Summer School SIDRA 2021 Modeling and Control of Soft Robots

Bertinoro, Italy
July 15-17, 2021

Regulation, Inversion Control, and Feedback Equivalence for Flexible Robots

Alessandro De Luca

Dipartimento di Ingegneria Informatica, Automatica e Gestionale (DIAG)

deluca@diag.uniroma1.it

Summary

- a world of soft robots
 - flexible joints, serial elastic actuation (SEA), variable stiffness actuation (VSA),
 distributed link flexibility, continuum manipulators, ...
- flexible joint robots
 - dynamic modeling and structural control properties
 - inverse dynamics and feedback linearization for trajectory tracking
 - regulation with partial state feedback and gravity compensation
- model-based design based on feedback equivalence
 - exact cancellation of gravity
 - damping injection on the link side
 - environment interaction via generalized impedance model
- an application of flexible joint robots: physical Human-Robot Interaction (pHRI)

Summary

- flexible link robots
 - dynamic modeling and the role of zero dynamics
 - PD+ for regulation and input-output linearization for joint-level trajectory tracking
 - stable inversion of desired end-effector trajectories
- outlook on control of (planar) soft manipulators
 - using a piecewise continuous curvature (PCC) dynamic model

Classes of soft robots

Robots with elastic joints

- design of lightweight robots with stiff links for end-effector accuracy
- compliant elements absorb impact energy
 - elastic transmissions (HD, cable-driven, ...)
 - soft coverage of links (foam, safe bags)

- elastic joints decouple instantaneously the *larger* inertia of the driving motors from *smaller* inertia of the links (involved in contacts/collisions!)
- relatively soft joints need more sensing (e.g., joint torque) and better control to compensate for static deflections and dynamic vibrations

torque-controlled robots (DLR LWR-III, KUKA LWR-IV & iiwa, Franka, ...)

Classes of soft robots

Robots with variable stiffness actuation (VSA)

- uncertain interaction with dynamic environments (say, humans) requires to adjust online the compliant behavior and/or to control contact forces
 - passive joint elasticity & active impedance control used in parallel
- nonlinear flexible joints with variable (controlled) stiffness work at best
 - can be made stiff when moving slow (performance), soft when fast (safety)
 - enlarge the set of achievable robot compliance in a task-oriented way
 - plus: mechanical robustness, optimal energy use, explosive motion tasks, ...

A matter of terminology ...

- elastic joints vs. SEA (serial elastic actuators)
 - based on the same physical phenomenon: compliance in actuation
 - compliance added on purpose in SEA, mostly a disturbance in elastic joints
 - different range of stiffness: 5-10K Nm/rad down to 0.2-1K Nm/rad in SEA
- joint deformation is often considered in the linear domain
 - modeled as a concentrated torsional spring with constant stiffness at the joint
 - nonlinear flexible joints share similar control properties
 - nonlinear stiffness characteristics & double actuation are needed in VSA
 - a (serial or antagonistic) VSA working at constant stiffness is an elastic joint
- flexible robots are usually classified as underactuated mechanical systems
 - have less commands than generalized coordinates
 - non-collocation of command inputs and controlled outputs
 - however, they are controllable in the first approximation (the easy case!)

Classes of soft robots

Robots with flexible links

- distributed link deformations
 - design of very long and slender arms needed in the application
 - use of lightweight materials to save weight/costs
 - due to large payloads (viz. large contact forces) and/or high motion speed
- as for joint elasticity, neglecting link flexibility will limit static (steady-state error) or dynamic (vibrations, poor tracking) performance
- control issue due to non-minimum phase nature of the end-effector output w.r.t. the torque command input ... "it moves in opposite direction at start!"

Classes of soft robots

Continuum soft manipulators

- characteristics in construction
 - long, flexible, lightweight, slender arms
 - tendon/cable-driven, multi-segmented, distributed/embedded actuation
 - energy efficient, (intentional) bio-inspired design
- useful in many special robotic applications
 - surgical, underwater, safe human interaction, cluttered environments, ...
- kinematic, quasi-static, and dynamic modeling (with approximations)
- extra control issues due to task hyper-redundancy and under-actuation

Flexible link robots vs. continuum manipulators

What are the actual (control) differences?

- continuum manipulators may assume very complex shapes in 3D
 - flexible link robots not!
- continuum manipulators may keep a body-deformed configuration under the action of control (apart from gravity)
 - flexible link robots not!
- flexible link robots are always underactuated mechanical systems
 - continuum manipulators also, but possibly not!
- collocated vs. non-collocated control: both may or may not have this ...

Dynamic modeling of robots with flexible joints

Lagrangian formulation (so-called reduced model of [Spong, ASME JDSMC 1987])

- open chain robot with N flexible joints and N rigid links, driven by electrical actuators
- use N motor variables θ (as reflected through the gear ratios) and N link variables q
- assumptions
 - A1) small displacements at joints (elasticity!)
 - A2) axis-balanced motors
 - A3) each motor is mounted on the robot in a position preceding the driven link
 - A4) no inertial couplings between motors and links

A4)
$$\Rightarrow$$
 2N × 2N inertia matrix is block diagonal

A2) \Rightarrow inertia matrix and gravity vector are independent from θ

link equation
motor equation

Single elastic joint

Transfer functions of interest

we often look rather at the torque-to-velocity mappings ... (eliminating one integrator)

[De Luca, Book, Springer Handbook of Robotics, 2016]

$$P_{\text{motor}}(s) = \frac{\theta(s)}{\tau(s)} = \frac{Ms^2 + K}{MBs^2 + (M+B)K} \frac{1}{s^2}$$

- system with stable zeros and relative degree = 2
- passive (zeros precede poles on imaginary axis)
- stabilization can be achieved via output θ feedback

$$P_{\text{link}}(s) = \frac{q(s)}{\tau(s)} = \frac{K}{MBs^2 + (M+B)K} \frac{1}{s^2}$$

- NO zeros!!
- maximum relative degree = 4

Single elastic joint

Transfer functions of interest

- typical anti-resonance/resonance on motor velocity output (minimum phase)
- pure resonance on link velocity output (weak or no zeros)

a (small) motor or link side viscous friction was added in these Bode plots

Inverse dynamics

Feedforward action for following a desired trajectory in nominal conditions

given a desired smooth link trajectory $q_d(t) \in C^4$

 compute symbolically the desired motor acceleration and, therefore, also the desired link jerk (i.e., up to the fourth time derivative of the desired motion)

$$\begin{pmatrix} M(q) & 0 \\ 0 & B \end{pmatrix} \begin{pmatrix} \ddot{q} \\ \ddot{\theta} \end{pmatrix} + \begin{pmatrix} C(q, \dot{q})\dot{q} \\ 0 \end{pmatrix} + \begin{pmatrix} g(q) \\ 0 \end{pmatrix} + \begin{pmatrix} K(q - \theta) \\ K(\theta - q) \end{pmatrix} = \begin{pmatrix} 0 \\ \tau \end{pmatrix}$$

$$\begin{split} \tau_{d} &= B\ddot{\theta}_{d} + K(\theta_{d} - q_{d}) \\ &= BK^{-1} \left[M(q_{d}) \ q_{d}^{(4)} + 2\dot{M}(q_{d}) \ q_{d}^{(3)} + \ddot{M}(q_{d}) \ddot{q}_{d} + \frac{d^{2}}{dt^{2}} \left(C(q_{d}, \dot{q}_{d}) \dot{q}_{d} + g(q_{d}) \right) \right] \\ &+ \left[M(q_{d}) + B \right] \ddot{q}_{d} + C(q_{d}, \dot{q}_{d}) \dot{q}_{d} + g(q_{d}) \end{split}$$

- the inverse dynamics can be computed efficiently in O(N) using a modified Newton-Euler algorithm (with link recursions up to the 4th order) [Buondonno, De Luca IROS 2015]
- the feedforward command τ_d can be used in combination with a PD feedback control on motor position/velocity error to obtain a local but simple trajectory tracking controller

Feedback linearization

Full-state nonlinear feedback for accurate trajectory tracking tasks

the link position q is a linearizing (flat) output (nonlinear equivalent of "no zeros")

$$\begin{pmatrix} M(q) & 0 \\ 0 & B \end{pmatrix} \begin{pmatrix} \ddot{q} \\ \ddot{\theta} \end{pmatrix} + \begin{pmatrix} C(q, \dot{q})\dot{q} \\ 0 \end{pmatrix} + \begin{pmatrix} g(q) \\ 0 \end{pmatrix} + \begin{pmatrix} K(q-\theta) \\ K(\theta-q) \end{pmatrix} = \begin{pmatrix} 0 \\ \tau \end{pmatrix} \longleftrightarrow q^{(4)} = u$$

differentiating twice the link equation and using the motor acceleration yields

$$\tau = BK^{-1}M(q)u + K(\theta - q) + B\ddot{q} + BK^{-1}\left(2\dot{M}q^{(3)} + \ddot{M}\ddot{q} + \frac{d^2}{dt^2}\left(C\dot{q} + g(q)\right)\right)$$

- an exactly linear and I-O decoupled system ("chains of 4 integrators") is obtained
 - to be stabilized with standard techniques for linear dynamics (pole placement, LQ, ...)
- requires higher derivatives of q -

$$q,\dot{q},\ddot{q},q^{(3)}$$

- however, these can be computed from the model using state measurements
- requires higher derivatives of the dynamics components

• A $O(N^3)$ Newton-Euler recursive numerical algorithm is available for this problem

Feedback linearization

$$\tau = M(q)(\ddot{q}_d + K_D(\dot{q}_d - \dot{q}) + K_P(q_d - q)) + C(q, \dot{q})\dot{q} + g(q)$$

$$\tau = BK^{-1}M(q)u + K(\theta - q) + B\ddot{q} + BK^{-1}\left(2\dot{M}q^{(3)} + \ddot{M}\ddot{q} + \frac{d^2}{dt^2}\left(C\dot{q} + g(q)\right)\right)$$

$$u = \left(q_d^{[4]} + K_J(\ddot{q}_d - \ddot{q}) + K_A(\ddot{q}_d - \ddot{q}) + K_D(\dot{q}_d - \dot{q}) + K_P(q_d - q)\right)$$

video

rigid computed torque

[Spong, ASME JDSMC 1987]

elastic joint feedback linearization

Feedback linearization

Benefits on an industrial KUKA KR-15/2 robot (235 kg) with joint elasticity

conventional industrial robot control

feedback linearization + high-damping

4 videos

front plane

[Thümmel, PhD 2007]

trajectory tracking with model-based control

Visco-elasticity at the joints

Introduces a structural change ...

on Spong model

$$\begin{pmatrix} M(q) & 0^* \\ 0^* & B \end{pmatrix} \begin{pmatrix} \ddot{q} \\ \ddot{\theta} \end{pmatrix} + \begin{pmatrix} C(q, \dot{q})\dot{q} \\ 0 \end{pmatrix}^* + \begin{pmatrix} g(q) \\ 0 \end{pmatrix} + \begin{pmatrix} K(q-\theta) + D(\dot{q}-\dot{\theta}) \\ K(\theta-q) + D(\dot{\theta}-\dot{q}) \end{pmatrix} = \begin{pmatrix} 0 \\ \tau \end{pmatrix}$$

coupling type	control consequence for the model
stiffness	basic elastic coupling, maximum relative degree (= 4) of output q
damping	reduced relative degree (= 3), only I-O linearization by static feedback
inertia*	reduced relative degree, exact or I-O linearization needs dynamic feedback

^{*} the so-called complete dynamic model includes off-diagonal inertial couplings between motors and links [De Luca, Lucibello, ICRA 1998]

Regulation tasks

Using a minimal PD+ action on the motor side

for a desired constant link position q_d

- evaluate the associated desired motor position θ_d at steady state
- collocated (partial state) feedback preserves passivity, with stiff K_P gain dominating gravity
- focus on the term for gravity compensation (acting on link side) from motor measurements

$$\theta_d = q_d + K^{-1}g(q_d)$$

$$\tau = \tau_g + K_P(\theta_d - \theta) - K_D \dot{\theta} \qquad K_D > 0$$

$ au_g$	gain criteria for stability
$g(q_d)$	$\lambda_{min} \begin{bmatrix} K & -K \\ -K & K + K_P \end{bmatrix} > \alpha$ [Tomei, IEEE T-AC 1991]
$g(\theta - K^{-1}g(q_d))$	$\lambda_{min} \begin{bmatrix} K & -K \\ -K & K + K_P \end{bmatrix} > \alpha$ [De Luca, Siciliano, Zollo, ASME JDSMC 2004]
$g(\overline{q}(\theta)), \ \overline{q}(\theta): \ g(\overline{q}) = K(\theta - \overline{q})$	$K_P > 0$, $\lambda_{min}(K) > \alpha$ [Ott <i>et al</i> , ICRA 2004]
$g(q) + BK^{-1}\ddot{g}(q)$	$K_P > 0$, $K > 0$ [De Luca, Flacco, CDC 2010]

exact gravity cancellation
(with full state feedback)

$$\alpha = \max_{q} \left\| \frac{\partial g(q)}{\partial q} \right\|$$

Exact gravity cancellation

A slightly different view

for rigid robots this is trivial, due to collocation

$$\tau = \tau_g + \tau_0$$

$$\Rightarrow$$

$$\tau_g = g(q)$$

$$q \equiv q_0$$

$$M(q)\ddot{q} + c(q, \dot{q}) + D\dot{q} = \tau_0$$

$$M(q)\ddot{q} + c(q,\dot{q}) + D\dot{q} + g(q) = \tau$$

Exact gravity cancellation

... based on the concept of feedback equivalence between nonlinear systems

for elastic joint robots, non-collocation of input torque and gravity term

$$\tau_g = g(q) + D_\theta K^{-1} \dot{g}(q) + BK^{-1} \ddot{g}(q)$$

$$\theta_0 = \theta + K^{-1}g(q)$$

feedback control

state transformation

Feedback equivalence

Exploit the system property of being feedback linearizable (without forcing it!)

$$\dot{x} = f(x) + G(x)u$$

$$\dot{x} = f(x) + G(x)u$$

$$\dot{x}_0 = f_0(x_0) + G_0(x_0)u_0$$

 $Z \approx$ linearizing outputs

linear, controllable system

A global PD-type regulator

Exact gravity cancellation + PD law on modified motor variables: A 1-DOF arm

Without Gravity vs Dynamic Gravity Cancellation (with PD)

2

(pg) 1.5

0 0 1 2 3 4 5 6

(398) 2

1 0 1 2 3 4 5 6

(100) 1 1 2 3 4 5 6

Without Gravity vs Dynamic Gravity Cancellation (with PD)

time (s)

total control torque

different motor behavior

gravity-loaded system under PD + gravity cancellation vs.

[De Luca, Flacco, ICRA 2011]

gravity-free system under PD (with same gains)

 $K_P > 0$

K > 0

works without strictly positive lower bounds (good also for VSA!)

Vibration damping on lightweight robots

DLR-III or KUKA LWR-IV with relatively low joint elasticity (use of Harmonic Drives)

video

vibration damping **OFF**

vibration damping **ON**

[Albu-Schäffer et al, IJRR 2007]

for relatively **large** joint elasticity (low stiffness), as encountered in VSA systems, vibration damping via joint torque feedback + motor damping is **insufficient** for high performance!

Damping injection on the link side

$$\theta_0 = \theta + K^{-1} D \dot{q}$$

state transformation

$$\begin{pmatrix} M(q) & 0 \\ 0 & B \end{pmatrix} \begin{pmatrix} \ddot{q} \\ \ddot{\theta} \end{pmatrix} + \begin{pmatrix} C(q, \dot{q})\dot{q} \\ 0 \end{pmatrix} + \begin{pmatrix} g(q) \\ 0 \end{pmatrix} + \begin{pmatrix} K(q - \theta) \\ K(\theta - q) \end{pmatrix} = \begin{pmatrix} 0 \\ \tau \end{pmatrix}$$

$$\tau = \tau_0 - D\dot{q} - BK^{-1}D\ddot{q}$$

feedback control

$$\begin{pmatrix} M(q) & 0 \\ 0 & B \end{pmatrix} \begin{pmatrix} \ddot{q} \\ \ddot{\boldsymbol{\theta}}_{\mathbf{0}} \end{pmatrix} + \begin{pmatrix} C(q, \dot{q})\dot{q} \\ 0 \end{pmatrix} + \begin{pmatrix} g(q) \\ 0 \end{pmatrix} + \begin{pmatrix} K(q - \boldsymbol{\theta}_{\mathbf{0}}) \\ K(\boldsymbol{\theta}_{\mathbf{0}} - q) \end{pmatrix} = \begin{pmatrix} -\boldsymbol{D}\dot{\boldsymbol{q}} \\ \tau_{0} \end{pmatrix}$$

- **ESP** = Elastic Structure Preserving control by DLR [Keppler *et al*, IEEE T-RO 2018]
- same principle of feedback equivalence (including state transformation)!

Damping injection on the link side

video

DLR

video

[Keppler et al, IEEE T-RO 2018]

Environment interaction via impedance control

Matching a generalized (fourth order) impedance model: A simple 1-DOF case

 $M\ddot{q} + K(q - \theta) = \frac{\tau_e}{B\ddot{\theta} + D\dot{\theta} + K(\theta - q)} = \tau$

feedback control

assume that $M_0=M$ in order to avoid derivatives of the measured force au_e

$$\tau = K(\theta - q) + D\dot{\theta} - BK^{-1} \left\{ (K - K_0)M^{-1} (\tau_e + K(\theta - q)) + K_0B_0^{-1} (\tau_0 - D_0\dot{\theta}_0 - K(\theta - q)) \right\}$$

$$\dot{\theta}_0 = \dot{q} + KK_0^{-1} (\dot{\theta} - \dot{q})$$

state transformation

$$M_0 \ddot{q} + K_0 (q - \theta_0) = \frac{\tau_e}{R_0}$$

$$B_0 \ddot{\theta}_0 + D_0 \dot{\theta}_0 + K_0 (\theta_0 - q) = \tau_0$$

again, by the principle of feedback equivalence (including the state transformation)

Torque feedback

Consider a pure proportional torque feedback (+ a derivative term for the visco-elastic case)

$$\tau = BB_0^{-1}u + (I - BB_0^{-1})\tau_J + (I - BB_0^{-1})DK^{-1}\dot{\tau}_J$$

$$-K_T$$

physical interpretation:

scaling of the motor inertia and motor friction! [Ott, Albu-Schäffer, IEEE T-RO 2008]

but also...

special case of matching by feedback equivalence!

original motor dynamics

$$B\ddot{\theta} + K(\theta - q) = \tau$$

visco-elastic case

$$B\ddot{\theta} + \tau_I + DK^{-1}\dot{\tau}_I = \tau$$

after the torque feedback

$$B_0\ddot{\theta} + K(\theta - q) = u$$

$$B_0\ddot{\theta} + \tau_J + DK^{-1}\dot{\tau}_J = u$$

Full-state feedback

Combining torque feedback with motor PD regulation ("torque controlled robots")

inertia scaling via torque feedback $\tau = (I + K_T)u - K_T \tau_I - K_S \dot{\tau}_I$

inertia scaling via torque feedback
$$\tau = (I + K_T)u - K_T \tau_J - K_S \dot{\tau}_J$$
 regulation via motor PD, e.g., with
$$u = g(\bar{q}(\theta)) + K_\theta(\theta_d - \theta) - D_\theta \dot{\theta}$$

⇒ joint level control structure of the DLR (and KUKA) lightweight robots

dynamics feedforward and desired torque command

vibration damping

friction compensation and/or disturbance observer

torque control

$$K_P = 0$$

$$K_D = 0$$

$$K_T > 0$$

$$K_S > 0$$

$$\tau_{J,d} = \tau_d$$

position control

$$K_P > 0$$

$$K_D > 0$$

$$K_T > 0$$

$$K_S > 0$$

$$\tau_{J,d} = g(q)$$

impedance control

$$K_{P} = K_{T}K_{\theta}$$

$$K_{D} = K_{T}D_{\theta}$$

$$K_{T} = (BB_{d}^{-1} - I)$$

$$K_{S} = (BB_{d}^{-1} - I)DK^{-1}$$

$$\tau_{j,d} = g(\bar{q}(\theta))$$

Exploiting joint elasticity in pHRI

collision detection & reaction for safety (model-based + joint torque sensing)

video

[De Luca et al, IROS 2006; Haddadin et al, IEEE T-RO 2017]

Exploiting joint elasticity in pHRI

Human-robot collaboration in torque control mode

contact force estimation & control (virtual force sensor, anywhere/anytime)

video

[Magrini et al, ICRA 2015]

Dynamic modeling of a single flexible link

Euler-Bernoulli beam [Bellezza, Lanari, Ulivi, ICRA 1990]

- beam of length l, uniform density ρ , Young modulus \cdot cross-section inertia EI in rotation on a horizontal plane
- actuator inertia J_0 at the base and payload mass m_p and inertia J_p at the tip
- various angular variables: $\theta_c(t)$ clamped at base (measured by encoder), $\theta(t)$ pointing at CoM (very convenient!), $\theta_t(t)$ pointing at the tip (measurable and of interest)
- small deformations of pure bending $w(x,t) = \phi(x)\delta(t)$ (with space/time separation)
- Hamilton principle + calculus of variation ⇒ PDE equations, with geometric and dynamic boundary conditions

$$J\ddot{\theta}(t) = \tau(t) \qquad J = J_0 + \frac{\rho l^3}{3} + J_p + m_p l^2$$

$$EIw''''(x,t) + \rho(\ddot{w}(x,t) + x\ddot{\theta}(t)) = 0$$

$$w(0,t) = 0$$

$$EIw''(0,t) = J_0 \left(\ddot{\theta}(t) + \ddot{w}'(0,t) \right) - \tau(t)$$

$$EIw'''(l,t) = -J_p \left(\ddot{\theta}(t) + \ddot{w}'(l,t) \right)$$

$$EIw'''(l,t) = m_p \left(l\ddot{\theta}(t) + \ddot{w}(l,t) \right)$$

Dynamic modeling of a single flexible link

Characteristic equation and eigenfrequencies

• infinite countable roots β_i , i = 1,2,... of an eigenvalue problem

$$(1 - \frac{m_p}{\rho^2}\beta_i^4(J_0 + J_p))(\cos\beta_i l \sinh\beta_i l - \sin\beta_i l \cosh\beta_i l) - \frac{2m_p}{\rho}\beta_i \sin\beta_i l \sinh\beta_i l - \frac{2J_p}{\rho}\beta_i^3 \cos\beta_i l \cosh\beta_i l$$
$$- \frac{J_0}{\rho}\beta_i^3(1 + \cos\beta_i l \cosh\beta_i l) + \frac{J_0J_p}{\rho^2}\beta_i^6(\cos\beta_i l \sinh\beta_i l + \sin\beta_i l \cosh\beta_i l) - \frac{J_0J_pm_p}{\rho^3}\beta_i^7(1 - \cos\beta_i l \cosh\beta_i l) = 0$$

- common assumed modes are special cases
 - clamped-free: $m_p=0$, $J_p=0$, $J_0\to\infty\implies 1+\cos\beta_i l\cosh\beta_i l=0$
 - pinned-free: $m_p = 0$, $J_p = 0$, $J_0 = 0$ \implies $\cos \beta_i l \sinh \beta_i l \sin \beta_i l \cosh \beta_i l = 0$
- associated to each root β_i there is
 - an eigenfrequency (system vibrations) $\omega_i = \sqrt{EI\beta_i^4/\rho}$
 - an eigenvector (spatial mode) $\phi_i(x) = A \sin \beta_i x + B \cos \beta_i x + C \sinh \beta_i x + D \cosh \beta_i x$
 - a deformation variable $\delta_i(t)$
- finite approximation by truncation up to n_e orthonormal modes: $w(x,t)=\sum_{i=1}^{n_e}\phi_i(x)\delta_i(t)$

Dynamic model of a single flexible link

Final equations and system outputs

linear dynamic model

$$J\ddot{\theta} = \tau$$

$$\ddot{\delta}_i + \omega_i^2 \delta_i = \phi_i'(0)\tau, \qquad i = 1, ..., n_e$$

• including modal damping $(\zeta_i \in [0,1])$

$$J\ddot{\theta} = \tau$$

$$\ddot{\delta}_i + 2\zeta_i \omega_i \dot{\delta}_i + \omega_i^2 \delta_i = \phi_i'(0)\tau, \qquad i = 1, ..., n_e$$

in matrix form

$$q = \begin{pmatrix} \theta, \delta_1, \delta_2, \dots, \delta_{n_e} \end{pmatrix} \in \mathbb{R}^{n_e + 1} \qquad M\ddot{q} + D\dot{q} + Kq = B\tau$$

$$M = \begin{pmatrix} J & 0 \\ 0 & I_{n_e} \end{pmatrix}, \qquad D = \begin{pmatrix} 0 & 0 \\ 0 & 2Z\Omega \end{pmatrix}, \qquad K = \begin{pmatrix} 0 & 0 \\ 0 & \Omega^2 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 \\ \Phi'(0) \end{pmatrix}$$

system outputs

$$\theta_c = \theta + \sum_{i=1}^{n_e} \phi_i'(0)\delta_i \qquad \theta_t = \theta + \sum_{i=1}^{n_e} \frac{\phi_i(l)}{l} \delta_i$$

clamped joint level: always minimum phase

tip level: typically non-minimum phase

Single flexible link

Eigenmodes

physical data of an Euler-Bernoulli model

$$l=1$$
,

$$\rho = 0.5$$

$$EI=1$$
,

$$J_0 = 0.002$$

$$l = 1$$
, $\rho = 0.5$, $EI = 1$, $J_0 = 0.002$ $(m_p = J_p = 0)$

• first four exact mode shapes (normalized) -k-th mode has k nodes w.r.t. rigid axis

$$\phi_1(x)$$
 at $f_1=3.27~\mathrm{Hz}$

$$\phi_3(x)$$
 at $f_3=16.13~\mathrm{Hz}$

$$\phi_4(x)$$
 at $f_4=28.28~{\rm Hz}$

Single flexible link

Transfer functions of interest and frequency responses

$$P_{c}(s) = \frac{\theta_{c}(s)}{\tau(s)} = \frac{1}{Js^{2}} + \sum_{i=1}^{n_{e}} \frac{\phi'_{i}(0)^{2}}{s^{2} + 2\zeta_{i}\omega_{i}s + \omega_{i}^{2}} \qquad P_{t}(s) = \frac{\theta_{t}(s)}{\tau(s)} = \frac{1}{Js^{2}} + \sum_{i=1}^{n_{e}} \frac{\phi'_{i}(0)\phi_{i}(l)/l}{s^{2} + 2\zeta_{i}\omega_{i}s + \omega_{i}^{2}}$$

$$P_{t}(s) = \frac{\theta_{t}(s)}{\tau(s)} = \frac{1}{Js^{2}} + \sum_{i=1}^{n_{e}} \frac{\phi'_{i}(0)\phi_{i}(l)/l}{s^{2} + 2\zeta_{i}\omega_{i}s + \omega_{i}^{2}}$$

 $n_e = 3$ modes

clamped joint level: always minimum phase

tip level: typically non-minimum phase

Single flexible link

Pole-zero patterns

in the absence of modal damping

Single flexible link

Experimental model identification

in the frequency domain

sweep joint acceleration excitation signal: plant vs. model

joint acceleration frequency response: plant vs. model matching (\leq 1%) of resonances at $f_1=14.4, f_1=34.2, f_1=69.3~{\rm Hz}$

Dynamic modeling of robots with flexible links

Lagrangian formulation (finite-dimensional)

- open chain robot with N flexible links, each with $n_{e,i}$ deformation variables (a total of N_e)
- single-link modeling results embedded with caution for each of the multiple flexible links
- in general, 2D bending + torsion (to limit model complexity, only planar structures here)
- typical use of simpler assumed modes to describe spatial deformation

 $(N + N_e) \times (N + N_e)$ full inertia matrix

rlgid equations

$$\begin{pmatrix} M_{\theta\theta}(\theta,\delta) & M_{\theta\delta}(\theta,\delta) \\ M_{\theta\delta}^T(\theta,\delta) & M_{\delta\delta}(\theta,\delta) \end{pmatrix} \begin{pmatrix} \ddot{\theta} \\ \ddot{\delta} \end{pmatrix} + \begin{pmatrix} c_{\theta}(\theta,\delta,\dot{\theta},\dot{\delta}) \\ c_{\delta}(\theta,\delta,\dot{\theta},\dot{\delta}) \end{pmatrix} + \begin{pmatrix} g_{\theta}(\theta,\delta) \\ g_{\delta}(\theta,\delta) \end{pmatrix} + \begin{pmatrix} 0 \\ K\delta + D\dot{\delta} \end{pmatrix} = \begin{pmatrix} \tau \\ 0 \end{pmatrix}$$

[De Luca, Siciliano, IEEE T-SMC 1991]

flexible equations

Dynamic modeling of robots with flexible links

Simplifications in model (possibly, for control use)

in matrix form

$$q = (\theta, \delta) \in \mathbb{R}^{N+N_e} \qquad M(q)\ddot{q} + c(q, \dot{q}) + g(q) + {0 \choose D\dot{\delta} + K\delta} = {\tau \choose 0}$$

- common simplifications in mechanics
 - small deformations (in the linear domain) $\rightarrow g_{\delta}(\theta)$
 - kinetic energy evaluated in the undeformed ($\delta = 0$) configuration of the arm $\to M(\theta)$
 - $M_{\delta\delta}$ often constant

$$\begin{pmatrix} M_{\theta\theta}(\theta) & M_{\theta\delta}(\theta) \\ M_{\theta\delta}^T(\theta) & M_{\delta\delta} \end{pmatrix} \begin{pmatrix} \ddot{\theta} \\ \ddot{\delta} \end{pmatrix} + \begin{pmatrix} c_{\theta}(\theta, \dot{\theta}) \\ 0 \end{pmatrix} + \begin{pmatrix} g_{\theta}(\theta, \delta) \\ g_{\delta}(\theta) \end{pmatrix} + \begin{pmatrix} 0 \\ K\delta + D\dot{\delta} \end{pmatrix} = \begin{pmatrix} \tau \\ 0 \end{pmatrix}$$

- flexible link manipulators are underactuated systems
 - less command inputs τ than generalized coordinates q
 - we consider as many controlled outputs y as commands ('squaring the I-O problem')
 - problems, however, with the associated zero dynamics (in a linear or nonlinear setting)

Control problems for flexible link robots

A compact overview (moving in free space) ...

- regulation to a desired equilibrium state $(q, \dot{q}) = (\theta_d, \delta_d, 0, 0)$
 - only the desired joint/rigid variable θ_d is assigned: δ_d has to be determined
 - θ_d may come from a (numerical) kineto-static inversion of a Cartesian pose y_d
 - forward kinematics of flexible robots is a complete function $y = kin(\theta, \delta)$
 - global stabilization results with joint PD + gravity compensation
- tracking of a joint trajectory $\theta_d(t)$
 - the easy case, solved by I-O inversion (stable/minimum phase zero dynamics)
 - solution stiffens the arm at the bases of the flexible links, rejecting vibrations
- tracking of an end-effector trajectory $y_d(t)$
 - the difficult case, facing the unstable/non-minimum phase zero dynamics
 - non-causal solution designed in frequency or time domain (feedforward + local stabilizing feedback)
 - causal solution by nonlinear regulation (avoiding critical cancellations)
- rest-to-rest motion between two equilibria in assigned time T

Main results - 1

• global asymptotic stabilization to a desired equilibrium state $(\theta_d, \delta_d, 0, 0)$

$$\tau = K_P(\theta_d - \theta) - K_D \dot{\theta} + g_\theta(\theta_d, \delta_d)$$

$$\delta_d = -K^{-1}g_{\delta}(\theta_d) \qquad \lambda_{min}\left\{\binom{K_P \quad 0}{0 \quad K}\right\} > \alpha \qquad K_D > 0$$
 possibly by iterative solution of $\sin(\theta, -K^{-1}g_{\delta}(\theta)) = y_d$ upper bound on $\left\|\frac{\partial g(q)}{\partial q}\right\|$ [De Luca, Siciliano, IEEE T-RO 1993a]

two-link flexible arm with two bending modes for each link under gravity

Main results – 2

[De Luca, Siciliano,

AIAA JGCD 1993b]

• tracking of a joint trajectory $\theta_d(t)$ via I-O feedback linearization

$$\tau = \left(M_{\theta\theta} - M_{\theta\delta} M_{\delta\delta}^{-1} M_{\theta\delta}^T\right) a + c_{\theta} + g_{\theta} - M_{\theta\delta} M_{\delta\delta}^{-1} \left(c_{\delta} + g_{\delta} + K\delta + D\dot{\delta}\right)$$

resulting closed-loop system

$$\ddot{\theta} = a$$

$$\ddot{\delta} = -M_{\delta\delta}^{-1} \left(M_{\theta\delta}^T a + c_{\delta} + g_{\delta} + K\delta + D\dot{\delta} \right)$$

trajectory error (exponential) stabilization

$$a = \ddot{\theta}_d + K_D(\dot{\theta}_d - \dot{\theta}) + K_P(\theta_d - \theta), \qquad K_P, K_D > 0$$

• the zero dynamics, when the output $\theta(t) \equiv 0$, is asymptotically stable (via Lyapunov argument)

$$\ddot{\delta} = -M_{\delta\delta}^{-1} (c_{\delta} + g_{\delta} + K\delta + D\dot{\delta})$$

• the clamped dynamics, when the output $\theta(t) \equiv \theta_d(t)$, is bounded

$$\ddot{\delta} = -A_2(t)\dot{\delta} + A_1(t)\delta + f_{\delta}(t)$$

Main results - 3

- tracking of an end-effector trajectory $y_d(t)$
 - non-causal command designed in frequency domain ⇒ desired acceleration as part of a periodic profile, bounded inversion via Fourier transform (or FFT)
 [Bayo, JRobSyst 1987]
 - ... designed in time domain ⇒ forward/backward time integration of stable/unstable parts of the inverse system
 [Kwon, Book, ASME JDSMC 1994]
 - both extended from linear to nonlinear case via numerical/iterative methods

bang-bang acceleration in T = 2 s
for both system outputs

control torques, with pre-charge and discharge intervals ($T_{\tau} = 2.5 \text{ s}$)

stroboscopic motion of the 2R FLEXARM under E-E control

Control solutions for flexible link robots at Sapienza

Main results – 4 (oldies but goldies...)

- stable nonlinear regulation of end-effector trajectory for the 2R FLEXARM
- rest-to-rest slew motion in assigned time for a one-link flexible beam

video

45° for (rigid) link 1 and 45° for tip of flexible forearm in T = 1.5 s

[De Luca et al, CDC 1990, ICRA 1998]

90° slew in T = 2 s (flat output design)

[De Luca, Di Giovanni, AIM 2001; De Luca, Caiano, Del Vescovo, ISER 2002]

More results, including physical interaction

video

- 3R arm with flexible links TUDOR (TU Dortmund Omni-elastic Robot)
- vibration damping by strain gauge feedback during motion (or after impact)

[Malzahn et al, IEEE ROBIO 2011]

[Malzahn, Bertram, IFAC World Congr 2014]

collision detection and reaction based on generalized momentum observer
 same residual method as in elastic joint robots!!

Outlook on control of soft manipulators

Continuum planar arms with PCC

- dynamic modeling assumptions
 - A1) [kinematics] approximated as a series of n segments, each with a curvature q_i
 - A2) [inertia] each segment can be described by an equivalent point mass
 - A3) [impedance] continuous distribution of infinitesimal springs and dampers
- fully actuated on each segment \Leftrightarrow underactuated with m < n input commands

[Della Santina et al, IJRR 2020]

Dynamic model of planar soft manipulator

Full actuation vs. underactuation in PCC model

actuated on each of the n segments

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) + Kq + D\dot{q} = \tau$$

with the usual properties (M>0, $\dot{M}-2C$ skew-symmetric, g bounded in norm, ...)

- ⇒ regulation, curvature trajectory tracking, Cartesian stiffness control, preserving (in nominal conditions) stiffness and damping of the soft system [Della Santina et al, IJRR 2020]
- underactuated with only m < n input commands
 - let $q=(q_a,q_u)$, possibly after relabeling of segments, being $q_a \in \mathbb{R}^m$ the curvature of active segments and $q_u \in \mathbb{R}^{n-m}$ that of the unactuated segments
 - dropping dependencies, with active commands $\tau \in \mathbb{R}^m$ and suitable partitions

$$\begin{pmatrix} M_{aa} & M_{au} \\ M_{au}^T & M_{pu} \end{pmatrix} \begin{pmatrix} \ddot{q}_a \\ \ddot{q}_u \end{pmatrix} + \begin{pmatrix} C_{aa} & C_{au} \\ C_{ua} & C_{uu} \end{pmatrix} \begin{pmatrix} \dot{q}_a \\ \dot{q}_u \end{pmatrix} + \begin{pmatrix} g_a \\ g_u \end{pmatrix} + \begin{pmatrix} K_a & 0 \\ 0 & K_u \end{pmatrix} \begin{pmatrix} q_a \\ q_u \end{pmatrix} + \begin{pmatrix} D_a & 0 \\ 0 & D_u \end{pmatrix} \begin{pmatrix} \dot{q}_a \\ \dot{q}_u \end{pmatrix} = \begin{pmatrix} \tau \\ 0 \end{pmatrix}$$

⇒ a few preliminary results ... [joint work with Pietro Pustina, 2021]

Regulation and trajectory tracking

Full actuation: moving from joint configuration space to local curvature space

lacktriangle regulation to a (quasi-static) q_d

feedforward (soft robot stiffness & damping)

gravity feedback cancellation

$$\tau = Kq_d + D\dot{q}_d + g(q) + K_P(q_d - q) + K_D(\dot{q}_d - \dot{q})$$
robustifying PD action

[Della Santina *et al,* IJRR 2020]

$$\tau = Kq_d + D\dot{q}_d + g(q) + C(q, \dot{q})\dot{q}_d + M(q)\ddot{q}_d + K_P(q_d - q) + K_D(\dot{q}_d - \dot{q})$$

• tracking of $q_d(t)$, with $\dot{q}_d \neq 0$, $\ddot{q}_d \neq 0$

video

passivity-based tracking controller

Zero dynamics and regulation

STON WAR

Underactuated planar PCC model, without and with gravity

- zero dynamics when the output is $y = q_a \in \mathbb{R}^m$
 - in the absence of gravity $(g(q) \equiv 0)$, the unique state $(q_u, \dot{q}_u) = (0,0)$ is globally asymptotically stable for the zero dynamics of the soft robot
 - in the presence of gravity (e.g., in a vertical plane), the trajectories of the zero dynamics remain bounded and converge to $(q_u, \dot{q}_u) = (q_{u.eq}, 0)$, being $q_{u,eq}$ a solution of

$$K_u q_u + g_u(0, q_u) = 0$$

- proofs by Lyapunov/La Salle analysis
- regulation to $q_d=(q_{a,d},0)\in\mathbb{R}^n$, $q_{a,d}\in\mathbb{R}^m$, in the absence of gravity

$$\tau = K_P (q_{a,d} - q_a) - K_D \dot{q}_a + K_a q_{a,d} \qquad K_P, K_D > 0$$

• regulation to $q_d=(q_{a,d},q_{p,d})\in\mathbb{R}^n$, $q_{a,d}\in\mathbb{R}^m$, in the presence of gravity

$$\begin{cases} \tau = K_P(q_{a,d} - q_a) - K_D \dot{q}_a + g_a(q_d) + K_a q_{a,d} & K_P > 0, \text{ sufficiently large} \\ \tau^g = K_P(q_{a,d} - q_a) - K_D \dot{q}_a + g_a(q_{a,d}, q_u) + K_a q_{a,d} & K_u q_u + g_u(q_{a,d}, q_u) = 0 \end{cases}$$

Simulation results

Underactuation with n=3 segments, m=2 actuated: $\boldsymbol{q_a}=(q_1,q_3)$, $\boldsymbol{q_u}=q_2$

• regulation to $q_{a,d}=(0,0)$ from $q(0)=(-\pi,-\pi,\pi)$ using τ^g , in the presence of gravity video

• tracking of $q_{a,d}(t) = (\sin t, \cos t)$ starting from $q(0) = (-\pi, -\pi, 0)$, using a partial feedback linearization control τ^{PFL} , in the presence of gravity video

Take home messages

ST-OVE THE

Control of soft robots in 2021+

- a "soft explosion" is revamping the mature field of flexible robot control
 - consideration of dynamics in the control design/performance of soft robots
 - combine (learned) feedforward and feedback to achieve robustness
 - iterative learning (on repetitive tasks) is available for flexible manipulators
 - optimal control (min time, min energy, max force, ...) still open for fun
- revisiting model-based control design
 - do not fight against the natural dynamics of the system
 - it is unwise to stiffen what was designed/intended to be soft on purpose
 - still, don't give up too much of desirable performance!
- ideas assessed for flexible joints and links may migrate to other classes of soft-bodied robots (and applications)
 - keep in mind intrinsic task constraints and control limitations (e.g., instabilities in system inversion of tip trajectories for flexible link robots)
 - locomotion, shared manipulation, physical interaction in complex tasks, ...

References

Cited in the slides - 1

pdf and videos: see also www.diag.uniroma1.it/deluca/Publications.php

- Albu-Schäffer, Ott, Hizinger, 2007. A unified passivity-based control framework for position torque and impedance control of flexible joint robots. Int. J. of Robotics Research, 26(1), 23-39
- Bayo, 1987. A finite element approach to control the end-point motion of a single-link flexible robot.
 J. of Robotic Systems, 4(1), 63-75
- Bellezza, Lanari, Ulivi, 1990. Exact modeling of the flexible slewing link. IEEE Int. Conf. on Robotics and Automation, 734-739
- Buondonno, De Luca, 2015. A recursive Newton-Euler algorithm for robots with elastic joints and its application to control. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 5526-5532
- De Luca, Albu-Schäffer, Haddadin, Hirzinger, 2006. Collision detection and safe reaction with the DLR-III lightweight manipulator arm. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 1623-1630
- De Luca, Book, 2016. Robots with flexible elements. Springer Handbook of Robotics, chap 11, 243-282
- De Luca, Caiano, Del Vescovo, 2003. Experiments on rest-to-rest motion of a flexible arm. Experimental Robotics VIII, Springer Tracts in Advanced Robotics, vol 5, 338-349
- De Luca, Di Giovanni, 2001. Rest-to-rest motion of a one-link flexible arm. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, 923-928
- De Luca, Flacco, 2010. Dynamic gravity cancellation in robots with flexible transmissions. 49th IEEE
 Conf. on Decision and Control, 288-295
- De Luca, Flacco, 2011. A PD-type regulator with exact gravity cancellation for robots with flexible joints. IEEE Int. Conf. on Robotics and Automation, 317-323

References

SALOVM VIE

Cited in the slides – 2

- De Luca, Lanari, Lucibello, Panzieri, Ulivi, 1990. Control experiments on a two-link robot with a flexible forearm. 29th IEEE Conf. on Decision and Control, 520-527
- De Luca, Lucibello, 1998. A general algorithm for dynamic feedback linearization of robots with elastic joints. IEEE Int. Conf. on Robotics and Automation, 504-510
- De Luca, Panzieri, Ulivi, 1998. Stable inversion control for flexible link manipulators. IEEE Int. Conf. on Robotics and Automation, 799-805
- De Luca, Siciliano, 1991. Closed-form dynamic model of planar multi-link lightweight robots. IEEE
 Trans. on Systems, Man, and Cybernetics, 21(4), 826-839
- De Luca, Siciliano, 1993a. Regulation of flexible arms under gravity. IEEE Trans. on Robotics and Automation, 9(4), 463-467
- De Luca, Siciliano, 1993b. Inversion-based nonlinear control of robot arms with flexible links, AIAA J. of Guidance, Control, and Dynamics, 16(6), 1169-1176
- De Luca, Siciliano, Zollo, 2005. PD control with on-line gravity compensation for robots with elastic joints: Theory and experiments. Automatica, 41(10), 1809-1819
- Della Santina, Katzschmann, Bicchi, Rus, 2020. Model-based dynamic feedback control of a planar soft robot: Trajectory tracking and interaction with the environment. *Int. J. of Robotics Research*, 39(4), 490-513
- Haddadin, De Luca, Albu-Schäffer, 2017. Robot collisions: A survey on detection, isolation, and identification. IEEE Trans. on Robotics, 33(6), 1292-1312

References

SZ-OVM YE

Cited in the slides – 3

- Keppler, Lakatos, Ott, Albu-Schäffer, 2018. Elastic Structure Preserving (ESP): Control for compliantly actuated robots. IEEE Trans. on Robotics, 34(2), 317-335
- Kwon, Book, 1994. A time-domain inverse dynamic tracking control of a single-link flexible manipulator. ASME J. Dynamic Systems, Measurement. and Control, 116(2), 193-200
- Magrini, Flacco, De Luca, 2015. Control of generalized contact motion and force in physical humanrobot interaction," IEEE Int. Conf. on Robotics and Automation, 2298-2304
- Malzahn, Phung, Hoffmann, Bertram, 2011. Vibration control of a multi-flexible-link robot arm under gravity. IEEE Int. Conf. on Robotics and Biomimetics, 1249-1254
- Malzahn, Bertram, 2014. Collision detection and reaction for a multi-elastic-link robot arm. 19th IFAC World Congr., 320-325
- Ott, Albu-Schäffer, Kugi, Stramigioli, Hirzinger, 2004. A passivity based Cartesian impedance controller for flexible joint robots - Part I. IEEE Int. Conf. on Robotics and Automation, 2659-2665
- Pustina, 2021. Master Thesis, Sapienza University of Rome
- Spong, 1987. Modeling and control of elastic joint robots. ASME J. Dynamic Systems, Measurement, and Control, 109(4), 310-319
- Tomei, 1991. A simple PD controller for robots with elastic joints. IEEE Trans. Automatic Control, 36(10), 1208-1213
- Thümmel, 2007. Entwurf, Auslegung und Evaluierung einer Regelungsstruktur für Roboterarme mit elastischen Gelenken zur Erreichung hoher Performance bei Positionier- und Bahnaufgaben am Beispiel eines KUKA KR15/2. *PhD Thesis*, Technical University of Munich (*in German*)