SIDRA Summer School 2021

Optimal Planning and Control of Articulated Soft Robots

Manolo Garabini

Research Center E. Piaggio University of Pisa

a short intro

Master Mech. Eng. – 2010
PhD Robotics – 2014

- Assistant Prof. Automatic Control since 2018
- H2020 Projects

 THING (2018-present) Local PI
 NI (2021-present) Coordinator
- Co-founder
 - -Qbrobotics (since 2011)
 - -Xstar Motion (since 2021)

outline

- classical and new goals for robots
- soft robotics: a new solution for a new problem
- the optimal approach for planning and control of soft robots
 - Minimum Time Trajectory Planning
 - The Safe Brachistochrone
 - Max speed
 - Optimal brake
 - Robust Interaction
 - Max Efficiency in Cyclic Tasks
- what's next?

Evolution of Robots in a Century 4

Evolution of Robots in a Century ⁵

Evolution of Robots in a Century ⁶

TASKS

mainly positioning operations in structured environment

GOALS

- Minimize Cost
 - Cycle Time
 - Positioning Errors

SOLUTION

 Robots Designed and Controlled according to "<u>the stiffer the</u> <u>better</u>" paradigm

- Bulky and Heavy Machines
- High Gain Position Control

HEALTHCARE

INSPECTION AND MAINTENANCE

ROBOTICS TECHNOLOGY APPLICATION AREAS

[the good old Horizon 2020]

AGRI-FOOD

AGILE PRODUCTION

Robotics Core Technology. Call ID: ICT-10-2019-2020. Indicative Overall Budget 42 M Deadline 28-March-2019. 91 submitted proposals

HEALTHCARE

AGRI-FOOD

INSPECTION

AGILE PRODUCTION

DIGITAL and EMERGING TECH for the GREEN DEAL

DESTINATIONS

[Horizon Europe]

HUMAN centred development of DIGITAL and INDUSTRIAL TECH

[Horizon Europe – Work Programme 2021-2022 Digital, Industry, and Space]

TASKS

Physical Interaction in unstructured environments

GOALS

- Minimize Cost (exploiting soft dynamics)
 - Cycle time
 - Positioning error
 - Energy Consumption
 - •
- Subject to
 - limits on interaction forces (safety, robot resiliency, ...)

NEW PROBLEM -> NEW SOLUTION

 Robots Designed and Controlled according to "the stiffer the better" paradigm does not work any more!

Evolution of Robots in a Century ¹³

Evolution of Robots in a Century ¹⁴

Evolution of Robots in a Century ¹⁵

Evolution of Robots in a Century ¹⁶

Evolution of Robots in a Century ¹⁷

Evolution of Robots in a Century ¹⁸

Articulated Soft Robots

data source: Google Scholar

19

The potential of Soft Robotics and the many open questions about it

Features	Soft Robot
Peak Performance	a specific design Can over-perform a conventional system of the some power
Energy Efficiency	Can be optimized in the execution of cyclic tasks
Robustness	Peak stress on the weaker parts Can be reduced

How to manage the additional degrees of freedom of Soft Robots to fully exploit them?

The optimal approach

Optimal Control provides an absolute performance reference that **factorizes the control design out**, and allows for drawing conclusions on the intrinsic worth of the physical system.

 $\min_{\substack{x(t),u(t),p \\ \text{subject to} \\ h(x,u,p) \leq 0}} \int_0^T L(x(t), u(t)) dt$

The optimal approach

Optimal Control provides an absolute performance reference that **factorizes the control design out**, and allows for drawing conclusions on the intrinsic worth of the physical system.

Analytical Solutions

- template models
- find "rules" and understand "principles"

Numerical Solutions

- realistic models
- global guarantees (and often run-time execution) for convex problems

A (short) list of problems for soft robots that can be tackled via OC

- Minimum Time Trajectory Planning
- The Safe Brachistochrone
- Max speed
- Optimal brake
- Max Efficiency in Cyclic Tasks
- Robust Interaction

Time-Optimal Trajectory Planning for Flexible Joint Robots

Alessandro Palleschi¹, Riccardo Mengacci¹, Franco Angelini^{1,2}, Danilo Caporale¹, Lucia Pallottino¹, Alessandro De Luca³, Manolo Garabini¹

¹Centro di Ricerca "Enrico Piaggio" e Dipartimento di Ingegneria dell'Informazione, Università di Pisa, Largo Lucio Lazzarino 1, 56126 Pisa, Italy
²Soft Robotics for Human Cooperation and Rehabilitation, Fondazione Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
³Dipartimento di Ingegneria Informatica, Automatica e Gestionale, Sapienza Università di Roma, 00185 Roma, Italy

Time-Optimal Trajectory Planning

Flexible Joint Robots

• Dynamics of a robot with flexible joints included to reformulate the constraints

$$\begin{cases} M(\mathbf{q})\ddot{\mathbf{q}} + C(\mathbf{q},\dot{\mathbf{q}})\dot{\mathbf{q}} + G(\mathbf{q}) + K(\mathbf{q}-\boldsymbol{\theta}) = 0\\ B_m\ddot{\boldsymbol{\theta}} + K(\boldsymbol{\theta}-\mathbf{q}) = \boldsymbol{\tau_m}, \end{cases}$$

Dynamic model of a robot with flexible joints presented by Spong [1]

[1] - Mark W Spong - Modeling and control of elastic joint robots. - Journal of dynamic systems, measurement, and control, 109(4):310--318, 1987.

Problem Formulation

 $\begin{array}{ll} \left(\begin{array}{l} \min \\ s(\cdot) \end{array} & \int_{0}^{T} 1 \mathrm{d}t \\ \text{subject to} \\ s(0) = 0 \text{ and } s(T) = 1 \\ \dot{s}(0) = 0 \text{ and } \dot{s}(T) = 0 \\ \ddot{s}(0) = 0 \text{ and } \ddot{s}(T) = 0 \\ \ddot{s}(0) = 0 \text{ and } \ddot{s}(T) = 0 \\ \dot{s}(t) \geq 0 \\ \dot{q} \leq \dot{q} \left(s(t) \right) \leq \ddot{\bar{q}} \\ \ddot{q} \leq \ddot{q} \left(s(t) \right) \leq \ddot{\bar{q}} \\ \dot{\underline{q}} \leq \theta \left(s(t) \right) \leq \ddot{\bar{q}} \\ \dot{\underline{q}} \leq \dot{\theta} \left(s(t) \right) \leq \ddot{\bar{\theta}} \\ \dot{\underline{\theta}} \leq \theta \left(s(t) \right) \leq \ddot{\bar{\theta}} \\ \dot{\underline{t}}_{e} \leq \tau_{e} \left(s(t) \right) \leq \ddot{\tau}_{e} \\ \tau_{m} \leq \tau_{m} (s(t)) \leq \tau_{m} \\ \text{for } t \in [0, T], \end{array}$

$$\begin{split} \min_{b(\cdot),\beta_i(\cdot),\alpha_i(\cdot)} \int_0^1 \frac{1}{\sqrt{b}} ds \\ \text{subject to} \\ \Gamma \tau_m &= k_0 \beta_1 + k_1 \beta_2 + \beta_3 + k_3 \beta_4 + \\ &+ k_4 \beta_5 + k_5 \alpha_1 + k_6 \beta_6 + k_7 b + k_8 \\ b(0) &= 0 \text{ and } b(1) = 0 \\ \alpha_1(0) &= 0 \text{ and } \alpha_1(1) = 0 \\ \alpha_2(0)\sqrt{b(0)} &= 0 \text{ and } \alpha_2(1)\sqrt{b(1)} = 0 \\ \alpha_1 &= b', \alpha_2 = b'', \alpha_3 = b''' \\ \beta_1 &= \alpha_3 b, \beta_2 = \alpha_2 \alpha_1, \beta_3 = \alpha_2 b, \beta_4 = \alpha_1 b \\ \beta_8 &= \alpha_2 \beta_7, \beta_9 = \alpha_1 \beta_7, \beta_{10} = b \beta_7 \\ \beta_5 &= \alpha_1^2, \beta_6 = b^2, \beta_7^2 = b \\ 0 \leq b \leq \min_{i \in 1, n} (\bar{q}_i)^2 / (q'_i)^2 \\ \hline g \leq q'' b + q' \alpha_1 / 2 \leq \bar{\ddot{q}} \\ \theta - q - K^{-1} g \leq k_9 \alpha_1 + k_{10} b \leq \bar{\theta} - q - K^{-1} g \\ \dot{\theta} \leq k_{11} \beta_7 + k_{12} \beta_8 + k_{13} \beta_9 + k_{14} \beta_{10} \leq \bar{\dot{\theta}} \\ \tau_e \leq k_{15} \alpha_1 + k_{16} b \leq \bar{\tau}_e \\ \tau_m \leq \tau_m \leq \bar{\tau}_m \\ \text{for } s \in [0, 1]. \end{split}$$

Problem Formulation

- Non-convex optimization problem with bilinear and quadratic constriants.
- Efficient convex relaxation for these constraints using McCormick Envelopes.
- Numerical solution using direct transcription.

 $\min_{b(\cdot),\beta_i(\cdot),\alpha_i(\cdot)} \int_0^1 \frac{1}{\sqrt{b}} ds$ subject to $\Gamma \boldsymbol{\tau}_{\mathrm{m}} = \boldsymbol{k}_0 \beta_1 + \boldsymbol{k}_1 \beta_2 + \beta_3 + \boldsymbol{k}_3 \beta_4 + \boldsymbol{k}_3$ $+k_4\beta_5+k_5\alpha_1+k_6\beta_6+k_7b+k_8$ b(0) = 0 and b(1) = 0 $\alpha_1(0) = 0$ and $\alpha_1(1) = 0$ $\alpha_2(0)\sqrt{b(0)} = 0$ and $\alpha_2(1)\sqrt{b(1)} = 0$ $\alpha_1 = b', \, \alpha_2 = b'', \, \alpha_3 = b'''$ $\beta_1 = \alpha_3 b, \ \beta_2 = \alpha_2 \alpha_1, \ \beta_3 = \alpha_2 b, \ \beta_4 = \alpha_1 b$ $\beta_8 = \alpha_2 \beta_7, \ \beta_9 = \alpha_1 \beta_7, \ \beta_{10} = b \beta_7$ $\beta_5 = \alpha_1^2, \beta_6 = b^2, \beta_7^2 = b$ **Bilinear/Ouadratic** Constraints $0 \le b \le \min_{i \in \mathbb{N}^n} \left(\overline{\dot{q}}_i\right)^2 / \left(q_i'\right)^2$ $\ddot{\boldsymbol{q}} \leq \boldsymbol{q}'' \boldsymbol{b} + \boldsymbol{q}' \alpha_1 / 2 \leq \ddot{\ddot{\boldsymbol{q}}}$ $\boldsymbol{\theta} - \boldsymbol{q} - \boldsymbol{K}^{-1} \boldsymbol{g} \leq \boldsymbol{k}_{9} \alpha_{1} + \boldsymbol{k}_{10} \boldsymbol{b} \leq \boldsymbol{\bar{\theta}} - \boldsymbol{q} - \boldsymbol{K}^{-1} \boldsymbol{g}$ $\dot{\boldsymbol{\theta}} \leq \boldsymbol{k}_{11}\beta_7 + \boldsymbol{k}_{12}\beta_8 + \boldsymbol{k}_{13}\beta_9 + \boldsymbol{k}_{14}\beta_{10} \leq \dot{\boldsymbol{\theta}}$ $\tau_{e} \leq k_{15}\alpha_{1} + k_{16}b \leq \bar{\tau}_{e}$ $\underline{\tau}_{\mathrm{m}} \leq \underline{\tau}_{\mathrm{m}} \leq \overline{\tau}_{\mathrm{m}}$ for $s \in [0, 1]$.

Planner Output

Fig. 3. From left to right: evolution of the planned motor angles, velocities, torques and of the elastic deflections for the three planning techniques **R**, **IC** and **ED**. Solid line is the signal, while the dashed lines represent the lower and upper bounds.

Planner Output

Fig. 3. From left to right: evolution of the planned motor angles, velocities, torques and of the elastic deflections for the three planning techniques **R**, **IC** and **ED**. Solid line is the signal, while the dashed lines represent the lower and upper bounds.

Minimize Task Time under Safety Constraints

Variable Stiffnes Actuators Optimal control policies

Safe Brachistochrone

Minimum Time Optimal Control in a point-to-point task with constraints on Safety the safety index adopted as bound is the HIC (Head Injury Criterion)

Fast & Soft, Stiff & Slow

Bicchi and Tonietti, IEEE RAM 2004

Maximize Peak Speed

EXAMPLE: HAMMERING A NAIL

Index $J = \phi(x(T)) = x_2(T) = \dot{q}(T)$. Dynamics $\dot{x} = f(x, u)$, Initial conditions q(0) = 0

Terminal const. $\psi(x(T)) = x_1(T) = q(T) = 0$ Hamiltonian $H(x(t), \lambda(t), u(t)) = \lambda^T(t)f(x(t), u(t))$

MAXIMUM FINAL SPEED ONE SWITCHING

CONTROL

PROBLEM STATEMENT- SEA

$$\begin{cases} max \ x_2(T) = \dot{q}(T) & \text{index: terminal speed} \\ \dot{x} = \begin{bmatrix} x_2 \\ \omega^2 (u - x_1) \end{bmatrix} & \text{dynamics} \\ |u| \le u_{max} & \text{control limit} \\ \text{initial/terminal conditions} \\ \begin{cases} x(0) = 0 \\ x_1(T) = 0 \end{cases} & \omega = \sqrt{k/m} & \text{natural frequency} \\ x^T = \begin{bmatrix} q & \dot{q} \end{bmatrix} & \text{state} \end{cases}$$

 $u = \theta$

UNCONSTRAINED TERMINAL TIME

PROBLEM SOLUTION - SEA

POSITION CONTROL (P)

Hamiltonian $H = \lambda_1 x_2 + \lambda_2 \omega^2 (u - x_1)$

Co-state
dynamics
$$\lambda^T = \begin{bmatrix} \omega^2 \lambda_2 & -\lambda_1 \end{bmatrix}$$
BANG-BANG CONTROLOptimal
control law $u^* = u_{max} sign(\lambda_2)$ BANG-BANG CONTROLSwitching
function $\lambda_2 = cos((T-t)\omega) + \frac{V sin((T-t)\omega)}{\omega}$ ω $V = -\omega cot(T\omega)$ ω

MAXIMUM FINAL SPEED ONE SWITCHING

PROBLEM STATEMENT- SEA

$$\begin{cases} max \ x_2(T) = \dot{q}(T) & \text{IN} \\ \dot{x} = \begin{bmatrix} x_2 \\ \omega^2 (x_3 - x_1) \\ u \end{bmatrix} & \text{II} \\ |u| \le u_{max} & \text{Comparison} \end{cases}$$

NDEX: TERMINAL SPEED

LINK DYNAMIC

CONTROL LIMIT

INITIAL/TERMINAL CONDITIONS

 $\begin{cases} x(0) = 0 \\ x_1(T) = 0 \end{cases}$

SPEED CONTROL (S)

 $\omega = \sqrt{k/m}$ NATURAL FREQUENCY $x^T = \begin{bmatrix} q & \dot{q} & \theta \end{bmatrix}$ STATE

 $u = \dot{\theta}$ CONTROL

MAXIMUM FINAL SPEED ONE SWITCHING

PROBLEM STATEMENT- SEA

INITIAL/TERMINAL CONDITIONS

 $\begin{aligned} x(0) &= 0\\ x_1(T) &= 0 \end{aligned}$

$$\omega = \sqrt{k/m}$$
NATURAL FREQUENCY
$$x^{T} = \begin{bmatrix} q & \dot{q} & \theta & \dot{\theta} \end{bmatrix} \text{ STATE}$$

$$u = \ddot{\theta}$$
CONTROL

MAXIMUM FINAL SPEED ONE SWITCHING

PROBLEM SOLUTION - SEA

TERMINAL LINK SPEED

(P)
$$v_{max} = 2\sqrt{2}u_{max}\omega$$
 THE STIFFER THE BETTER
(S) $v_{max} = 4u_{max}$ STIFFNESS INDEPENDENT
(A) $v_{max} = 5.74 \frac{u_{max}}{\omega}$ THE SOFTER THE BETTER

where ω =

$$v = \sqrt{k/m}$$

PROBLEM STATEMENT- SEA

SEA - Analytical and Numerical Results

There exist an optimal stiffness that depends on link inertia and motor constraints!

SEA - Experimental Results

the qb hammer

2DoF hitting

STATE

CONTROLS

PROBLEM STATEMENT- VSA POSITION AND STIFFNESS CONTROL (P)

 $x^{T} = \begin{bmatrix} q & \dot{q} \end{bmatrix}$ $u^{T} = \begin{bmatrix} \theta & k \end{bmatrix}$

INITIAL/TERMINAL CONDITIONS

 $\begin{cases} x(0) = 0 \\ x_1(T) = 0 \end{cases}$

UNCONSTRAINED TERMINAL TIME

PROBLEM SOLUTION - VSA POSITION AND STIFFNESS CONTROL

Hamiltonian $H = \lambda_1 x_2 - \lambda_2 \frac{u_2}{m} (x_1 - u_1)$

Co-State dynamics

$$\begin{cases} \dot{\lambda}^T = \begin{bmatrix} \frac{u_2}{m} \lambda_2 & -\lambda_1 \\ \lambda(T)^T = \begin{bmatrix} 0 & 1 \end{bmatrix} \end{cases}$$

Optimal
control
law
$$u_{1}^{*} = \begin{cases} u_{1,max} \text{ if } \lambda_{2} > 0\\ -u_{1,max} \text{ if } \lambda_{2} < 0\\ u_{2,max} \text{ if } \lambda_{2} (u_{1} - x_{1}) > \\ u_{2,min} \text{ if } \lambda_{2} (u_{1} - x_{1}) < 0 \end{cases}$$

BANG-BANG CONTROL

0

0

VSA – THEORETICAL RESULTS POSITION AND STIFFNESS CONTROL

THE OPTIMAL CONTROL POLICY CAN BE SUMMARIZED

$$u_2 = \begin{cases} u_{2,\max} & \text{if } \dot{q}\ddot{q} > 0\\ u_{2,\min} & \text{if } \dot{q}\ddot{q} < 0 \end{cases}$$

SPEED UP AND STIFF, SLOW DOWN AND SOFT

VSA – THEORETICAL RESULTS POSITION AND STIFFNESS CONTROL

VSA – Experimental Tests

case	type	inertia	boundary	$\dot{q}(T)$
(a)	SEA-like	m = 0.1kg	qD_max	$\simeq 207 \text{deg/s}$
(b)	SEA-like	m = 0.1 kg	9D.min	$\simeq 242 \text{deg/s}$
(c)	VSA	m = 0.1 kg	GS min max	$\simeq 276 \text{deg/s}$
(d)	SEA-like	m = 1kg	qD.max	$\simeq 341 \text{deg/s}$
(e)	SEA-like	m = 1 kg	qD.mid	$\simeq 374 \text{deg/s}$
(f)	VSA	m = 1kg	qs,min,max	\simeq 499deg/s

TABLE III

FIRST AND SECOND COLUMNS DEAL WITH THE SIX EXPERIMENTS' CASES. THE THIRD AND THE FOURTH SHOW THE FIXED PARAMETERS. FINALLY, IN THE FIFTH COLUMN ARE SHOWN THE MEASURED VALUES OF LINK SPEED AT HIT TIME

For a proper inertia improvement of 30%

Fixed Terminal Time

EXAMPLE: First Time Kick

SEA - Analytical and Numerical Results

There exist an optimal stiffness that depends on:

- link inertia
- terminal time (opt. stiffness increases if T decreases)
- motor constraints

SEA - Experimental Results

Experimental results for a SEA prototype with different stiffness at same terminal time

VSA – Theoretical Results

Fixed terminal time – Position and Stiffness control

How does the optimal control policy change w.r.t. the free terminal time case?

Free terminal time switching intervals

$$t_{U,S_1}=\pi/2\sqrt{m/k_{max}}$$
 $t_{U,S_{1,2}}=\pi/2\sqrt{m/k_{min}}$

Fixed terminal time switching intervals

$$t_{C,S_1} = t_{U,S_1}$$

 $t_{C,S_{1,2}} \le t_{U,S_{1,2}}$

Terminal time threshold below which VSA is not convenient

$$T_t = \pi \sqrt{m/k_{max}} \quad \begin{cases} T > T_t \to \text{VSA} \\ T \le T_t \to \text{SEA} \end{cases}$$

MaxSpeed problem for compliant Variable Damping Actuators

M. Laffranchi, N. Tsagarakis, and D. G. Caldwell, "A compact compliant actuator (CompActTM) with variable physical damping," ICRA, 2011

 $\begin{array}{c} \textbf{Compact}^{\mathsf{TM}} \; \textbf{Actuator} \\ \quad \overset{\mathsf{The}}{= \theta, \; = \theta} \\ \textbf{model} \end{array}$

MaxSpeed for the CompactTM Actuator Problem Solution: First Step

From Maximum Pontryagin Principle

$$\tau_c^* = \begin{cases} \tau_{c,max} \text{ if } f(x,\lambda) > 0\\ \tau_{c,min} \text{ if } f(x,\lambda) < 0 \end{cases}$$

f: switching function depending on state and co-state

 $\dot{q}(t_{f})$ Two dynamic systems have to be considered in the following with one control input: the motor ftorq θ_{e}

*u*_{max}

L. Chen, **M. Garabini**, M. Laffranchi, N. Kashiri, N. Tsagarakis, A. Bicchi, and D. Caldwell. **Optimal Control for Maximizing Velocity of the CompAct Compliant Actuator**. In International Conference of Robotics and Automation - ICRA 2013

MaxSpeed for the CompactTM Actuator Problem Solution: Second Step

The optimal control problem can be translated in several convex optimization problems

 $(1) S_0 - S_0$ $(5) S_{21}-S_0$ $F_{..}$ 0 F_{n} F_n (6) S₂₁-S₁₂ $(2) S_0 S_{12}$ Possible sequences of the F_n F_{n} clutch force for $a^{D_{l}}$ Given a maximum maximum number of number of switchings n $(3) S_0 S_{21}$ F_{r} F_n^{I} $(7) S_0 S_{21}$ switching of 3 we derive all possible F_n $F_{..}$ the SEA / RIGID sequences (4) $S_{12} = S_0$ F_n F_n $(8) S_0 - S_0$ F_{n} F_{\cdot} $\frac{2T_f}{3}$ $\frac{2T_f}{3}$ 0 $\frac{T_f}{3}$ ō $\frac{T_f}{3}$ T_f^{-1} T_f^{-1}

L. Chen, **M. Garabini**, M. Laffranchi, N. Kashiri, N. Tsagarakis, A. Bicchi, and D. Caldwell. **Optimal Control for Maximizing Velocity of the CompAct Compliant Actuator**. In International Conference of Robotics and Automation - ICRA 2013

MaxSpeed for the CompactTM Actuator

The optimal control problem can be translated in several convex optimization problems - (-)>0

For each sequence we can derive the system dynamic for the whole task

Condition &	Operating Conditions		
Switching Time Group	$0 < t < T_f/3$	$T_f/3 < t < 2T_f/3$	$2T_f/3 < t < T_f$
(1) $S_0 - S_0$	C_1	C_{I}	C_{l}
(2) S_0-S_{12}	C_1	C_1	C_2
(3) $S_0 - S_{21}$	C_{I}	C_2	C_{I}
(4) S_{12} - S_0	C_{I}	C_2	C_2
(5) S_{21} - S_0	C_2	C_1	C_{I}
(6) S_{21} - S_{12}	C_2	C_1	C_2
(7) $S_0 - S_{21}$	C_2	C_2	C_{I}
(8) S_0-S_0	C_2	C_2	C_2

$$\mathbf{x}^{T} = [q_{(n)} \quad \dot{q} \quad \theta]_{t} \quad) \quad (n \quad 1) \quad t \quad u(n) = \tau_{m}$$

$$\mathbf{x}(n) = (\mathbf{I} + \Delta t \cdot \mathbf{A}) \cdot \mathbf{Q} \cdot \mathbf{x}(n-1) + \Delta t \cdot \mathbf{B} \cdot u(n)$$

$$\dot{\mathbf{x}} \quad \mathbf{A}_{I} \mathbf{x} \quad \mathbf{B}_{I} u$$

$$C_{1} \rightarrow C_{2} : \mathbf{Q} = \begin{bmatrix} 1 & 0 & 0 & \mathbf{A}_{2} \mathbf{x} & 0 & \mathbf{B}_{2} \\ 0 & 1 & 0 & \mathbf{A}_{2} \mathbf{x} & 0 & \mathbf{B}_{2} \\ 0 & 0 & \frac{M}{M + B} & \frac{B}{M + B} \\ 0 & 0 & \frac{M}{M + B} & \frac{B}{M + B} \end{bmatrix} \mathbf{A} = \mathbf{A}_{2} \quad \mathbf{B} = \mathbf{B}_{2}$$

$$C_{1} \rightarrow C_{1} and C_{2} \rightarrow C_{1} : \mathbf{Q} = \mathbf{I} \quad \mathbf{A} = \mathbf{A}_{I} \quad \mathbf{B} = \mathbf{B}_{I}$$

$$C_{2} \rightarrow C_{2} : \mathbf{Q} = \mathbf{I} \quad \mathbf{A} = \mathbf{A}_{2} \quad \mathbf{B} = \mathbf{B}_{2}$$

$$\dot{\theta}_{\min}$$
 $\dot{\theta}$ $\dot{\theta}_{\max}$

L. Chen, **M. Garabini**, MaxLaffranchi, N. Kashiri, N. Tsagarakis, A. Bicchi, and D. Caldwell. **Optimal Control for Maximizing Velocity of the CompAct Compliant Actuator**. In International Conference of Robotics and Automation - ICRA 2013

 τ_m

MaxSpeed for the CompactTM Actuator Problem Solution: Second Step

The optimal control problem can be translated in several convex optimization problems

Since the dynamic is linear and constraints are convex the Optimal Control Problem (for each switching sequence) can be converted into a Convex Optimization Problem

 \cdots, N

$$J=f_3\bigl({\pmb x}\bigl(0\bigr),\!u,\!\Delta t\bigr)=\dot q(N)$$

subject to

u(n)

$$q(N) = q_f, \theta(N) = \theta_f$$

$$\dot{\theta}_{\min} \le \dot{\theta}(n) \le \dot{\theta}_{\max}, \ \theta_t(n) \in [\theta_{t\min}, \theta_{t\max}]$$

$$u(n) \in [-\tau_{m,\max}, \tau_{m,\max}], n = 1, \dots, N$$

Terminal Constraints
Motor speed lmits
Motor torque
lmits

L. Chen, **M. Garabini**, M. Laffranchi, N. Kashiri, N. Tsagarakis, A. Bicchi, and D. Caldwell. **Optimal Control for Maximizing Velocity of the CompAct Compliant Actuator**. In International Conference of Robotics and Automation - ICRA 2013

The maximum link speed obtainable with the Compact[™] (VCCA) is larger or equal than the speed obtainable with both rigid and SEA

L. Chen, **M. Garabini**, M. Laffranchi, N. Kashiri, N. Tsagarakis, A. Bicchi, and D. Caldwell. **Optimal Control for Maximizing Velocity of the CompAct Compliant Actuator**. In International Conference of Robotics and Automation - ICRA 2013

Maximize Jumping Height

R. Incaini, L. Sestini, M. Garabini, M. Catalano, G. Grioli, and A. Bicchi. Optimal Control and Design Guidelines for Soft Jumping Robots: Series Elastic Actuation and Parallel Elastic Actuation in comparison. ICRA 2013

Maximize Jumping Height SEA and PEA in comparison

 Optimal control as a mean for comparing two different soft actuator designs when performing the jumping task

R. Incaini, L. Sestini, M. Garabini, M. Catalano, G. Grioli, and A. Bicchi. Optimal Control and Design Guidelines for Soft Jumping Robots: Series Elastic Actuation and Parallel Elastic Actuation in comparison. ICRA 2013

Maximize Jumping Height It can be translated into the MaxSpeed problem

Target

We want to maximize the highest reachable point of the center of gravity of the robot

max $h_{G,max}$

Our optimization variable is the force exerted by the motor U.

Using the conservation of mechanical energy principle, we derive an estimation of $h_{G,max}$ depending on the state of the robot soon after the take-off instant T

$$h_{G,max} = h_G(T^+) + \frac{V_G(T^+)^2}{2g}$$

where $h_G(T^+)$ and $V_G(T^+)$ are the height and the speed, respectively, of the center of gravity of the robot soon after the take-off instant.

We can assume that the variation of $h_G(t)$ during the stance phase is negligible if compared to the variation of $V_G(t)^2/(2g)$:

max
$$h_{G,max} \approx \max$$
 $V_G(T^+) = \begin{cases} \frac{m_2}{m_1 + m_2} z_2(T^-) & (\mathsf{PEA}) \\ \frac{m_3}{m_1 + m_2 + m_3} \tilde{z}_4(T^-) & (\mathsf{SEA}) \end{cases}$

More realistic models taking into account path state and control constraints

The input <i>u</i> is	PEA	SEA			
the motor torque	maximize $z_2(T)$	maximize $\widetilde{z}_4(T)$	(a)		
The robot has to jump	subject to	subject to			
at the time T	$\dot{z}(t) = Az(t) + Bu(t)$	$\dot{\widetilde{z}}(t) = \widetilde{A}\widetilde{z}(t) + \widetilde{B}u(t)$	(b)		
(contact constraints)	$\int -kz_1(t) + U(t) + m_1g > 0$	$U(t) + m_1 g > 0$	(c)		
	$-kz_1(T) + U(T) + m_1g = 0$	$U(T) + m_1 g = 0$	(d)		
Bi-linear Torque-Speed	$U_{min} \le U(t) \le U_{max}$	$U_{min} \leq U(t) \leq U_{max}$	(e)		
motor characteristic	$V_{min} \le z_2(t) \le V_{max}$	$V_{min} \leq \widetilde{z}_3(t) \leq V_{max}$	(f)		
	$V_{min} - \frac{V_{max}}{U_{max}}U(t) \le z_2(t)$	$V_{min} - \frac{V_{max}}{U_{max}}U(t) \le \widetilde{z}_3(t)$	(g)		
The upper mass must	$z_2(t) \le V_{max} - \frac{V_{max}}{U_{max}}U(t)$	$\widetilde{z}_3(t) \le V_{max} - \frac{V_{max}}{U_{max}}U(t)$	(h)		
not touch the ground	$\delta_{min} \le z_1(t) \le \delta_{max}$	$\delta_{min} \leq \widetilde{z}_2(t) \leq \delta_{max}$	(i)		
constraints)	<u>l</u>	$\phi_{min} \leq \widetilde{z}_2(t) - \widetilde{z}_1(t) \leq \phi_{max}$	(I)		

Since the dynamic is linear and constraints are convex the Optimal Control Problem can be converted into a Convex Optimization Problem

A typical evolution of the working point of the motor subject to the considered Torque-Speed constraint

Also in a more realistic context there exists an optimal stiffness value (for both PEA and SEA) that maximize the peak speed and it depends on the task and robot parameters:

- Terminal time
- Inertia
- Motor Characteristics (Max Torque, Max Speed, Gear Ratio)
- Deflection Constraints

the performance and the optimal stiffness depend on the terminal time T:

- The speed increases with T until a limit
- The optimal stiffness globally decreases with T

PEA

Optimal Control For Soft Robots

Maximize peak speed for a multi-DoF soft robot

- PROBLEM
 - Maximize peak speed at a given terminal time and given terminal position of the end-effector of a multi-dof soft robot

$$V_{X}(q, \dot{q}) = -a_{1}\dot{q}_{1}^{MAX} \sin(q_{1}) - a_{2}(\dot{q}_{1}^{MAX} + \dot{q}_{2}^{MAX}) \sin(q_{1} + q_{2})$$

$$V_{Y}(q, \dot{q}) = a_{1}\dot{q}_{1}^{MAX} \cos(q_{1}) + a_{2}(\dot{q}_{1}^{MAX} + \dot{q}_{2}^{MAX}) \cos(q_{1} + q_{2})$$

$$V_{EE}(q, \dot{q}) = -V_{X}\sin(q_{1}+q_{2})+V_{Y}\cos(q_{1}+q_{2})$$

• SOLUTION METHOD KEY IDEAS

- Exploiting Bang-Bang control solution coming from classical OC theory
- 2-stage optimization of switching time
 - Off-line rough map between switching instants and terminal time and position
 - On-line local optimization of the switching instants for given terminal time and position

Rome, 27 September 2013

= control

= state

(1

0

Numerical Tests on the "goodness" of the solution

69

Optimal Control For Soft Robots

Maximize peak speed for a multi-DoF soft robot

6 0 -0.1 Link length: 10 cm Target distance: 60 -0.2 cm -0.3Target width: 10 cm

Optimal Control for Soft Robots

at give terminal time and position for a multi-DOF robot

control for a two-dof soft robotic arm is achieved by exploiting al control solution coming from the analysis of the system via combined with a two stage optimization of the switching instants b obtain a rough map between switching instants and terminal 2-Stage on-line local optimization).

 Experimental tests, conducted combining this approach with Nonlinear Model Predictive Control, show that the final velocity can be more than doubled w.r.t. the one of the rigid arm

Open Loop Vs NMPC

Real-Time Op

Maximize Speed at g

robot

Rome, 10 November 2011

73

Variable Stiffness Control for Oscillation Damping

<u>G. M. Gasparri</u>[†], M. Garabini[†], L. Pallottino[†], L. Malagia[†], M. Catalano^{†‡}, G. Grioli^{†‡} and A.Bicchi^{†‡}

[†] Research Center "E. Piaggio", University of Pisa, Italy
 [‡] Italian Institute of Technology, Genova, Italy

Problem Definition

State

$$x(t) = [x_1, x_2]^T = [q - \theta, \dot{q}]^T$$

State Dynamic

$$\dot{x}(t) = \begin{bmatrix} x_2 \\ -w^2 x_1 \end{bmatrix}$$

Fixed terminal time

T

Terminal Mechanical Energy $\phi(x(T))$

Control input

u(t)

Optimal Control Problem

$$\phi(x(T)) = \frac{x_1^2(T)}{2} + \frac{x_2^2(T)}{2}$$

$$\min_{u(t)} \phi(x(T))$$

$$\dot{x}(t) = f(x, u)$$

$$x(0) = x_0$$

$$0 \le k_{min} \le u(t) \le k_{max}$$

Costate $\lambda(t) = [\lambda_1, \lambda_2]^T$ Costate Dynamic

$$\dot{\lambda}(t) = \begin{bmatrix} w^2 \lambda_2(t) \\ -\lambda_1(t) \end{bmatrix}$$

Hamiltonian function

$$H = \lambda^T f(x, u) = \lambda_1(t) x_2(t) - \frac{u(t)}{m} \lambda_2(t) x_1(t)$$

From Pontryagin Maximum Principle (PMP) necessary conditions on the optimal control u(t) can be derived by minimising the Hamiltionian. It follows:

Switching functionBang-Bang Control
$$\sigma(t) = \lambda_2(t)x_1(t)$$
 $u(t) = \begin{cases} k_{\max} & \text{when } \sigma(t) < 0 \\ k_{\min} & \text{when } \sigma(t) > 0 \\ \lambda_2(t_s) = 0 \end{cases}$

The switching intervals do not depend from model parameter

From calculus can be showed that :

$$\lambda_2 = h(x_{2,}w_x, w_\lambda)$$

The new switching fucntion:

$$\sigma(t) = x_1(t)x_2(t)p(w_x, w_y)$$
$$p(w_x, w_y) > 0$$

Simulation 1 Dof case with damping

Results 2 DoF

Results 2 DoF case:

Fig. 4 Link position and stiffness evolution (ideal case, no thresholds)

With thresholds

Fig. 5 Link position constant stiffness (Max, Min) Fig. 6 Link position with optimal switching control

Summing up

- Optimal Control gives insight in physical properties of embodied behaviors, by factorizing control and physical performance
- For safe&fast motion

STIFF should go with SLOW, and SOFT with FAST

- For max speed
 - STIFF goes with SPEED-UP, and SOFT with SLOW-DOWN
- For optimal brake
 - STIFF goes with SLOW-DOWN and SOFT with SPEED-UP

Minimize Energy Consumption in Cyclic Tasks

Minimize Energy Consumption

What role does soft actuation play in the reduction of energy cost for mechanical systems that perform cyclic motions?

Joint with SEA

Joint with PEA

Minimize Energy Consumption Actuation Parameter Optimization

• Hypothesis: $K = diag[K_1, ..., K_n]$

The problem can be decoupled

- Optimize actuation parameters SEA: Stiffness (K)
- Then, optimize trajectory:

$$q(t)=q_d(t),\ \dot{q}(t)=\dot{q}_d(t)$$
, $\ddot{q}(t)=\ddot{q}_d(t)$

Minimize Energy Consumption Analytical Results

	J ₁	J ₂
SEA	A Solution of $4 A_{S,j} + 3K_j B_{S,j} + 2C_{S,j} K_j^2 + D_{S,j} K_j^3 = 0$	$\hat{K}_j = -2 rac{F_{\mathcal{S},j}}{G_{\mathcal{S},j}}$
PEA	$\hat{K}_{j} = \frac{B_{P,j}E_{P,j} - 2C_{P,j}D_{P,j}}{4D_{P,j}F_{P,j} - E_{P,j}^{2}}$ $\hat{q}_{e,j} = \frac{C_{P,j}E_{P,j} - 2B_{P,j}F_{P,j}}{2C_{P,j}D_{P,j} - B_{P,j}E_{P,j}}$	$\hat{K}_{j} = rac{\hat{q}_{e,j}H_{P,j} - I_{P,j}}{2(\hat{q}_{e,j}^{2}T + L_{P,j} - \hat{q}_{e,j}M_{P,j})}$ $\hat{q}_{e,j} = rac{H_{P,j} + \hat{K}_{j}M_{P,j}}{2\hat{K}_{j}T}$

A, B, C, D, F, G, E, H, I, M, L are integrals that depend on the trajectories and on the mechanical model

Minimize Energy Consumption The SEA Pick and Place Example: Simulations

- 2 DoF Manipulator
- Sinusoidal joint trajectories
- Given Pick and Place Points

		Theoretical					Joint 1	Joint 2	TOTAL				
	Optimal stiffness						$q_1(t)$	$q_2(t)$					
A typical performance index VS stiffness curve						$\hat{K} [Nm/rad]$	0.2	0.09					
ر ا	•	• :			-		1	1		J_1	0.003	0.07	0.073
0.02										$K^* \; [Nm/rad]$	0.22	0.1	
0.018										J_1	0.003	0.075	0.078
0.014									Available	$K_{min} [Nm/rad]$	0.05	0.05	
<mark>م</mark> 0.012									Optimal	J_1	0.04	0.35	0.39
0.01	i								stiffness	$K_{max} [Nm/rad]$	0.82	0.82	
0.008										J_1	0.07	0.1	0.17
0.004		$\mathbf{\lambda}$								Stiff	$K \to \infty$	$K \to \infty$	
0.002	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8		J_1	0.09	0.1	0.19

Parametric Trajectory Libraries for Online Motion Planning with Application to Soft Robots

Tobia Marcucci, Manolo Garabini, Gian Maria Gasparri, Alessio Artoni, Marco Gabiccini, and Antonio Bicchi

GOAL: Efficient Pick and Place

Object positions are known at the very beginning of each task

Energy Efficiency IFF Planning is Real Time

The Problem

to combine optimality and short computation times

The Idea Online Motion Planning via Parametric Trajectory Library

Offline Phase Parametric library of optimal trajectories via
nonlinear programming
Sensitivity analysis
Preconditioned tangent Quadratic Program (QP)

THE	- Search of the best candidate trajectory in the				
Opline	library				
Onine	- Trajectory refinement via online QP solution				
Phase	Average Planning Time < 10 ms				
	Task time > 1 s				

Exploiting Joint Elasticity in Efficient Walking and Running via Numerical Optimization

G. M. Gasparri, S. Manara, D. Caporale, G. Averta, M. Catalano, G. Grioli, M. Bianchi, A. Bicchi, and <u>M. Garabini</u>

The Energetic Cost of Moving About

[www.wprize.org/TheChallenge, updating The Energetic Cost of Moving About, Tucker 1975]

Eliud Kipchoge run a "Marathon" in 2:00:23

Eliud Kipchoge missed out on a **sub two-hour marathon** by **26 seconds** on Saturday.

[A Three-Dimensional Passive-Dynamic Walking Robot with Two Legs and Knees, Collins et al.]

theguardian sport

[DURUS: SRI's Ultra-Efficient Walking Humanoid Robot, IEEE SPECTRUM]

Muscle Efficiency < 20%

Prime Movers [Mechanical efficiency of pure positive and pure negative work with special reference to the work intensity, Aura and Komi 1986, Int. Journal of Sports Medicine]

Robot Drive Efficiency

Motor Eff. X Gearbox Eff. > 40%

Muscle Efficiency < 20%

Prime Movers [Mechanical efficiency of pure positive and pure negative work with special reference to the work intensity, Aura and Komi 1986, Int. Journal of Sports Medicine]

Robot Drive Efficiency

Motor Eff. X Gearbox Eff. > 40%

Robot drives efficiency is at least twice than muscle efficiency

Dynamic Richness

Musculo-skeletal systemRedundancy

- Compliance, Damping...
- ..that are adjusted based on tasks
- Variable Recruiting Mechanisms

Dynamic Richness

Robot joints and bodies

Musculo-skeletal system

- Redundancy
- Compliance, Damping...
- ..that are adjusted based on tasks
- Variable Recruiting Mechanisms

new-gen robots are approaching the variety of biologic behaviors but they did not shown large efficiency improvements yet

Movement Generation

Human Motor Control

- CPG [Sherrington]
- Synergies [Bizzi]
- Learning [Kawato]
- Peripheral & Central Loops [Grillner]
- Reflexes

222

0

Robot Motion Control
Motion generation
based on simple models (cart-table, IP, SLIP ...) to guarantee online feasibility The problem:

Locomotion generation via classical models can not exploit the full robot dynamics to obtain efficient motions

A possible solution:

numerical optimization on the full dynamic model of the robot to determine robot trajectories (and possibly dynamic params) that minimize the Energetic Cost of locomotion

The optimal control problem

 $\min_{\substack{x(t), u(t), p}} \int_{0}^{T} L(x(t), u(t)) dt$ subject to $g(x, \dot{x}, u, p) = 0$ $h(x, u, p) \leq 0$

Minimize the Cost of

The optimal control problem

 $\min_{\substack{x(t), u(t), p \\ \text{subject to} \\ h(x, u, p) \leq 0}} \int_{0}^{T} L(x(t), u(t)) dt$ Transport

The optimal control problem

 $\min_{x(t),u(t),p} \int_0^1 L(x(t),u(t))dt$ subject to $g(x, \dot{x}, u, p) = 0$ $h(x, u, p) \le 0$

Robot dynamics through different contact phases

- State/control bounds
 Discontinuities at phase changes
 Periodicity
 Unilateral Contact

The optimal control problem

 $\min_{\substack{x(t), u(t), p}} \int_{0}^{T} L(x(t), u(t)) dt$ subject to $g(x, \dot{x}, u, p) = 0$ $h(x, u, p) \leq 0$

- States (x)
- Controls (u)
- Dynamic parameters (p)

(e.g. transmission stiffness)

The optimal control problem

 $\min_{\substack{x(t), u(t), p}} \int_{0}^{T} L(x(t), u(t)) dt$ subject to $g(x, \dot{x}, u, p) = 0$ $h(x, u, p) \leq 0$

Solution Approach: first discretize then optimize

- Direct Collocation
- Algoritmic Differentiation
- Interior Point Method

Case Study: a Planar 6DoF Soft Biped

Constraints

- Link Position Limits
- Motor Torque and Speed Limits
- Swing Foot Height

Walking

Speed 0.4 m/s Speed 0.2 m/s
Running

Speed 0.5 m/s

One Step CoT Vs Forward Speed

<u>ZMP-based</u> (ZMP) - Given gait params - Cart-table model to determine COM traj. - determine joint traj.

Optimization-based (NO) - Given gait params - Numerical Optimization to determine joint traj. That minimize CoT

Optimization based locomotion has a Cost of Transport 5 times lower than a ZMP based locomotion

Time [s]

Time [s]

3

2.5 Log 2 1.5

0.5

STANCE LEG

Optimized Locomotion

Torques \approx **0** (except at the very beginning and the very end)

ZMP-based Locomotion

Hip, Knee (especially) and Ankle torques are substantial due to the **non-straight leg configuration**

If compared to the rigid case, joint elasticity:

has a minor effect on slow walking

If compared to the rigid case, joint elasticity:

has a minor effect on slow walking

substantially reduces the CoT at fast walking

If compared to the rigid case, joint elasticity:

has a minor effect on slow walking

substantially reduces the CoT at fast walking

allows for remarkable energy savings in running

If compared to the rigid case, joint elasticity:

has a minor effect on slow walking

has a substantial effect on fast walking

allows for remarkable energy savings in running

reduces the walk-to-run transition speed

If compared to the rigid case, joint elasticity:

has a minor effect on slow walking

has a substantial effect on fast walking

allows for remarkable energy savings in running

reduces the walk2run transition speed

Increases the forward speed values for which running is feasible

Experimental Setup: a planar 6 DoF Soft Biped

Powered by VSA motor position controlled

Stiffness 60 Nm/rad

Remotized ankle pitch

Structure to constraint the robot to evolve in the sagittal plane

Total Mass 7.2 kg

4 3-A Force sensors

from simulations to experiments @ 0.1 m/s

Speeding Up from 0.04 to 0.1 m/s

Slowing Down from 0.1 to 0.04 m/s

Is Numerical Optimization Viable?

Problem

The optimizations can not be performed at run-time

A possible solution: the off-line/on-line approach

- 1) off-line phase to evaluate and store a Library of Optimized Trajectories
- 2) on-line phase to search the Library for a Trajectory and execute it

Example: full humanoid robot

30 joints, 100 sample to describe the trajectories 10 task parameters (speeds, swing foot pose, ground params, ...) 10 samples to span each parameter range

The Optimized Trajectory Library would need 10^2 Tb

3 Second Order Polynomial functions encode 500 optimized trajectories

Problem

The Trajectory Library size for a realistic example is not manageable

A possible Solution

Trajectory Library Encoding 1) <u>PCA</u>

3 principal components allow to explain the 99% of the variance of 500 tasks 2) <u>Mapping Functions</u> second order polynomials to express the dependence of the principal component weights on the task params

Close the Loop

Distance Regulation on Treadmill Start & Stop

Distance Regulation on Treadmill

In 3 minutes treadmill speed goes from 0.3 km/h to 0.7 km/h and back

Distance Regulation on Treadmill

In 3 minutes treadmill speed goes from 0.3 km/h to 0.7 km/h and back

ONLINE OPTIMAL IMPEDANCE PLANNING FOR LEGGED ROBOTS

<u>Franco Angelini</u>, Guiyang Xin, Wouter J. Wolfslag, Carlo Tiseo, Michael Mistry, Manolo Garabini, Antonio Bicchi, and Sethu Vijayakumar

Angelini et al "Online Optimal Impedance Planning for Legged Robots"

Gains Trade-Off: Issue

Force disturbance

<u>Low</u> impedance

<u>High</u> impedance

Wall interaction

Results – Walking on Rough Terrain

Increasing task requirements: tracking error

Tracking error

Damping

• the model is not perfect!

- exploit data as much as possible
 - Iterative Learning Control
- combine model based and data driven techniques

From articulated to continuous soft robots

- modeling (fidelity/simplicity trade-off)
- planning and control
 - the relative degree problem

- Pierallini et al.

The Dream

We proposed that the ultimate goal of the RoboCup Initiative to be stated as follows:

& By the middle of the 21st century, a team of fully autonomous humanoid robot soccer players shall win a soccer game, complying with the official rules of FIFA, against the winner of the most recent World Cup.

The Dream

We proposed that the ultimate goal of the RoboCup Initiative to be stated as follows:

& By the middle of the 21st century, a team of fully autonomous humanoid robot soccer players shall win a soccer game, complying with the official rules of FIFA, against the winner of the most recent World Cup.

2050

The Dream

We proposed that the ultimate goal of the RoboCup Initiative to be stated as follows:

& By the middle of the 21st century, a team of fully autonomous humanoid robot soccer players shall win a soccer game, complying with the official rules of FIFA, against the winner of the most recent World Cup.

The Dream

We proposed that the ultimate goal of the RoboCup Initiative to be stated as follows:

& By the middle of the 21st century, a team of fully autonomous humanoid robot soccer players shall win a soccer game, complying with the official rules of FIFA, against the winner of the most recent World Cup.

To make the Robocup dream come true robots will need soft bodies!

SIDRA Summer School 2021

THANK YOU!

SIDRA Summer School 2021

Optimal Planning and Control of Articulated Soft Robots

Manolo Garabini

Research Center E. Piaggio University of Pisa

