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Compliance in Natural Systems
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Compliance in Natural Systems

Key enabler for adaptivity
Versatility for different applications
Tolerance to errors and imprecisions

Safety

Robustness during interaction

Energy efficiency

Better performance
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Soft robots are robotic systems embedding in their mechanical structure
purposefully designed compliant elements.
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Stiffness of muscles

Characterized by

« Force / deformation

« Force / velocity

* Force / moto-neuron firing rate

Descriptive models e.g.
« Gribble Muscle Model:

Flexor force : f;= p(e%41 —1)
Extensor force : f,=-p(e®4z —1)
« An open topic in literature




Stiffness of limbs

Human Antagonistic Muscles Characteristics

Torque (N.m)
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The stiffness of all the muscles that act on a
given joint contribute to defining also the
stiffness of the joint
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Gribble Muscle Model: -

Flexor force : f,= p(e®41 —1)
Extensor force: f,= -p(65A2 —1




Stiffness changes in Humans

Stiffness changes
iInvoluntarily and voluntarily
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The stiffness of a human arm increases when
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Humans change stiffness

Stiffness changes hNO MOTION |
involuntarily and voluntarily ELRIUE T nses
\ properties
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Humans can change the stiffness of their limbs
to adapt to different tasks
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How do humans control stiffness?
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Experiments show that humans \ / j
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N Hogan, "Adaptive control of mechanical impedance by
coactivation of antagonist muscles" IEEE Transactions on
automatic control 29 (8), 681-690, 1984
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Gomi, H, Yasuharu K., Kawato, M.. "Human hand stiffness
ﬁm] during discrete point-to-point multi-joint movement." IEEE
i o s Engineering in Medicine and Biology Society. Vol. 4., 1992.
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Burdet, E., et al. "A method for measuring endpoint
stiffness during multi-joint arm movements." Journal of
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How do humans change stiffness?

However, there is strong correlation between the activation patterns
of muscles that move a limb. This affects how the stiffness of a limb is

modulated.

To a first approximation, humans control their stiffness ellipsoic
simply:

» Posture dominates the shape

« Coactivation controls the volume

E. Perreault, R. Kirsch, and P. Crago, “Voluntary control of
static endpoint stiffness during force regulation tasks,”
Journal of Neurophysiology, vol. 87, pp. 2808-2816, 2002.

A. Ajoudani, Gabiccini, M., Tsagarakis, N. G., Albu-
Schaeffer, A., and Bicchi, A., “Tele-Impedance: Exploring
the Role of Common-Mode and Configuration-Dependant
Stiffness”, Humanoids 2012.

« Configuration Dependent Stiffness (CDS)
- changes with posture
- gives the shape of the stiffness ellipsoid
- exploits redundancy
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Common Mode Stiffness CMS
- changes with co-contraction
-gives the size of the ellipsoid
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Common Mode Stiffness

Xy Xz VI
800f R’ =0.76 e .
D
400 . ~=== R ‘\_,}
.. o -
e -500
< 100} .S o
K™ S E g ] 4 P ¢ =500 0 500 =500 0 500 =500 1] 500
Xy X2 ¥z
0.1 03 05
P, 500 #-; |
1 : . -
800 . , 3 | 0‘1 vx‘ﬁk\@ s T
2 i i g W s b
R =0.89 \ I =4 — _’
i
~500 =
400 ) =500 [§] 500 =500 0 500 =500 0 500
.’: - oy Xz ¥Z
.—.’.‘ - ‘ y -
100) _ $e2- " x N
- & ) i z
0.1 03 05 "Q‘“ tQ {(:-u.
. N . P?‘I' D ‘\ = \1. Y LS b
Experimental Validation Setup -
=500
(robot used as a shaker) L
EIIIpSOId volume vs co- -500 0 500 -500 O 500 -500 0 500

contraction

A. Ajoudani, Fang, C., Tsagarakis, N. G., and Bicchi, A., “Reduced-Complexity
Representation of the Human Arm Active Endpoint Stiffness for Supervisory Control of
Remote Manipulation”, International Journal of Robotics Research, vol. 37, no. 1, 2017.
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Variable Impedance in Robots




Methods to vary Impedance

Software: Hardware:
Variable Impedance Control Variable Impedance Actuators

15



HW: Varable Stiffness Actuators

Inspired by nature

Human Antagonistic Muscles Characteristics

T2, 92

T‘L,HC

Flexor force : f,= p(e®41 —1)
Extensor force: f,= -p(65A2 —1

Gribble Muscle Model: J

16



HW: Varable Stiffness Actuators

Inspired by nature

Human Antagonistic Muscles Characteristics

75
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Torque (N.m)

fexion

160
Elbow Joint
angle (deg)

Flexor force : fi=

Gribble Muscle Model:

Extensor force : f,= -p(e‘s“12 -1

VSA-CubeBot: A modular variable stiffness platform for multiple degrees of freedom

robots

MG Catalano, G Grioli, M Garabini, F Bonomo, M Mancini, N Tsagarakis, ...
2011 IEEE international conference on robotics and automation, 5090-5095

Antagonistic-Antagonistic VSA Characteristics

-0-r=0, c=0
-0-r=0,c=0.5
~0-r=0.001, c=0

- =—r=0.001, c=0 (Sum)

Flexor »
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Agonistic-Antagonistic VSA Dynamics:
Motor 1,2 output torque:

T1,2= iveis(q_el) iu

17




VSA for Rehabilitation: Exoskeletons

Beyl, P., Naudet, J., Van Ham, R, Lefeber, D.. Mechanical Design of an Active Knee
Orthosis for Gait Rehabilitation IEEE ICORR - Rehabilitation Robotics (2007)

¥ Z{nfermert ALTACRO
Brussel Lower Extremity Exoskeleton

6 DOF in base (4
currently

implemented)

6 DOF in
exoskeleton

6 MACCEPA
actuators

& kgperleg

Leg thickness: 6 cm
(arms can swing
freely)

Ankle actuation

Link lengths
adaptable

Straps adaptable

N. Karavas, A. Ajoudani, Tsagarakis, N. G., Saglia, J., Bicchi, A., and
Caldwell, D., “Tele- Impedance based Assistive Control for a
Compliant Knee Exoskeleton: Stiffness Augmentation and Motion

Assistance”, Robotics and Autonomous Systems, vol. 73 part A, pp. S. Mghames, al. “Design, control and validation of the variable stiffness
78-90, 2015. exoskeleton FLExo0”, ICORR 2017 18




VSA for Rehabilitation: Prostheses

VS Elbow

Design of an elbow joint with variable stiffness actuation, I.e.
Inherent compliance.

Two approaches

Distributed approach Antagonistic approach

Independent setup Antagonistic setup
(explicit stiffness variation)

19



VS Elbow Joint

Low stiffness configuration High stiffness configuration

A Variable Stiffness Elbow Joint for Upper Limb Prosthesis
S Lemerle, G Grioli, A Bicchi, MG Catalano
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems

20



SW: Variable Impedance Control

M{@i—+ihjgraPatir +il0er Refe — v4) = Foxt

Pros
«  Configurable
«  Precise and compliant

Cons
*  Not resilient
* Not energy efficient

21



Impedance Control in Realit
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Fig. 2: Two-link manipulator in configuration A (left) and B
(middle). Even if both configurations realize a similar desired
Cartesian stiffness profile (most right plot), interaction Boundaries
of the Cartesian force/stiffness control in the presence of external
disturbance are different.
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Fig. 3: Endpoint forces vs. displacements along —y direction in
manipulators A and B (upper plot), and the corresponding joint
torques (lower plot). Initial force offsets refer to the effect of gravity
at y direction of the endpoint.

In theory, a robot can attain arbitrary stiffness

ellipsoids in any posture

o) feglity

F TS

A. Ajoudani, Tsagarakis, N. G., and Bicchi, A.,
“Choosing Poses for Force and Stiffness Control”,
IEEE Transactions on Robotics, 2017.

Configuration A
50 1
e
L ol -
Ul
-50 I
—-50 0 50
0f
X

Fig. 4: The locus of ||f|| for the growing displacement norm for
the two-link manipulator in configuration A (left plot), and B (right
plot) hit the limits caused by two configuration dependent force
boundaries, The spatial translation of the centre of the cllipsoids
w.r.t. the origin can be observed in the plots.
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Fig. 5: Blue (solid) plots illustrate the stiffness feasibility regions
(SFRs) for configuration A (left) and B (right), while corresponding
polytopes are plotted in red (dashed). Stiffness feasibility ellipsoids
(SFEs) arc plotted in black (dotted), for both configurations. The
units are in [m].



Choosing poses to change impedance

=== FT sensor

»>weight (0.5 kg)

A. Ajoudani, M. Gabiccini, N. Tsagarakis,
A. Albu-Schaffer, A. Bicchi “Exploring the
Roles of Common Mode and
Configuration Dependent Stiffness
Control” Humanoids 2012.

Forces [N]
Forces [N]

A. Ajoudani, Tsagarakis, N. G., and Bicchi,
A., “Choosing Poses for Force and
Stiffness Control”, IEEE Transactions on
Robotics, 2017.

Torques [Nm]|

Torques [Nm]




How to use Variable Impedance?




Soft Robots

 Safer

* Faster

* More adaptable
* More robust

lowever

* Nonlinear

* Uneractuated

* Lower control authority

* Lower relative degree

- More difficult to control



Robots
Rigid
SEA

VSA

Elastically
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B Rigid Link

» End-Effector

Flexible Joint

Series Elastic
(SEA)

Variable
Stiffness Joint
(VSA)

Free Elastic
Joint




Soft Robots © Geared Motor
mmm Rigid Link
®) End-Effector

Underactuated

(Elastically
Coupled) Q Flexible Joint
(SEA)
Underacftuated Q Unactuated
(Dynamically Elastic Joint

Coupled)

() Free Joint

Flexible Link

Continuum

e.g. elephant trunk,
octopus arm

e.g. Acrobot, Pendubot Q
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Control Properties ,

L av(q,6)"
Mg+ Cqg+ G+ 3q = Toxt
<
- (q,0)"
6+ D6 =
\ JO + + Y Tm

withg € R" and 8 € R™

 All systems above are controllable in their linearization

 All are input/output feedback linearizable, with stable zero dynamics
(except underactuated with dynamically coupled free joints)

* Collocated control easy, but low performance
* Non-collocated control not impossible in theory

* However...



Feedback control of Soft Robots
An Elementary Example

stiffness

Consider the simplest soft robot, System dynamich(
a cart connected through a mq+ fq+kq = k? T Tgist
spring to a moving element... I I I
mass position External
damping input  torque

Tdist




Limits of feedback control in soft robots:

An Elementary PD Example

...controlled with a simple

proportional control

0 = —Kpq
Effect of k Kp
proportional
feedback /\/\/\/\—

Tdist

System dynamics

mq+,3q+kq = k6 +TdiSt

P controller
0 = —Kpq

Closed loop dynamics

mq +fq+ k(1 + Kp)q = Taist

The closed loop
stiffness increases by a

factor (1 + Kp)







Limits of feedback control in soft robots

* .®
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. 'Y
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Generic softrobot [ e

Generic closed loop

B(q)g+C(q,9)q+T(q — Y(q,q,0,t,1),0) = Tgist

Define the stiffness variation as (g™ fixed point of 1)

_||dT(q — ¥(q,q,0,t,7),d) _dT(q —6,0)
- dq : dq
= =0
P q=q q y‘"‘
. * Matrix
Closed loop Open loop norm

stiffness stiffness



Limits of feedback control in soft robots
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Genericsoftrobot || e

Generic closed loop

B(q)g+C(q,9)q+T(q — Y(q,q,0,t,1),0) = Tgist

-1

oY(q,q,d,t, r)vl
% a=q"

then v < §. Softness is completely b’re§erved (i.,e. v =0)iff
alp(qiq'd'tir)l..”o. —_ O

q=q" |1

Y

oT
<6 |— (0,0)
dq

L 2
L 4 *
Y, e
L
LA

Stiffness variation due to Proportional component of
closed loop the feedback controller



imits of feedback control in soft robots:
—eedback Linearization
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Learning to Control Soft Robots

In feedback control, performance is directly related to gain —i.e.
stiffness

Now that we have soft robots, we don’t want to fight softness by
control

Need “minimally invasive” control



ldeas from humans

CNS loops ~100ms
PNS loops ~10ms




PREDICTIVE FEED-FORWARD SENSORY CONTROL DURING
GRASPING AND MANIPULATION IN MAN

RorLanD S. JoHansson and BENONI B. EDIN
Department of Physiology, University of Umea, $-091 87 Umea, Sweden

Exp. Brain Res., 1984
ABSTRACT

During dexterous manipulation the basal relationships expressed in the employed

fundamental muscle synergies are tuned precisely not only to the manipulative intent,

but also to the physical properties of the object. Recent findings indicate that the

sensorimotor _mechanisms involved depend largely on predictive rather than servo-|
|::unlrul mm:hani:-.rmi:l The CNS monitors specific, more-or-less expected, peripheral

sensory evenis and use these to directly apply control signals that are appropriate for

the current task and its phase. On a fast time scale, discrete mechanical events encoded

in populations of somatosensory afferents trigger compensatory actions to task pertur-

bations, and allow task progress to be monitored for timing the release of motor

commands related to the serial manipulative phases. This type of predictive feed-

forward sensory control is termed |‘sensory discrete-event driven control’| On an

extended time scale, previous experience with the object at hand or similar objects is

used to adjust the motor commands parametrically in advance of the movement, e.g. for

the object’s weight and surlace friction. Through vision, for instance, common objects

can be identified in terms of the grip and lifting forces necessary for a successful lift.

This ability to directly parameterize the default motor commands is termed “anticipa-
tory parameter control’.




Anticipatory control

-~

-

Anticipatory behavior: the ability of CNS to
anticipate the necessary control action
relying on sensory-motor memory

/

Anticipatory behavior permits to obtain
high performance in presence of
perception delays.

~

Fast, powerful,accurate movements







Model-based (optimal) Anticipatory Control



Planning Impedance




Optimal Control to Minimize Impact

o,

Y

A" W

o
¢ y

@
T r

On making robots understand safety: Embedding injury
knowledge into control

S Haddadin, S Haddadin, A Khoury, T Rokahr, S Parusel, R
Burgkart, A. Bicchi

The International Journal of Robotics Research 31 (13), 1578-
1602
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The Safe Brachistochrone

How to control velocity and compliance to optimize
performance within guaranteed safety limits?

rot Vllnk
L’ Xiink

The Safe Brachistocrone problem

' Min- JI 1t
Mot i ol +(:*’-'.":'J.l’ - 'E:J’inﬁ:) :

Mok t f‘\_(:ﬁhﬂzﬁl ~vot) =0

A

[Erine] < B MITC s } HIC: Safety & Control bounds
|”-ﬂf_'l!| E E oy VSA B g
L N TIRTT) < LN < M e OURdS

(-’*’-'H;r:ﬂ.:- 3*?!':3?;-1;)(0) — (X;'ﬂ.f-. D)
L (r'iré'r:;.'k":’”."r'nﬁ.')(.T) — (DD)
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The Safe Brachistochrone

East
Stiff
| Soft [
Sl © =~ °  Siow

The intuitive policy of synchronizing joint stiffness
and joint velocity is indeed consistent with the
optimal solution for the safe brachistochrone

- Fast & Soft, Stiff & Slow

Kl-a) K K(+4a)

A. Bicchi and G. Tonietti,

Fast and Soft Arm Tactics
_ 7-vst
IEEE RAM 2004 ur = Kpansm € [(1—a)K, (14+a)K]

Shortest Time

u7". KCOV

XI|n
t k

VSA beats both Rigid, DM? and SEA

45—
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v
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T
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Transmission Stiffness




Optimal Control to Maximize Impact

Speed up rigid: ¢¢ >0  Stiffness switching: ¢g = 0

Stiff

Reference switching: ¢ =0

e
Slow down soft: gg < 0 Reference switching: ¢ = 0 Speed up rigid: ¢4 >0

Final time

Theorem 2: The stiffness optimal control is:
Max speed at free

iy = {”27"1"”‘ _lf qq =it terminal time,
U min if 44 <0 bounded torque

Optimality principles in variable stiffness control: The VSA

hammer Stiff speed-up, soft slow-down

M Garabini, A Passaglia, F Belo, P Salaris, A Bicchi
2011 leee/Rsj International Conference on Intelligent Robots
and Systems
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Maximize impact: 2DoF hittinc




The other way around: Maximize Dampino

—_

2 —K min
Boal —K max
£ — K aw
4
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o2 i
.§ |
& E
g -0 i
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“Time [5]

ik Posilion [Heg]

)Q.

STIFF

/ >

\

STIFF SOFT

Fig. 1: Left: schematic of a 1 DoF soft actuator used for the
optimal control problem. Right: Optimal stiffness switching
control provided in this work.

— Min energy at

_3" fixed terminal time,
1 bounded input

Variable stiffness control for oscillation damping

GM Gasparri, M Garabini, L Pallottino, L Malagia, M
Catalano, G Grioli, A. Bicchi

2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems

Soft speed-up, stiff slow-down
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Resilient and Stable Physical Interaction

Goal: perform an interaction task where the contact must be kept

Contact surface ISsues:

* |nstability

 Resilience

« Minimum force to achieve the task
« Positioning errors

J

Stiffness bounds related to:
* uncertainties

e contact surface curvature
* Interaction forces

Mengacci, R., Angelini, F., Catalano, M. G., Grioli, G., Bicchi, A., & Garabini, M. (2019). “Stiffness Bounds for
Resilient and Stable Physical Interaction of Articulated Soft Robots”. IEEE Robotics and Automation Letters, 4(4),
4131-4138.




Resilient and Stable Ph

Theoretical result
Fmin
|Zc + Ax — Rcos(0)]

< Ky <

Bounded by the force
required by the task
specifications

R

Bounded by the stability
condition

< K, <

R Curvgture F
radius

Te Reference EE
position

Finax Max. force

Fmax

1z, — Ax — Rcos(0)]

Bounded by the interaction
force to avoid damages

No theoretical bound (if
stable)

min Force to achive the task

Az Uncertainty

sical Interaction

Failure Success

Impedance
Control

HW

4131-4138.

Mengacci, R., Angelini, F., Catalano, M. G., Grioli, G., Bicchi, A., & Garabini, M. (2019). “Stiffness Bounds for
Resilient and Stable Physical Interaction of Articulated Soft Robots”. IEEE Robotics and Automation Letters, 4(4),
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Data based (learning) Anticipatory Control



Learning by Repetition

Uir1 = fu; + ae;
i — trial
u; — I-th motor action
e; — I-th percept error
\J. @ - constant

/In motor control [Emken et al. 2007]:\

u; : [0,t) > Rm

/




Learning by Repetition

Uir1 = fu; + ae;
i — trial
u; — I-th motor action
e; — I-th percept error
\J. @ - constant

/M()t()r Control [Emken et al. 2007]-

\

u; : [0,t) > Rm

/

[terative Learning Control

Uirq = Q(w;) +r(e;)

Q - forgetting factor

r — updating law
\ J




Learning by Repetition

u; : [0,t) > Rm

/ Motor control [Emken et al. 2007]: \
Uir1 = fu; + ae;

An unknown force
field is imposed

i — trial
u; — I-th motor action

e; — I-th percept error
\J. @ - constant

)

S
| Re-Learning by repetition I

[terative Learning Control

Uirq = Q(w;) +r(e;)

Q - forgetting factor

r — updating law

e;+1 — feedback error

Contribution of feedbocm

error in future motor
ACtioNS kawato et al. 1994]

Ui = Q) + (e ei41)




Softness Preservation -
decentralized approach

Requirement

(" .
Hypothesis
0T (q—r,d) _ 0T(g-%(g,4.t,d).,d) <§ |+ Symmetry
0q q=r dq 1= — * Diagonal dominance
a ™
09 (q) < ) L, o Feedback action
Ogi | — || = 2[|&4]] 0i = | must be low
q=4x aqi q=

)\ 7




Softness Preservation -
decentralized approach

- 8T(q_w(%q.:tﬂd):d)

d=4qx

I <3Vie{l...N} = |Pl, <8

First Gershgorin Theorem and reverse triangular inequality |HSCH — HyH\ < Hw o y”

J Ai = eig(P)

max;{|A;|} < max;
Lz

max;{|\;|} < max;

i#] pij

Diagonal dominance

Dij| <

b < max;{2|p; ;

il Z@;Aj Di.j
p symmetric |[Plly = max; |A;|  max;{2[pi [} <



Control Architecture

MG+ Ch3q+Gyg+Ty_ra=Text

®
‘ q; ri g

. Feédibacki
Controller

|
i
!

Feedforward Action

Iterative
Updating

B ol S e s e e -l
Initial Guess — e ——

I'-""""I

/Given t.he system \
§=f(&)+H (v

Convergence condition
(I + Kon(t)H(t))7| < 1

L - Ka@®HO| <1

C Della Santina, M Bianchi, G Grioli, F Angelini, M Catalano, M Garabini, A.
Bicchi: “Controlling soft robots: balancing feedback and feedforward
elements” IEEE Robotics & Automation Magazine 24 (3), 75-83




Control Architecture

M+ Cpqd + Gy + Ty —ra = Text

o v 9,4 rk=prk—1 4 K_eF + K geFf™1

Elastic robot model
M(q)G+ C(q,4)4+ G(q) +T(q—r,d) = Text(q, §)

/ Feedforward Action “ :

\

‘ Iterative :
_ Updating | :

B ol S e s e e -l
Initial Guess — e ——

the system \

§ —®+ H(t)v

ence condition
(I + Kon(t)H(t))7| < 1
—||1 — Kog (t)H(t)]| < .

Convergence does not depend on
the drift term.
Thus an algorithm verifying this
condition is robust to external —
o N
uncertainties.




Learning to control soft robots

Note:
is given to the

algorithm about the

and the

04 ®joint 1/ 0.4 -!;j:o?nt 2 04 -'-join;iS
Stiffness 2 03 = 03, e T [efoint 1
Variation w02 i—°-2m 02 :
0.1 0.1. 0.1
(exogenous) 0 ‘ ‘ ‘ ol | , 0
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
N = himeils] time [s] time [s] ¥4
( T T ju M
Trajectories 6, (t) = -5 cos(2t) Sl = By 0 (t) = Gs (1) = — - cos(21)
0, (t) = - cos(2t) 0, (t) = = cos(2t)
12 12 )

F Angelini, C Della Santina, M Garabini, M Bianchi, GM Gasparri, G
Grioli, A.Bicchi, 2 Decentralized trajectory tracking control for soft
robots interacting with the environment, Transactions on Robotics,

2018

G. Averta, V. Arapi, A. Bicchi, C. Della Santina, M. Bianchi, Modeling Human
Motor Skills to Enhance Robots’ Physical Interaction, Human-Friendly
Robotics 2020




Preserving Softness

PID control ILC algorithm
makes a physically preserves physical
soft robot stiff softness




‘II

Decreasing Brockett’s “Attention Functiona

Proceedings of the 36th
Conference on Decision & Control
San Diego, California USA » December 1997

Minimum Attention Control

R, W, Brockett * 0.07 ®1-dof case| Eyolution of the

—.0.06 ®2-dof case| ntegral of the error

ou Ou £0.05% red-dofease| | malized by the

e = /ﬂ ¢ (m’t’ %3{) Amdt - the terminal time

and the number of
Textbooks timal control di the diff be- 10l
00ks on optimal control discuss the erence JO| nts.

tween open-loop and closed-loop control however the
classification is rather informal and in many cases (e.g.,

fixed end-point linear-quadratic optimal control on fi- ' 0 25 50 75 100 125 150

nite time intervals) it is unclear what might be meant : .

by a closed-loop solution. This makes it difficult for lteration

researchers in other fields to discuss the distinction in

a precise way. At an intuitive level, it seems that bi- 60 w1-dof case |

ological motor control involves not only “pure” open- B :

loop control but also a gradation of modalities spanning & 50 -@-2-dof case _Ratlo between the
a range between cpen-loop and closed-loop operation. = 40 +3-dof case Integrals of the

Intuitively, one thinks that large values of ||0u/dz||

indicate closed-loop control and that large values of © 30 - feedforward and
||@u/at|| indicate open-loop control. By modifying the -E

5009% feedback actions
attention functional we can change the ratio of the pe- o) 20 D a ad | .
nality put on the closed-loop ||0u/dz|| terms relative to = duri ng the task for
thfa penality put on the f)pen—loop ||8u/8i;|| terms. In 10 the three setu pS.
this way we create a continiuum and arrive at a charac- .

terization which makes possible a quantitative study of - 0 25 50 75 100 125 150
the trade-offs between open-loop and closed-loop con- : t
trol. | | iteration




Experiments

6-DOFs system with
elastic VSAs.

Learn the torque control
input 7, in soft (or stiff)
behavior that allows to
track the position
reference then, change
O, to stiff (or soft) to
prove the decoupling.



ILC with Unknown Stiffness Changes

Position ILC



Results
(Soft to Stiff transition)

Torque ILC



Results
(comparison)

Position ILC

Torque ILC

R Mengacci, F Angelini, MG Catalano, G Grioli, A Bicchi, M Garabini, “On
the motion/stiffness decoupling property of articulated soft robots with
application to model-free torque iterative learning control”, The
International Journal of Robotics Research 40 (1), 348-374 2021




Data-Based Anticipatory Control:
Take-Home Messages

How can variable physical impedance of soft robots be usefully exploited?

* Data-based control tools use experimental data to build an “empirical” model of the
system

e High-robustness (until the system is changed)
* Little insight

Open Problems:

 Many data needed, Long learning time, robot wear etc.

* How do we generalize what was learned to new cases?

* Assess/Increase robustness of data-based approaches to robot/environment changes

* Merge Model-Based and Data-Based approaches?



Sim2Real

Can we learn iterative control from simulation and translate it to reality?



Articulated
Soft Robots

Articulated Soft Robots are
usually made of compliant
actuators at the joints.

73



Articulated
Soft Robots
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Universgl Robot . .
Dascrpion Simulation
in Gazebo

Kinematics \Rigid Body Dynamics

+33 ROS

* Rigid Body Dynamics Library (RBDL) 1
» Kinematics and Dynamics Library (KD’&
» ros_control packages /

* etc.. ’

—————————————————————————————————————————————————

Articulated Soft Robots are
usually made of compliant
actuators at the joints.

To simulated them in Gazebo, we
can exploit Robot Operating
System (ROS) C++ libraries of
kinematics and dynamics.
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Articulated |
Soft Robots

S —— Articulated Soft Robots are
¢ () Slmulatlon v usually made of compliant
i in Gazebo | actuators at the joints.

' : . .
| i To simulated them in Gazebo, we
| i can exploit Robot Operating
| . .
: i System (ROS) C++ libraries of
I [ [ "
| % | kKinematics and dynamics.
| |
| ﬁg{ﬂg{ﬁ”t @ | However, only the SEA dynamics
I Dvnamics Kinematics Rigid Body Dynamics : .
| Dy \ | can be handled by Gazebo right
: I ' now
: # Controller ﬁ. : :
] Samg cee !
: @ Motors Jo|ntta 5(||m|tedt0 SEA) @ * see ROS :
\ roicsprigDanper kst Uil

Com 0] liance <spr|ngRtef1:f eeeeeee ‘rec;‘s:”control packages , }

————————————————————————————————————————————————— 75



Load parameters

InitParams()

A new ROS-GAZEBO

toolbox

operation_mode

joint_x/torque_command

joint_x/disabled *[ L o
- - - joint_x/link_command r I—— -
allows simulating different \ :
- e
- - joint_ x/equlllblrum position _ Reference II )
compliant actuators, easily and e '
, | egpreszrefs) | | |
. I [ |
reliabl . 3 | >
" J.o!nt_x/reference ! | S PIDController class I Compliance |
joint_x/reference_2 L[z] I miodel I
\ > tauElastic()
v ! !
' ™ | 1
joint_x/torque_m1_command [7 DEMGtoh class _’I 1
joint_x/ torque_m2_command l I
\_ 7 4
.. CompliantActuatorPlugin class J
i Motor pairs s; “, Plugin \
i I
instance(s
i 5, =1,2 Telgsl (s)
]
1 ——- <
T T 1 A
__________________ e ; 651,1! 95‘1,1 Teq,
# ~ 1
: L N Sttt .
i . 1
1 | N -t vs s w s e R ST L R s SR T R T A S 1 .
— i| Reference | —s . 19,9
Tyl Ta g o | Rigid Jointj = 2 Robot Dynamics g
| manager g 4 & World ]
g : : :
2 e e 1
; \ _) : g j :
o | . (PR (SR § Y N — A
Plugin Manager node i ‘__ Gazebo
TinsMon! : o
b i 0,0,0
1
l

URDF + ROS-Gazebo-compliant-actuators-plugin

\/j—| joint_x/ext_tau

joint_x/link_state
_ Joi nt_x/tau_ell_state

> joint_x/tau_el2_state
joint_x/motor_1_state
joint_x/motor_2_state

R. Mengacci, G. Zambella, G. Gr|0I|

Caporale, M. G. Catalano and A. BICChI
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Trajectory Tracking Test

R. Mengacci, G. Zambella, G.
Grioli, D. Caporale, M. G. Catalano
and A. Bicchi "




lterative Learning Control Application -

Error [rad]
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Learning more complex tasks
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Motivation

What skills do people need in order to use a robot?

Programmers General public

“

Past Present Future

81



Learning to Grasp

Teaching

Learning

Execution




Learning from Demonstration

Teaching

Learning

Execution

Robot Programming without Coding
G Lentini, G Grioli, MG Catalano, A Bicchi

2020 IEEE International Conference on Robotics and Automation (ICRA), 7576-7582
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Should it really take so longe

When teaching a child, you do not
need to give thousand examples

Mirroring mechanisms in our
neural control system enormously
facilitate learning

Leveraging on

human robot integration

and anthropomorphism may be a
way to make teaching by
demonstration easier




Experimental Setup

Robot Programming without Coding, G Lentini, G Grioli, MG Catalano, A Bjcchi
2020 IEEE International Conference on Robotics and Automation (ICRA), 7576-7582




Object Sorting
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Teaching Interaction can be too hard

Stiff Robot

Teaching

B0 - mmm atonomous stiff

0.65 I T |
===teaching stiff
0.6 .
== autonomous stiff
155 =
== St ——
05—

Position

Teaching a Rigid Robot:

e Successful demonstration
e Autonomous execution fails
(too large interaction forces)

approach search insert
I I I

===teaching stiff

time [sec]

|
25 I
time [sec] f F
R
U



...0Or too soft

Teaching a Soft Robot:

SOft RObOt e Successful demonstration

 Autonomous execution fails
(too large tracking errors)

approach

search

insert

40 I T

| [===teaching soft
== autonomous soft

Teaching

Force
&

time [sec]
goy [ | |
===teaching soft
0.6 =
=== autonomous soft
C )55 j =
0 —
« :l: e — L
)
O 145 — —
(a
o \ I \ I [
1] 5 10 15 20 25
time [sec]
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Teaching Impedance

{Sbase}-

D XD m



Putting Natural and Artificial Intelligence at work together

{Spitot}
',L&-rbu~—

Toffset

{Sba;se} - {Sha;;}

Demonstrating postures and
impedance

(a)

Example
Database

Perceptual alignment

Compilation

Programs
Database

DMPs
Encoder

Togeng st & %,

PRI
¢ Eosure,,mi &

Lo !
\#ﬂndi :
' H :
| Srams e
1
1 ‘

Time [sec]

Saliency from gestures

D XD m



Teaching Impedance

Teaching

Variable Impedance

Force

Position

approach search insert
| 1 n | | |
===tegching var stiff
=== gutonomous var stiff
| | | | I | | |
] 2 4 8 10 12 14 16 18 20
time [sec]
[ | | | ] |
===teaching var stiff
=== gutonomous var stiff
= ﬁ
| | | | | | M

10 2
time [sec]

D XD m



Take-Home messages




Take-Home messaqges

Human impedance is variable inter- and intra-tasks
Part of the variability is intentional
Impedance variations are controlled by both muscle co-activation and arm posture

Robot Impedance can be varied by both SW and HW means
Impedance can be controlled by both varying gains/hw stiffness and arm posture

Planning of variable impedance can use insight from optimization

Humans can control variable impedance of robots through tele-impedance
Recent work shows that robots can learn impedance behavior from few human examples

ISTITUTO ITALIANO

SoftBots

. . DITECNOLOGIA
CENTRO “E. PIAGGIO SOFTREBOTICS FOR HUMAN

UNIVERSITA’ DI PISA COOPERATION AND REHABILITATION



Open questions

Variable impedance control comes at a cost
 In hardware (double actuators)
 |n software (force sensors, open architectures)

When is it really worthwhle?

How do humans use their variable impedance?
Is It there "on purpose” or "by accident"?

How do we measure impedance in humans without perturbing it?
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