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Parallel force and position control of flexible 
manipulators 
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Abstract: The problem of controlling the interaction of a flexible link manipulator with a 
compliant environment is considered. The manipulator’s tip is required to keep contact with a 
surface by applying a constant force and maintaining a prescribed position or following a desired 
path on the surface. Using singular perturbation theory, the system is decomposed into a slow 
subsystem associated with rigid motion and a fast subsystem associated with link flexible 
dynamics. A parallel force and position control developed for rigid robots is adopted for the 
slow subsystem while a fast control action is employed to stabilise the link deflections. Simulation 
results are presented for a two-link planar manipulator under gravity in contact with an elastically 
compliant surface. 

1 Introduction 

Lightweight flexible robots are used in a large variety of 
fields including teleoperation, space robotics, and nuclear 
waste manipulation. The potential advantages offered by 
such structures with respect to conventional industrial 
robots are high speed, large workspace and high payload- 
to-arm weight [ 1 ]. 

The dynamics of multilink flexible manipulators is, 
however, much more complex than rigid robot dynamics, 
due to the distributed flexibility of the links [2]. As a 
consequence, several challenging problems are still open, 
regarding both modelling and control aspects. 

From the modelling standpoint, the dynamics of a 
flexible structure is described by infinite dimensional 
model. Various techniques have been proposed to achieve 
approximate finite dimensional models (e.g. the assumed 
modes method, the finite elements method and the Ritz- 
Kantorovch expansion). In the case of multilink flexible 
manipulators, a recursive procedure can be set up for 
dynamic model computation by using a Lagrangian formu- 
lation in conjunction with the assumed mode technique [3]. 

The inherent difficulty of the control problem can be 
ascribed to the fact that the number of controlled variables 
is strictly less than the number of mechanical degrees of 
freedom. Moreover, the dynamic relation between the input 
torques of the joint actuators and the tip position reveals 
a behaviour which is the nonlinear counterpart of the 
nonminimum phase phenomenon of linear systems. 
Hence, inversion-based control strategies would normally 
lead to instability in the closed loop. See [4] and the 

0 IEE, 2000 
IEE Proceedings online no. 20000730 
DOI: 10.1 049/ip-cta:20000730 
Paper first received 17th November 1999 and in revised form 21st June 
2000 

The authors are with PRISMA Lab, Dipartimento di Informatica e 
Sistemistica, Universita degli Studi di Napoli Federico 11, Via Claudio 
21, 80125 Napoli, Italy 

IEE Proc -Control Theory Appl., Vol. 147, No. 6, November 2000 

references therein for further discussion about modelling 
and control problems for flexible link manipulators. 

An effective approach to motion control design is based 
on singular perturbation theory [ 5 ] .  When the link stiffness 
is large, a two-time scale model of the flexible manipulator 
can be derived [6], consisting in a slow subsystem corre- 
sponding to the rigid body motion and a fast subsystem 
describing the flexible motion. A composite control strat- 
egy can be then applied, based on a slow control designed 
for the equivalent rigid manipulator and a fast control 
which stabilises the fast subsystem. Further developments 
of perturbation techniques for flexible manipulators can be 
found in [7-IO]. 

When the manipulator interacts with an external envir- 
onment, suitable strategies have to be adopted to control 
both the tip position and the contact force. While several 
control schemes have been proposed to force and position 
control of rigid robot manipulators [l 11, only few papers 
on interaction control of flexible manipulators have been 
published so far. 

Early works addressing stability problems in force 
controlled flexible manipulators are [ 12, 131. Models for 
multilink constrained flexible robots have been developed 
in [14, 151 where an hybrid position and force control 
approach is adopted. Hybrid control is used in [16] and 
[ 171 to design robust and adaptive control strategies 
respectively as well as in [lS, 191 to control a flexible 
macro manipulator carrying a rigid micro. In most of these 
papers ([ 13, 15, 171) singular perturbation techniques are 
exploited to cope with link flexibility; a singular perturbed 
model for a constrained multilink flexible manipulator was 
developed in [20]. 

The singular perturbation method is adopted in this 
paper to design a force and position control for flexible 
manipulators based on the parallel approach developed in 
[21, 221 for rigid robots in contact with compliant envir- 
onments. As opposed to the hybrid control strategies where 
force and position are controlled in reciprocal subspaces 
[23, 241, both force and position variables are used in each 
subspace without any selection mechanism. This makes 
parallel controllers suitable to manage contacts with non 
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perfectly known environments and unplanned collisions, 
which represent a drawback for hybrid controllers. More- 
over, differently from previous works tackling the problem 
of force and position control of flexible manipulators [ 13, 
15, 17, 201, the equations of the constraint environment 
have not to be taken into account for control design; hence 
the singular perturbed model for unconstrained robots 
developed in [6] can be adopted. 

Two different parallel control schemes are considered for 
the slow dynamics; the first ensures force and position 
regulation, while the second guarantees force regulation 
and position tracking. An additional control action is 
required in both cases to stabilise the fast dynamics related 
to link flexibility. 

The proposed control schemes are tested in simulation 
on the model of a two-link planar manipulator developed in 
[25]; interaction with an elastically compliant plane is 
considered. The numerical case study confirms the results 
anticipated in theory. 

2 Modelling 

Consider a robot manipulator composed by a serial chain 
of n flexible links connected by rigid revolute joints subject 
only to bending deformations in the plane of motion, 
without torsional effects. A sketch of a two-link manip- 
ulator is shown in Fig. 1 with co-ordinate frame assign- 
ment. The rigid motion is described by the joint angles g i ,  
while w,(x,) denotes the transversal deflection of link i at x, 
with 0 5 x, 5 e , ,  being l ,  the link length. 

A finite-dimensional model (of order m,) of link flex- 
ibility can be obtained by the assumed mode technique [2] .  
Links are modelled as Euler-Bernoulli beams of uniform 
density p ,  and constant flexural rigidity (El), , with deflec- 
tion w,(x, , t )  satisfying the partial differential equation: 

Exploiting separability in time and space of solutions of 
eqn. 1, the link deflection wi(xi, t)  can be expressed as the 
sum of a finite number of modes: 

where ~ J X )  is the shape assumed for the j th  mode of link i, 
and S,(t) is its time-varying amplitude. The mode shapes 
have to satisfy proper boundary conditions at the base 
(clamped) and at the end of each link (mass). 

In view of eqn. 2, a direct kinematics equation can be 
derived expressing the (2 x 1) position vector p of the 
manipulator tip point as a function of the (n x 1) joint 

XO 
Fig. 1 Planar two-link,flexible manipulator 
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variable vector S = [9, . . . 9,IT and the (m x 1) deflection 
variable vector 6 =  [d , ,  . . . d,,,!, . . . d,, . . . bn,,,,,IT [3 ,  251, 
i.e. 

p = k ( 8 , 4  (3) 
In view of eqn. 3, the differential kinematics equation 
expressing the tip velocity p as a function of S and 6, 
can be written in the form: 

p = J ,q(S ,6)9  + J,(8,6)6 (4) 
where 

Assume that the manipulator is in contact with the 
environment. By virtue of the virtual work principle, the 
vector f of the forces exerted by the manipulator on the 
environment performing work on p has to be related to the 
(n  x 1) vector J i fo f jo in t  torques performing work on S 
and the (m x 1) vector Ji f of the elastic reaction forces 
performing work on 6. 

Using the assumed modes link approximation (eqn. 2),  
a finite-dimensional Lagrangian dynamic model of the 
planar manipulator in contact with the environment can 
be obtained as a function of the n + m vector of generalised 
coordinates q = [ST dTIT in the form [3, 251, 

= akIa6 and J6 = aklad. 

( 5 )  
where B is the positive definite symmetric inertia matrix, c 
is the vector of Coriolis and centrifugal torques, g is the 
vector of gravitational torques, K is the diagonal and 
positive definte link stiffness matrix, D is the diagonal 
and positive semidefinite link damping matrix, r is the 
vector of the input joint torques and J(q) = [Jg(q) Jb(q)] is 
the manipulator Jacobian. 

By partitioning the matrix and vectors in blocks accord- 
ing to the rigid and flexible components, the equation of 
motion (eqn. 5 )  can be rewritten as: 

3 Two-time scale control 

When the link stiffness is large, it is reasonable to expect 
that the dynamics related to link flexibility is much faster 
than the dynamics associated with the rigid motion of the 
robot so that the system naturally exhibits a two-time scale 
dynamic behaviour in terms of rigid and flexible variables. 
This feature can be conveniently exploited for control 
design. 

Following the approach proposed in [6] ,  the system can 
be decomposed in a slow and a fast subsystems by using 
singular perturbation theory; this leads to a composite 
control strategy for the full system based on separate 
control designs for the two reduced-order subsystems. 

Assuming that full-state measurement is available and 
that a force sensor is mounted at the manipulator tip, the 
joint torques can be conveniently chosen as: 

7=ggg(S,S)+ J 3 g ( S , 6 ) T f + ~  (7) 
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in order to cancel out the effects of the static torques acting 
on the rigid part of the manipulator dynamics; the vector U 
is the new control input to be designed on the basis of the 
singular perturbation approach. 

The time scale separation between the slow and fast 
dynamics can be determined by defining the singular 
perturbation parameter E = l/,/(k,,,), where k,,, is the smal- 
lest coefficient of the diagonal stiffness matrix K ,  and the 
new variable: 

(8) 
1 -  

€ 2  
z = KS = - K 6  

corresponds to the elastic force, where K = k,,K. Consider- 
ing the inverse H of the inertia matrix B, the dynamic 
model (eqn. 6), with control law (eqn. 7), can be rewritten 
in terms of the new variable z as: 

6 = H93( 6 ,  t 2 Z ) ( U  - cg( 9, t22, 91, c2i ) )  

-H:j, j(Q, E ~ Z ) ( C ~ ( ~ , E ~ Z ,  6,c2Z)+g6(6 ,6)  

+ E 2 D k - l i + Z + J ; ( 9 , S ) f )  (9) 

- k H & ( 6 ,  c2z) (c , (6 ,  E22, 91, E 2 i )  +&(a, S) 

+ c2DK-'i + z + Ji (T9,  6)f) 

e2i: = k H i S ( 6 ,  E ~ Z ) ( U  - c g ( 6 ,  E ~ Z ,  9, c 2 i ) )  

(10) 

where a suitable partition of H has been considered: 

Eqns. 9 and 10 represent a singularly perturbed form of the 
flexible manipulator model; when t + 0, the model of an 
equivalent rigid manipulator is recovered. In fact, setting 
E = 0 and. solving for z in eqn. 10 gives: 

- 2,(6,> 9 1 s )  - g 6 ( Q s )  - JWJf, (12) 

where the subscript s indicates that the system is consid- 
ered in the slow time scale and the overbar denotes that a 
quantity is computed with E = 0. Plugging eqn. 12 into eqn. 
9 with t = 0 yields: 

6 ,  = &,$(fi.J(u, - 2d8.V 91,)) 

&,t,(%) = (fi&?J - H,a(s,)Ha;'(9,)H;,(B,)) 

(13) 

where the equality: 

(14) 
has been exploited, being B , , ( 9 , )  the inertia matrix of the 
equivalent rigid manipulator and E,9(Q, ,  8,) the vector of 
the corresponding Coriolis and centrifugal torques. 

The dynamics of the system in the fast time scale can be 
obtained by setting 9 = t l E ,  treating the slow variables as 
constants in the fast time scale, and introducing the fast 
variables !f = z - z,; thus, the fast system of eqn. 10 is: 

where the fast control uf = U  - U ,  has been introduced 
accordingly. 

On the basis of the above two-time scale model, the 
design of a feedback controller for the system (eqns. 9 and 
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10) can be performed according to a composite control 
strategy, i.e. 

(16) U = uS( f i , ,  91,) + uj-(zy3 dzfldtf) 

with the constraint that uf(O, 0) = 0, so that uf is inactive 
along the equilibrium manifold specified by eqn. 12. 

To design the slow control for the rigid nonlinear system 
(eqn. 13), it is useful to derive the slow dynamics corre- 
sponding to the tip position. Differentiating eqn. 4 gives 
the tip acceleration: 

p = J , ( 6 , 6 ) &  + J s ( f i , 6 ) 8 + h ( 6 , 6 ,  6 , b )  (17) 

where h = Jg 6 + J6S;  hence the corresponding slow 
system is: 

p, = J , ( 9 , ) B & 6 , ) ( U S  - C , ( 8 , ,  a,)) + h(S, ,  8,) 
~ (18) 

where eqn. 13 has been used. The slow dynamic models 
(eqns. 13 and 18) enjoy the same notable properties of the 
rigid robot dynamic models [4], hence the control strate- 
gies used for rigid manipulators can be adopted. 

As for the fast system (eqn. 15), this is a marginally 
stable linear slowly time-varying system that can be 
stabilized to the equilibrium manifold if = 0 (i = 0) and 
zf = 0 ( z  = z , ~ )  by a proper choice of the control input uf . A 
reasonable way to achieve this goal is to design a state- 
space control law of the form: 

uf = K,Zf + K2zf ' (19) 

where, in principle, the matrices K ,  and K2 should be tuned 
for every configuration 8,. However, the computational 
burden necessary to perform this strategy can be avoided 
by using constant matrix gains tuned with reference to a 
given robot configuration [6]; any state-space technique 
can be used, (e.g. based on classical pole placement 
algorithms). 

4 Force and position regulation 

The control objective consists in simultaneous regulation 
of the contact forcefto a constant set point fd and of the 
position p to a constant set-point p d .  

In case of contact with an elastically compliant surface, a 
viable strategy is the parallel control approach [21], which 
is especially effective in the case of inaccurate contact 
modeling. The key feature is to have a force control loop 
working in parallel to a position control loop along each 
task space direction. The logical conflict between the two 
loops is managed by imposing dominance of the force 
control action over the position one, (i.e. force regulation is 
always guaranteed at the expense of a position error along 
the constrained directions). 

A forceiposition parallel regulator controller for rigid 
robots was proposed in [22], based on position PD position 
control + gravity compensation + desired force feedfor- 
ward + PI force control. 

For the case of the flexible link manipulator (eqn. 5), 
with reference to the slow system (eqn. IS), the following 
parallel regulator can be adopted: 

and kp , kD , kF , k, > 0 are suitable feedback gains. 
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A better insight into the behaviour of thr: system during 
the interaction can be achieved by considering a model of 
the compliant environment. To this purpose, a planar 
surface is considered which is locally a good approxima- 
tion to surfaces of regular curvature, and a frame with 
rotation matrix: 

R, = [ t  n ]  (22) 

is conveniently chosen with n normal and t tangential to 
the plane. Thus, the model of the contact force is given by: 

f = k e n n T ( p  - P O >  (23) 

where po represents the position of any point on the 
undeformed plane and ke > 0 is the contact stiffness coeffi- 
cient. For the purpose of this work, it is assumed that the 
same equation can be established in terms of the slow 
variables, i.e. 

The above clastic model shows that the contact force is 
normal to the plane, and thus a null force error can be 
obtained only if the desired force f d  is aligned with n.  
Also, it can be recognised that null position errors can be 
obtained only on the contact plane while the component of 
the position along n has to accommodate the force require- 
ment specified by f d .  

The stability analysis for the slow system (eqn. 18) with 
the control law (eqns. 20 and 21) can be carried out with 
the same arguments used in [22] for the case of rigid 
Lobots. In particular, it can be shown that, if the Jacobian 
J3( 8,) of the equivalent rigid manipulator is full-rank, the 
closed loop system has an exponentially stable equilibrium 
at: 

P,,, = (1 - nnTIPd + nnT(k,-If d + P O )  

f s , ,  = kennT(ps,m - P o )  = f d  

(25) 

(26) 

where the matrix ( I  - nnT) projects the vectors on the 
contact plane. 

The equilibrium position is depicted in Fig. 2. It can be 
recognised that ps,, differs from pd by a vector aligned 
along the normal to the contact plane whose magnitude is 
that necessary to guarantee f , ,  = f d  in view of (eqn. 26). 
Therefore (for the slow system) force regulation is ensured, 
while a null position error is achieved only for the 
component parallel to the contact plane. 

Fig. 2 
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Equilibrium position with purullel force and position control 

If f d  is not aligned with n,  it can be found that a drift 
motion of the manipulator tip is generated along the plane; 
for this reason, if the contact geometry is unknown, it is 
advisable to set f d  = 0. 

As a final step, the full-order system (eqn. 5 )  and the 
composite control law (eqn. 16) with U ,  in eqn. 20 and uf 
in eqn. 19 have to be analysed. By virtue of Tikhonov’s 
theorem, it can be shown that regulation of the force f and 
of the position p is achieved with an order t approximation. 

5 Force regulation and position tracking 

The above control scheme provides regulation of the 
component of the tip position on the contact plane. On 
the other hand, if tracking of a time-varying position pd( t )  
on the contact plane is desired (with an order E approxima- 
tion), an inverse dynamics parallel control scheme can be 
adopted for the slow system, i.e. 

where a, is a new control input and a non-redundant 
manipulator has been considered. Folding eqn. 27 into 
eqn. 18 gives: 

hence the control input a,7 can be chosen as: 

where 

and p c  is the solution of the differential equation: 

kAic + kVP,  = f d  - f s  

k p ,  kD , kA , kV > 0 are suitable feedback gains. 
By using for the slow system the same arguments 

developed in [l 11 for rigid robots, it can be easily shown 
that the control law (eqn. 27), (eqns 29-31) ensures 
regulation of the contact force to the desired set-point f d  
and tracking of the time-varying component of the desired 
position on the contact plane (I - nnT)pd(t). 

As before, Tikhonov’s theorem has to be applied to the 
full-order system (eqn. 5 )  with the composite control law 
(eqns. 16, 27, 29-31 and 19); it can be shown that that 
force regulation and position tracking are achieved with an 
order E approximation. 

6 Simulation 

To illustrate the effectiveness of the proposed strategy, a 
planar two-link flexible manipulator (Fig. 1) is considered: 

and an expansion with two clamped-mass assumed modes 
is taken for each link: 

The following parameters are set up for the links and a 
payload is assumed to be placed at the manipulator tip: 

p1  = p2 = 1 .O kg/m (link uniform density) 
t ,  =e2 =0.5 m (link length) 
dl = d2 = 0.25 m (link center of mass) 
ml =m2 =0.5 m (link mass) 
mhl =mh2 = 1 kg (hub mass) 
mp = 0.1 kg (payload mass) 

- 
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(ET), = (ET), = 10 N m2 (flexural link rigidity). 

The stiffness coefficients of the diagonal matrix K are: 

klI = 38.79N 

k2, = 536.09 N 

kl, = 513.37N 

k22 = 20792.09 N 

The dynamic model of the manipulator and the missing 
numerical data can be found in [25], while the direct and 
differential kinematics equations are reported in [26]. 

The contact surface is a vertical plane, thus the normal 
vector in eqn. 23 is n = [l OIT; a point of the undeformed 
plane is: 

p,=[O.55 0IT m 

and the contact stiffness is k, = 50 N/m 

contact with the undeformed plane in the position: 

p(0) = [ O S 5  -0.55IT m 

with null contact force; the corresponding generalised co- 
ordinates of the manipulator are: 

6 = [ -1.396 

The manipulator was initially placed with the tip in 

1.462]T rad 

6 = [ -0.106 0.001 -0.009 -O.OOO1]T m 

It is desired to reach the tip position: 

p d  = [ 0.55 -0.35IT m 

and a fifth-order polynomial trajectory with null initial and 
final velocity and acceleration is imposed from the initial 
to the final position with a duration of 5 s. 

The desired force is taken from zero to the desired value: 

f d = [ 5  O I T N  

according to a fifth-order polynomial trajectory with null 
initial and final first and second derivative and a duration 
of 1 s. 

The fast control law uf has been implemented with 
c-0.1606. The matrix gains in eqn. 19 have been tuned 
by solving an LQ problem for the system (eqn. 15) with the 
configuration dependent terms computed in the initial 
manipulator configuration. The matrix weights of the 
index performance have been chosen so that to preserve 
the time-scale separation between slow and fast dynamics 
for both the control schemes. The resulting matrix gains 
are: 

1 
1 

-0.0372 -0.0204 -0.0375 0.1495 

0.0573 0.0903 0.0080 -0.7856 
.:=[ 
K 2 = [  

-0.1033 -0.0132 -0.0059 -0.0053 

-0.0882 0.0327 -0.0537 -0.02 17 

Numerical simulations have been performed via MATLAB 
with SIMULINK. In order to reproduce a real situation of a 
continuous-time system with a digital controller, the 
control laws are discretised with 5ms sampling time, 
while the equations of motion are integrated using a 
variable step Runge-Kutta method with a minimum step 
size of 1 ms. 

In the first case study, the slow controller (eqns. 20 and 
21) has been used in the composite control law (eqn. 16). 
The actual force f and positiontp are used in the slow 

IEE Proc -Control Theoq~ Appl , Vi1 147, Nob 6, Nbwmher 2000 

Fig. 3 Time history of contact force in first case study 

0.02r 

0 2 4 6 .  8. 10 
time, s 

Fig. 4 Time history of position error in first case study 

control law instead of the corresponding slow values, 
assuming that direct force measurement is available and 
that the tip position is computed from joint angles and link 
deflection measurements via the direct kinematics (eqn. 3). 
The control gains have been set to kp = 100, kD = 4, 
kF = 100, kI = 500. 

In Fig. 3 the time histories of the desired (dashed) and 
actual (solid) contact force are reported, together with the 
position error in Fig. 4. It is easy to see that the contact 
force remains close to the desired value during the tip 
motion (notice that the commanded position trajectory has 
a 5 s duration) and reaches the desired set-point at steady 
state. Only the y-component of the desired position is 
regulated to the desired value, while a significant error 
occurs for the x-component; its (constant) value at steady 
state is exactly that required to achieve null force error 
along the same axis, according to the equilibrium eqns. 25 
and 26. 

The time histories of the joint angles and link deflections 
are reported in Figs. 5-8. It can be recognised that the 
oscillations of the link deflections are well damped; more- 
over, because of gravity and contact force, the manipulator 
has to bend to reach the desired tip position with the 
desired contact force. 

Figs. 9 and 10 show the time history of the the joint 
torque U and the first 0.5 s. of. the time history of the fast 
torque uf . It can be observed that the control effort keeps 
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Time histories of.f;rst link depections in first case study 
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limited values during task execution; remarkably, the 
control torque ur converges to zero with a transient much 
faster than the transient of U ,  as expected. 

In the second case study, the slow controller (eqns. 27, 
29-3 1) has been used in the composite control law (eqn. 
16). As before, the actual forcefand position p are used in 
the controller in lieu of the corresponding slow variables. 
The control gains have been set to k p  = 100, kD =22, 

In Figs. 11 and 12 the time histories of the contact force 
and position errors are reported. This time the desired force 

kA ~ 0 . 7 8 1 3 ,  k, = 13.75. 

-1.1 

-1.2 

U 3 -1.3 

-1.4 

X 

- 

- 

- 

Fig. 11 Time histoiy of contactforce in second case study 
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Time histoiy o f j r s t  joint angle in second case study 

set-point is reached after about 3 s, before the completion 
of the tip motion; moreover, the tracking performance for 
the the y-component of the desired position is better than in 
the previous case study. 

The time histories of the joint angles and of the link 
deflections are reported in Figs. 13-16, while the time 
histories of the components of the joint torque vector U and 
of the fast torque vector uf are reported in Figs. 17 and 18. 
It can be recognised that, although the performance is 
better than in the previous case study, a similar control 
effort is required. 

t 
I I I I I 

0 2 4 6 8 10 
time, s 

Time history of second joint angle in second case study Fig. 14 
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Fig. 15 Time histories o f j rs t  link defections in second case study 
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It is worth pointing out that the simulation of both the 
slow control laws without the fast control action (eqn. 19) 
has revealed an unstable behaviour; the results have not 
been reported for brevity. 

7 Conclusions 

The problem of force and position control for flexible link 
manipulators has been considered in this paper. Because of 
the presence of structural link flexibility, the additional 
objective of damping the vibrations that are naturally 
excited during task execution was considered. By using 
the singular perturbation theory, under the reasonable 
hypothesis that link stiffness is large, the system has 
been split into a slow subsystem describing the rigid 
motion dynamics and a fast subsystem describing the 
flexible dynamics. Then a force and position parallel 
control has been adopted for the slow subsystem, while a 
fast action has been- designed for vibration damping. 
Simulation results have confirmed the feasibility of the 
proposed approach. 
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