. It is stressed
that all state variables are available for feedback.
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5.2 Linear Aircraft Models

The equations of the nonlinear model (5.1)–(5.4) are linearized around an equilibrium point
corresponding to a given set point, which is referred to as a trim condition. The trim
condition is selected as the vehicle flying in wing-level flight, at constant airspeed and
constant altitude, and zero turn rate, corresponding to the constant setpoint

M∞ = M0
∞ , h = h0 , φ = 0 , ψ̇ = 0

yielding the trim values

ν0 = [u0 0 w0]T , η0 = [0 α0 0]T , ω0 = [0 0 0]T

M0
∞ =

√
(u0)2 + (w0)2

a(h0)
, α0 = arctan

(
w0

u0

)
, β0 = 0 , γ = 0

δT = δ0T , δa = 0 , δe = δ0e δr = 0

Note that, without loss of generality, the trim value for ψ has been selected to be ψ = 0
(any constant value would do.) Also, note that the trim value for θ is the same as the trim
value for α, since the level flight condition entails γ = 0. The linearized equations of motion
of the full model (minus the altitude dynamics) read as

ẋ = Ax+Bu

y = Cx (5.7)

where the state vector x ∈ R9, the control input u ∈ R4 and the regulated output y ∈ R4

are given by

x =



M∞ −M0
∞

α− α0

β

φ

θ − α0

ψ

p

q

r



, u =


δt − δ0T
δa

δe − δ0e
δr

 , y =


M∞ −M0

∞

γ

φ

ψ



It should be noted that a coordinate transformation has been applied to the nonlinear
model prior to linearization to express the translational velocity directly in the coordinates
(M∞, α, β). Two separate subsystems are extracted from (5.7), namely the longitudinal and
the lateral linearized dynamics:

Longitudinal :

{
ẋlong = Alongxlong +Blongulong

ylong = C longxlong

, Lateral :

{
ẋlat = Alatxlat +Blatulat

ylat = C latxlat
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File name Mach Altitude (ft) Full model Long. model Lat. model

Jet_model_mach1.mat 1 25× 103 Jet1 Jet_long1 Jet_lat1

Jet_model_mach05.mat 0.5 25× 103 Jet05 Jet_long05 Jet_lat05

Jet_model_mach15.mat 1.5 25× 103 Jet15 Jet_long15 Jet_lat15

Table 5.2: Linearized models

where (recall that γ = θ − α)

xlong =


M∞ −M0

∞

α− α0

θ − α0

q

 , ulong =

(
δT − δ0T
δe − δ0e

)
, ylong =

(
M∞ −M0

∞

γ

)

and

xlat =



β

φ

ψ

p

r


, ulat =

(
δa

δr

)
, ylat =

(
φ

ψ

)

Three different sets of linearized models have been provided, each corresponding to a dif-
ferent trim condition, as seen in Table 5.2. The files listed in the first column of Table 5.2
contain also the trim values (M0

∞, α
0, δ0T , δ

0
e), as this information is needed by the controller.

The linearized model at Mach 1 is the main design model. The other linearized model are
used to test the capability of the control algorithm to adapt to different model coefficients.

5.3 Control Design for the Lateral Dynamics

Let us start from the design for the lateral dynamics, as it is less involved than the one for
the longitudinal dynamics. The equations of the linearized lateral model read as

β̇ = a11β + a12φ+ a14p− r + b11δa + b12δr

φ̇ = p+ a25r

ψ̇ = r

ṗ = a41β + b41δa + b42δr

ṙ = a51β + b51δa + b52δr (5.8)

It is noted that b41 > 0 and b52 > 0. This property is also preserved throughout the
different linear models, as it is a structural property of the aircraft. Since |a25| << 1 and
|b42| << |b41|, the terms a25r and b42δr will be neglected in the design, but preserved in
the model. Also, the presence of saturations on δa and δr are neglected in the design, but
should be implemented in the controller.
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5.3.1 Adaptive Stabilization of the Roll Dynamics

Owing to the model simplifications listed above, the control design model for the roll dy-
namics reads as

φ̇ = p

ṗ = a41β + b41δa (5.9)

Recall that the goal is to stabilize the roll dynamics and decouple it from the dynamics of
the sideslip angle. We proceed with a recursive design, starting from the roll angle. Define
a reference trajectory for the roll rate and the corresponding tracking error as

pref := −kφφ , ep := p− pref
where kφ > 0 is a controller gain to be selected. Using the coordinates (φ, ep) in place of
(φ, p), one obtains

φ̇ = −kφφ+ ep

ėp = a41β + b41δa + kφp

= b41 [µ11β + µ12p+ δa] (5.10)

where

µ11 :=
a41
b41

, µ12 :=
kφ
b41

are unknown parameters with b41 > 0. The aileron input is used to adaptively cancel the
unknown terms and stabilize the dynamics. To this end, let the control δa be defined as

δa = −kpep − kp,φφ− µ̂11β − µ̂12p
where kp, kp,φ > 0 are controller gains to be selected, and µ̂1 := [µ̂11 µ̂12]

T is the vector of
parameter estimates. The closed-loop system reads as

φ̇ = −kφφ+ ep

ėp = −b41kpep − b41kp,φφ− b41 [µ̃11β + µ̃12p]

= −b41(kpep + kp,φφ)− b41ΦT
1 (β, p)µ̃1 (5.11)

where µ̃1i := µ̂1i − µ1i, i = 1, 2, and µ̃1 := [µ̃11 µ̃12]
T. Using the positive definite and

radially unbounded Lyapunov function candidate

V (φ, ep, µ̃1) :=
1

2
φ2 +

1

2b41
e2p +

1

2Γ1
µ̃T1 µ̃1

where Γ1 > 0 is a scalar gain, one obtains

V̇ (φ, ep, µ̃1) = −kφφ2 − kpe2p + (1− kp,φ)φ ep +
1

Γ1
µ̃T1
[

˙̂µ− Γ1Φ1(β, ep)ep
]

The obvious choice
kp,φ = 1 , ˙̂µ1 = Γ1Φ1(β, ep)ep

yields
V̇ (φ, ep, µ̃1) = −kφφ2 − kpe2p

hence asymptotic regulation of φ(t) and ep(t) to zero. The selection of the remaining gain
parameters (kφ, kp, Γ1) should be made on the basis of simulation studies.
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5.3.2 Direct Adaptive Control of the Yaw Dynamics

The control design model for the yaw dynamics reads as

ψ̇ = r

ṙ = a51β + b51δa + b52δr (5.12)

The goal is to track a reference trajectory for the yaw angle and decouple the yaw dynamics
from the dynamics of the sideslip angle and the roll angle. We proceed with a recursive
design, starting from the tracking error for the yaw angle. Let the reference model for the
yaw angle be given by the second-order linear system

ξ̇1 = ξ2

ξ̇2 = ω2
nξ1 + 2ζωnξ2 + ω2

nψcmd

ψref = ξ1

ψ̇ref = ξ2

ψ̈ref = −ω2
nξ1 − 2ζωnξ2 + ω2

nψcmd (5.13)

where ψref(t) is the reference to be tracked, ψcmd(t) is the command input to the reference
model, ωn > 0 is the natural frequency of the second-order system, and ζ ∈ (0, 1) is the
damping ratio. It is well known that the reference model is stable if ωn > 0 and ζ ∈ (0, 1).
Define the tracking error for the yaw angle as eψ := ψ − ψref , with dynamics

ėψ = r − ψ̇ref

The reference trajectory for the yaw rate and the corresponding tracking error are defined as

rref := −kψeψ + ψ̇ref , er := r − rref

where kψ > 0 is a controller gain to be selected. Using the coordinates (eψ, er) in place of
(ψ, r), one obtains

ėψ = −kψeψ + er

ėr = a51β + b51δa + b52δr + kψ(r − ψ̇ref)− ψ̈ref

= b52

[
µ21β + µ22(kψr − kψψ̇ref − ψ̈ref) + µ23δa + δr

]
= b52

[
ΦT
2 (t, β, r, δa)µ2 + δr

]
(5.14)

where µ2 = [µ21 µ22 µ23]
T, and

µ21 :=
a51
b52

, µ22 :=
1

b52
, µ23 :=

b51
b52

are unknown parameters with b52 > 0. The rudder input is used to adaptively cancel the
unknown terms and stabilize the tracking error dynamics. To this end, the control δr is
defined as

δa = −krer − eψ − ΦT
2 (t, β, r, δa)µ̂2
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where kr > 0 is a controller gain to be selected, and µ̂2 is the estimate of the unknown
parameter vector µ2. The closed-loop system reads as

ėψ = −kψeψ + er

ėr = −b41kpep − b41kp,φφ− b41 [µ̃1β + µ̃2p]

= −b52(krer + eψ)− b52ΦT
2 (t, β, r, δa)µ̃2 (5.15)

where µ̃2 := µ̂2−µ2. Using the positive definite and radially unbounded Lyapunov function
candidate

V (eψ, er, µ̃2) :=
1

2
e2ψ +

1

2b52
e2r +

1

2Γ2
µ̃T2 µ̃2

where Γ2 > 0 is a scalar gain, and selecting the passivity-based update law

˙̂µ2 = Γ2Φ2(t, β, r, δa)er

yields
V̇ (eψ, er, µ̃2) = −kψe2ψ − kre2r

hence asymptotic regulation of eψ(t) and er(t) to zero. The selection of the gain parameters
(kψ, kr, Γ2) should be made on the basis of simulation studies.

5.3.3 Internal Dynamics: Sideslip Angle

The internal dynamics of the system is given by the dynamics of the sideslip angle, which
can be written as the perturbed time-varying system

β̇ =
(
a11 − b11µ̂11(t)− b21µ̂21(t)

)
β +∆(t, φ, ep, eψ, er)

Since a11 < 0, 0 < b11 << 1 and 0 < b12 << 1, it can be shown that the time-varying
system above is bounded-input, bounded-state stable if the estimation errors µ̃11(t) and
µ̃21(t) remain sufficiently small. As a matter of fact, if the true values of these estimates
are employed, then it is verified that a11 − b11µ11 − b21µ21 < 0 for all considered linearized
models. In a practical implementation, the key is to choose the initial conditions of the
estimated parameters at the nominal values for the design model (the one trimmed at
Mach 1) and avoid selecting the gain of the update law too large to prevent the estimates
to drift too rapidly away from the nominal values.

5.4 Control of the Longitudinal Model

Before proceedings with the design of the controller for the longitudinal dynamics, it is
convenient to change coordinates in order to substitute the angle-of-attack with the flight-
path angle, as this latter is a variable to be regulated1. Specifically, let

m∞ := M∞ −M0
∞ , ϑ := θ − α0 , δ̄T := δT − δ0T , δ̄e := δe − δ0e

1The LTI longitudinal model provided in the Matlab file uses the original coordinates, (m∞, α−α0, ϑ, q).
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denote deviations from the trim conditions, and recall that γ = θ − α = ϑ− (α− α0). The
equations of the longitudinal dynamics in the coordinates (m∞, γ, ϑ, q) read as follows

ṁ∞ = a11m∞ + a12γ + a13ϑ+ b11sat
(
δ̄T
)

+ b12δ̄e

γ̇ = a21m∞ − a22γ + a22ϑ+ b21sat
(
δ̄T
)

+ b22δ̄e

ϑ̇ = q

q̇ = a41m∞ + a42γ − a42ϑ+ b42δ̄e (5.16)

It is noted that a22 > 0, b11 > 0 and b42 > 0. This property is also preserved throughout
the different linear models, as it is a structural property of the aircraft. Since |b12| << 1,
|b21| << 1 and |b22| << 1, the corresponding entries in the above model will be neglected
in the design, but preserved in the model for simulation. Also, the presence of saturations
on δ̄e is neglected in the design, but should be implemented in the controller. However, the
controller design will take into account the saturation on the throttle input, δ̄T . Note that
since the original limits for the throttle were |δT | ≤ 5, the limits for δ̄T are

δ0T − 5 ≤ δ̄T ≤ 5 + δ0T

5.4.1 Indirect Adaptive Control of the Airspeed Dynamics

The goal is to track a reference m∞,ref for m∞, generated by a reference model of the same
form of (5.13), this time driven by a bounded Mach number command signal, m∞,cmd(t).
We use an indirect approach to incorporate explicitly the presence of the input saturation
in the design. Owing to the fact that |b12| << 1, the Mach number dynamics is written as

ṁ∞ = a11m∞ + a12γ + a13ϑ+ b11sat
(
δ̄T
)

= ΨT
1 (m∞, γ, ϑ, δ̄T )χ1

where χ1 = [a11 a12 a13 b11]
T is the vector of unknown model parameters. For this system,

a model estimator is built in the form

˙̂m∞ = â11m∞ + â12γ + â13ϑ+ b̂11sat
(
δ̄T
)
− `(m̂∞ −m∞)

= ΨT
1 (m∞, γ, ϑ, δ̄T )χ̂1 − `m̃∞ (5.17)

where ` > 0 is the gain of the model estimator, χ̂1 = [â11 â12 â13 b̂11]
T is the vector of

parameter estimates, and m̃∞ := m̂∞ −m∞ is the model estimation error. The dynamics
of the model estimation error read as

˙̃m∞ = ΨT
1 (m∞, γ, ϑ, δ̄T )χ̃1 − `m̃∞

where χ̃1 := χ̂1 − χ1 is the parameter estimation error. Using the Lyapunov function
candidate

V (m̃∞, χ̃1) :=
1

2
m̃2
∞ +

1

2Υ1
χ̃T
1 χ̃1

where Υ1 > 0 is a scalar gain, and selecting the passivity-based update law

˙̂χ1 = −Υ1Ψ1(m∞, γ, ϑ, δ̄T )m̃∞ (5.18)
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yields
V̇ (m̃∞, χ̃1) = −`m̃2

∞

hence asymptotic regulation of m̃∞(t) to zero. The selection of the gain parameters (`, Υ1)
should be made on the basis of simulation studies. The control law for δ̄T is designed on
the basis of the tracking error dynamics for the model estimator. Specifically, let êm :=
m̂∞ −m∞,ref and write the corresponding dynamics as

˙̂em = â11m∞ + â12γ + â13ϑ+ b̂11sat
(
δ̄T
)
− `m̃∞ − ṁ∞,ref (5.19)

The control input is selected as

δ̄T =
1

b̂11
[−â11m∞ − â12γ − â13ϑ+ `m̃∞ + ṁ∞,ref − kmêm] (5.20)

where km > 0 is a gain to be selected, yielding (when δ0T − 5 < δ̄T < 5 + δ0T ) the converging
dynamics

˙̂em = −kmêm
It must be noted that, since it is required that b̂11(t) be bounded away from zero to avoid
singularity of the control law, a parameter projection should be implemented in the update
law (5.18), to ensure that b̂11(t) ≥ ε for all t ≥ 0, where ε > 0 is a small positive constant.
Specifically, given ε > 0 such that the coefficient b11 satisfies b11 ≥ ε for all considered
linearized models, the update law for b̂11 is modified by the introduction of parameter
projection onto the convex set {ε− b̂11 ≤ 0} as follows:

˙̂
b11 =

{
−Υ1sat

(
δ̄T
)
m̃∞ if b̂11 > ε or

(
b̂11 = ε and − Υ1sat

(
δ̄T
)
m̃∞ ≥ 0

)
0 if b̂11 = ε and − Υ1sat

(
δ̄T
)
m̃∞ < 0

5.4.2 Adaptive Control with Integral Augmentation for the Flight-path
Angle Dynamics

The design goal is to let γ track a reference γref(t) generated by a reference model of the same
form of (5.13), this time driven by a bounded flight-path angle command signal, γcmd(t).
Since direct compensation of the uncertainty and the disturbances in the FPA dynamics
would lead to an unduly complex control law, we employ integral error augmentation to
ensure zero steady-state error for constant set points. It is worth nothing that γcmd(t) =
const corresponds to a steady climb (or descent), whereas γcmd(t) = 0 corresponds to a level
flight.

Integral Control of the FPA Dynamics

On the basis of the model simplifications introduced at the beginning of the section, the
dynamics of the FPA and the pitch angle read as

γ̇ = a21m∞ − a22γ + a22ϑ

ϑ̇ = q

q̇ = a41m∞ + a42γ − a42ϑ+ b42δ̄e (5.21)
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where the coupling between the FPA dynamics and the control effectors has been neglected.
Define the tracking error for the FPA as eγ := γ − γref , with dynamics

ėγ = a21m∞ + a22(ϑ− γ)− γ̇ref
= a21m∞ + a22(−eγ − γref + ϑ)− γ̇ref (5.22)

It is important to recall that a22 > 0. The FPA error dynamics (5.22) is augmented with
the integral of the error, as follows

ζ̇ = eγ

ėγ = a21m∞ + a22(−eγ − γref + ϑ)− γ̇ref (5.23)

where ζ ∈ R is the state of the integrator. In system (5.23), the pitch angle, ϑ, is regarded as
a virtual control, whereas m∞ and γ̇ref are regarded as external disturbances (hence the need
for an integral action.) The reference trajectory for the pitch angle and the corresponding
tracking error are defined as

ϑref := −kζζ + γ̇ref , eϑ := ϑ− ϑref
where kζ > 0 is a controller gain to be selected. Accordingly, system (5.23) is written as

ζ̇ = eγ

ėγ = −a22eγ − kζa22ζ + a22eϑ + a21m∞ − γ̇ref (5.24)

Assume that the command signals for Mach number and FPA provided to the reference
models are constant, that is, assume that

m∞,cmd(t) = m?
∞,cmd , γcmd(t) = γ?cmd

This assumption implies that the reference trajectories m∞,ref(t), γref(t) generated by ref-
erence models of the form (5.13) converge to the constant values m?

∞,cmd, γ?cmd as t → ∞.
As a result, the reference trajectories satisfy

lim
t→∞

∆m∞,ref(t) = 0 , ∆m∞,ref(t) := m∞,ref(t)−m?
∞,cmd

lim
t→∞

∆γref(t) = 0 , ∆γref(t) := γref(t)− γ?cmd

and
lim
t→∞

γ̇ref(t) = 0

This assumption allows one to rewrite system (5.24) in the form

ζ̇ = eγ

ėγ = −a22eγ − kζa22ζ + a22eϑ + a21m
?
∞,cmd +∆γ(t) (5.25)

where
∆γ(t) := a21em(t) + a21∆m∞,ref(t)− γ̇ref(t)

is a disturbance that vanishes asymptotically. Finally, letting

eζ := ζ −
a21m

?
∞,cmd

kζa22
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one obtains

ėζ = eγ

ėγ = −a22eγ − kζa22eζ + a22eϑ +∆γ(t) (5.26)

Note that the integral term has “absorbed” the constant term a21m
?
∞,cmd. It is easy to see

that, since a22 > 0, system (5.26) has a globally exponentially stable equilibrium at the
origin (eζ , eγ) = (0, 0) for all kζ > 0 when eϑ = 0 and ∆γ = 0. The perturbed system is
also input-to-state stable with respect to the inputs eϑ and ∆γ . The ISS property can be
easily verified with the aid of a quadratic Lyapunov function for the unperturbed system,
which is also an ISS-Lyapunov function for the perturbed one. Since ∆γ(t) is a vanishing
perturbation, input-to-state stability of (5.26) yields

lim
t→∞
|eϑ(t)| = 0 =⇒ lim

t→∞
|eζ(t)| = 0 and lim

t→∞
|eγ(t)| = 0

As a result, asymptotic regulation of eγ is implied by asymptotic regulation of eϑ.

Direct Adaptive Control of the Pitch Dynamics

The goal of this section is to design an adaptive controller to achieve asymptotic regulation
of the tracking error for the pitch angle eϑ(t), whose dynamics reads as

ėϑ = q − ϑ̇ref = q − γ̇ref + kζeγ

To achieve this goal, define the reference trajectory for the pitch rate and the corresponding
tracking error as

qref := −kϑeϑ + γ̇ref − kζeγ , eq := q − qref
where kϑ > 0 is a controller gain to be selected. Using the coordinates (eϑ, eq) in place of
(ϑ, q), one obtains from (5.21)

ėϑ = −kϑeϑ + eq

ėq = a41m∞ + a42γ − a42ϑ+ b42δ̄e + kϑ
(
q − γ̇ref + kζeγ

)
− γ̈ref

+ kγ
(
a21m∞ + a22(ϑ− γ)− γ̇ref

)
= (a41 + kγa21)m∞ + (kγa22 − a42)(ϑ− γ) + ϕ+ b42δ̄e (5.27)

where the known signal ϕ(t) is defined as

ϕ := kϑ
(
q − γ̇ref + kζeγ

)
− γ̈ref − kγ γ̇ref

Introducing the unknown parameter vector χ2 = [χ21 χ22 χ23]
T, where

χ21 :=
a41 + kγa21

b42
, χ22 :=

kγa22 − a42
b42

, χ23 :=
1

b42

and recalling that b42 > 0, one obtains from (5.27)

ėϑ = −kϑeϑ + eq

ėq = b42
[
χ21m∞ + χ22(ϑ− γ) + χ23ϕ+ δ̄e

]
= b42

[
ΨT
2 (m∞, γ, ϑ, ϕ)χ2 + δ̄e

]
(5.28)
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Following the same procedure detailed in section 5.3.2, the control law for δ̄e is selected as
the certainty-equivalence adaptive control

δ̄e = −kqeq − eϑ − ΨT
2 (m∞, γ, ϑ, ϕ)χ̂2

where kq > 0 is a controller gain to be selected, and χ̂2 is the estimate of the unknown
parameter vector χ2. The closed-loop system reads as

ėϑ = −kϑeϑ + eq

ėq = −b42(kqeq + eϑ)− b42ΨT
2 (m∞, γ, ϑ, ϕ)χ̃2 (5.29)

where χ̃2 := χ̂2−χ2. Using the positive definite and radially unbounded Lyapunov function
candidate

V (eϑ, eq, χ̃2) :=
1

2
e2ϑ +

1

2b42
e2q +

1

2Υ2
χ̃T
2 χ̃2

where Υ2 > 0 is a scalar gain, and selecting the passivity-based update law

˙̂χ2 = Υ2Ψ2(m∞, γ, ϑ, ϕ)eq

yields
V̇ (eϑ, eq, χ̃2) = −kϑe2ϑ − kqe2q

hence asymptotic regulation of eϑ(t) and eq(t) to zero.
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