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A reprogrammable, multifunctional manipulator 
designed to move material, parts, tools, or specialized 
devices through various programmed motions for the 
performance of a variety of tasks.

(Robot Institute of America, 1980)

The robot is not just a mechanical device…

COMAU SMART NH3

What is a robot?
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IntelligenceMechanics

A robot and its control unit
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The manipulator consists of a series of rigid bodies (links) 
connected by joints.

One end of this chain makes the BASE, usually fixed to the 
floor.

At the other end we have the END EFFECTOR where the 
gripper or tool is mounted.

Usually manipulators have six links:
 the first three make the positioning
 the last three (WRIST) make the orientation

The mechanical system
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Anthropomorphic SCARA

 The typical structure of 
the robot manipulator

 Dexterous structure
 Mechanical stiffness is a 

function of configuration

 All joints with vertical 
axes

 Very rigid to vertical 
loads, compliant to 
horizontal loads

Common robot configurations (1/2)
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Delta Cartesian

 Parallel kinematic 
structure

 Very fast and accurate
 Limited workspace

 All joints give linear 
motion

 Very rigid mechanically

Common robot configurations (2/2)
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KAWASAKI DUARO

ABB YuMi

EPSON dual-arm

KAWADA HIRO

New robots: dual arm robots
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Rigid automation
 The sequence of operations is fixed
 Production process composed of a sequence of 

simple operations
 Large production with very small variations 

Programmable automation
 The sequence of operations can be changed
 Medium-low production batches
 Between batches the production plant has to be reconfigured

Flexible automation
 Production can be varied without idle times for conversion
 Machine characterized by high flexibility and configurability 

(FMS: Flexible Manufacturing Systems)

Pneumatic/electrical 
actuation

PLC

Robot

Automation in industry
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Typical applications in industrial robotics

Source: Comau Robotics

Spot welding

Arc welding

Assembly

Manipulation

Loading – Unloading
Palletizing

Gluing - Sealing

Line Automation

Machining



Paolo Rocco, Andrea Zanchettin

Agenda

 Introduction
 Robot kinematics
 Robot dynamics
 Motion planning
 Motion control



Paolo Rocco, Andrea Zanchettin

Robot kinematics is the study of the motion of the robot.
Two problems are of interest:

Direct kinematics Inverse kinematics

?




?



?

?

Direct and inverse kinematics
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Position and orientation of a body in space

Let us consider a rigid body in space:

How can we characterize the position and 
orientation of the body in space?

The study of kinematics of mechanical bodies is 
facilitated if Cartesian frames are introduced.
Each point in space has 3 coordinates (x, y, z) in 
the Cartesian frame.
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Position and orientation of a body in space

The best thing to do is to consider a reference frame and to attach a second frame to the body. 

The problem is now how to characterize the position and orientation of a frame with 
respect to another one.

y
z

xO

x’

y’z’

O’
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Position and orientation of a body in space

The representation of the position is just made with the components of the origin of 
the body-attached frame with respect to the reference frame: 

The three components can be 
conveniently gathered in a vector:y
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Position and orientation of a body in space

The representation of the orientation can be made considering unit length vectors 
along the axes of the rotated frame and evaluating their components in the reference 
frame: 

We obtain three vectors:
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We can gather the elements of x ', y ', z ' in a matrix:

This matrix is called rotation matrix of the frame (x ', y ', z ') with respect to the frame (x, y, z) .
Since the following relations hold:
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we have: ( )1−== RRIRR TT orthogonal matrix

Rotation matrix
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Consider now a point P whose coordinates are expressed in two reference frames: 

The coordinates of the same point in the two frames 
are:
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Therefore:
[ ] pRpzyxzyxp ′=′′′′=′′+′′+′′= zyx ppp

The rotation matrix thus contains the transformation which maps the 
coordinates expressed in the frame (x', y ', z ') into the coordinates expressed 
in frame (x, y, z).
Inverse transformation: pRp T=′

Representation of a vector
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10
1

0
1

0 pRop +=

How can we express coordinates 
of point P in frame 0, based on its 
coordinates in frame 1?

Homogeneous representation

01
0

0
1

1
0

1 pRoRp +−=

Rotation matrix of frame 1 w.r.t. frame 0

In order to represent in a compact form these transformations, it is advisable 
to introduce a 4-dim vector:









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w
wp

p~
w is a scale factor which is always 
set to 1 in robotics (it is used in 
computer graphics)

Inverse transform:

Homogeneous representation
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Let us introduce the homogeneous 
transformation matrix (dimensions 4×4):
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The relationship:

can be expressed, in terms of homogeneous coordinates, as :
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Composing several transformations: nn
n pAAAp ~~ 11

2
0
1

0 −= 

A1
0 relates the description (position/orientation) of a point on frame 1 with the description 

in frame 0.

N.B. A is not orthogonal

Homogeneous transformations



Paolo Rocco, Andrea Zanchettin

A rotation matrix represents the orientation of a frame with respect to 
another one by means of 9 parameters, among which 6 constraints exist.

In a minimal representation the orientation is described by means of 3 
independent parameters.

Possible representations are:

 Euler angles (3 parameters)
 roll-pitch-yaw angles (3 parameters)
 axis/angle (4 parameters)
 quaternions (4 parameters)

Minimal representation of the orientation



Paolo Rocco, Andrea Zanchettin

With ZYZ Euler angles the sequence is composed as:

I) Rotation around Z
(angle ϕ)

II) Rotation around Y’
(angle ϑ)

III) Rotation around Z’’
(angle ψ)
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ZYZ Euler angles



Paolo Rocco, Andrea Zanchettin

The base coordinate system is located on the base 
of the robot:

 The origin is situated at the intersection of axis 1 
(axis of the first joint) and the base mounting 
surface.

 The xy plane is the same as the base mounting 
surface.

 The x-axis points forwards.
 The y-axis points to the left (from the perspective 

of the robot).
 The z-axis points upwards.

Source: ABB

The base coordinate system
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The task the robot has to accomplish is 
usually expressed in terms of the TCP (Tool 
Center Point).

This point is normally defined as being 
“somewhere” on the tool.

The TCP can be expressed in different 
coordinate systems (Cartesian frames).

TCP

The TCP (Tool Center Point)



Paolo Rocco, Andrea Zanchettin

ROTATIONAL JOINTS PRISMATIC JOINTS

Each joint allows for one (and only one) degree of freedom between two links. 
We call joint variable the coordinate associated to such degree of freedom, and 
then we introduce the vector of joint variables:

Schematic draws of the joints:

The joints
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The joint space is defined by the vector of joint variables:

Direct kinematic relation:




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


=

nq

q

1

q
qi = angle (rotating joint)

qi = displacement (prismatic joint)

The operational space is the space where the task that the manipulator 
has to accomplish is specified. It is defined by the posture x :









=

φ
p

x p (position)
φ (minimal representation of the orientation)

m components
( )qkx =

Joint space and operational space
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The direct kinematics problem 
is:

find  position and orientation 
of the TCP frame w.r.t. the base 
frame, as a function of the 
joint variables.

?




Direct kinematics

For a two-link planar robot:
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In the general case the direct 
kinematics computation is 
complicated.

We need to introduce several 
intermediate coordinate systems.

But there are systematic ways to 
solve it (Denavit-Hartenberg
method).

x0
z0

y1

x1

x3

y2

x4

y4

x6

z6

x2

z3

x5

z5

Direct kinematics
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The inverse kinematics problem is:

find joint variables given position 
and orientation of the tool frame 
w.r.t. the base frame.?



?

?

Inverse kinematics problem

 The problem may admit no solutions (if 
position and orientation do not belong to the 
workspace of the manipulator) 
 The analytical solution (in closed form) may 

not exist. In this case numerical techniques are 
used
 Multiple or an infinite number of solutions 

might exist

In general the solution is found without a 
systematic procedure, rather relying on intuition 
in manipulating the equations. 
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( ) ( )
( ) ( )2121121

2121121

sinsin
coscos

ϑ+ϑ+ϑ=+=
ϑ+ϑ+ϑ=+=

aaaap
aaaap

yyy

xxx

X

Y

ϑ1

ϑ2

a1

a2

a1x a2x

a1y

a2y

P

COMPLICATED!

Squaring and summing:
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Inverse kinematics for a 2 d.o.f. planar manipulator
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Eight admissible configurations exist:

right/left shoulder

Anthropomorphic manipulator

up/down elbow up/down wrist
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Let’s introduce now the linear velocity and the angular velocity of the tool frame 
(attached to the tool): p and ω.

The goal of differential kinematics is to express these velocities in terms of the 
joint velocities.

( )
( )qqJ

qqJp
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O

P

=

=

ω

.

In a compact form: ( )qqJ
p

v 


=







=

ω

The (6×n) matrix: ( ) ( )
( )






=

qJ
qJ

qJ
O

P

is called geometrical Jacobian of the manipulator.
Systematic methods exist to compute the Jacobian.

Differential kinematics
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Let’s go back to the direct kinematic equation of a manipulator:

Matrix: ( ) ( )
( )




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qJ P
A

is called analytical Jacobian
of the manipulator.
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where φ is a minimal representation of the orientation. 
Differentiating w.r.t. time we obtain:
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Analytical Jacobian

( )φφω T=

The link between the angular velocity ω and the 
derivative of vector φ expressing the orientation is:

where T is a matrix that depends on the representation 
of the orientation.
Then:
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Geometrical vs. analytical Jacobians
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The equation defining the geometrical Jacobian is:

( )qqJv =

The values of q for which matrix J is rank-deficient are called kinematic 
singularities. At a kinematic singularity we have:

1. Loss of mobility (it is not possible to impose arbitrary motion laws)
2. Possibility of infinite solutions to the kinematic inversion problem
3. High velocities in joint space (around the singularity)

The singularities may happen:

1. At the borders of the manipulator work-space
2. Inside the manipulator work-space

The latter are more problematic, since they can be incurred with trajectories 
planned in the operational space.

Kinematic singularities
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Arm singularity Elbow singularity 

Wrist singularity 

Source: ABB

Kinematic singularities of a complete manipulator
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The dynamic model accounts for the relation between the 
sources of motion (forces and moments) and the resulting 
motion (positions and velocities)

u(t) 

q(t) 

Dynamic model

Systematic methods exist to derive the dynamic 
model of the manipulators:

 Euler-Lagrange method

 Newton-Euler method
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Dynamic model

( ) ( ) ( ) τ=++ qgqqqCqqB  ,

gravitational 
terms

Coriolis and 
centrifugal 
terms

inertial terms
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Dynamic model

Some properties of the dynamic model:

 Matrix:

is skew-symmetric:

 The dynamic model is linear with 
respect to a set of parameters

( ) ( ) ( )qqCqBqqN  ,2, −=

( ) wwqqNw ∀= ,0, T

Used in proofs of stability of some control laws

( )πτ qqqY ,,= Used in identification and adaptation of the 
parameters of the model
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Motion planning and control

Inverse
Kinematicstarget

state
INSTRUCTION

STACK

TrajGen

Axis
controller

state update

 Instruction stack: list of instructions to be executed, specified using the proprietary
programming language

 Trajectory generation: converts an instruction into a trajectory to be executed
 Inverse kinematics: maps the trajectory from the Cartesian space to the joint space
 Axis controllers & drives: closes the control loop ensuring tracking performance
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The program moves pieces from a feeder to 
a table or to a discard bin, depending on 
digital input signals:

PROGRAM pack
VAR

home, feeder, table, discard : POSITION
BEGIN CYCLE

MOVE TO home
OPEN HAND 1
WAIT FOR $DIN[1] = ON

-- signals feeder ready
MOVE TO feeder
CLOSE HAND 1
IF $DIN[2] = OFF THEN

-- determines if good part
MOVE TO table

ELSE
MOVE TO discard

ENDIF
OPEN HAND 1

-- drop part on table or in bin
END pack

1. Feeder
2. Robot
3. Discard Bin
4. Table

Robot programming
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Trajectories in the operational space: the path (position and orientation) of the 
robot end effector is specified in the common Cartesian space

 task description is natural
 constraints on the path can be accounted for
 singular points or redundant degrees of freedom generate problems
 online kinematic inversion is needed

Trajectories in joint space: the desired joint positions are directly specified 

 problems related to kinematic singularities and redundant degrees of 
freedom are solved directly

 it is a mode of interest when we just want that the axes move from an initial 
to a final pose (and we are not interested in the resulting motion of the end 
effector)

 online kinematic inversion is not needed

Joint space and operational space trajectories
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For each joint variable we define 
how it evolves from an initial value 
to a final one in a finite time.
Several methods exist…
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Trapezoidal velocity profile

A quite common industrial practice  to generate the trajectory 
consists in planning a linear position profile adjusted at the 
beginning and at the end of the trajectory with parabolic 
blendings. The resulting velocity profile has the typical 
trapezoidal shape. 

The trajectory is then composed of three parts:

1. Constant acceleration, linear velocity, 
parabolic position;
2. Zero acceleration, constant velocity, linear 
position;
3. Constant deceleration, linear velocity, 
parabolic position.
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Trajectory planning in the joint space yields 
unpredictable motions of the end-effector. When 
we want the motion to evolve along a predefined 
path in the operational space, it is necessary to 
plan the trajectory directly in this space.

Trajectory planning in the operational space 
entails both a path planning problem and a 
timing law planning problem.

Trajectories in the operational space

The parameterization of the path can be performed 
with respect to the natural coordinate (length of 
the arc of trajectory) : p = p(s)
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n
b
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A linear path is completely characterized once 
two points in Cartesian space are given

Linear path

( ) ( )121 pp
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Linear paths can be 
concatenated through 
via points
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A circular path can be defined assigning three 
points in space belonging to the same plane:

Circular path

A parametric representation of a circumference of radius ρ laying in a 
plane x' y' and having the centre in the origin of such plane is:
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












ρρ

ρρ

=′

0

sin

cos

s

s

sp

Defining:

 c the vector that identifies the centre of the circumference in the base 
frame

 R the rotation matrix from base frame to frame x' y' z'

the general parametric representation of a circumference in space is:

( ) ( )ss pRcp ′+=
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Taking into account the parameterization of 
the path with respect to the natural 
coordinate p = p(s), we will assign the time 
law through the function s(t). 

In order to determine function s(t) we can 
use any of the time laws (cubic, cycloidal, 
trapezoidal velocity profile …)  
Also we notice that:

tt0

ss0

px=px(s)
py=py(s)
pz=pz(s)

tpp s
ds
ds  == |s| is then the norm of the velocity

.

For the segment: ( ) tpp
pp

p ss
if

if




 =−
−

=

the time law s(t) 
takes then an 
immediate meaning!

Time law
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Define with Ri(t) the matrix that describes 
the transition from Ri to Rf.
Then:

( ) ( ) i
ff

ii t RRIR == ,0

Matrix Ri(t) can be interpreted as Ri(ϑ(t), e), where:
 e is constant and can be computed from the elements of Ri

f

 ϑ(t) can be made variable with time, through a timing law, with 
ϑ(0)=0, ϑ(tf)=ϑf

Rf

Ri

Ri

Orientation trajectories

Axis-angle representation
^

^
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We have already noticed that the inverse kinematics is difficult to compute, in general. On the 
other hand, the differential kinematics is linear for a certain value of q:

( )qqJx  A=

Given a velocity x in the operational space and an initial condition on q we might solve the 
kinematic inversion problem by inverting the differential kinematics and then integrating. If the 
Jacobian is square and non singular:

( ) ( ) ( ) ( )0
0

1 qqqxqJq +σσ=⇒= ∫−
t

A dt 

However, using this expression directly, drifts of the solution may occur.

The error in the operational space is then introduced: xxe −= d

Inversion of the differential kinematics

.
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If we adopt the following dependence of q from e:

( )( )KexqJq += −
dA  1

we obtain this block diagram:

0=+Kee

.

Inversion of the differential kinematics

Mathematically, this corresponds to 
solve the inverse kinematics problem 
through a Gauss-Newton iterative 
method.
Proof of convergence is trivial as:

 

JA
−1(q)K ++

−
xd +

xd
.

q. q

k(q)x
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If we adopt the following (simpler) dependence:

( )KeqJq T
A=

we obtain the diagram:

Inversion of the differential kinematics

Mathematically, this corresponds to 
solve the inverse kinematics problem 
through a gradient descent iterative 
method.
Proof of convergence can be obtained 
through a Lyapunov argument.

 

JA
T(q)K+

−
xd q. q

k(q)x
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Direct kinematics of the manipulator:

mn RR →

Joint space Task space

A robot is kinematically redundant if: mn >

i.e. if it has more degrees of freedom than those strictly necessary to perform a task.

Redundancy is a relative concept: the 
number of task variables may be less 
than the dimension of the 
operational space.

A 3 d.o.f. planar manipulator 
is functionally redundant if 
the task is specified with 
respect to the end-effector 
position only.

( )qkx =

Kinematic redundancy
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The inversion of the differential kinematics 
equation:

( )qqJx  =

is not trivial since the Jacobian is a lower 
rectangular matrix 

m

n

{ {
Redundancy and kinematic inversion

For a given configuration q the equation establishes a linear 
mapping from the space of joint velocities to the space of task 
velocities.
This mapping can be characterized in terms of range and null
spaces:

( )( ) m=JRdim

( )( ) mn −=JNdim

The null space exists only if the 
robot is redundant   (n > m).
It is the space of joint velocities 
that do not produce task velocities.

N(J)
R(J)

O

q r
. .

if the Jacobian
is full rank: 
rank(J) = m

(*)

(*) we simplify here the notation, dropping 
the “A” for the analytical Jacobian
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A general solution of the inverse kinematics:

( ) 0
## qJJIxJq  −+= n

JJI #−n is  a projection matrix: it projects the 
velocities q0 into the null space of the 
Jacobian

particular solution homogeneous solution: 
self-motions of the 
manipulator

.

Null space methods

( ) 1# −
= TT JJJJ is the right (Moore Penrose) pseudo 

inverse of the Jacobian matrix J, since 
JJ# = I.

One possible choice is the projected gradient method:

( ) T
Uk 








∂

∂
=

q
qq0

where U(q) is a differentiable objective function and k >0. 

We try to locally maximize U(q) while executing the 
time varying task x(t). 

How to specify vector q0?
.
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The closed loop inverse kinematics method for a redundant robot is sketched 
in this block diagram: 

 

J#(q)K ++
−

xd +

xd
.

In−J#(q)J(q)

q0
.

++ q. q

k(q)x

Kinematic control
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Agenda

 Introduction
 Robot kinematics
 Robot dynamics
 Motion planning
 Motion control
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What are possible criteria to evaluate 
the performance of a motion control 
system?

 Quality of motion in nominal 
conditions
 accuracy/repeatability
 speed of task execution
 energy saving

 Robustness of motion in perturbed 
conditions
 adaptation to the environment
 high repeatability in spite of 

uncertainties in modelling errors

Evaluation of control performance
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Evaluation of control performance

Cycle time is another good key performance 
indicator for a pick and place task. It is the 
(minimum) time required by the robot to carry 
a specified payload along a bridge-like path.
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Consider the dynamic  model of the manipulator:

( ) ( ) ( ) τ=++ qgqqqCqqB  ,

Assume that a motor acts on each joint. 
A simplified way to account for the dynamics of such 
motors is to consider just the effect related to the 
spinning of the motor around its own axis.

motor reduction
ni : 1

link

qmi
τmi

qi
τi

Decentralized model

It is convenient to decompose the inertia matrix 
into the sum of a diagonal and constant term 
(“average” inertias) and a residual term:

( ) ( )qBBqB ∆+=

{ }
{ }

{ }
11 −−=

=

=

=

NBNB

N

D

J

r

i

mim

mim

ndiag

Ddiag

Jdiag

“average” inertias scaled by 
the squares of the 
transmission ratios: 2

i

ii
rii n

bb =

Furthermore:
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The resulting equations can be interpreted as those of 
a linear and completely decoupled system, subjected 
to a disturbance deriving from the nonlinear and 
coupled terms of the dynamic model. 

The larger the reduction ratios ni, the less relevant is 
the disturbance term.

+ (Jm+Br)−1
qm

−

−

N−1∆B(.)N−1

N−1C(.,.)N−1

N−1g(.)

∫ ∫

Dm

τm qm qm
...

d

+ +
+

+
−

NON LINEAR
COUPLED

LINEAR
DECOUPLED

Decentralized model
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 The decentralized model of the robot dynamics 
is used in the independent joint control, a 
widely used approach in the industrial robot 
controllers

 The control system is articulated in n SISO 
control loops, ignoring the dynamic coupling 
effects which are dealt with as disturbances

 The method heavily relies on the large values 
of the reduction ratios adopted in robotics. 

 The single control problems are assimilated to 
the control of a servomechanism

τ2

τn

R1

τ1qmd1

R2

Rn

qmd2

qmdn

qm1

qm2

qmn

Independent joint control

motor

transmission

load
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speed feedforward

Independent joint control

τm qmqm
.τlr

+ 1/sGv(s)RPI(s)Kpp
++

− −
qo

m

s

+

s

P position control PI speed control

numerical 
differentiation

system dynamics 
rigid/flexible

motor position 
feedback
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In this scheme, the decentralized 
controller is complemented by a 
controller that operates in open loop, 
computing the disturbance torques 
based on the mathematical model, fed 
by the position reference signal and its 
derivatives. 

 Compensation of nonlinearities can be only partial (for instance just the gravitational terms 
and the diagonal terms of the inertia matrix)

 Compensation terms can be computed offline, in case of trajectories repeated several times

( ) ( ) ( )dmdddmddd qgNqNqqCNqNqBNd 11111 , −−−−− ++∆= 

+

MANIPULATOR

DECENTRALIZED
CONTROLLER

+ +
−

qmd
−

CENTRALIZED 
FEEDFORWARD 

ACTION

DECOUPLED 
LINEAR SYSTEM

qmd

qmd.
..

qm

d

dd

+

Computed torque control
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This control law is formed by a position and 
speed feedback in joint space plus a term that 
compensates for gravitational effects.

 The proportional gains can be seen as virtual springs while 
the derivative gains as virtual dampers

 Global asymptotic stability of the equilibrium state for 
constant inputs can be proven (as long as perfect gravity 
compensation is achieved)

PD plus gravity compensation

g(.)

τ+
MANIPULATOR

KD

KP q

q
.

+ +
− +

qd −
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Here we compensate for all nonlinear and 
coupling terms of the dynamic model, then 
stabilizing the resulting linear dynamics with PD 
controllers.

 The method requires perfect cancellation of the terms of 
the dynamic model

 Robust and adaptive variants have been proposed
 Complete control of the error dynamics is nominally 

achieved

Inverse dynamics control

n(q,q)

τ

+

MANIPULATOR

KP

q

q
.

−
qd

.

KD

B(q)

qd

qd

.

..

+
+
+ + +

+

−
y
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