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Compliance in Natural Systems
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Compliance in Natural Systems

Key enabler for adaptivity

• Versatility for different applications

• Tolerance to errors and imprecisions

• Safety

• Robustness during interaction

• Energy efficiency

• Better performance

3

Invertebrates

Vertebrates
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Stiffness of muscles

Characterized by

• Force / deformation

• Force / velocity

• Force / moto-neuron firing rate

Descriptive models e.g. 

• Gribble Muscle Model:

𝑭𝒍𝒆𝒙𝒐𝒓 𝒇𝒐𝒓𝒄𝒆 ∶ 𝑓1= ρ(𝑒𝛿𝐴1 −1)

𝑬𝒙𝒕𝒆𝒏𝒔𝒐𝒓 𝒇𝒐𝒓𝒄𝒆 ∶ 𝑓2= -ρ(𝑒𝛿𝐴2 −1)

• An open topic in literature

7
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Stiffness of limbs

Human Antagonistic Muscles Characteristics

Gribble Muscle Model:

𝑭𝒍𝒆𝒙𝒐𝒓 𝒇𝒐𝒓𝒄𝒆 ∶ 𝑓1= ρ(𝑒𝛿𝐴1 −1)

𝑬𝒙𝒕𝒆𝒏𝒔𝒐𝒓 𝒇𝒐𝒓𝒄𝒆 ∶ 𝑓2= -ρ(𝑒𝛿𝐴2 −1)

The stiffness of all the muscles that act on a 

given joint contribute to defining also the 

stiffness of the joint
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The stiffness of a human arm increases when 

lifting heavy weighs

Stiffness changes in Humans

Stiffness changes 

involuntarily and voluntarily
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Humans can change the stiffness of their limbs 

to adapt to different tasks

NO MOTION

change in muscle 

properties

Humans change stiffness

Stiffness changes 

involuntarily and voluntarily



11

How do humans control stiffness?

Burdet, E., et al. "A method for measuring endpoint 

stiffness during multi-joint arm movements." Journal of 

biomechanics 33.12, 2000.

Gomi, H, Yasuharu K., Kawato, M.. "Human hand stiffness

during discrete point-to-point multi-joint movement." IEEE

Engineering in Medicine and Biology Society. Vol. 4., 1992.

Experiments show that humans 

can learn after many repeated 

trials to change their stiffness 

profile along a given learned 

path to counteract disturbances

N Hogan, "Adaptive control of mechanical impedance by

coactivation of antagonist muscles" IEEE Transactions on

automatic control 29 (8), 681-690, 1984
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How do humans change stiffness?

However, there is strong correlation between the activation patterns 
of muscles that move a limb. This affects how the stiffness of a limb is 
modulated.

To a first approximation, humans control their stiffness ellipsoid more 
simply:

• Posture dominates the shape

• Coactivation controls the volume

E. Perreault, R. Kirsch, and P. Crago, “Voluntary control of

static endpoint stiffness during force regulation tasks,”

Journal of Neurophysiology, vol. 87, pp. 2808–2816, 2002.

A. Ajoudani, Gabiccini, M., Tsagarakis, N. G., Albu-

Schaeffer, A., and Bicchi, A., “Tele-Impedance: Exploring

the Role of Common-Mode and Configuration-Dependant

Stiffness”, Humanoids 2012.

• Configuration Dependent Stiffness (CDS)

- changes with posture

- gives the shape of the stiffness ellipsoid

- exploits redundancy

• Common Mode Stiffness CMS

- changes with co-contraction

-gives the size of the ellipsoid
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Common Mode Stiffness

Experimental Validation Setup

(robot used as a shaker) 

A. Ajoudani, Fang, C., Tsagarakis, N. G., and Bicchi, A., “Reduced-Complexity 

Representation of the Human Arm Active Endpoint Stiffness for Supervisory Control of 

Remote Manipulation”, International Journal of Robotics Research, vol. 37, no. 1, 2017.

Ellipsoid volume vs co-

contraction
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Variable Impedance in RobotsVariable Impedance in Robots
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Methods to vary Impedance

Software: Hardware:

Variable Impedance Control Variable Impedance Actuators
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HW: Varable Stiffness Actuators

Human Antagonistic Muscles Characteristics

Gribble Muscle Model:

𝑭𝒍𝒆𝒙𝒐𝒓 𝒇𝒐𝒓𝒄𝒆 ∶ 𝑓1= ρ(𝑒𝛿𝐴1 −1)

𝑬𝒙𝒕𝒆𝒏𝒔𝒐𝒓 𝒇𝒐𝒓𝒄𝒆 ∶ 𝑓2= -ρ(𝑒𝛿𝐴2 −1)

Inspired by nature
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Human Antagonistic Muscles Characteristics
Antagonistic-Antagonistic VSA Characteristics

ANALOGY Agonistic-Antagonistic VSA Dynamics:
Motor 1,2 output torque:

τ1,2= ±γ𝑒±β(𝑞−Θ1) ±µ

Gribble Muscle Model:

𝑭𝒍𝒆𝒙𝒐𝒓 𝒇𝒐𝒓𝒄𝒆 ∶ 𝑓1=

𝑬𝒙𝒕𝒆𝒏𝒔𝒐𝒓 𝒇𝒐𝒓𝒄𝒆 ∶ 𝑓2= -ρ(𝑒𝛿𝐴2 −1)

Inspired by nature

HW: Varable Stiffness Actuators

VSA-CubeBot: A modular variable stiffness platform for multiple degrees of freedom 

robots

MG Catalano, G Grioli, M Garabini, F Bonomo, M Mancini, N Tsagarakis, ...

2011 IEEE international conference on robotics and automation, 5090-5095
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VSA for Rehabilitation: Exoskeletons

N. Karavas, A. Ajoudani, Tsagarakis, N. G., Saglia, J., Bicchi, A., and 

Caldwell, D., “Tele- Impedance based Assistive Control for a 

Compliant Knee Exoskeleton: Stiffness Augmentation and Motion 

Assistance”, Robotics and Autonomous Systems, vol. 73 part A, pp. 

78-90, 2015.

S. Mghames, al. “Design, control and validation of the variable stiffness 

exoskeleton FLExo”, ICORR 2017

Beyl, P.,  Naudet, J., Van Ham, R, Lefeber, D.. Mechanical Design of an Active Knee 

Orthosis for Gait Rehabilitation IEEE ICoRR - Rehabilitation Robotics (2007)
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VS Elbow

Design of an elbow joint with variable stiffness actuation, i.e. 

inherent compliance.

Two approaches

Distributed approach Antagonistic approach

Independent setup 

(explicit stiffness variation)

Antagonistic setup

VSA for Rehabilitation: Prostheses
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20

20

VS Elbow Joint

A Variable Stiffness Elbow Joint for Upper Limb Prosthesis

S Lemerle, G Grioli, A Bicchi, MG Catalano

2019 IEEE/RSJ International Conference on Intelligent Robots and Systems



SW: Variable Impedance Control

21

Pros

• Configurable 

• Precise and compliant

Cons

• Not resilient

• Not energy efficient
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Impedance Control in Reality

A. Ajoudani, Tsagarakis, N. G., and Bicchi, A., 

“Choosing Poses for Force and Stiffness Control”, 

IEEE Transactions on Robotics, 2017.

In theory, a robot can attain arbitrary stiffness 

ellipsoids in any posture

Not in realityt = JTdx

F = Kx J dq

t = JT Kx J dq = Kq dq



23

Choosing poses to change impedance

A. Ajoudani, Tsagarakis, N. G., and Bicchi, 

A., “Choosing Poses for Force and 

Stiffness Control”, IEEE Transactions on 

Robotics, 2017. 23

A. Ajoudani, M. Gabiccini, N. Tsagarakis, 

A. Albu-Schaffer, A. Bicchi “Exploring the 

Roles of Common Mode and 

Configuration Dependent Stiffness 

Control” Humanoids 2012.
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How to use Variable Impedance?



Soft Robots
• Safer

• Faster

• More adaptable

• More robust

However
• Nonlinear

• Uneractuated

• Lower control authority

• Lower relative degree

More difficult to control



Robots Geared Motor

End-Effector

Rigid Link

Rigid

Flexible Joint
Series Elastic 
(SEA)

SEA

Variable 
Stiffness Joint 
(VSA)

VSA

Free Elastic 
Joint

Elastically 
Coupled



Soft Robots Geared Motor

Flexible Joint 
(SEA)

End-Effector

Rigid Link

Unactuated  
Elastic Joint

Underactuated 
(Elastically 
Coupled)

Free Joint

Underactuated
(Dynamically 
Coupled)

e.g. Acrobot, Pendubot

Flexible Link
Continuum
e.g. elephant trunk, 
octopus arm



Garofalo and Ott. "Energy based 
limit cycle control of elastically 
actuated robots." TAC (2017)

Albu-Schäffer et al.  "A unified passivity-based control 
framework for position, torque and impedance control of 
flexible joint robots." IJRR (2007)

Haddadin et al. "Kick it with 
elasticity: Safety and 
performance in human–robot 
soccer." Robotics and 
Autonomous Systems (2009)

Buondonno and De Luca. "Efficient computation of inverse dynamics and 
feedback linearization for VSA-based robots." RAL (2016)

Thuruthel et al. "Stable Open Loop Control of Soft 
Robotic Manipulators." RAL (2018)

Bieze et al. "FEM-based kinematics and closed-loop 
control of soft, continuum manipulators." (2018).

Nakajima et al. "Exploiting short-term 
memory in soft body dynamics as a 
computational resource." Journal of The 
Royal Society Interface (2014)

Hauser et al. "The role of feedback in morphological 
computation with compliant bodies." Biological 
cybernetics (2012)

Sadati et al. "Control Space Reduction and Real-Time 
Accurate Modeling of Continuum Manipulators Using Ritz 
and Ritz–Galerkin Methods." IEEE RAL (2018)

Best et al. "A new soft robot control method: using model predictive 
control for a pneumatically actuated humanoid." RAM (2016)

Carloni et al. "Variable stiffness actuators: 
A port-based power-flow analysis." IEEE T-
RO (2012)

Rucker, D. Caleb, et al. "Sliding mode 
control of steerable needles." IEEE T-
RO (2013)



Control Properties

• All systems above are controllable in their linearization

• All are input/output feedback linearizable, with stable zero dynamics 
(except underactuated with dynamically coupled free joints) 

• Collocated control easy, but low performance

• Non-collocated control not impossible in theory

• However…

𝑀 ሷ𝑞 + 𝐶 ሶ𝑞 + 𝐺 +
𝜕𝑉 𝑞, 𝜃 𝑇

𝜕𝑞
= 𝜏𝑒𝑥𝑡

𝐽 ሷ𝜃 + 𝐷 ሶ𝜃 +
𝜕𝑉 𝑞, 𝜃 𝑇

𝜕𝜃
= 𝜏𝑚

with 𝑞 ∈ ℝ𝑛 and 𝜃 ∈ ℝ𝑚



Feedback control of Soft Robots
An Elementary Example

Consider the simplest soft robot, 
a cart connected through a 
spring to a moving element…

𝑚 ሷ𝑞 + 𝛽 ሶ𝑞 + 𝑘𝑞 = 𝑘𝜃 + 𝜏𝑑𝑖𝑠𝑡
System dynamics

mass

damping

stiffness

position
input

External 
torque



𝑚 ሷ𝑞 + 𝛽 ሶ𝑞 + 𝑘𝑞 = 𝑘𝜃 + 𝜏𝑑𝑖𝑠𝑡

𝑚 ሷ𝑞 + 𝛽 ሶ𝑞 + 𝑘(1 + 𝐾𝑃)𝑞 = 𝜏𝑑𝑖𝑠𝑡

System dynamics

Closed loop dynamics

𝜃 = −𝐾𝑃𝑞
P controller

The closed loop 
stiffness increases by a 

factor (1 + 𝐾𝑃)

Limits of feedback control in soft robots:
An Elementary PD Example

…controlled with a simple  
proportional control

𝜃 = −𝐾𝑃𝑞





𝐵(𝑞) ሷ𝑞 + 𝐶(𝑞, ሶ𝑞) ሶ𝑞 + 𝑇(𝑞 − 𝜃, 𝜎) = 𝜏𝑑𝑖𝑠𝑡

𝐵(𝑞) ሷ𝑞 + 𝐶(𝑞, ሶ𝑞) ሶ𝑞 + 𝑇(𝑞 − 𝜓(𝑞, ሶ𝑞, 𝜎, 𝑡, 𝑟), 𝜎) = 𝜏𝑑𝑖𝑠𝑡

𝜃 = 𝜓(𝑞, ሶ𝑞, 𝜎, 𝑡, 𝑟)
Generic algebraic controller

𝜈 = ቤ
𝑑𝑇 𝑞 − 𝜓 𝑞, ሶ𝑞, 𝜎, 𝑡, 𝑟 , 𝑑

𝑑𝑞
𝑞=𝑞∗

− ቤ
𝑑𝑇 𝑞 − 𝜃, 𝜎

𝑑𝑞
𝑞=𝜃

Generic soft robot

Generic closed loop

Define the stiffness variation as (𝑞∗ fixed point of 𝜓) 

Limits of feedback control in soft robots
Elastic field Stiffness input

Closed loop 
stiffness

Open loop 
stiffness

Matrix
norm

Control input



𝐵(𝑞) ሷ𝑞 + 𝐶(𝑞, ሶ𝑞) ሶ𝑞 + 𝑇(𝑞 − 𝜃, 𝜎) = 𝜏𝑑𝑖𝑠𝑡

𝐵(𝑞) ሷ𝑞 + 𝐶(𝑞, ሶ𝑞) ሶ𝑞 + 𝑇(𝑞 − 𝜓(𝑞, ሶ𝑞, 𝜎, 𝑡, 𝑟), 𝜎) = 𝜏𝑑𝑖𝑠𝑡

𝜃 = 𝜓(𝑞, ሶ𝑞, 𝜎, 𝑡, 𝑟)
Generic algebraic controller

Generic soft robot

Generic closed loop

Limits of feedback control in soft robots
Elastic field Stiffness input

Control input

If

ቤ
𝜕𝜓 𝑞, ሶ𝑞, 𝑑, 𝑡, 𝑟

𝜕𝑞
𝑞=𝑞∗

≤ 𝛿
𝜕𝑇

𝜕𝑞
0, 𝜎

−1

then 𝑣 ≤ 𝛿. Softness is completely preserved (i.e. 𝑣 = 0) iff

ቚ
𝜕𝜓 𝑞, ሶ𝑞,𝑑,𝑡,𝑟

𝜕𝑞 𝑞=𝑞∗
= 0

Proportional component of 
the feedback controller

Stiffness variation due to 
closed loop



Limits of feedback control in soft robots:
Feedback Linearization

ሷ𝑞 = 𝜏𝑛



Learning to Control Soft Robots

In feedback control, performance is directly related to gain – i.e. 
stiffness

Now that we have soft robots, we don’t want to fight softness by 
control

Need “minimally invasive” control



Ideas from humans

CNS loops ~100ms

PNS loops ~10ms



Exp. Brain Res., 1984



Anticipatory control

Anticipatory behavior: the ability of CNS to
anticipate the necessary control action 

relying on sensory-motor memory

Anticipatory behavior permits to obtain 
high performance in presence of 

perception delays.

Fast, powerful,accurate movements





Model-based (optimal) Anticipatory Control

Data based (learning) Anticipatory Control
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Planning Impedance
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Optimal Control to Minimize Impact

On making robots understand safety: Embedding injury 

knowledge into control

S Haddadin, S Haddadin, A Khoury, T Rokahr, S Parusel, R 

Burgkart, A. Bicchi

The International Journal of Robotics Research 31 (13), 1578-

1602



The Safe Brachistocrone problem

HIC: Safety & Control bounds

How to control velocity and compliance to optimize 

performance within guaranteed safety limits?

VSA Bounds

Link

Inertia

Rotor

Inertia

vrot vlink
uK

Kcov

xrot xlink

uact

45

The Safe Brachistochrone



The intuitive policy of synchronizing joint stiffness 

and joint velocity is indeed consistent with the 

optimal solution for the safe brachistochrone 

 Fast & Soft, Stiff & Slow 

A. Bicchi and G. Tonietti, 

Fast and Soft Arm Tactics

IEEE RAM 2004

VSA beats both Rigid, DM2 and SEA

Link

Inertia

Rotor

Inertia

vrot vlink
utransm

Kcov

xro

t

xlin

k

uact

The Safe Brachistochrone

Fast

Soft

Stiff

Slow

Stiff

Slow

S
h

o
rt

e
s
t 
T

im
e

DM2

VST

.

Transmission Stiffness



47

Stiff speed-up, soft slow-down
Optimality principles in variable stiffness control: The VSA 

hammer

M Garabini, A Passaglia, F Belo, P Salaris, A Bicchi

2011 Ieee/Rsj International Conference on Intelligent Robots 

and Systems

Max speed at free 

terminal time, 

bounded torque

Optimal Control to Maximize Impact

Stiff Stiff

Soft Stiff
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Stiff VSA

48

Maximize impact: 2DoF hitting
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Variable stiffness control for oscillation damping

GM Gasparri, M Garabini, L Pallottino, L Malagia, M 

Catalano, G Grioli, A. Bicchi

2015 IEEE/RSJ International Conference on Intelligent 

Robots and Systems

Soft speed-up, stiff slow-down

Min energy at 

fixed terminal time, 

bounded input

The other way around: Maximize Damping



Resilient and Stable Physical Interaction

𝒚

𝒙

𝑹𝟐 < 𝑹𝟏

𝑹𝟏

robot

𝑟

𝑲𝒚,𝟏

𝑲𝒚,𝟐

Contact surface

𝑷

Stiffness bounds related to:

• uncertainties

• contact surface curvature

• interaction forces

Goal: perform an interaction task where the contact must be kept

Issues:

• Instability

• Resilience

• Minimum force to achieve the task

• Positioning errors

Mengacci, R., Angelini, F., Catalano, M. G., Grioli, G., Bicchi, A., & Garabini, M. (2019). “Stiffness Bounds for 

Resilient and Stable Physical Interaction of Articulated Soft Robots”. IEEE Robotics and Automation Letters, 4(4), 

4131-4138.
50



Resilient and Stable Physical Interaction

2X 2X

2X 2X

SW

Impedance 
Control

HW

Failure Success

Bounded by the force 

required by the task 

specifications

Bounded by the stability

condition

Bounded by the interaction 

force to avoid damages

No theoretical bound (if
stable)

Theoretical result

Curvature 

radius

Reference EE 

position

Force to achive the task

Max. force Uncertainty

Mengacci, R., Angelini, F., Catalano, M. G., Grioli, G., Bicchi, A., & Garabini, M. (2019). “Stiffness Bounds for 

Resilient and Stable Physical Interaction of Articulated Soft Robots”. IEEE Robotics and Automation Letters, 4(4), 

4131-4138.
51



Model-based (optimal) Anticipatory Control

Data based (learning) Anticipatory Control



Learning by Repetition

In motor control [Emken et al. 2007]:
𝑢𝑖+1 = 𝑓𝑢𝑖 + 𝛼𝑒𝑖

i → trial

𝑢𝑖 → i-th motor action

𝑒𝑖 → i-th percept error

f, 𝛼 → constant

𝑢𝑖 ∶ 0, 𝑡 → 𝑅𝑚



Motor Control [Emken et al. 2007]:
𝑢𝑖+1 = 𝑓𝑢𝑖 + 𝛼𝑒𝑖

i → trial

𝑢𝑖 → i-th motor action

𝑒𝑖 → i-th percept error

f, 𝛼 → constant

Iterative Learning Control

𝑢𝑖+1 = 𝑄(𝑢𝑖) + 𝑟 𝑒𝑖

𝑄 → forgetting factor

𝑟 → updating law

Learning by Repetition
𝑢𝑖 ∶ 0, 𝑡 → 𝑅𝑚



Motor control [Emken et al. 2007]:
𝑢𝑖+1 = 𝑓𝑢𝑖 + 𝛼𝑒𝑖

i → trial

𝑢𝑖 → i-th motor action

𝑒𝑖 → i-th percept error

f, 𝛼 → constant

Iterative Learning Control

𝑢𝑖+1 = 𝑄(𝑢𝑖) + 𝑟 𝑒𝑖

𝑄 → forgetting factor

𝑟 → updating law

Contribution of feedback 

error in future motor 

actions [Kawato et al. 1996]

𝑢𝑖+1 = 𝑄(𝑢𝑖) + 𝑟 𝑒𝑖 , 𝑒𝑖+1

𝑒𝑖+1 → feedback error

Learning by Repetition
𝑢𝑖 ∶ 0, 𝑡 → 𝑅𝑚



Requirement

Hypothesis
• Symmetry
• Diagonal dominance

Feedback action 
must be low

Softness Preservation -
decentralized approach



symmetric

First Gershgorin Theorem and reverse triangular inequality

Diagonal dominance

Softness Preservation -
decentralized approach



Control Architecture

Convergence condition

Given the system

C Della Santina, M Bianchi, G Grioli, F Angelini, M Catalano, M Garabini, A. 
Bicchi: “Controlling soft robots: balancing feedback and feedforward 
elements” IEEE Robotics & Automation Magazine 24 (3), 75-83



Control Architecture

Convergence condition

Given the system

Convergence does not depend on 
the drift term. 

Thus an algorithm verifying this 
condition is robust to external 

uncertainties.

Elastic robot model



Learning to control soft robots

)2cos(
12

)(1 ttq


= )2cos(
12

)(1 ttq


=

)2cos(
12

)(2 ttq


=

)2cos(
12

)()( 31 ttqtq


==

)2cos(
12

)(2 ttq


=

Note: no information 
is given to the 

algorithm about the 
kinematic structure 

and the external fields

Stiffness 

Variation

(exogenous)

Trajectories

F Angelini, C Della Santina, M Garabini, M Bianchi, GM Gasparri, G 
Grioli, A.Bicchi, 2 Decentralized trajectory tracking control for soft 
robots interacting with the environment, Transactions on Robotics, 
2018

G. Averta, V. Arapi, A. Bicchi, C. Della Santina, M. Bianchi, Modeling Human 
Motor Skills to Enhance Robots’ Physical Interaction, Human-Friendly 
Robotics 2020



Preserving Softness
PID control

makes a physically  
soft robot stiff

ILC  algorithm
preserves physical 

softness



Evolution of the

integral of the error

normalized by the

the terminal time

and the number of

joints.

Ratio between the

integrals of the

feedforward and

feedback actions

during the task for

the three setups.

Decreasing Brockett’s “Attention Functional”



Experiments

6-DOFs system with 
elastic VSAs.

Learn the torque control 
input 𝜏𝑒𝑞 in soft (or stiff) 
behavior that allows to 
track the position 
reference then, change
𝜃sr to stiff (or soft) to 
prove the decoupling.



ILC with Unknown Stiffness Changes

2X 2X



Results
(Soft to Stiff transition)

2X 2X



Results
(comparison)

R Mengacci, F Angelini, MG Catalano, G Grioli, A Bicchi, M Garabini, “On 
the motion/stiffness decoupling property of articulated soft robots with 
application to model-free torque iterative learning control”, The 
International Journal of Robotics Research 40 (1), 348-374 2021



How can variable physical impedance of soft robots be usefully exploited?

• Data-based control tools use experimental data to build an “empirical” model of the 
system

• High-robustness (until the system is changed)

• Little insight

Open Problems:

• Many data needed, Long learning time, robot wear etc.

• How do we generalize what was learned to new cases?

• Assess/Increase robustness of data-based approaches to robot/environment changes 

• Merge Model-Based and Data-Based approaches? 

Data-Based Anticipatory Control:
Take-Home Messages



Sim2Real

Can we learn iterative control from simulation and translate it to reality?
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Articulated Soft Robots are

usually made of compliant

actuators at the joints.

Articulated 
Soft Robots …
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Simulation

in Gazebo

Kinematics Rigid Body Dynamics

• Rigid Body Dynamics Library (RBDL)

• Kinematics and Dynamics Library (KDL)

• ros_control packages

• etc..

Universal Robot 

Description

Format (URDF)

+

Articulated Soft Robots are

usually made of compliant

actuators at the joints.

To simulated them in Gazebo, we

can exploit Robot Operating

System (ROS) C++ libraries of

kinematics and dynamics.

Articulated 
Soft Robots …
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Simulation

in Gazebo

Kinematics Rigid Body Dynamics

Compliant

Actuator
Dynamics

Controller

Motors

Compliance

• Rigid Body Dynamics Library (RBDL)

• Kinematics and Dynamics Library (KDL)

• ros_control packages

• etc..

Universal Robot 

Description

Format (URDF)

Joint tags (limited to SEA)
<implicitSpringDamper>

<springStiffness>

<springReference>

+

Articulated Soft Robots are

usually made of compliant

actuators at the joints.

To simulated them in Gazebo, we

can exploit Robot Operating

System (ROS) C++ libraries of

kinematics and dynamics.

However, only the SEA dynamics

can be handled by Gazebo right

now.

Articulated 
Soft Robots …
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A new ROS-GAZEBO toolbox

allows simulating different

compliant actuators, easily and

reliably.

R. Mengacci, G. Zambella, G. Grioli, D. 

Caporale, M. G. Catalano and A. Bicchi
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Trajectory Tracking Test

R. Mengacci, G. Zambella, G. 

Grioli, D. Caporale, M. G. Catalano 

and A. Bicchi



78

Iterative Learning Control Application - Results

𝑛 = 0 𝑛 = 3 𝑛 = 6 𝑛 = 9 𝑛 = 11



79

Learning more complex tasks
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Toward Robot Programming Without Coding
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Programmers

Time

Past

What skills do people need in order to use a robot?

Motivation

Present

Insiders

Future

General public
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Learning to Grasp

Teaching

Learning

Execution

82
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Learning from Demonstration

Teaching

Learning

Execution

83

Robot Programming without Coding

G Lentini, G Grioli, MG Catalano, A Bicchi

2020 IEEE International Conference on Robotics and Automation (ICRA), 7576-7582



Should it really take so long?

84

When teaching a child, you do not 
need to give thousand examples

Mirroring mechanisms in our 
neural control system enormously 
facilitate learning

Leveraging on 
human robot integration
and anthropomorphism may be a 
way to make teaching by 
demonstration easier
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Experimental  Setup

Robot Programming without Coding, G Lentini, G Grioli, MG Catalano, A Bicchi

2020 IEEE International Conference on Robotics and Automation (ICRA), 7576-7582
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Object Sorting



Replay Fast Forward
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Stiff Robot
Teaching a Rigid Robot:

• Successful demonstration 
• Autonomous execution fails 

(too large interaction forces)

Teaching Interaction can be too hard

Po
si

ti
o

n
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rc
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Te
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Soft Robot

Teaching a Soft Robot:

• Successful demonstration 
• Autonomous execution fails 

(too large tracking errors)

Po
si

ti
o

n
Fo

rc
e

...or too soft



Teaching Impedance

{𝑆𝑏𝑎𝑠𝑒}

{𝑆𝐸𝐸}
𝑛{𝑆𝑝𝑖𝑙𝑜𝑡}

{𝑆ℎ𝑎𝑛𝑑}

𝑇𝑜𝑓𝑓𝑠𝑒𝑡

𝑠𝐸𝑀𝐺



Putting Natural and Artificial Intelligence at work together

Demonstrating postures and 
impedance

Perceptual alignment

Saliency from gestures

REC, PLAY, FF



Stiff
(push)

Te
ac

h
in

g
A

u
to

n
o

m
o

u
s

Variable Impedance

Stiff
(precision)

Soft 
(adaptability)

Teaching Impedance

Po
si

ti
o

n
Fo

rc
e

St
if

fn
es

s
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Take-Home messages
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Take-Home messages

Human impedance is variable inter- and intra-tasks

Part of the variability is intentional

Impedance variations are controlled by both muscle co-activation and arm posture

Robot Impedance can be varied by both SW and HW means

Impedance can be controlled by both varying gains/hw stiffness and arm posture

Planning of variable impedance can use insight from optimization

Humans can control variable impedance of robots through tele-impedance

Recent work shows that robots can learn impedance behavior from few human examples

CENTRO “E. PIAGGIO”

UNIVERSITA’ DI PISA
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Open questions

Variable impedance control comes at a cost

• in hardware (double actuators)

• In software (force sensors, open architectures) 

When is it really worthwhle? 

How do humans use their variable impedance?

Is it there "on purpose" or "by accident"?

How do we measure impedance in humans without perturbing it?
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Thanks!


