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Finite dimensional approximations

The alternative to PDE formulations is to restrict the range of possible strains ⇠ to a finite2

dimensional functional space. Two classes of strategies exist to achieve this goal: piecewise
constant strain models, and functional parametrizations. Both of them will be discussed in detail4

below. At the current stage, what is important to keep in mind is that using these techniques
the strain ⇠ can be approximated as a function of the vector q 2 Rn that serves as configuration6

of the soft robot. This key step enables the recasting concepts from classic discrete robotics to
the new continuum context. For a start, the kinematics of a soft robot can now be defined as8

follows
ẋ(s, q(t)) = J(s, q(t)) q̇(t), J(s, q) =

@h(s, q)

@q
, (1)

where h(s, q) is the map - called forward kinematics - connecting the configuration q(t) to the10

posture x(s, t) for each point s along the backbone. The matrix-valued function J is the Jacobian
of h. The following set of ODEs can be directly derived from (1) sing standard Lagrangian12

mechanics machinery

M(q)q̈ + C(q, q̇)q̇ +G(q)| {z }
Multi-body dynamics

+ D(q)q̇ +K(q)| {z }
Elastic and dissipative forces

= A(q)⌧| {z }
Model of underactuation

, (2)

where (q, q̇) forms the robot state.14

The inertia matrix M(q) 2 Rn⇥n is evaluated as follows

M(q) =

Z 1

0

J>(q, s)

"
m(s)I 0

0 J (s)

#
J(q, s) ds ⌫ 0, (3)

where m(s) and J (s) are the mass and inertia distributions respectively. As for a rigid robot,16

this matrix verifies
||M(q)||  cm + c0m||q||2, (4)

where cm, c0m are two positive scalars. If the elongation is considered negligible, then c0m = 0.18

Coriolis and centrifugal forces C(q, q̇)q̇ 2 Rn can be evaluated using the standard mathematical
machinery (e.g. Christoffel symbols). Elastic K(q) and gravitational G(q) actions are defined as20

K(q) =
@UK

@q
, G(q) =

@UG

@q
, (5)

where UK and UG are the associated potential energies, obtained as integration along the spacial22

coordinate of the energetic contributions of each infinitesimal elements. The elastic force field
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of the actuators are themselves mechanical (e.g. tendons actuated through electric motors, fluids
pressurized through pistons)

M(q)q̈ + C(q, q̇)q̇ +D(q)q̇ +K(q) +G(q) +
@Uc

@q
(q, ⌘) = 0, (12)

B(⌘)⌘̈ +H(⌘, ⌘̇)⌘̇ +
@Uc

@⌘
(q, ⌘) = ⌧, (13)

where we not include dissipation in the actuation system for simplicity. The configuration of all
the actuators is collected in ⌘ 2 Rm, and B,H 2 Rm⇥m are the associated inertia and Coriolis2

matrices. The former is usually diagonal and configuration independent, and in turn H = 0.
This is however not always the case, an exception being magnetically actuated soft robots with4

magnets moved by a rigid robot [89].

The coupling between the two dynamics (12) and (13) is purely mediated by the potential6

field Uc, which models elasticity of tendons, molecular interactions in compressible fluids, or
electro-magnetic fields, just to cite a few. In case the dynamics of ⌘ is fast compared to q, as8

well as robustly globally stable, then (13) can be approximated with its steady state behavior
⌘ ' ⌘̄(q, ⌧). In this case @Uc(q, ⌘̄(q, ⌧))/@q serves as a generalization of the the input field10

A(q)⌧ appearing in (2). Alternatively, singular perturbation theory can be used to separate the
fast actuator dynamics from the slow soft robot one, without applying quasi-static approximations12

[90].

Simulators14

A bottleneck to entering the field of soft robots control has been the need of implementing
by yourself the simulator of the soft robot. This is especially troublesome when considering16

that the models used for simulation are typically way more sophisticated than the ones used for
control. Luckily, there are now several open-source solutions available: SOFA uses velumetric18

FEM techniques [91], [92], while Elastica [93], TMTDyn [94], SimSOFT [52], and SoRoSim
[95] implement discretizations of rod modes. More details on simulators for soft robots can be20

found here [96, Sec. VII]. Still, selecting the right model among all the available ones is a task
with no clear solution. Experimental comparisons as the ones provided in [97], [98] can be a22

useful tool in this context.

Shape Control in the Fully Actuated Approximation24

The primary task of control architectures in classic robotics is to accurately manage the
posture of the robot - i.e. state space control. In the case of soft robots, this translates into devising26

strategies to control the whole shape of the system, that is controlling q. Depending on the model
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Figure 7: Block schemes of controllers for task space control (position and impedance)

Posture regulation

Posture regulation is defined as follows: given a desired configuration q̄ 2 Rn find a control2

action ⌧ 2 Rm such that the configuration of the soft robot q 2 Rn eventually converges to the
desired one, i.e.4

lim
t!1

q(t) = q̄. (14)

It has been already discussed in the previous section that an equilibrium is always associated
to any constant control input - as exemplified by (11). We show here that this equilibrium is6

also asymptotically stable under opportune conditions on the mechanical impedance of the robot.
Consider the following purely feedforward controller8

⌧(q̄) = K(q̄) +G(q̄), (15)

where K and G are the elastic and gravitational fields with potentials UK and UG respectively,
as defined in (5). Plugging (15) in (2) and performing simple rearranging of the terms yield10

M(q)q̈ + C(q, q̇)q̇ = (K(q̄) +G(q̄))� (K(q) +G(q))| {z }
Physical P-loop

+ D(q)(�q̇)| {z }
Physical D-loop

, (16)

where we can recognize the same mathematical structure of a classic robot (left hand side)
controlled through a nonlinear PD regulator (right hand side). Note indeed that ˙̄q = 0 by12

hypothesis. The control community has devoted much attention to (nonlinear) PD controllers
[99], which has produced a thriving literature which soft roboticist can borrow from [100]–14
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[102], by relying on (16), as for example done in the following theorem.

Theorem 1. The state (q̄, 0) 2 R2n is an asymptotically stable equilibrium of system (2) subject2

to the constant control action (15) if an open neighbourhood N (q̄) ✓ Rn of q̄ exists such that
8q 2 N (q̄)/{q̄},4

(UG(q) + UK(q)) > (UG(q̄) + UK(q̄)) +

✓
@

@q
(UG(q) + UK(q))

◆����
>

q=q̄

(q � q̄), (17)

and
G(q) +K(q) 6= G(q̄) +K(q̄). (18)

These two conditions also imply that N (q̄) is fully included within the region of asymptotic6

stability of q̄.

Proof. Consider as Lyapunov candidate the following generalization of the energy of the robot8

V (q, q̇) =
1

2
q̇>M(q)q̇

| {z }
Kinetic energy

+UG(q)� UG(q̄) + UK(q)� UK(q̄)| {z }
Centered potential energy

+(G(q̄) +K(q̄))>(q̄ � q)| {z }
Correction term

. (19)

The kinetic energy is always strictly positive definite in q̇ since M � 0. Thus, necessary and
sufficient condition for V to be positive definite in (q, q̇) is that V � q̇>M(q)q̇/2 is positive10

definite in q, which is equivalent to (17). The next step is to study the sign of the time derivative
of (19), which is12

V̇ (q, q̇) = q̇>M(q)q̈ +
1

2
q̇>Ṁ(q)q̇ � q̇> ((K(q̄) +G(q̄))� (K(q) +G(q)))

= �q̇>C(q, q̇)q̇ + q̇>D(q)(�q̇) +
1

2
q̇>Ṁ(q)q̇

= �q̇>D(q)q̇,

(20)

where the first step exploits (16) to express Mq̈, and the second the passivity of the system
q̇>(Ṁ(q)� 2C(q, q̇))q̇ = 0. Eq. (20) is only semi-positive definite despite D(q) being a strictly14

positive matrix, since V̇ (q, 0) = 0 for all q. Thanks to LaSalle’s principle, the system converges
to the set of (q, 0) such that q̈ = 0. To conclude the proof it is therefore sufficient to show that16

q̄ is the only configuration in N (q̄) such that q̈ 6= 0 for q̇ = 0, i.e.

G(q) +K(q) 6= ⌧̄ , (21)

which thanks to (15) is equivalent to the hypothesis (18), thus yielding the thesis.18

Eq. (17) is a convexity condition on the total potential energy UG(q) +UK(q). As such, it
can be locally checked by looking at the sign of the Hessian matrix. This results in the condition20
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✓
@K(q)

@q
+

@G(q)

@q

◆����
q=q̄

� 0, (22)

which is to say that the force field linearized at the desired equilibrium is attractive. In turn,2

this also implies that the potential force field is locally not constant, therefore implying also
hypothesis (18) at least in an infinitesimal neighborhood of q̄. Additionally, (22) becomes a4

necessary condition for when ⌫ is used instead of �. The two terms in (22) are the stiffness
matrices associated to elastic and potential fields. While the first is always positive definite - see6

(6) - the second is in general not definite in sign. Gravity may serve either as a destabilizing
(@G(q)/@q � 0) or as stabilizing force (@G(q)/@q ⌫ 0). For the CC segment described in sidebar8

xxx, these two conditions corresponds to the robot pointing upwards (� = ⇡) or downwards
(� = 0) when in straight configuration (q = 0) respectively.10

Thus, as already pointed out for the analysis of equilibria, the presence of an elastic field
makes the control problem simpler to solve compared to the standard rigid case. This can be12

regarded as an instance of the so-called self stabilization property of soft robots, which has
been recognized by several works in the literature [103], [104]. However, even if a feedforward14

action has proven to be sufficient for stiff enough systems, it is still interesting to consider
what happens when a further feedback loop is introduced. This may serve several purposes, as16

for example enlarge the basin of attraction, shape the transient, and reject disturbances. Further
following along with the analogy with nonlinear PDs, (15) can be extended as follows for the18

fully actuated case
⌧(q̄, q, q̇) = K(q̄) +G(q̄)| {z }

Feedforward

+↵(q̄ � q)� �q̇| {z }
PD

. (23)

Here, ↵, � 2 Rn⇥n are two gain matrices weighting the proportional and derivative actions20

respectively.

Corollary 1. The state (q̄, 0) 2 R2n is an asymptotically stable equilibrium of the closed loop (2)-22

(23) if D(q) � ��, and an open neighbourhood N (q̄) ✓ Rn of q̄ exists such that 8q 2 N (q̄)/{q̄},
24

(UG(q) + UK(q))+
1

2
(q� q̄)>↵(q� q̄) > (UG(q̄) + UK(q̄))+

✓
@

@q
(UG(q) + UK(q))

◆����
>

q=q̄

(q� q̄),

(24)
and

G(q) +K(q) + ↵(q̄ � q) 6= G(q̄) +K(q̄). (25)

These two conditions also imply that N (q̄) is fully included within the region of asymptotic26

stability of q̄.
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Proof. The closed loop dynamics is M(q)q̈+C(q, q̇)q̇ = (K(q̄)�K(q))+(G(q̄)�G(q))+↵(q̄�
q)�(D(q)+�)q̇. The previously discussed proof generalizes to this case by adding (q̄�q)>↵(q̄�2

q)/2 to (19). The time derivative of this new Lyapunov candidate is V̇ = �q̇> (D(q) + �) q̇,
which is semi-positive definite if D(q) + � � 0. So any � ⌫ 0 implements a damping injection4

that does not destabilize the closed loop. The rest of the proof follows as in the feedforward
case.6

The sufficient condition for local asymptotic stability is
✓
@K(q)

@q
+

@G(q)

@q

◆����
q=q̄

+ ↵ � 0, (26)

which becomes necessary when only semi-positiveness is required. Note that (26) can always be8

fulfilled through a large enough proportional gain ↵. Yet, large gains may result in a stiffening of
the soft robot [105], and in amplification of noise or excitation of neglected dynamics. Possibly10

nonlinear integral actions can also be added to (23) for compensating steady state errors and
achieve global stabilization, as discussed in [102].12

Trajectory tracking

In trajectory tracking the desired behavior is specified as an evolution of the full robot14

shape in time. Consider a twice differentiable function of time q̄ : R ! Rn, then the control
goal is to find a control strategy ⌧ such that16

lim
t!1

(q(t), q̇(t))� (q̄(t), ˙̄q(t)) = 0. (27)

Usually the reference is considered bounded in norm ||(q̄(t), ˙̄q(t))|| < ct, for some positive
ct. In theory, under the fully actuated approximation n = m, (2) can be completely feedback18

linearized with a computed torque scheme. However, such a strategy would be hardly applicable
on a real system, as discussed in sidebar xxx. This section will focus on controllers achieving20

the trajectory tracking goal by relying minimally on direct model cancellations. For the sake
of space, proof of convergence will not be provided. All of them can be obtained by adapting22

proofs from the nonlinear PD literature so to work for a system as (16), similarly as what it has
been shown in Theorem 1.24

If the reference trajectory is slow varying (i.e. || ˙̄q|| small enough) then (15) and (23) can
still be applied as they are, possibly with the inclusion of damping feedforward compensation26

terms - i.e., D(q̄) ˙̄q and (D(q̄) + �) ˙̄q respectively. The state will not converge to (q̄, ˙̄q) at steady
state, but to a neighborhood of it [106], [107]. Higher the gains and slower the reference, smaller28

is the neighborhood.
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Dealing with undearctuation in shape control

Fully actuated approximations have proven to be effective in the practice, despite being2

a clear over-simplification of the control problem. By bringing under-actuation into the picture,
the degrees of freedom not directly affected by the control action can be analyzed an potentially4

used in the design of the controller, towards solutions with improved performance and certifiable
reliability. Thus, consider a non-square actuation matrix A(q) with m < n. The first difficulty6

that arises is that the desired shape q̄ may not be an attainable equilibrium of the system, i.e.
K(q̄) + G(q̄) /2 Span(A(q̄)). In other terms, for a generic shape it will not exists a control8

action which makes it an equilibrium configuration. Similarly, in general it will not necessarily
exist a control input evolution ⌧(t) such as a generic state (q̄, ˙̄q) can be reached from any initial10

condition. Authors of [121] discuss how different actuation patterns may affect the accessible
set [122] of a soft robot.12

Let us assume that the equilibrium q̄ is attainable with the given under-actuation matrix
A(q). Under this assumption, then (15) can be generalized in14

⌧ = AL(q̄)(K(q̄) +G(q̄)), (29)

with AL left-inverse of A, as for example the Moore-Penrose pseudoinverse
�
A>A

��1
A>. If

A is configuration independent, this leads to the same closed loop equation (16). Thus the16

physical impedance acts as a stabilizing action not only on the collocated part, but also on the
variables which are not directly reached by the actuation. If A is configuration dependent then18

its local changes may have destabilizing effects that must be considered in a modified Eq. (22),
as discussed in the appendix of [123]. When dealing with slowly varying trajectories, similar20

considerations can be applied to the trajectory tracking problem. However, extending the results
involving feedback actions - as for example (28) - is a substantially more complex challenge that22

is still to be addressed. Relying on linearized models can be a practically effective alternative,
either when linearizing around the equilibrium [124] or around the desired trajectory [125].24

Control design and analysis get substantially more complex when it comes to stabilizing
unstable equilibria of underactuated models. In this case, (22) is not verified, and feedback actions26

must be necessarily involved. A discussion and experimental validation on combining local linear
control, an accurate FEM model, and a Luenberger Observer, for designing a damping injection28

loop is provided in [126], [127]. A FEM-Based Gain-Scheduling Controller is used in [128]
to cover the state space of the robot with linear set-point regulators including integral actions.30

Moving a step towards the nonlinear domain, the simple controller (23) can be extended to

⌧(q̄, q, q̇) = AL(K(q̄) +G(q̄)) + ↵A>(q̄ � q)� �A>q̇, (30)
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which is a generalization of (23) to the underactuated domain. Note that the two gains ↵, � are
still elements of Rm⇥m, and thus they weight the involvement of the actuators into the control2

loop.

Corollary 2. The thesis of Corollary (1) is verified for the closed loop (2)-(30), with constant A,4

if the same set of hypotheses obtained is verified when formally switching ↵ and � with A↵A>

and A�A> respectively, and if6

(I � AAL)(K(q̄) +G(q̄)) = 0. (31)

Proof. Under hypothesis (31), the following holds AAL(K(q̄)+G(q̄)) = K(q̄)+G(q̄). The closed
loop dynamics is thus structurally equivalent to the one in Corollary 1, i.e. M(q)q̈+C(q, q̇)q̇ =8

(K(q̄)�K(q))+ (G(q̄)�G(q))+A↵A>(q̄� q)� (D(q)+A�A>)q̇. Thus, the rest of the proof
follows as in the fully actuated case.10

The sufficient convergence condition becomes
✓
@K(q)

@q
+

@G(q)

@q
+ A↵A>

◆����
q=q̄

� 0, (32)

where if ↵ � 0 then A↵A> ⌫ 0 but Rank
�
A↵A>�  m < n. Thus, the equilibrium q̄12

can be stabilized using (30) only if the actuation is collocated on the directions in which the
effective stiffness loses rank. Other recent works deal with the regulation of equilibria under14

similar collocated conditions. In [129] energy shaping controller is proposed for set-point posture
regulation one planar segment modeled as a sequence of rigid links, with the same torque applied16

to all links. Moving to more general systems, [71] tests in simulation the use of computed
torque plus zero-dynamics damping injection in a geometrical exact discrete Cosserat model.18

This technique was already used for controlling a eel-like hyper-redundant robot in [130]. No
proof of convergence is provided, but simulations show good performance.20

If also (32) cannot be verified, then the problem must be analyzed using less local strategies.
For example, if the left hand of (32) is only semi-positive definite, then the extended version22

of the Lyapunov function (19) may still be positive definite. If however this term is not definite
in sign for all ↵, then there are directions on which the actuators is not acting directly, and24

for which the potential field K(q) +G(q) is repulsive. In this case, stabilization must occur by
relying on dynamic couplings. This is largely an unexplored ground in soft robotics. A very first26

step in this direction is discussed in [63], where a soft inverted pendulum is introduced as an
a soft extension of the acrobot [131]. The stabilization of an unstable equilibrium is discussed28

analytically, and it is shown that there is a range of low stiffnesses for which the robot can be
stabilized only by means of non-collocated feedback.30
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Actuators dynamics and constraints

Actuators dynamics plays a much important role in shaping the soft robot behavior,2

especially if compared to classic rigid robots. Nonetheless, few are the works so far that have
explicitly taken into account a dynamics formulation as (13) in the design of the controller.4

Some actuation technologies require already to accurately consider the control problem for a
single isolated actuator. This is the case of electro-thermally-active materials [132]–[135], and of6

magnetic actuation of micro and nano robots [136], [137]. If a clear separation exists between
the response times of actuators (13) and the robot (12), then singular perturbation approach8

[138] could be used to improve the performance of the model based controllers introduced
above. Alternatively, backstepping design achieves the same goal without any assumption on10

the relative time scales [139], but at the cost of a more complex control architecture. Both
techniques have been extensively used to control flexible robots actuated with similar modalities12

as typically found in soft robotics, as tendon driven [140], pistons [141], and artificial muscles
[142], [143]. Nonetheless, the only example of application in soft robotics that we are aware of14

is a backstepping controller for a single segment approximated with a linear model of the robot
and of the air flow [144].16

In soft robotic actuation, it is often the case that the input space can only take values in
a subset of Rm. This may be due to upper bounds to the maximum force, and to unilateral18

constraints induced by tendons that can only pull, or pressure chambers that can only push.
These constraints are usually dealt with heuristics which mask their existence to controllers20

carefully tuned to not exceed the limits of actuation. As an alternative to heuristics, the
masking can also be devised through model based techniques as closed form solution of22

optimal control allocation problems [145]. Alternatively, Model Predictive Controllers (MPC)
can generate control actions that inherently verify the constraints. In [146] linear MPC is24

used to control a pneumatically actuated humanoid robot, with joint-like localized bending and
under a decentralized approximation. In [147] the strategy is extended to nonlinear MPC, and26

Evolutionary algorithms are used to solve the nonlinear optimization. In [148] nonlinear order
reduction techniques are used to generate accurate relaxations of a nonlinear finite horizon28

optimal control problem, including state and input constraints, and formulated on nonlinear
FEM models.30

Task space regulation and tracking

The task space of a robot is usually identified with the configuration of its end effector. In32

soft robots this corresponds to the configuration of the tip x(1, t) = h(1, q(t)). For simplicity of
notation we will drop the s coordinate in this section. This also allows to stress that the results34
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that we will discuss below are general for any s and even for any smooth function h of the
configuration q. Examples are the potential energy, or the distance of the soft robot from an2

obstacle. Thus, we say that a task is fulfilled if

lim
t!1

h(q(t))� x̄(t) = 0, (33)

where the desired task coordinates x̄ can be either a constant value (regulation) or a function of4

time (tracking).

A substantial body of literature [32], [149]–[154] deals with the problem under the6

kinematic approximation. For a fully actuated model, this means assuming that the robot
evolution is described by (1), with q̇ being the control input. This is a well known problem8

in robotics [155]–[157], which can be solved with the control loop

q̇ = J+(q) (Ke (x̄� h(q)) + ˙̄x) . (34)

Indeed, combining (1) and (34) yields the closed loop dynamics d(x� x̄)/dt = Ke(x� x̄) that10

fulfills (33) exponentially fast for all Ke � 0. Note that for ˙̄x = 0, the time discretization [158]
of (34) is equivalent of apply gradient descent to solving the following quadratic programming12

problem
min
q2Rn

||h(q)� x̄||22. (35)

Soft and hard constrains can be explicitly included in (35), and possibly reflected in (34) using14

multi-task prioritization. In the practice, (34) is integrated numerically and the result serves
as reference q̄ for a low level controller which regulates q. This can happen completely in16

feedforward or as an high level feedback loop. In the latter case q and h(q) are directly measured.
Alternatively, the kinematic behavior can be forced on the system by means of model-based18

cancellations [159]. Therefore, the use of a kinematic controller implicitly lies on the assumption
that all configurations q are attainable through low level controller as the ones discussed in20

previous sections is available.

In order to extend (34) to the underactuated case, one has to introduce some extra22

assumptions. First, it must be assumed that a low level feedback loop ⌧(⌘̄, ⌘, ⌘̇, q, q̇) is available
such that if applied to (13) then ⌘ converges to ⌘̄ in a short time. Under this assumption ⌘ and24

⌘̄ can be used interchangeably. This is a strong assumption in general. However, if the robot
dynamics is negligible compared to the actuators one - e.g. lightweight robot with strongly26

reduced actuation - standard actuator-side regulation ⌧(⌘̄, ⌘, ⌘̇) is sufficient. This is for example
the case of lightweight continuum medical devices [160], [161]. Second, it has to be assumed that28

the robot is drawn to a stable equilibrium q̄, whenever a constant ⌘ is imposed. This is equivalent
to say that the feedforward action (29) generates a stable equilibrium. See the previous subsection30
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for more discussions on the topic. Third, a one-to-one map must exist from ⌘̄ to q̄, which we
refer to as q(⌘). We call J⌘(⌘) the Jacobian of this map.2

If these three hypotheses are simultaneously verified, then the following differential
kinematic description can be constructed that goes directly from actuators space ⌘ to task space4

x

ẋ =

Ent-to-end Jacobianz }| {
J(q(⌘)) J⌘(⌘)⌘̇| {z }

q̇

. (36)

This is formally equivalent to (1) from a mathematical standpoint. Thus, a kinematic controller6

can be constructed by following the same line of reasoning of (34), resulting in the control action
8

⌘̇ = (J(q(⌘))J⌘(⌘))
+ (Ke (x̄� h(q(⌘))) + ˙̄x) . (37)

This formulation is quite powerful since J(⌘)J⌘(q(⌘)) is in general full rank rows even if
J⌘(q(⌘)) is a strongly higher rectangular matrix (strong underactuaiton of the state), as soon10

as the dimension of x is smaller or equal than m. This is for example the case of a long soft
tentacle being actuated with three tendons, and controlled to reach a goal location with the tip.12

Finally, it is worth underlying that similar steps can be followed by bypassing the actuators
models, and directly reasoning on (2). This can be achieved by focusing on ⌧ rather than on ⌘.14

In this case Ja can be derived from (11). A similar loop as (37) can thus be used to evaluate
the control action in (29).16

Several variations on the kinematic inversion strategies has been proposed in the literature.
The Cosserat kinematic model is combined with linearized task space control in [162], and with18

sliding mode control in [163], [164]. Visual servoing based kinematic PCC model, where the
camera looks the robot, is used to devise the closed loop [165]. The inverse kinematics problem20

is tackled for parallel soft robots by relying on rigid link discretization in [48], on FEM models
in [166], and on Cosserat parallel kinematics in [25], [167].22

As an alternative to the many assumptions required by the kinematic approximation, task
control of under-actuated dynamic models can be directly embedded in the dynamic controller24

by relying on the operational space formulation [123], [168]. As for classic rigid robots, this can
be done by differentiating one more time (34), and combining the result with (16). Algebraic26

manipulations yield the operational or task space dynamics

⇤(q) ẍ+ ⌘(q, q̇) + J+>
M (q) (G(q)| {z }

Terms commonly found in rigid robots

+K(q) +D(q)q̇) = J+>
M (q)A(q)⌧, (38)

where the inertia matrix in the task space is ⇤ = (JM�1J>)�1 2 Rm⇥m, Coriolis and centrifugal28
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Sidebar: Dynamics of a Constant Curvature Segment

The goal of this sidebar is to help a novice in soft robotics to familiarize with the topic by2

concisely presenting the derivation of the main ingredients of what is arguably the simplest soft
robot: a constant curvature (CC) segment. Regardless its simplicity, this case already allows to4

build many intuitions that can directly generalized to more complex and general cases. Consider
a single planar segment as in Fig. 8, which is an arc with fixed length L but curvature possibly6

varying in time. The scalar curvature q 2 R is sufficient to describe its full configuration.
Note that since the curvature is defined here w.r.t. the normalized arc length, then q is the8

angle subtended by the arc - also called bending angle. The two concepts have been used
interchangeably in this paper. As a comparison, Fig. 8 reports also the non-continuum element10

of which a CC segment can be consider the direct extension of: a revolute joint connecting two
rigid links of length L/2. This can be seen as a rigid-link lumped approximation of the CC12

segment.

The shape x(s, t) of the soft robot can be expressed by collecting the position and14

orientation of all the reference frames Ss connected to the coordinate s 2 [0, 1]. These quantities
can be retrieved via simple geometrical arguments, as visually illustrated by Fig. 8. The result16

is
x(s, t) = h(s, q(t)) = L

h
sin s q(t)

q(t)
1�cos s q(t)

q(t)
s
Lq(t)

i>
. (44)

Thus, q can be defined also as the angle between base frame and tip frame. Note that x(s, t)18

has no singularity point, since its limit in the straight configuration (q = 0) is well defined and
equal to [L 0 0]>. However, the division by 0 can generate numerical instabilities in the practice.20

Fig. (9) compares how the shape of a CC segment changes compared to the one of its lumped
discrete approximation. The two models gets progressively more different with the increase of22

|q|, one reason being that the length arc to which both links of the rigid model are tangent
shrinks of a factor (q/2) cot (q/2).24

According to (1), the Jacobian matrix mapping the time derivative of the curvature q̇(t) 2 R
to ẋ(s, t) 2 R3 is26

J(s, q) = L
h
sq cos(sq)�sin(sq)

q2
(cos(sq)�1)+sq sin(sq)

q2
s
L

i>
. (45)

This kinematic description is sufficient to express the inertia according to (3). If an uniform
distribution of mass (m(s) = m) and a very thin rod (J ' 0) are assumed, then the configuration28
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dependent inertia is

M(q) =
mL2

20

✓
20

3

q3 + 6q � 12 sin (q) + 6q cos (q)

q5

◆

| {z }
lim
q!0

⇤=1

> 0. (46)

Note that similar closed form solutions for M can be found for different mass distributions and2

non null inertia. These assumptions are introduced here only for the sake of conciseness. Fig. 10
shows a plot of M(q) for all the curvatures in [�2⇡, 2⇡]. The inertia decreases with the increase4

of |q| following a bell curve that goes to 0 when |q| ! 1. This is because changes in q are
reflected in progressively smaller changes in the shape of the soft robot when the curvature is6

larger - i.e., ||x(s, q + �q) � x(s, q)||22 decreases with the increase of |q| for all fixed �q > 0. It
is also worth noticing that the inertia of the lumped model with homogeneous distribution of8

mass is (m/2)(L/2)2/3 = mL2/24, which is smaller than M(0), despite the two system being
perfectly superimposed in the straight configuration. This can be explained by considering that10

the rigid model neglects the motion of the lower half of the robot, and so an actuation torque
sees only the inertia produced by half of the robot’s body.12

Since M is not constant, this formulation of the CC segment dynamics is affected by the
following centrifugal force14

C(q, q̇)q̇ =
1

2

dM

dt
q̇

= �mL2

3

12 q � 30 sin (q) + 3 q2 sin (q) + 18 q cos (q) + q3

q6
q̇2.

(47)

Note that we could evaluate C by direct differentiation of M since both are scalar. Fig. 10 reports
the evolution of this force when q changes. As expected from a centrifugal action �C(q, q̇)q̇16

tends to increase |q| for all q̇ 6= 0.

Consider the base of the robot being oriented with a generic angle � w.r.t. a gravity18

acceleration of intensity g. The gravity potential can be calculated by summing up the
contributions of each infinitesimal element20

UG(q,�) =

Z 1

0

mg (x(s, 0)� x(s, q))>

2

64
cos(�)

sin(�)

0

3

75

| {z }
Infinitesimal contribution of element s

ds, (48)

which is the variation of the center of mass location with respect to the straight configuration,
projected to the direction of the gravity acceleration, and multiplied for mg. According to (5),22
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direct differentiation of the associated potential yields the gravitational torque

G(q,�) =�mg

✓Z 1

0

J(s, q) ds

◆>
2

64
cos(�)

sin(�)

0

3

75

=�mg L

✓
2
cos (q � �)� cos (�)

q3
+

sin (q � �)� sin (�)

q2

◆
.

(49)

Fig. 10 depicts the case of � = 0, corresponding to a gravity field aligned with the straight2

configuration of the robot (pointing downward in Fig. 9). Two relevant symmetries that may help
thinking about how G changes with � are G(q,�) = �G(q,�+⇡) and G(q,�) = �G(�q,��).4

The flexural rigidity can be modeled as a torque proportional to the local bending of the robot,
which is the curvature q. Thus, the elastic force is6

K(q) =
@

@q

UK(q)z }| {Z 1

0

1

2
k(s) q2

| {z }
Infinitesimal contribution

ds =

✓Z 1

0

k(s) ds

◆

| {z }
Average stiffness

q, (50)

where k(s) 2 R is the local stiffness in s, which is assumed to be almost constant in order for
the CC assumption to hold. Similarly, the damping torque can be evaluated by assuming local8

dissipation proportional to the variation of curvature. The torque needs then to be mapped in q

leveraging the kinetostatic duality10

D(q)q̇ =

Z 1

0

J(s, q)>

2

64
0

0

d(s) q̇

3

75

| {z }
Infinitesimal contribution

ds =

✓Z 1

0

s d(s) ds

◆

| {z }
Equivalent damping

q. (51)

where d(s) 2 R is the local damping in s. Thus, both elastic and damping forces are linear under
the discussed assumptions. Equivalent results are obtained also when infinitesimal springs and12

dampers proportional to the elongation are assumed distributed along the thickness of the robot
[43]. Finally, consider the robot to be actuated with a pure torque applied at the tip, resulting14

in

A(q)⌧ = J(1, q)>

2

64
0

0

⌧

3

75 = ⌧. (52)

Eqs. (46)-(52) can be combined by using (2), yielding a scalar second order dynamics for q which16

has the same structure and structural properties of a lumped joint model with parallel impedance,
but with different and more complex expressions. Examples of the resulting evolutions are shown18

in Fig. 11
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{S0}

{S1}

q

q

�

L/2

L/2 �

{S0}

{Ss}

{S1}

sq
q

L

q

Figure 8: A constant curvature segment together with and lumped rigid-link model serving as
its first order approximation. The two resulting dynamics have equivalent structural properties,
but are described by substantially different dynamic equations.

Figure 9: Geometrical characterization of a rigid robot with a single revolute joint (left) and of a
constant curvature robot (right). The the behaviors are similar close to the straight configuration,
but strongly depart from each other when the angle |q| increases. The configurations correspond-
ing to q 2 {�2⇡,�3⇡/2, . . . , 3⇡/2, 2⇡} are shown with thin gray lines. The corresponding
centers of mass are also reported as a gray dot. Note that this range of angles corresponds to
two full rotations for the rigid links case.
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Figure 10: Evolutions of (46), (47), and (49) all normalized w.r.t. the quantities that appear
linearly in their expression. A change in those quantities result in a linear scaling of the plots
along the vertical axis.

36



Figure 11: Examples of evolution of a constant curvature segment (CC), its lumped rigid link
approximation with (R-PEA) and without (R) parallel springs. The CC dynamics is described
by (46)-(52). The parameters considered here are m = 0.5Kg, L = 0.25m,

R 1

0 k = 0.05Nm,R 1

0 sd = 0.01Nms, and (q(0), q̇(0)) = (⇡/3, 0). From top to bottom, the three plots show the
evolutions for (⌧,�) equal to (0Nm, 0), (�0.3Nm, 0), and (0Nm,�pi/2) respectively. In all the
three cases, CC and R-PEA are qualitatively similar, and both different from R.
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