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Summary

= a2 world of soft robots
= flexible joints, serial elastic actuation (SEA), variable stiffness actuation (VSA),
distributed link flexibility, continuum manipulators, ...
= flexible joint robots
= dynamic modeling and structural control properties
= inverse dynamics and feedback linearization for trajectory tracking
= regulation with partial state feedback and gravity compensation
= model-based design based on feedback equivalence
= exact cancellation of gravity
= damping injection on the link side

= environment interaction via generalized impedance model

= an application of flexible joint robots: physical Human-Robot Interaction (pHRI)
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Summary

= flexible link robots
= dynamic modeling and the role of zero dynamics
= PD+ for regulation and input-output linearization for joint-level trajectory tracking
= stable inversion of desired end-effector trajectories

= outlook on control of (planar) soft manipulators

= using a piecewise continuous curvature (PCC) dynamic model
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Classes of soft robots

Robots with elastic joints

= compliant elements absorb impact energy
= elastic transmissions (HD, cable-driven, ...)
= soft coverage of links (foam, safe bags)

= elastic joints decouple instantaneously the larger inertia of the driving
motors from smaller inertia of the links (involved in contacts/collisions!)

= relatively soft joints need more sensing (e.g., joint torque) and better
control to compensate for static deflections and dynamic vibrations
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Classes of soft robots

Robots with variable stiffness actuation (VSA)

" uncertain interaction with dynamic environments (say, humans) requires
to adjust online the compliant behavior and/or to control contact forces

® passive joint elasticity & active impedance control used in parallel

= nonlinear flexible joints with variable (controlled) stiffness work at best
= can be made stiff when moving slow (performance), soft when fast (safety)
= enlarge the set of achievable robot compliance in a task-oriented way
= plus: mechanical robustness, optimal energy use, explosive motion tasks, ...
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A matter of terminology ...

Different sources of elasticity, though similar robotic systems

= elastic joints vs. SEA (serial elastic actuators)
" based on the same physical phenomenon: compliance in actuation
= compliance added on purpose in SEA, mostly a disturbance in elastic joints
= different range of stiffness: 5-10K Nm/rad down to 0.2-1K Nm/rad in SEA

= joint deformation is often considered in the linear domain
" modeled as a concentrated torsional spring with constant stiffness at the joint
= nonlinear flexible joints share similar control properties
®" nonlinear stiffness characteristics & double actuation are needed in VSA
= 3 (serial or antagonistic) VSA working at constant stiffness is an elastic joint

= flexible robots are usually classified as underactuated mechanical systems

= have less commands than generalized coordinates
= non-collocation of command inputs and controlled outputs
= however, they are controllable in the first approximation (the easy case!)
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Classes of soft robots
Robots with flexible links

= distributed link deformations
= design of very long and slender arms needed in the application
= yse of lightweight materials to save weight/costs
= due to large payloads (viz. large contact forces) and/or high motion speed

= as for joint elasticity, neglecting link flexibility will limit static (steady-state
error) or dynamic (vibrations, poor tracking) performance

= control issue due to non-minimum phase nature of the end-effector output
w.r.t. the torque command input ... “it moves in opposite direction at start!”
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Classes of soft robots

Continuum soft manipulators

= characteristics in construction
= |ong, flexible, lightweight, slender arms
» tendon/cable-driven, multi-segmented, distributed/embedded actuation
= energy efficient, (intentional) bio-inspired design

= useful in many special robotic applications
= surgical, underwater, safe human interaction, cluttered environments, ...
= kinematic, quasi-static, and dynamic modeling (with approximations)
= extra control issues due to task hyper-redundancy and under-actuation
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Flexible link robots vs. continuum manipulators
What are the actual (control) differences?

= continuum manipulators may assume very complex shapes in 3D
= flexible link robots not!

= continuum manipulators may keep a body-deformed configuration under
the action of control (apart from gravity)

= flexible link robots not!
= flexible link robots are always underactuated mechanical systems
= continuum manipulators also, but possibly not!
= collocated vs. non-collocated control: both may or may not have this ...

TUDOR Canadarm?2 Jan Fraas, QMU
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Dynamic modeling of robots with flexible joints
Lagrangian formulation (so-called reduced model of [Spong, ASME JDSMC 1987])

= open chain robot with N flexible joints and N rigid links, driven by electrical actuators
= use N motor variables 6 (as reflected through the gear ratios) and N link variables g

. center of mass of rotors
A1) small displacements at joints (elasticity!) / on rotation axes
A2) axis-balanced motors ‘
A3) each motor is mounted on the robot

in a position preceding the driven link
A4) no inertial couplings between motors and links

¥

A4) = 2N x 2N A2) = inertia matrix
inertia matrix and gravity vector are +
is block diagonal independent from 6

NS ~
(M (q) 0) (CI) N (C (q, q)q) + (g(q)) . (K (q - 9)) _ (0) link equation

0 B/ \g 0 0 K6 —q) motor equation
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Single elastic joint

Transfer functions of interest

q >
9
T ' K : environment force
—p( D JVVV\/_ M | == (here, absent)
00 Te
0(s) Ms? + K 1
Pmotor(s) = —

©(s)  MBs?+ (M + B)K s?

/: system with stable zeros and relative degree = 2
we often look rather at the . . . .
= passive (zeros precede poles on imaginary axis)

T -to-velocit [
orq.ue. © \./e oe y.mappmgs = stabilization can be achieved via output 6 feedback
(eliminating one integrator)
q(s) K 1

Piink(s) = =
[De Luca, Book, " 7(s) MBs? + (M + B)K 52

Springer Handbook of Robotics, 2016]

= NO zeros!!
= maximum relative degree = 4
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Single elastic joint

Transfer functions of interest

Motor velocity output
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= typical anti-resonance/resonance on motor velocity output (minimum phase)

= pure resonance on link velocity output (weak or no zeros)
a (small) motor or link side viscous friction was added in these Bode plots
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Inverse dynamics

Feedforward action for following a desired trajectory in nominal conditions

given a desired smooth link trajectory g, (t) € C*

= compute symbolically the desired motor acceleration and, therefore, also the desired
link jerk (i.e., up to the fourth time derivative of the desired motion)

(" B+ G+ CPMG ) =0
T, =BO,+K(04—qy) ‘ ,
= BK™! [M(Cld) qa™ + 2M(qq) g4 + M(q4) i + % (C(er daq )4gq t+ .9(%))]

+[M(qq) + Blga + C(qa,94)4q + 9(q4)

= the inverse dynamics can be computed efficiently in O (N) using a modified Newton-Euler
algorithm (with link recursions up to the 4% order) [Buondonno, De Luca IROS 2015]

= the feedforward command 74 can be used in combination with a PD feedback control on
motor position/velocity error to obtain a local but simple trajectory tracking controller
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Feedback linearization

Full-state nonlinear feedback for accurate trajectory tracking tasks

= the link position q is a linearizing (flat) output (nonlinear equivalent of “no zeros”)

(10 9)(0)+ (00 - (50) £ (5 2) ) 4 [

T

= differentiating twice the link equation and using the motor acceleration yields

= (Cq+ g(q))>

d2
T=BK *M(@Qu+ K@ —q)+Bj+BK™! <2Mq(3) + M o3

= an exactly linear and I-O decoupled system (“chains of 4 integrators”) is obtained

= to be stabilized with standard techniques for linear dynamics (pole placement, LQ, ...)

= requires higher derivatives of q q,d,d, q(3)

= however, these can be computed from the model using state measurements

= requires higher derivatives of the dynamics components M,C, g

= A O(N3) Newton-Euler recursive numerical algorithm is available for this problem
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Feedback linearization

Based on the only vs. when including joint elasticity

T =BK 'M(qQQu+K(6 —q)+Bj+ BK™! <2Mq(3> + M{ 2 (Cq + g(él)))

= (qc[;” + Kj(Ga — q) + Kp(Ga — 4) + Kp(qa — q) + Kp (qq — CI))

[Spong, ASME
JDSMC 1987]

computed torque elastic joint feedback linearization
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Feedback linearization
Benefits on an industrial KUKA KR-15/2 robot (235 kg) with joint elasticity

three squares in:
y

E horizontal
plane

y vertical
front
z plane

vertical
sagittal
plane

[Thimmel,
PhD 2007]
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Visco-elasticity at the joints

Introduces a structural change ...

v

on Spong model

(M0 8 () + (@D (SD)s(sea =004 D) - (©)

control consequence for the model
stiffness basic elastic coupling, maximum relative degree (= 4) of output g
damping reduced relative degree (= 3), only I-O linearization by static feedback
inertia™ reduced relative degree, exact or |-O linearization needs dynamic feedback

* the so-called complete dynamic model includes off-diagonal inertial couplings between motors and links
[De Luca, Lucibello, ICRA 1998]
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Regulation tasks

Using a minimal PD+ action on the motor side

for a desired constant link position g,

= evaluate the associated desired motor position 8, at steady state

= collocated (partial state) feedback preserves passivity, with stiff Kp gain dominating gravity
= focus on the term for gravity compensation (acting on link side) from motor measurements

Hd:qd‘I'K_lg(qd) T:Tg‘I'KP(ed_H)_KDé KD>O
1 [ K —K ] - '
9(qq) min |_g K 4 [,| > @ [Tomei, IEEE T-AC 1991]
[ K —K ] [De Luca, Siciliano, Zollo

— -1 ; ’ ’ ’
90 —K~9(qa)) Amin|_k K+ Kp| 7% ASME JDSMC 2004]
g(q®), 9(0): 9@ =K@ —q) Kp >0, Amin(K)>a [Ottetal, ICRA2004]
g(q) + BK~1 §(q) Kp > 0, K>0 [De Luca, Flacco, CDC 2010]

exact gravity cancellation

ag(q) H

(with full state feedback) = q
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Exact gravity cancellation
A slightly different view

= for rigid robots this is trivial, due to collocation

T=7Tg4 + Ty
do =
T = 9(q)
q = . . .
7 M(q)§ + c(q,q) + Dg =
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Exact gravity cancellation

... based on the concept of feedback equivalence between nonlinear systems

= for elastic joint robots, non-collocation of input torque and gravity term

To —> 0o = qo

Q€= D €~

M(q)G +c¢(q,q) +Dgqg+g(q)+K(@q—6)=0
BO+ Dy +K(O—q) =1

T, =9(q) + DgK'g(q) + BK™'g(q) | |6o=6+K 'g(q)

feedback control state transformation
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Feedback equivalence

Exploit the system property of being feedback linearizable (without forcing it!)

u = ax) + B (x)ug
xo = T (T(0) = ()

x = f(x) +G(x)u Xo = folxo) + Go(xo)ug

gravity-loaded system feedback transformations gravity-free system
static state feedback
+ change of coordinates
both invertible

= a(x) + B(x)v Uy = ag(xp) + Po(xp)V
z=T(x) z = Ty(xo)

z=Az+ Bv J

linear, controllable system

<
|

Z = linearizing outputs
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A global PD-type regulator

Exact gravity cancellation + PD law on modified motor variables: A 1-DOF arm

Without Gravity vs Dynamic Gravity Cancellation (with PD) Without Gravity vs Dynamic Gravity Cancellation (with PD)

40
| -
9 g”" —+
> § gl o
g ‘é’_ 1 E—;
(] i._é 0.5 . (@)
2 s : £ gravity-loaded system o
= 0 1 2 3 4 5 6 s 3
= g =
— 4 = o
- g of e "‘."]; """""" -
S § j gravity-free system 2
S £ o ®
= : : - - L
’ 1 © e . ’ % i 2 3 4 5 6
time (s)
. 5 Wit‘houi Gravity 'vs Dynamic C'-]ravity Canoelllation (with l:"D)
o = .
'S LT R A e E T : gravity-loaded system under PD
© g h’ . .
< g 1l f . + gravity cancellation
2 W _ 8 yvs [De Luca, Flacco,
[ g ) .
% % i 2 3 4 3 6 gravity-free system under PD ICRA 2011]
S . (with same gains)
234
v > 2ffy) . .
g g, | works without strictly
= S o,
o - 2 0
5 : ‘ | . | ‘ KP > () K > (| positive lower bounds

Y e Y8 (good also for VSA!)
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Vibration damping on lightweight robots
DLR-IIl or KUKA LWR-IV with relatively low joint elasticity (use of Harmonic Drives)

vibration damping OFF vibration damping ON

[Albu-Schaffer et al, IRR 2007]

for relatively large joint elasticity (low stiffness), as encountered in VSA systems, vibration
damping via joint torque feedback + motor damping is insufficient for high performance!
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Damping injection on the link side

Method for the VSA-driven bimanual humanoid torso David

PLANT DYNAMICS (ng) g) (g) n (C(Q6Q)C(I) n (f(;ﬂ)
K(0 —q) K q — 9 B 0
@ ) T- s (ko — ) = )
90=9+K_1DC[ TZTO_DC'I_BK—lD-C-I-

state transformation feedback control

CLOSED-LOOP DYNAMICS
ﬁ ‘
F@)):)S) e/ (M50 D () + (40N + (90)
. Rotor | Spring q Link N (K(C[ 90)) ( D )
Kpn K(HO

= ESP = Elastic Structure Preserving control by DLR [Keppler et al, IEEE T-RO 2018]
= same principle of feedback equivalence (including state transformation)!
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Damping injection on the link side
Method for VSA-driven bimanual humanoid torso David at DLR
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Environment interaction via impedance control

Matching a generalized (fourth order) impedance model: A simple 1-DOF case

q .
6 . : .
- > K . Mg+ K(g—06) =1,
environment force . .
_’I_BJVW\,—M« BO +D6 + K(6 —q) =1

- 4
D feedback control

(K—K)M (., + K(6 — q))
+ KoBy* (o = Doflo = K(6 = q))

assume that| My = M
in order to avoid derivatives

of the measured force 7,

T=K(6 —q)+DO —BK?!

0o=q+KKy1(6—q)

q
09 g ‘ state transformation
To ' KO environment force ~
2 [ — By —\\WW\— M (€= s 0- ’ i ’
= T, By8o+Dy8y + Ko(6o — q) = 7
Dg

= again, by the principle of feedback equivalence (including the state transformation)
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Torque feedback

An inner loop that largely reduces motor inertia (and friction)

Consider a pure proportional torque feedback (+ a derivative term for the visco-elastic case)

T=BBy'u+ (I —BBy')t; +( —BBy")DK 1,

-

—Kr —Kg

Motor inertia

Link inertia

physical interpretation:
scaling of the motor inertia and motor friction!
[Ott, Albu-Schaffer, IEEE T-RO 2008]

but also...

special case of matching by feedback equivalence!

original motor dynamics visco-elastic case

BO+K@O—-q)=T1 BO+1,+DK i =1

-

after the torque feedback | B,6 + K(8 — q) = u B,6 + Ty + DK_l’L"] =u
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Full-state feedback

Combining torque feedback with motor PD regulation (“torque controlled robots”)

inertia scaling via torque feedback 7=+ Kp)u— Ky 15 — K74
regulation via motor PD, e.g., with u=g(g(0)) + Ke(6g —60) — Dgb

=> joint level control structure of the DLR (and KUKA) lightweight robots

dynamics feedforward and
desired torque command setpoint control

f AN

T=14— K (1) —174) — Ks©) — Kp(0g — 0) — Kp0 + Tf + Tgop (+ integral actions)

\ / friction compensation

motor inertia scaling vibration damping and/or disturbance observer
torque control position control impedance control
Kp =0 Kp >0 Kp = KrKg
KD =0 KD >0 KD - KTDgl
Ky >0 Kr >0 KT=(BBd1_I)
Ks > 0 Ks > 0 Ks = (BB;' —I)DK™!
Tja = Td Tra = 9(q) Tjqa = 9(q(0))
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Exploiting joint elasticity in pHRI

Detection & selective reaction in torque control mode, with momentum-based residuals

[De Luca et al,
IROS 2006;
Haddadin et al,
|EEE T-RO 2017]
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Exploiting joint elasticity in pHRI

Human-robot collaboration in torque control mode

[Magrini et al,
ICRA 2015]

i L
0 1 2 3 4 5 6 7 8 9 10
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Dynamic modeling of a single flexible link
Euler-Bernoulli beam [Bellezza, Lanari, Ulivi, ICRA 1990]

= beam of length [, uniform density p, Young modulus - cross-section inertia EI in rotation
on a horizontal plane

" actuator inertia J, at the base and payload mass m,, and inertia J,, at the tip

= various angular variables: 8.(t) clamped at base (measured by encoder), 8(t) pointing at
CoM (very convenient!), 8,(t) pointing at the tip (measurable and of interest)

= small deformations of pure bending w(x, t) = ¢(x)d(t) (with space/time separation)

= Hamilton principle + calculus of variation = PDE equations, with geometric and dynamic
boundary conditions

A J6@®) =) T =Jo+%+Jp +mpl’

T EIw'" (x,t) + p(W(x,t) + x6(t)) = 0
y w(0,t) =0
EIw" (0,t) = J, (é(t) +w' (0, t)) —1(t)
J Elw"(l,t) = —J, (é(t) +w'(l, t))

- Ew"(6) =m, (16() +w(Lt))
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Dynamic modeling of a single flexible link

Characteristic equation and eigenfrequencies

infinite countable roots (5,1 = 1,2, ... of an eigenvalue problem

(1 =22 B (Jo + Jp))(cos Bl sinh Bl — sin Bl cosh ;1) - 2—’:" B; sin B;1 sinh ;1 — z—l]j’ B3 cos ;1 cosh ;1

- %35(1 + cos B; cosh B;1) + ’;f;’ BS(cos B;1 sinh B;1 + sin B;l cosh B;1) —%’ B7(1 — cos B;l cosh B;1) = 0

= common assumed modes are special cases
= clamped-free: m, =0, J, =0, Jo >0 = 1+ cosp;lcoshp;l =0
= pinned-free: my, =0, J, =0, Jo=0 = cosp;lsinhp;l —sinp;lcoshp;l =0

associated to each root f5; there is

= an eigenfrequency (system vibrations) w; = /Elﬁi‘*/p

= an eigenvector (spatial mode) ¢;(x) = A sin B;x + B cos ;x + C sinh 8;x + D cosh 3;x

= adeformation variable 6;(t)

finite approximation by truncation up to n, orthonormal modes: w(x,t) = Z?jl Qi (x)d;(t)
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Dynamic model of a single flexible link

Final equations and system outputs

" |inear dynamic model

6; + wis; = ¢pi(0)7, i=1,..,n,
= including modal damping ({; € [0,1])
]é =T
8; + 2¢;w;0; + w?8; = ¢! (0)T, i=1,..,n,
" in matrix form

q:(0;51;52;"')6116)6Rne+1 Mq-I_Dq-l_Kq:BT

Mz((]) Ig) D=5 220) ¥=(o o) Bz(“"l(o))

= system outputs
ne ne [
6. =6+ 1(0)5, 6, = 6 + Z ¢‘( ) s

=1
clamped joint level: always minimum phase tip level: typically non-minimum phase
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Single flexible link

Eigenmodes

= physical data of an Euler-Bernoulli model
[=1, p = 0.5, El =1, o = 0.002 (m, =J, =0)

= first four exact mode shapes (normalized) —/k-th mode has k nodes w.r.t. rigid axis

¢1(x)
at f; = 3.27 Hz

$3(x)
at f3 = 16.13 Hz

July 16, 2021

L

—

2
15 T
4k
05/
0
Zos |
8
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A5
2t
25
-3 L L L L L L L L I}
o o1 02 03 04 06 07 08 09 1

e / 2 (x)
! / at f, = 8.89 Hz
20 o1 o0z 05 04 x"[j,i] 06 07 08 08 1

/& e
/ / at f, = 28.28 Hz
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Single flexible link

Transfer functions of interest and frequency responses

0c(s) _ 1 2 ${(0)? AP IO NS S I HOUY OV

(s) Js? S% + 20;w;s + w; (s) Js £ s? + 20;w;s + w;
i=1 Lt L i=1 l
N, = 3 modes
100 T T T T T T T T T T T 100 T T T T T T T
) @ 50F .
) )
(0] (0]
E S o |
= =
(@] (@]
© ©
= = 50 - -
-100 ; | ; | ; | . T -100 . PR S S S| i R | ; | ; <
10" 10° 10’ 10° 10° 10" 10° 10’ 10° 10°
Frequency (rad/sec) Frequency (rad/sec)
0 ‘ 0 T T T T T T
g’ g-seo - .
g 0 2 :
3 3 progressive phase lag
o O 720 | :
-180 J
10" 10° 10’ 10° 10° 10" 10° 10’ 10° 10°
Frequency (rad/sec) Frequency (rad/sec)

clamped joint level: always minimum phase tip level: typically non-minimum phase
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Single flexible link

Pole-zero patterns

= in the absence of modal damping

ne = 2 modes ne, = 3 modes

ivity:
paSSGO ty T T T 60 T T T 150 ' T T T ° - 150 T T T
zeros| o x X non{minimum phase zeros:
precede unstable inverse system!

40t 1 . 40t 1 . 100+ : 100} X
poles| ™~~~
(in alternate ‘ B

. 201 X b 201 X R 50+ 501 :
pairs | | o ‘

Imag Axis
=)

0 X0
Imag Axis
o
0
o)

RIS
@)
o)
Il
Imag Axis
=)
T
O X OXO %O
Imag Axis
=)
o)
X

-20 X 1 -20 X b -50 ; 1 -50 | %

X

(O]
O---

-40 » - -40 | : § -100 | x 100 | X
X X ‘ ‘ ‘ ‘ ‘ ‘
€0, 05 0 0.5 1 0 20 0 20 40 150, -0.5 0 0.5 1 100 50 0 50 100
Real Axis Real Axis Real Axis Real Axis
clamped joint level tip level clamped joint level tip level
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Single flexible link

Experimental model identification

= in the frequency domain

6000

110

4000
100

90
2000

80

deg/s2
o

70

60 H
-2000
50

-4000 40

30

~6000 | | | | I I I I I I | | | | | I I I
0 1 2 3 4 5 6 7 8 9 10 11 10 20 30 40 50 60 70 80

joint acceleration
frequency response:

plant vs. model

matching (£ 1%) of resonances at
fi=144,f, =34.2,f; = 69.3Hz

sweep joint
acceleration
excitation signal:
plant vs. model
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Dynamic modeling of robots with flexible links

Lagrangian formulation (finite-dimensional)

= open chain robot with N flexible links, each with n, ; deformation variables (a total of N,)

= single-link modeling results embedded with caution for each of the multiple flexible links
= in general, (to limit model complexity, only planar structures here)
= typical use of simpler assumed modes to describe spatial deformation

camera

flexible
links

6 = clamped
joint angles

6 = deformation
variables

(N+N,)X(N+N,)
full inertia matrix

rigid equations

Mgg(0,0) Mgs(0,0)\ (g 6,5,6,0) CR) 0
(Mz§(9,5) Mii(ﬁ,é)) (g') ¥ (22(9,5, 9,8)) ¥ @i(& 5)) ' (K6 + DS) B ((T))

[De Luca, Siciliano, IEEE T-SMC 1991] flexible equations
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Dynamic modeling of robots with flexible links

Simplifications in model (possibly, for control use)

= in matrix form 0
.. : (T
q = (6,5) € RVN*Ne M(q)G +c(q,9) + g(q) + (DS N K5) = (0)

= common simplifications in mechanics
= small deformations (in the linear domain) = g5(0)

= kinetic energy evaluated in the undeformed (6 = 0) configuration of the arm — M (6)

¥

(o g )@ (G2 (%06))* (s 4 ps) = 0)

= flexible link manipulators are underactuated systems
= |ess command inputs T than generalized coordinates g

= Mgs often constant

= we consider as many controlled outputs y as commands (‘squaring the I-O problem’)
= problems, however, with the associated zero dynamics (in a linear or nonlinear setting)
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Control problems for flexible link robots

A compact overview (moving in free space) ...

= regulation to a desired equilibrium state (gq,q) = (84, 64, 0,0)
* only the desired joint/rigid variable 8, is assigned: §; has to be determined
" 6,; may come from a (numerical) kineto-static inversion of a Cartesian pose y,
= forward kinematics of flexible robots is a complete function y = kin(8, §)
= global stabilization results with joint PD + gravity compensation
= tracking of a joint trajectory 0, (t)
» the easy case, solved by I-O inversion (stable/minimum phase zero dynamics)
= solution stiffens the arm at the bases of the flexible links, rejecting vibrations
= tracking of an end-effector trajectory y,(t)
» the difficult case, facing the unstable/non-minimum phase zero dynamics

" npon-causal solution designed in frequency or time domain (feedforward +
local stabilizing feedback)

= causal solution by nonlinear regulation (avoiding critical cancellations)
" rest-to-rest motion between two equilibria in assigned time T
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Control solutions for flexible link robots

Main results — 1

= global asymptotic stabilization to a desired equilibrium state (8,4, 64, 0,0)

T =Kp(6g —0) —Kpb + 9g(04,64)

_ Kp O
6a=~K'95(00)  Amin{( : o) >a Kp > 0
possibly by iterative T T 99(q) [De Luca, Siciliano,
solution of kin(8, —K 1g5(8)) = y4 upper bound on H P H IEEE T-RO 1993a]

= two-link flexible arm with two bending modes for each link under gravity

50 __jointangles 20 __joint torques 0.1 1st link deflections 0.005 2nd link deflections
O e . 10 ' 1 0] R 4 0
g N 2
—50/“/——& OF Dewr 7 -0.1 ~ » 1 -0.005
%% I 2 3 4 "% 1 2 3 a0 I 2 3 s % I 2 3 4
sec sec sec sec
from 6(0) = (—90°, 0°) fii =14, f,, =51,
to Gd = (—4‘50, Oo) f21 = 52, f22 = 324 [HZ]
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Control solutions for flexible link robots

Main results — 2

= tracking of a joint trajectory 6,4 (t) via |-O feedback linearization

T = (Mgg — MgsMzs Mgs)a + cg + gg — MosM5z3 (c5 + gs + KS + DJ)

resulting closed-loop system [De Luca, Siciliano
6 =a AIAA JGCD 1993b]
6 =—Mgss(Misa+cs+gs+ K5+ Do)

trajectory error (exponential) stabilization

a=8d+KD(€d—9)+Kp(9d—9), KP'KD >0

* the zero dynamics, when the output 8(t) = 0, is asymptotically stable (via
Lyapunov argument)
6§ = —Mjz(cs +9s+KS+D6)

* the clamped dynamics, when the output 8(t) = 64(t), is bounded
6 =—A,(6)8 + A, ()8 + f5(t)
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Control solutions for flexible link robots

Main results — 3

= tracking of an end-effector trajectory y,(t)

®" non-causal command designed in frequency domain = desired acceleration as

part of a periodic profile, bounded inversion via Fourier transform (or FFT)
[Bayo, JRobSyst 1987]

= .. designed in time domain = forward/backward time integration of

stable/unstable parts of the inverse system
[Kwon, Book, ASME JDSMC 1994]

= poth extended from linear to nonlinear case via numerical/iterative methods

100
121
80
60 T
40+ 0.8
g 20 06
g - 0.4
© 20 - ————————~
-40 - 02 W
-60 0 ‘E""r—f = E—
-80 -
-0.2
-1000 015 1‘ 115 ‘2 215 CL) 315 4 -40 015 1‘ 115 é 215 é 315 4 -1 -0.‘8 -OA‘6 -O.LI -0]2 5)) 012 014 016 018 1‘
bang-bang accelerationin T=2s control torques, with pre-charge stroboscopic motion of the
for both system outputs and discharge intervals (T, = 2.5s) 2R FLEXARM under E-E control
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Control solutions for flexible link robots at Sapienza

Main results — 4 (oldies but goldies...)

= stable nonlinear regulation of end-effector trajectory for the 2R FLEXARM
" rest-to-rest slew motion in assigned time for a one-link flexible beam

Panasonic MPEGT1 Encoder

45° for (rigid) link 1 and 45° for tip 90° slew in T = 2 s (flat output design)
of flexible forearmin T=1.5s [De Luca, Di Giovanni, AIM 2001;
[De Luca et al, CDC 1990, ICRA 1998] De Luca, Caiano, Del Vescovo, ISER 2002]
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Control solutions for flexible link robots

More results, including physical interaction

= 3R arm with flexible links TUDOR (TU Dortmund Omni-elastic Robot )
= vibration damping by strain gauge feedback during motion (or after impact)

video

vesehisetis nriveraitht ‘@ [Malzahn et a/, IEEE ROBIO 2011]
dortmund

Undamped Damped

video

technische universitat |St l

dortmund | —

Collision
detection:

off

Collision
reaction:

none

[Malzahn, Bertram, IFAC World Congr 2014]

= collision detection and reaction based on generalized momentum observer

same residual method as in elastic joint robots!! <-)
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Outlook on control of soft manipulators

Continuum planar arms with PCC

= dynamic modeling assumptions

A1) [kinematics] approximated as a series of 72 segments, each with a curvature q;
A2) [inertia] each segment can be described by an equivalent point mass
A3) [impedance] continuous distribution of infinitesimal springs and dampers

= fully actuated on each segment < underactuated with 1 < n input commands

/
S i

J

P ——

\'l
JUSW33S 9|3uls

g
“————-

~~== point mass

linear
stiffness!

[Della Santina et al, 1JRR 2020]

July 16, 2021 SIDRA 2021 Modeling and Control of Soft Robots — A. De Luca 46



Dynamic model of planar soft manipulator

Full actuation vs. underactuation in PCC model

= actuated on each of the n segments
M(q)Gg+C(q,9)q+9(q@ +Kq+Dg=r
with the usual properties (M > 0, M —-2C skew-symmetric, g bounded in norm, ...)

= regulation, curvature trajectory tracking, Cartesian stiffness control,

oreserving (in nominal conditions) stiffness and damping of the soft system
[Della Santina et al, JRR 2020]

= underactuated with only 1 < 7 input commands

= letqg = (q,4, qy), possibly after relabeling of segments, being g, € R™ the
curvature of active segments and g, € R"™™ that of the unactuated segments

= dropping dependencies, with active commands T € R™ and suitable partitions

(o)) (B D)6+ (5 DG+ 2)() -0
Mg;u Mpu qQu Cua Cuu qu Ju 0 Ku Qu 0 Du qu 0

= a few preliminary results ... [joint work with Pietro Pustina, 2021]
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Regulation and trajectory tracking

Full actuation: moving from joint configuration space to local curvature space

= tracking of q,4(t), withqy #0,q,; # 0

i
{So}

— - ————
- -

feedforward (soft robot gravity feedback

stiffness & damping) cancellation
1

T=Kqq +Dqq +9(q)
+ Kp(qq — q) + Kp(g@q — q)

' . .
robustifying PD action passivity-based
, tracking controller
[Della Santina et al, &
IJRR 2020] /

T=Kqq+Dqq+9(q) +C(q,9)4q + M(q)q4
+ Kp(qa — q) + Kp(@q — q)
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Zero dynamics and regulation

Underactuated planar PCC model, without and with gravity

= zero dynamics when the outputisy = q, € R™
= in the absence of gravity (g(q) = 0), the unique state (q,, ¢,) = (0,0) is
globally asymptotically stable for the zero dynamics of the soft robot
= in the presence of gravity (e.g., in a vertical plane), the trajectories of the zero
dynamics remain bounded and converge to (q,, §,) = (qu_eq, O), being q,, ¢

a solution of
K.qy +94,0,q,) =0

= proofs by Lyapunov/La Salle analysis

= regulationto qq = (qq4,0) € R", qaq4 € R™, in the absence of gravity

T = KP(Qa,d — CIa) — Kpq, + KaQa,d KP'KD >0
= regulationto qg = (qq.a, 9p,a) € R", qq.a € R™, in the presence of gravity
T = Kp (Qa,d o CIa) _ KDéIa + ga(Qd) + KaCIa,d Kp >0, .SUffICIentI_y large
9 — K ( ) Koo + gu( )+ K qu,q Unique solution to
9 = — — ,
P CIa,d da pYa Ja Qa,d qu aQa,d KuQu + gu(Qa,eru) =0
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Simulation results

Underactuation with n = 3 segments, m = 2 actuated: g, = (91,93), Q4 = 9>

= regulationto g, 4 = (0,0) from q(0) = (—m, —m, m) using t9, in the presence of gravity

15
S |niitial condition 4 I
Transient l
1+ w— Steady state | q (t) 1
|| — 1
g> - ? 2 | e— qg(t) "
0 © as(t)
T E
£° ® ot S U\
=
05 - g 0.5
5 -2
1t o -1
1515 0.5 0 0.5 1 1.5 -4 l l ‘1515 1 0.5 0 0.5 1 15
1 . - - -0. !
x[m] 0 10 20

xim]

= tracking of g, 4(t) = (sint, cost) starting from q(0) = (—m, —m, 0), using a partial
feedback linearization control TPFL, in the presence of gravity

15 1.5
1F 2 1
05 p— 0.5
e
9o YA J \ \ ’\ ’x ’X L
E o o E 0
> B >
g 2+ w— (1) |+
05 S — (1) 0.5
(&) a3(t)
4 _4 1 1 1 1 L 1
= it concin 0 5 10 15 20 25 30 35 40 ’
| w— Steady state
15 1.5 s
-1.5 -1 -0.5 0 0.5 1 15 -1.5 1 -0.5 0 0.s 1 15
x[m]
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Take home messages
Control of soft robots in 2021+

= 3 “soft explosion” is revamping the mature field of flexible robot control
= consideration of dynamics in the control design/performance of soft robots
= combine (learned) feedforward and feedback to achieve robustness
= jterative learning (on repetitive tasks) is available for flexible manipulators
= optimal control (min time, min energy, max force, ...) still open for fun

= revisiting model-based control design

= do not fight against the natural dynamics of the system
= jtis unwise to stiffen what was designed/intended to be soft on purpose

= still, don’t give up too much of desirable performance!
= ideas assessed for flexible joints and links may migrate to other classes of
soft-bodied robots (and applications)

= keep in mind intrinsic task constraints and control limitations (e.g., instabilities
in system inversion of tip trajectories for flexible link robots)

= |ocomotion, shared manipulation, physical interaction in complex tasks, ...

July 16, 2021 SIDRA 2021 Modeling and Control of Soft Robots — A. De Luca 51



REferences pdf and videos: see also
] . ) .diag.uniromal.it/deluca/Publications.php
Cited in the slides -1 W

= Albu-Schaffer, Ott, Hizinger, 2007. A unified passivity-based control framework for position torque and
impedance control of flexible joint robots. Int. J. of Robotics Research, 26(1), 23-39

= Bayo, 1987. A finite element approach to control the end-point motion of a single-link flexible robot.
J. of Robotic Systems, 4(1), 63-75

= Bellezza, Lanari, Ulivi, 1990. Exact modeling of the flexible slewing link. IEEE Int. Conf. on Robotics and
Automation, 734-739

= Buondonno, De Luca, 2015. A recursive Newton-Euler algorithm for robots with elastic joints and its
application to control. [EEE/RSJ Int. Conf. on Intelligent Robots and Systems, 5526-5532

= De Luca, Albu-Schaffer, Haddadin, Hirzinger, 2006. Collision detection and safe reaction with the DLR-III
lightweight manipulator arm. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 1623-1630
= De Luca, Book, 2016. Robots with flexible elements. Springer Handbook of Robotics, chap 11, 243-282

= De Luca, Caiano, Del Vescovo, 2003. Experiments on rest-to-rest motion of a flexible arm. Experimental
Robotics VIII, Springer Tracts in Advanced Robotics, vol 5, 338-349

= De Luca, Di Giovanni, 2001. Rest-to-rest motion of a one-link flexible arm. IEEE/ASME Int. Conf. on
Advanced Intelligent Mechatronics, 923-928

= De Luca, Flacco, 2010. Dynamic gravity cancellation in robots with flexible transmissions. 49th IEEE
Conf. on Decision and Control, 288-295

= De Luca, Flacco, 2011. A PD-type regulator with exact gravity cancellation for robots with flexible
joints. IEEE Int. Conf. on Robotics and Automation, 317-323

July 16, 2021 SIDRA 2021 Modeling and Control of Soft Robots — A. De Luca 52


http://www.diag.uniroma1.it/deluca/Publications.php

References
Cited in the slides — 2

= De Luca, Lanari, Lucibello, Panzieri, Ulivi, 1990. Control experiments on a two-link robot with a flexible
forearm. 29th IEEE Conf. on Decision and Control, 520-527

= De Luca, Lucibello, 1998. A general algorithm for dynamic feedback linearization of robots with elastic
joints. IEEE Int. Conf. on Robotics and Automation, 504-510

= De Luca, Panzieri, Ulivi, 1998. Stable inversion control for flexible link manipulators. IEEE Int. Conf. on
Robotics and Automation, 799-805

= De Luca, Siciliano, 1991. Closed-form dynamic model of planar multi-link lightweight robots. IEEE
Trans. on Systems, Man, and Cybernetics, 21(4), 826-839

= De Luca, Siciliano, 1993a. Regulation of flexible arms under gravity. IEEE Trans. on Robotics and
Automation, 9(4), 463-467

= De Luca, Siciliano, 1993b. Inversion-based nonlinear control of robot arms with flexible links, AIAA J. of
Guidance, Control, and Dynamics, 16(6), 1169-1176

= De Luca, Siciliano, Zollo, 2005. PD control with on-line gravity compensation for robots with elastic
joints: Theory and experiments. Automatica, 41(10), 1809-1819

= Della Santina, Katzschmann, Bicchi, Rus, 2020. Model-based dynamic feedback control of a planar soft
robot: Trajectory tracking and interaction with the environment. Int. J. of Robotics Research, 39(4),
490-513

= Haddadin, De Luca, Albu-Schaffer, 2017. Robot collisions: A survey on detection, isolation, and
identification. IEEE Trans. on Robotics, 33(6), 1292-1312

July 16, 2021 SIDRA 2021 Modeling and Control of Soft Robots — A. De Luca 53



References
Cited in the slides — 3

= Keppler, Lakatos, Ott, Albu-Schaffer, 2018. Elastic Structure Preserving (ESP): Control for compliantly
actuated robots. IEEE Trans. on Robotics, 34(2), 317-335

= Kwon, Book, 1994. A time-domain inverse dynamic tracking control of a single-link flexible
manipulator. ASME J. Dynamic Systems, Measurement. and Control, 116(2), 193-200

= Magrini, Flacco, De Luca, 2015. Control of generalized contact motion and force in physical human-
robot interaction,” IEEE Int. Conf. on Robotics and Automation, 2298-2304

= Malzahn, Phung, Hoffmann, Bertram, 2011. Vibration control of a multi-flexible-link robot arm under
gravity. IEEE Int. Conf. on Robotics and Biomimetics, 1249-1254

= Malzahn, Bertram, 2014. Collision detection and reaction for a multi-elastic-link robot arm. 19" [FAC
World Congr., 320-325

= Ott, Albu-Schaffer, Kugi, Stramigioli, Hirzinger, 2004. A passivity based Cartesian impedance controller
for flexible joint robots - Part I. IEEE Int. Conf. on Robotics and Automation, 2659-2665

= Pustina, 2021. Master Thesis, Sapienza University of Rome
= Spong, 1987. Modeling and control of elastic joint robots. ASME J. Dynamic Systems, Measurement,
and Control, 109(4), 310-319

= Tomei, 1991. A simple PD controller for robots with elastic joints. IEEE Trans. Automatic Control,
36(10), 1208-1213

= Thimmel, 2007. Entwurf, Auslegung und Evaluierung einer Regelungsstruktur fliir Roboterarme mit
elastischen Gelenken zur Erreichung hoher Performance bei Positionier- und Bahnaufgaben am
Beispiel eines KUKA KR15/2. PhD Thesis, Technical University of Munich (in German)

July 16, 2021 SIDRA 2021 Modeling and Control of Soft Robots — A. De Luca 54



