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Part A:
Continuum formulation of the dynamics



Continuum mechanics

Mathematical description:
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COSSERAT THEORY



Modeling assumption

A soft robotic arm is seen as the continuous assembly of 2D cross–sections moving upon a
3D curve according to infinite rigid body transformations which are defined by distributed
laws of internal deformations.
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Modeling strategy

We derive the kinematics of continuum robots from the evolution of a 3D curve in space

using a geometric local frame approach

with no approximation on kinematic variables

including all the components of deformation
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Position field

α ∈ R 7→ H(α) = H(R(α),u(α)) ∈ SE (3)

α ∈ R, material abscissa along the arm

u(α) ∈ R3, position vector of the cross-section

R(α) = [t(α) n(α) b(α)] ∈ SO(3), rotation matrix of the cross-section, where t(α) =
unit tangent vector; n(α) = unit normal vector; b(α) = unit binormal vector.

with

SO(3) special Orthogonal group: the Lie group of the rotation matrices

SE (3) special Euclidean group: the Lie group of the homogeneous matrices



Positions as Lie group elements

Change of reference frame = Euclidean transformation

The space SE (3) of Euclidean transformations is a Lie Group

H = H(R, x) =

[
R x

01x3 1

]
∈ SE(3)

SE(3) = SO(3)× R3



Lie group

Definition

A group (G,·) is a set G of elements q together with a composition operation (·) which
satisfies the four axioms of:

closure: the composition of two elements of the set yields an element of the set, i.e.,
∀q1, q2 ∈ G , q1 · q2 = q3 ∈ G

associativity: q1 · (q2 · q3) = (q1 · q2) · q3

neutral element: there exists an element e of the set such that q · e = e · q = q

inverse element: there exists an element q−1 of the set such that q · q−1 = q−1 · q = e

Definition

A Lie group is a continuous group for which the composition rule and the inverse are smooth



Lie group (cont’d)

Proposition

A matrix Lie group is a Lie group for which the composition rule is represented by the matrix
product

R ∈ SO(3), the special Orthogonal group

H ∈ SE (3), the special Euclidean group



Deformation field

The homogeneous matrix H evolves along the material abscissa α according to the differential
kinematic relationship

H ′(α) = H(α)f̃ (α)

where f̃ (α) is a left invariant vector field.

f̃ =

[
f̃ ω f u

01×3 1

]
∈ se(3) deformation twist

f u ∈ R3 vector of linear deformations

f̃ ω =

 0 −fω,3 fω,2
fω,3 0 −fω,1
−fω,2 fω,1 0

 ∈ so(3) skew-symmetric matrix of angular deformations



Deformations as Lie algebra elements

(̃·)SO(3) : R3 → so(3)

(̃·)SE(3) : R6 → se(3)

with

so(3) Lie algebra associated to the Lie group SO(3)

se(3) Lie algebra associated to the Lie group SE(3)

⇓

f̃(α) ∈ se(3) deformation twist

f(α) ∈ R6 deformation vector (axial, shear, bending, torsion)



Lie derivatives

Derivative of a Lie group

The derivative of q ∈ G with respect to a ∈ R reads

da(q) = qãL

= ãRq

where ãL ∈ g and ãR ∈ g are respectively called a left and right invariant vector field. These
elements represent the Lie algebra associated to the Lie group.



Lie algebra

Definition

The Lie algebra g (se(3)) is the tangent space at the identity element of a Lie group G (H).

da(H) = Hã



Lie algebra (cont’d)

Proposition

The Lie algebra g is isomorphic to Rk through the invertible linear map

(̃·) : Rk → g, a ∈ Rk 7→ ã ∈ g



Lie algebra (cont’d)

SO(3) so(3) R3

SE (3) se(3) R6



Lie algebra (cont’d)

da(H) = Hã

Left invariant vector field on SE (3)
=

Invariant under a superimposed Euclidean transformation
=

Intrinsic quantity



Differential geometry of the 3D curve

HA

HB

α

t′(α) = κ(α)n(α)

n′(α) = −κ(α)t(α) + τ(α)b(α)

b′(α) = −τ(α)n(α)

Serret-Frenet Formulas

H′(α) =

[
R′(α) u′(α)
01×3 1

]

H′(α) = H(α)̃f(α)

κ(α) and τ(α): curvature and torsion of the curve

H(α) =

[
R(α) u(α)
01×3 1

]

R′(α) =
[
t′(α) n′(α) b′(α)

]
Invariant vector field

f̃(α): deformation twist
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Compatibility equations

η′(α)− ḟ (α) = η̂(α)f (α)



Lie bracket

Definition

The Lie bracket operator is the bilinear operator defined as

[·, ·] : g× g→ g,
[
ã, b̃
]
7→ db(ã)− da(b̃)

Cross derivatives

db(ã)− da(b̃) =
[
ã, b̃
]

db(a)− da(b) = âb = adab â =

[
ãω ãu

03×3 ãω

]
Definition

The linear operator (̂·) is the bilinear operator defined as

(̂·) : Rk → Rk×k , a 7→ â = A



Strain energy, costitutive equations and stiffness matrix

Strain energy

Vint =
1

2

∫
L
f TKf dα

Costitutive equations

σ(α) = K(α) f (α)



Strain energy, costitutive equations and stiffness matrix (cont’d)

Stiffness matrix

K =

[
Kuu Kuω

SYM Kωω

]
Initially straight beam + reference curve ≡ neutral axis of the beam (i.e. n0 and b0 are chosen
to be the principal axes of the cross-sections) → K(α1) is diagonal:

Kuu = diag(EA,GA2,GA3)

Kωω = diag(GJ,EI2,EI3)



Static equilibrium equations

Principle of Virtual Work

δ(Vint) = δ(Vext)



Variations

Variations of a Lie group element

δ(R) = Rδ̃θ

δ(H) = Hδ̃h

where δ̃θ ∈ so(3) is an arbitrary infinitesimal rotation associated with the axial vector δθ ∈ R3

and δhu = RT δu ∈ R3 is an arbitrary infinitesimal displacement

Variations of a twist element

δ(η̃)− (δ̃h)· =
[
η̃, δ̃h

]
δ(η)− (δh)· = η̂δh = −δ̂hη



Static equilibrium equations

Principle of Virtual Work

δ(Vint) = δ(Vext)

δ(f) = (δh)′ + f̂δh

δ(Vint) =

∫
L
δ(f )Tσ dα =

=
[
δhTσ

]
|L0 −

∫
L
δhT (σ′ − f̂Tσ′) dα

δ(Vext) = +δh(0)Tgext(0)− δh(L)Tgext(L)−
∫
L
δhTgext(α) dα

gext(α) =
[
gT
ext,u gT

ext,ω

]



Static equilibrium equations (cont’d)

Static equilibrium equations

weak form
[
δhT (σ − gext)

]
|L0 −

∫
L δh

T (σ′ − f̂Tσ − gext) dα = 0

strong form σ′ − f̂Tσ = gext



Velocity field

Ḣ(α) = H(α)η̃(α)

η̃ =

[
ω̃ v

01×3 1

]
∈ se(3) velocity twist

v ∈ R3 vector of linear velocities

ω̃ =

 0 −ω3 −ω2

−ω3 0 −ω1

−ω2 −ω1 0

 ∈ so(3) skew-symmetric matrix of angular velocities



Kinetic energy

K =
1

2

∫
L
ηTMη dα

M =

[
ρAI3×3 JTI

JI JII

]

ρ density

A cross-section area

JI first moment of inertia of the cross section (computed in the local axes of the
arm)

JII second moment of inertia of the cross section (computed in the local axes of the
arm)



Dynamic equilibrium equations

Hamilton’s principle ∫ t1

t0

(δ(K)− δ(Vint) + δ(Vext)) dt = 0 .

δ(Vint) =

∫
L
δ(f )Tσ dα =

=
[
δhTσ

]
|L0 −

∫
L
δhT (σ′ − f̂Tσ′) dα

δ(Vext) = +δh(0)Tgext(0)− δh(L)Tgext(L)−
∫
L
δhTgext(α) dα



Dynamic equilibrium equations (cont’d)

Hamilton’s principle ∫ t1

t0

(δ(K)− δ(Vint) + δ(Vext)) dt = 0 .

δ(η) = ˙(δh) + η̂δh

∫ t1

t0

δ(K) dt =

∫ t1

t0

∫
L
δ(η)TMη dαdt =

=

[∫
L
δhTMηdα

]t1

t0

−
∫ t1

t0

∫
L
δhT (Mη̇ − η̂TMη) dα dt



Dynamic equilibrium equations (cont’d)

Dynamic equilibrium equations

weak form
[
δhT (σ − gext)

]
|L0 −

∫
L
δhT (−Mη̇ + η̂TMη + σ′ − f̂Tσ + gext) dα = 0

strong form Mη̇ − η̂TMη − σ′ + fTσ = gext



Equations of motion

Kinematic equations Ḣ = Hη̃

H′ = Hf̃

Material constitutive law σ = Kf

Compatibility equations η′ − ḟ = η̂f

Boundary conditions δh(L) (K(L)f (L)− g ext(L)) = δh(0) (K(0)f (0)− g ext(0))

Dynamic equilibrium equations Mη̇ − η̂TMη − σ′ + f
Tσ = gext



Part B:
Discrete formulation with piecewise

constant deformation



The continuous field of deformation f (α) leads to dynamics described by PDE!

Continuum mechanics

Mη̇ − η̂TMη − σ′ + f Tσ = gext

Robotics

Mq̈ + Cq̇ + g = τ

How to close the gap?
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From the continuum formulation . . .

α

continuum arm: continuous field f (α)

Grazioso, Di Gironimo, Siciliano ”A geometrically exact model for soft continuum robots” Soft Robotics, 2019



. . . To the discrete formulation

α
α

continuum arm: continuous field f (α) discrete arm: n deformation vectors f (each one is a 6-D vector)

Finite Element Method (FEM) using helical shape functions

Piecewise constant deformation assumption

Grazioso, Di Gironimo, Siciliano ”A geometrically exact model for soft continuum robots” Soft Robotics, 2019



. . . To the discrete formulation

α
α

continuum arm: continuous field f (α) discrete arm: n deformation vectors f (each one is a 6-D vector)

Finite Element Method (FEM) using helical shape functions

q traditional rigid robotics

Piecewise constant deformation assumption

Grazioso, Di Gironimo, Siciliano ”A geometrically exact model for soft continuum robots” Soft Robotics, 2019



. . . To the discrete formulation

α
α

continuum arm: continuous field f (α) discrete arm: n deformation vectors f (each one is a 6-D vector)

Finite Element Method (FEM) using helical shape functions

q traditional rigid robotics

THE FE DEFORMATION SPACE FORMULATION

Piecewise constant deformation assumption

Grazioso, Di Gironimo, Siciliano ”A geometrically exact model for soft continuum robots” Soft Robotics, 2019



Kinematics

H′(α) = H(α)f̃ (α)

α ∈ [0, L]
L: total length of the arm

f : constant deformation vector of
the discrete element of the arm

⇓ . . . since f does not depend on α

Kinematics mapping

H(α) = H0 expSE(3)

(
αf̃
)

H0 in SE(3): configuration of the arm at α = 0



Kinematics

The exponential map on SE (3)

expSE(3)(·) : R6 → SE (3), f 7→ expSE(3)(f ) (∗)

expSE(3)(f ) =

[
expSO(3)(f ω) TT

SO(3)(f ω)f u
01×3 1

]

expSO(3)(f ω) = I 3×3 + α(f ω)f̃ ω + β(f ω)
2 f̃

2

ω: Rodrigues’ formula

T SO(3)(f ω) = I 3×3 − β(f ω)
2 f̃ ω + 1−α(f ω)

‖f ω‖2
f̃

2

ω: Tangent operator

α(f ω) = sin(‖f ω‖)
‖f ω‖

β(f ω) = 2 1−cos(‖f ω‖)
‖f ω‖2

(*) The formal definition of exponential map uses the Lie algebra se(3) instead of R6.
However, due to the isomorphism between Lie algebra se(3) and R6, Hence, with a slight abuse of
notation, we use R6 instead of se(3)



Exponential map

Definition

The exponential map projects an element of the Lie algebra into an element of the Lie group

exp : g→ G , ã 7→ exp(ã)

and it is given by

exp(ã) =
∞∑
i=0

ãi

i !



Exponential map (cont’d)



Kinematics – multiple elements

H′(α) = H(α) f̃ (α)

α ∈ [0, Ln] =
[0, L1), (L1, L2), . . . , (Ln−1, Ln]
Ln: total length of the arm

f i : constant deformation vector of
each discrete element of the arm

⇓ . . . since f does not depend on α

Product of exponentials (PoE)

H(α) = H0

n∏
i=1

expSE(3)

(
(min(Li , αi )− Li−1)f̃ i

)
H0 in SE(3): configuration of the arm at α = 0



Inverse kinematics – one element

Mapping

kI (·) : H0,HL ∈ SE (3) 7→ f = logSE(3)

(
H−1

0 HL

)
∈ R6

H0,HL: the configuration of the arm at α = 0, α = L

logSE(3)(·): the logarithmic map on SE (3)



Inverse kinematics (cont’d)

The logarithmic map on SE (3)

logSE(3)(·) : SE (3)→ R6, H 7→ logSE(3)(H) (∗)

logSE(3)(H) =

[
logSO(3)(R) T−TSO(3)(fω)u

01×3 1

]

logSO(3)(R) = θ
2 sinθ (R− RT ), with θ = acos

(
1
2 (trace(R)− 1)

)
, θ < π

T−1
SO(3)(fω) = I3×3 + 1

2 f̃ω + 1−γ(fω)
‖fω‖2 f̃2

ω: Inverse of the tangent operator

γ(fω) = ‖fω‖
2 cot

(
‖fω‖

2

)
(*) The formal definition of logarithmic map uses the Lie algebra se(3) instead of R6.
As before, since the isomorphism se(3) ' R6 holds, with a slight abuse of notation, we use R6.



Logarithmic map

Definition

The logarithmic map projects an element of the Lie group into an element of the Lie algebra

log : G → g, q 7→ log(q) = ã

and it is given by

log(q) =
∞∑
i=0

(e − q)i

i



Tangent map

Definition

T : Rk → Rk , u 7→ T(u)da(u) = a

with

T(u) =
∞∑
i=0

(−1)i
ûi

(i + 1)!



Inverse of the tangent map

Definition

T−1 : Rk → Rk , u, a 7→ T−1(u)a = da(u)

with

T−1(u) =
∞∑
i=0

(−1)iBi
ûi

(i)!

where Bi is the Bernoulli number of the first kind.



The exponential map on SO(3)

Exponential map expSO(3)(hω) = I3×3 + α(hω)h̃ω + β(hω)
2 h̃2

ω

Logarithmic map logSO(3)(R) = θ
2sinθ (R− RT )

Tangent operator TSO(3)(hω) = I3×3 − β(hω)
2 h̃ω + 1−α(hω)

‖hω‖2 h̃2
ω

Inverse of the tangent operator T−1
SO(3)(hω) = I3×3 + 1

2 h̃ω + 1−γ(hω)
‖hω‖2 h̃2

ω

α(hω) =
sin(‖hω‖)
‖hω‖

β(hω) = 2
1− cos(‖hω‖)
‖hω‖2

γ(hω) =
‖hω‖

2
cot

(
‖hω‖

2

)
θ = acos

(
1

2
(trace(R)− 1

)
, θ < π



The exponential map on SE (3)

Exponential map expSE(3)(h) =

[
expSO(3)(hω) TT

SO(3)(hω)hu

01×3 1

]

Logarithmic map logSE(3)(H) =

[
h̃ω T−TSO(3)(hω)hu

01×3 0

]

Tangent operator TSE(3)(h) =

[
TSO(3)(hω) Tuω+(hu,hω)

03×3 TSO(3)(hω)

]

Inverse of the tangent operator T−1
SE(3)(h) =

[
T−1

SO(3)(hω) Tuω−(hu,hω)

03×3 T−1
SO(3)(hω)

]



The exponential map on SE (3) (cont’d)

Tuω+(hω, hu) =
−β
2

h̃ω +
1− α
‖hω‖2

[hω, hu] +
hT
u hω
‖hu‖2

(
(β − α)h̃u + (

β

2
− 3(1− α
‖hu‖2

)h̃2
u

)
Tuω−(hω, hu) =

1

2
h̃ω +

1− γ
‖hω‖2

[hω, hu] +
hT
u hω
‖hu‖4

(
(

1

β
+ γ − 2)h̃2

u

)



Geometric interpretation of the interpolated reference curve

H(α) = HAHA0 expSE(3)

(α
L

d̃
)

⇓

u′(α) = R(α)
d̃u

L
and R′(α) = R(α)

d̃ω
L

Local triad

t(α) =
u′(α)

‖u(α)‖
= R(α)

du

L

n(α) =
1

κ
t′(α) = R(α)

d̃ωdu

‖d̃ωdu‖

b(α) =
1

‖du‖‖d̃ωdu‖
R̃(α)duR(α)dωdu = R(α)

d̃ud̃ωdu

‖du‖‖d̃ωdu‖



Geometric interpretation of the interpolated reference curve (cont’d)

H(α) = HAHA0 expSE(3)

(α
L

d̃
)

⇓

u′(α) = R(α)
d̃u

L
and R′(α) = R(α)

d̃ω
L

Curvature and torsion of the curve

κ =
‖d̃ωdu‖

L2
=
‖dω‖sin(dω,du)

L
= cost

τ =
(dT
ω du)

L2
=
‖dω‖cos(dω,du)

L
= cost

κg =
√
κ2 + τ2 =

‖dω‖
L

=
‖dω‖
‖du‖

= cost



Geometric interpretation of the interpolated reference curve (cont’d)
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Curvature and torsion of the curve

κ =
‖d̃ωdu‖

L2
=
‖dω‖sin(dω,du)

L
= cost

τ =
(dT
ω du)

L2
=
‖dω‖cos(dω,du)

L
= cost



Geometric interpretation of the interpolated reference curve (cont’d)
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Physical meaning: Helix!



Example

Computing the shape of a soft arm with one element (n = 1) with internal
deformations f u = [1 0 0]T ; f ω = [τ 0 κ]T (no axial and shear
deformations; bending about z ; torsion about x)

⇓

H(α) =


1− (1− cos(ακg )) κ

2

κ2
g
−sin(ακg ) κκg

(1− cos(ακg ))κτκ2
g

α + (sin(ακg )− ακg ) κ
2

κ3
g

sin(ακg ) κκg
cos(ακg ) −sin(ακg ) τκg

(1− cos(ακg )) κκ2
g

(1− cos(ακg ))κτκ2
g

sin(ακg ) τκg
1− (1− cos(ακg )) τ

2

κ2
g

(ακg − sin(ακg ))κτκ3
g

0 0 0 1



κg =
√
κ2 + τ 2: Gaussian curvature of the arm

Grazioso, Di Gironimo, Siciliano ”From differential geometry of curves to helical kinematics of continuum robots using

exponential mapping” ARK, 2018



Example (cont’d)

(a) τ = 3 m−1; κ = 0 : π/2 : 2π m−1. (b) κ = 3 m−1; τ = 0 : π/2 : 2π m−1

Figure: Whole arm screw motion of a manipulator with constant curvature and torsion. L = 1 m.

Grazioso, Di Gironimo, Siciliano ”From differential geometry of curves to helical kinematics of continuum robots using

exponential mapping” ARK, 2018



Differential kinematics

Mapping between the velocities along the arm and the time derivatives of the states of
the manipulator, i.e. the internal deformations

Differential kinematics

η(α) = J(α,d )ḟ

Soft Geometric Jacobian

J(α,d ) = AdexpSE(3)(−αL d)H−1
A0

T−1
SE(3)(−d )AdH−1

A0
. . .

. . .
(

T−1
SE(3)(−d )AdH−1

A0
)2 + (T−1

SE(3)(d )AdH−1
B0

)2)−1
)
. . .

. . .+
α

L
TSE(3)

(α
L
d
)



Adjoint representation

Definition

The adjoint representation of a Lie algebra element is defined as

Adq : g→ g, ã 7→ qãq−1

Adjoint representation of a se(3) element

AdH(ã) = HãH−1

AdH(a) =

[
R ũR

03×3 R

]
a



Statics

Variation of internal energy (continuum)

δ(Vint) =

∫
L
δ(f (α))TK(α)f (α) dα

⇓
f = cost for the finite element

Variation of internal energy (discrete)

δ(Vint) = δ(f )TKLf , KL =

∫
L

K(α) dα; KLf = T



Statics

Variation of external energy (continuum)

δ(Vext) = +δh(0)Tgext(0)− δh(L)Tgext(L)−
∫
L
δhTgext dα

⇓ f = cost for the finite element

δh(α) = J(α,d )δ(f )

Variation of external energy (discrete)

δ(Vext) = −δ(f )TJT
L (d)F, F =

∫
L

gext dα; JL(d ) =

∫
L
J(α,d ) dα



Statics

PVV

δ(Vint) = δ(Vext) ∀δ(f )

Static model

T = JT
L (d )F

→ Kineto-statics duality!



Dynamics

Weak form of dynamic equilibrium equations (continuum)[
δhT (σ − gext)

]
|L0 −

∫
L δh

T (−Mη̇ + η̂TMη + σ′ − f̂Tσ + gext) dα = 0

η(α) = J(α,d )ḟ

η̇(α) = J(α,d)f̈ + J̇(α,d)ḟ

δh(α) = J(α,d )δ(f )

Weak form of dynamic equilibrium equations (discrete)

δ(f )T
∫
L J

T (M(Jf̈ + J̇ ḟ )− Ĵ ḟ
T

MJḟ + ε̂TKf − gext) dα = 0



Dynamics∫
L J

TMJ dα = M, the 6× 6 discretized mass matrix.∫
L J

TMJ̇ dα = C1, the 6× 6 velocity matrix which contributes only if ε̇ does not vanish,
i.e., only when the deformation of the arm changes in time.

∫
L J

T Ĵ ḟ
T

MJ dα = C2, the 6× 6 velocity matrix related to gyroscopic effects,
contributes also in the case of a rigid body motion of the soft arm.∫
L J

T f̂
T

K dα = K, the 6× 6 discretized stiffness matrix.∫
L J

Tgext dα = F, the 6× 1 vector of generalized applied forces. It also includes
actuation loads and gravity field.

Dynamic model

M(α, f )f̈ + (C1

(
α, f , ḟ )− C2(α, f , ḟ )

)
ḟ −Kf = F



The Princeton Experiment

z

x

z
θ

y
f

r1 r2 r3 r4

θ: 15, 30, 45, 60, 75, 90 degree

f : 4.448, 8.896, 13,344, 17.792 N



The Princeton Experiment
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The Princeton Experiment
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Part C:
Piecewise constant curvature as special case

of the deformation space formulation



Looking for simplified models!

Under reference external forces

Using a particular actuation source (tendons / pneumatic actuation)

We look for experimental prototypes and we see that they exhibit some relevant shape
configuration



Constant moment applied at the tip of the robotic arm

x

z

τy

Figure: Cantilever soft arm subject to a torque τ y at its free end

Grazioso, Di Gironimo, Siciliano ”Analytic solutions for the static equilibrium configurations of externally loaded cantilever

soft robotic arms” ROBOSOFT, 2018



Constant moment applied at the tip of the robotic arm (cont’d)

Equations

Kinematic equations H′(α) = H(α)(f )̃

Material constitutive law σ(α) = K(α)f (α)

Boundary conditions δh(L) (K(L)f (L)− g ext(L))− δh(0) (K(0)f (0)− g ext(0)) = 0

Statics σ′(α)− f̂
T

(α)σ(α) = g ext(α)



Constant moment applied at the tip of the robotic arm (cont’d)

Boundary conditions

σ(L) = K (L)f (L) = g ext(L)



Constant moment applied at the tip of the robotic arm (cont’d)

Deformation field

Since the stiffness matrix is constant over the arm, the equilibrium equations in the static
configuration become

Kf ′ − f̂ 0
T
Kf = 06×1

In this case, the solution for the deformation field can be expressed in closed form and it is
given by

f (α) = K−1F (α)Kf 0

where f 0, the deformation at α = 0, is a constant of integration and

F (α) =

[
LT (α) 03×3(

T SO(3)(αf 0
ω)αf 0

u

)̃
LT (α) LT (α)

]

with L(α) = expSO(3)

(
αf 0

ω

)
.



Constant moment applied at the tip of the robotic arm (cont’d)

Deformation field

The boundary conditions become

σ(L) = KK−1F (L)Kf 0 = g ext(L)

such that the constant of integration f 0 is given by

f 0 = K−1(F (L))−1g ext(L)

Therefore, the solution for the deformation field reads

f (α) = K−1F (α)(F (L))−1g ext(L)



Constant moment applied at the tip of the robotic arm (cont’d)

Deformation field

In the special cases of pure bending/torsion solicitations, the external forces are given by

g ext,u(L) = 03×1

g ext,ω(L) = τa

where τ ∈ R and a ∈ R3 is an arbitrary vector. For an initially straight arm, we have
F (α)(F (L))−1 = I 6×6. Hence, the deformation field becomes

f = K−1

[
03×1

τa

]



Constant moment applied at the tip of the robotic arm (cont’d)

Deformation field

Thus, it results that f is constant along the continuum arm. The solution reads[
γ
κ

]
=

[
03×1

K−1
ωω(τa)

]
where Kωω = diag(GJ,EIy ,EIz) contains the torsional and bending stiffnesses of the cross
section.



Constant moment applied at the tip of the robotic arm (cont’d)

Position field

The position and orientation fields are obtained by solving the kinematic equations. Since the
deformation field obtained above involves constant deformations, the kinematic equations can
be integrated analitically and the solution for the SE (3) field is given by

H(α) = H0 expSE(3)(αf )

where H0 = H(R0,u0) is a constant of integration and expSE(3)(·) is the exponential map on
SE (3). Explicitly, it reads

u(α) = u0 + R0T
T
SO(3)(α(f 0

ω + κ))α(f 0
u + γ)

R(α) = R0 expS0(3)(α(f 0
ω + κ))

Since we are considering initially straight arm, we have that u0 = 03×1, R0 = I3×3 and
f 0
u = [1 0 0]T , f 0

ω = 03×1.



Constant moment applied at the tip of the robotic arm (cont’d)

Position field

In the case of the figure above, g ext,ω(L) = τ [0 1 0]T . According to the deformation field
solution, the deformations are given by

γ = [0 0 0]T

κ = [0 κy 0]T

where κy = τy/(EIy ). Indeed, according to the SE (3) field solution, the position and rotation
fields are given by

u(α) =


1
κy

sin(ακy )

0
− 1
κy

(1− cos(ακy ))


R(α) =

 cos(ακy ) 0 sin(ακy )
0 1 0

−sin(ακy ) 0 cos(ακy )





Constant moment applied at the tip of the robotic arm (cont’d)
By considering EIy = 1 Nm2 and L = 1 m, the soft arm’s steady-state shape, for bending tip
loads τ = 1, 2, 3, 4, 5 N m, is:

τ

x

z

τ = 1

τ = 2

τ = 3

τ = 4
τ = 5



Constant moment applied at the tip of the robotic arm (cont’d)

If a constant moment is applied at the tip of a robotic arm → the mechanics predict a
constant curvature result !



Tendon–driven planar soft continuum arm

Assumptions:

Tendon modeled as an extensible string which can not support internal moments or shear
forces, but only tension T

Frictionless interaction between the tendon and the channel → T is constant

Location of the tendons is not varying under the applied loads

Constant cross-section properties (mass and stiffness properties)

→ Equivalence between full coupled model (a) and point moment model (b).



Soft continuum arm with constant curvature

fu = [1 0 0]T

fω = [0 0 κ]T

FKINE−−−−→
IKINE←−−−−

H(α) =


cos(ακ) −sin(ακ) 0 1

κsin(ακ)
sin(ακ) cos(ακ) 0 1

κ (1− cos(ακ))
0 0 1 0
0 0 0 1





Soft continuum arm with constant curvature

Figure: Whole arm shape configuration under a desired circular end point trajectory. L = 1 m; κ =
π/10 : π/10 : π m−1.



An alternative approach for kinematic shape
recostruction



Kinematics using the exponential map

f ∈ R6 7→ H(α) = expSE(3) (αf) ∈ SE (3)

expSE(3)(f) =[
expSO(3)(fω) TT

SO(3)(fω)fu
01×3 1

]
expSO(3)(fω) = I3×3 + α(fω )̃fω + β(fω)

2 f̃2
ω

TSO(3)(fω) = I3×3 − β(fω)
2 f̃ω + 1−α(fω)

‖fω‖2 f̃2
ω

α(fω) = sin(‖fω‖)
‖fω‖ β(fω) = 2 1−cos(‖fω‖)

‖fω‖2



Kinematics using the exponential map (cont’d)

f ∈ R6 7→ H(α) = expSE(3) (αf) ∈ SE (3)

expSE(3)(f) =[
expSO(3)(fω) TT

SO(3)(fω)fu
01×3 1

]
expSO(3)(fω) = I3×3 + α(fω )̃fω + β(fω)

2 f̃2
ω

TSO(3)(fω) = I3×3 − β(fω)
2 f̃ω + 1−α(fω)

‖fω‖2 f̃2
ω

α(fω) = sin(‖fω‖)
‖fω‖ β(fω) = 2 1−cos(‖fω‖)

‖fω‖2

Problems

Exponential mapping involves
trascendental functions at each
time step

There exists conditions in which soft
continuum robots does not
undergone large deformations, but
low deformations, even if yet finite.



Kinematics using the Cayley map

Cayley map: definition

cay(ã) = (I + ã)(I− ã)−1 =

= (I− ã)−1(I + ã) = A

A ∈ G , Lie group

ã ∈ g, its corresponding Lie algebra

I, identity matrix

Geometric interpretation

exp(ã) ≈ Pade(ã) = (I− 1

2
ã)−1(I +

1

2
ã)

Cay map: Pade diagonal approximation of the exp map



Comparisons

. . . using the Exponential map

f ∈ R6 7→ H(α) = expSE(3) (αf) ∈ SE (3)

expSE(3)(f) =[
expSO(3)(fω) TT

SO(3)(fω)fu
01×3 1

]
expSO(3)(fω) = I3×3 + α(fω )̃fω + β(fω)

2 f̃2
ω

TSO(3)(fω) = I3×3 − β(fω)
2 f̃ω + 1−α(fω)

‖fω‖2 f̃2
ω

α(fω) = sin(‖fω‖)
‖fω‖ β(fω) = 2 1−cos(‖fω‖)

‖fω‖2

. . . using the Cayley map

f ∈ R6 7→M(α) = caySE(3) (αf) ∈ SE (3)

caySE(3)(f) =[
caySO(3)(fω) dcaySO(3)(fω)fu)

01×3 1

]
caySO(3)(αfω) =

I 3×3 + 4κ

4κ2+||f ω||2
(αf̃ω + αf̃2

ω); k=1,1/2

dcaySO(3)(αfω) = caySO(3)(αfω) + I 3×3

Difference between H(α) and M(α)?



Comparisons (cont’d)

Planar bending: f = [1 0 0 0 0 K ]T

Ten cases with increasing curvature.
1 : K = π/10 m−1;. . . ; 10: K = πm−1

Twist motion: f = [1 0 0 T 0 K ]T

Five cases with increasing curvature and fixed
torsion. 1 : T = 3 m−1 and K = 0;. . . ; 5:

T = 3 m−1 and K = 2πm−1



Comparisons (cont’d)

Geometric mechanics of soft robots

Cayley transform for parametrization of soft robot kinematics, in case of low, yet finite
deformations → advantages also for compound robots; finite element models using Cayley
map as shape function

Cayley map for recovering the geometrically exact motion, i.e. expSE(3)(f̃ ) = caySE(3)(ζ̃)
if we consider the change of deformation coordinates[

ζu
ζω

]
=

[
λI 3×3 τλ′I 3×3

03×3 λI 3×3

] [
f u

f ω

]
with

λ = 2κ
tan(||f ω||/2)

||f ω||
τ = uf ω = T

T
SO(3)(f ω)f uf ω



SimSOFT: a finite element solver for soft
robots dynamics



SimSOFT

Input

Geometry description and

behavior (rigid / soft)

Joints

Actuation sources

Planner

Boundary conditions

Solving parameters

Output

Positions, velocities and

accelerations of nodes and

joints

Forces and torques at

boundaries and joint locations

Stresses and strains of the

elements

Animations



Soft articulated robot composed by soft continuum elements

x
z

y

soft joint
soft body

rigid body

rigid joint

rigid constraint





Conclusions

Geometric approach for modeling soft robots

Soft continuum robots modeled as Cosserat rod elements

The deformation space formulation for soft robots dynamics

The special case of constant curvature

An alternative approach based on Cayley map

A finite element solver for soft robots dynamics and relative applications
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