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Interaction Control

 In a wide number of applications, such as polishing, deburring, machining or assembling, it is 
necessary to control the interaction between the robot manipulator and the environment
 The environment sets constraints on the geometric paths that can be followed by the end-effector
 Purely motion control strategies for controlling the interaction will fail (rising contact force)

 The intrinsic compliance of a flexible-link robot may contribute to reduction in the value of the forces 
that can be generated when the interaction task is executed by a rigid robot
 Using flexible robots to perform interaction tasks, some benefits may be gained, even though the distributed flexibility of 

the links makes the interaction control problem more complex than for rigid robots
 Interaction control strategies

 Indirect force control (via motion control)
 Direct force control (force feedback loop)
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Flexible-Link Robots

 The inherent difficulty of force control of flexible manipulators is due to problems similar to those arising 
in motion control
 Kinematics and dynamics of the robot cannot be stated independent of the forces acting on the robot tip (end-point)
 The additional deflections caused by contact forces must be suitably taken into account for the computation of inverse 

kinematics solutions
 Dynamics of a flexible manipulator in contact with the environment is very difficult to solve and 

simplifications must be made
 If the assumed modes technique is adopted to model the flexible manipulator, the mode functions must satisfy the 

geometric boundary conditions, which are not altered by the contact with the environment, while the natural boundary 
conditions (i.e. those involving the balance of forces and moments at the ends of the links) are automatically taken into 
account by the Lagrange formulation of the dynamic model

 Another challenge is damping the vibrations that are naturally excited during the task execution
 Adoption of singular perturbation theory when the link stiffness is large, and a two-time-scale model of the flexible 

manipulator can be derived
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Kinematic Modelling
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 Planar n-link flexible manipulators with revolute joints are 
considered
 Links are subject to bending deformation in the plane of motion, i.e, 

torsional effects are neglected
 Position of a point along the deflected link

 Position of origin of frame

 Joint (rigid) rotation matrix

 Link (flexible) rotation matrix 
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Kinematic Transformations
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 Absolute position vectors

 Global transformation matrix from base frame to frame
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Link Flexibility

 Finite-dimensional model (of order mi) of link flexibility
 Euler–Bernoulli equation for flexible beams (separability in time and space of solutions)

 Link deflection (assumed modes)

 Mode shapes have to satisfy proper boundary conditions at the base (clamped) and at the end of each link (mass)
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uniform mass density
constant flexural link rigidity

time-varying variables

spatial mode shapes
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Kinematics Equations

 Position of the manipulator end-point as a function of the (n × 1) joint variable vector and the (m × 1) 
deflection variable vector

 Linear velocity of a point on the arm
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Jacobians

 Tip velocity as a function of joint velocity and link velocity

 Manipulator in contact with the environment  In view of virtual work principle (kinetostatics duality)
 Vector     of forces exerted by the manipulator on the environment performing work on position variables

 Vector           of joint torques performing work on joint variables
 Vector           of elastic reaction forces performing work on link variables
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rigid-body Jacobian 
flexible-body Jacobian 
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Dynamic Modelling

 Finite-dimensional Lagrangian dynamic model of planar manipulator in contact with the environment

 Matrix blocks of positive definite symmetric inertia matrix
 Vectors of Coriolis and centrifugal forces
 Vector of gravitational forces
 Diagonal and positive definite link stiffness matrix
 Diagonal and positive semi-definite link damping matrix
 Vector of input joint torques
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Contact Force

 To analyse the performance of the position and force control algorithms, a model of the contact force is 
required

 Frictionless and planar elastic surface, which is locally a good approximation to surfaces of regular 
curvature (assuming contact is not lost)

Force and Position Control of Flexible Robots 13/39

surface stiffness
undeformed (constant) position of the surface
(constant) unit vector of the direction normal to the surface



Summer School SIDRA 2021 • Modeling and Control of Soft Robots Bertinoro • 16 July 2021

Indirect Force and Position Regulation

 The interaction of a flexible-link robot with a compliant environment can be managed by controlling both 
the contact force and the end-point position

 Control objective (without requiring direct measurement of the contact force)
 Desired force along the normal to the surface
 Desired position on the contact plane 

 The desired force can be achieved only if the component normal to the plane of the desired position is 
chosen as
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undeformed position of the surface
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Two-Stage Control Strategy

 The first stage is in charge of solving the inverse kinematics problem to compute the desired vectors of 
joint variables and deflection variables that place the end-point of the flexible arm at a desired position

 In the second stage, which constitutes a joint regulator, the computed joint and link variables are used 
as set-points
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Inverse Kinematics

 From the link dynamic equations in a static situation the deflections satisfy the equation

 According to small deflection approximation are a function of 
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Jacobian-based Solution

 Differentiating equation of deflection variables
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Overall Jacobian matrix relating joint to end-point velocity
 Rigid-body Jacobian modified with two terms accounting for the 

deflections induced by the contact force and gravity, respectively
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CLIK Algorithm

 Formal analogy with the differential kinematics equation for a rigid arm
 Closed-Loop Inverse Kinematics (CLIK) algorithm ― Jacobian transpose

 Using a Lyapunov argument, it can be shown that, as long as the vector                              is outside the null space of       , 
the end-point position error                  asymptotically tends to zero
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PD+ Control

 Regulating the joint and deflection variables to the values      and      computed in the first stage

 Asymptotic convergence to the corresponding set points

 PD+ regulator ensures asymptotic stability only in the presence of significant damping
 When passive damping is too low, active vibration damping can be achieved by using full state-feedback

 The overall performance in terms of end-point position and force errors strongly depends on the 
accuracy of the static model of the flexible arm, as well as on the accuracy of the available estimates of 
the stiffness and position of the contact surface
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suitable positive definite matrix gains

required to compensate for the gravity torque 
and contact force respectively
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Simulation
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 Planar two-link flexible robot with 0.1 kg payload at the end-point

 Expansion with two clamped-mass assumed modes for each link

 Resulting natural frequencies of vibration 

 Stiffness matrix
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Interaction Control
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 The contact surface is a vertical plane 
 Point of the undeformed plane
 Contact stiffness

 CLIK algorithm
 Matrix gains
 Euler integration rule at 1 ms

 PD+ control
 Matrix gains 
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Contact Task
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 The arm is initially placed with the tip in contact with the undeformed plane in the position

with null contact force
 The corresponding generalized coordinates of the arm (computed by using the CLIK algorithm) are

 It is desired to reach the end-point position

and a fifth-order polynomial trajectory with null initial and final velocity and acceleration is imposed from 
the initial to the final position with a duration of 5 s
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1st Case Study
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2nd Case Study
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Contact stiffness
is increased to 60 N/m

position
error
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joint
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Direct Force and Position Control

 If a force sensor is available at the end-point of the robot, it is possible to achieve direct force control 
without requiring an exact estimate of the stiffness and of the position of the environment at rest

 If the dynamics related to link flexibility are suitably taken into account, tracking of a time-varying 
desired position can be achieved as well as regulation to a constant force
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Composite Control Strategy

 When link stiffness is large, it is reasonable to expect that the dynamics related to link flexibility are 
much faster than the dynamics associated with rigid motion of the robot so that the system naturally 
exhibits a two-time-scale dynamic behaviour in terms of rigid and flexible variables

 The system can be decomposed into slow and fast subsystems by using singular perturbation theory; 
this leads to a composite control strategy for the full system based on separate control designs for the 
two reduced-order subsystems

 Assuming that full-state measurement is available and that a force sensor is mounted at the end-point 
of the robot, the joint torques can be conveniently chosen as

to cancel out the effects of the static torques acting on the rigid part of the manipulator dynamics
 The vector     is the new control input to be designed on the basis of the singular perturbation approach
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Singularly Perturbed Model

 The time-scale separation between the slow and fast dynamics can be determined by defining the 
singular perturbation parameter

 Elastic force
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smallest coefficient of diagonal stiffness matrix
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Slow Subsystem
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 Setting             and solving for    gives

inertia matrix of the equivalent rigid robot
vector of the corresponding Coriolis and 
centrifugal torques
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Fast Subsystem
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 Setting                , treating the slow variables as constants in the fast time-scale and introducing the fast 
variables

fast control
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Composite Control
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 On the basis of the above two-time-scale model

 End-point acceleration

 The slow dynamic model enjoys the same notable properties of the rigid robot dynamic model, hence 
the control strategies used for rigid manipulators can be adopted

 The fast subsystem is a marginally stable linear slowly time-varying system that can be stabilised to the 
equilibrium manifold
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Force and Position Regulation
Force and Position Control of Flexible Robots 31/39

 Simultaneous regulation of the contact force and position to constant set points
 Parallel control approach, especially effective in the case of inaccurate contact modelling

 Force control loop working in parallel to a position control loop along each task space direction
 The logical conflict between the two loops is managed by imposing dominance of force control over position control, i.e., 

force regulation is always guaranteed at the expense of a position error along the constrained directions
 Parallel regulator for the slow subsystem
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Equilibrium Under Parallel Control
Force and Position Control of Flexible Robots 32/39

 Model of compliant environment with contact force normal to 
the plane in the slow time-scale

 A null force error can be obtained only if the desired force is aligned with 
the normal

 A null position error can be obtained only on the contact plane while the 
component of the position along the normal has to accommodate the 
force requirement

 The closed-loop system has an exponentially stable equilibrium

 If     is not aligned with    , then a drift motion of the end-point 
occurs along the plane; better set 
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Force Regulation and Position Tracking
Force and Position Control of Flexible Robots 33/39

 If tracking of a time-varying position on the contact plane is desired (with an order    approximation), an 
inverse dynamics parallel control scheme can be adopted for the slow subsystem (non-redundant robot)

 Regulation of contact force to the desired set point and tracking of time-varying component of the 
desired position on the contact plane

solution of
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Simulation
Force and Position Control of Flexible Robots 34/39

 Planar two-link flexible robot placed in the same initial position with the end-point in contact with the 
plane and null contact force

 It is desired to reach the end-point position

and a fifth-order polynomial trajectory with null initial and final velocity and acceleration is imposed from 
the initial to the final position with a duration of 5 s

 The desired force is taken from zero to the desired value

according to a fifth-order polynomial trajectory with null initial and final derivatives and duration of 1 s
 Fast control with                       solving LQ problem 
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1st Case Study
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2nd Case Study
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Inverse dynamics parallel controlposition
error

contact
force

joint angles link deflections joint torques fast control
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