Game Theory and Network Systems Summer School SIDRA 2021

Lecture 9

Optimal Targeting in Supermodular Games

Giacomo Como and Fabio Fagnani Department of Mathematical Sciences Politecnico di Torino Bertinoro, July 12-14, 2021

Network games

[Galeotti ea, "Network Games," Rev. of Economic Studies, 2010]: "even the simplest games played on networks have multiple equilibria, which display a bewildering range of possible outcomes"

complexity vs structure

- multiple Nash equilibria, behavior of learning dynamics
- ▶ impact of network topology, strategic complements/substitutes
- ▶ tractable classes: potential, super-modular, quadratic games
- network intervention, targeting
- network formation

Network coordination games

▶ (weighted, directed) graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$

▶ node *i* player choosing $x_i \in \{0, 1\}$ so as to maximize utility

$$u_i(x) = \sum_{j \neq i} W_{ij} (r_i x_i x_j + (1 - r_i)(1 - x_i)(1 - x_j))$$

where $r_i \in [0, 1]$ threshold

Network coordination games

$$u_i(x) = \sum_{j \neq i} W_{ij} \left(r_i x_i x_j + (1 - r_i)(1 - x_i)(1 - x_j) \right) \qquad x_i \in \{0, 1\}$$

best response: threshold rule

$$\mathcal{B}_{i}(x_{-i}) = \begin{cases} \{1\} & \text{if} \quad \sum_{j} P_{ij}x_{j} > r_{i} \\ \{0,1\} & \text{if} \quad \sum_{j} P_{ij}x_{j} = r_{i} \\ \{0\} & \text{if} \quad \sum_{j} P_{ij}x_{j} < r_{i} \end{cases}$$

where P normalized weight matrix

Network coordination games

▶ [Morris,2000] Nash equilibria ↔ network cohesiveness

 \blacktriangleright [Granovetter, 1978] sync best response dynamics, complete \mathcal{G}

► [Kempe, Kleinberg & Tardos, 2003] Optimal targeting (max contagion), submodularity in expectation with random thresholds

Controlling network coordination games

- ▶ how to force the system to the most efficient Nash equilibrium?
- optimal targeting: selection of k nodes that if forced to play 1 have the largest possible impact on the system
- applications in marketing, election campaigns, diffusion of innovation in social networks, ...

▶ coordination game on given graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$

$$u_i(x) = \sum_{j \neq i} W_{ij} \left(r_i x_i x_j + (1 - r_i)(1 - x_i)(1 - x_j)
ight) \qquad x_i \in \{0, 1\}$$

Problem: what is the set of nodes S ⊆ Z with |S| = k such that, if the actions of players in S is frozen at 1, while the others start at 0 and iteratively do "irreversible" best response, then the final number of nodes converted to 1 is maximized?

▶ coordination game on given graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$

$$u_i(x) = \sum_{j \neq i} W_{ij} \left(r_i x_i x_j + (1 - r_i)(1 - x_i)(1 - x_j)
ight) \qquad x_i \in \{0, 1\}$$

▶ Given G, let

 $f(S) = \mathbb{E} [\# \text{ nodes finally converted to play 1}]$

where expectation is taken over thresholds r_i that are assumed independent and identically distributed uniformly on [0, 1]

▶ coordination game on given graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$

$$u_i(x) = \sum_{j \neq i} W_{ij} \left(r_i x_i x_j + (1 - r_i)(1 - x_i)(1 - x_j)
ight) \qquad x_i \in \{0, 1\}$$

▶ Given G, let

 $f(S) = \mathbb{E} [\# \text{ nodes finally converted to play 1}]$

where expectation is taken over thresholds r_i that are assumed independent and identically distributed uniformly on [0, 1]

▶ Theorem: $f : \{0,1\}^{\mathcal{V}} \to \mathbb{R}$ is submodular, i.e.,

$$\mathcal{S} \subseteq \mathcal{U} \implies f(\mathcal{S} \cup \{i\}) - f(\mathcal{S}) \ge f(\mathcal{U} \cup \{i\}) - f(\mathcal{U}) \qquad \forall i \in \mathcal{V}$$

"decreasing differences"

 $f(\mathcal{S}) = \mathbb{E}\left[\# \text{ nodes finally converted to play 1}
ight]$

▶ Theorem: $f : \{0,1\}^{\mathcal{V}} \to \mathbb{R}$ is submodular, i.e.,

$$\mathcal{S} \subseteq \mathcal{U} \implies f(\mathcal{S} \cup \{i\}) - f(\mathcal{S}) \ge f(\mathcal{U} \cup \{i\}) - f(\mathcal{U}) \qquad \forall i \in \mathcal{V}$$

▶ Note that f(S) is also monotone: $S \subseteq U \Longrightarrow f(S) \leq f(U)$

 $f(\mathcal{S}) = \mathbb{E}\left[\# \text{ nodes finally converted to play 1}
ight]$

▶ Theorem: $f : \{0,1\}^{\mathcal{V}} \to \mathbb{R}$ is submodular, i.e.,

$$\mathcal{S} \subseteq \mathcal{U} \implies f(\mathcal{S} \cup \{i\}) - f(\mathcal{S}) \ge f(\mathcal{U} \cup \{i\}) - f(\mathcal{U}) \qquad \forall i \in \mathcal{V}$$

▶ Note that f(S) is also monotone: $S \subseteq U \Longrightarrow f(S) \leq f(U)$

 $f(\mathcal{S}) = \mathbb{E}\left[\# \text{ nodes finally converted to play 1}
ight]$

▶ Theorem: $f : \{0,1\}^{\mathcal{V}} \to \mathbb{R}$ is submodular, i.e.,

$$\mathcal{S} \subseteq \mathcal{U} \quad \Longrightarrow \quad f(\mathcal{S} \cup \{i\}) - f(\mathcal{S}) \geq f(\mathcal{U} \cup \{i\}) - f(\mathcal{U}) \quad \forall i \in \mathcal{V}$$

▶ Note that f(S) is also monotone: $S \subseteq U \Longrightarrow f(S) \leq f(U)$

▶ Theorem [Nemhauser ea'78]: $f : \{0,1\}^{\mathcal{V}} \to \mathbb{R}$ monotone submodular. Let $S \subseteq \mathcal{V}$ with |S| = k be obtained by selecting elements one at a time, each time choosing an element that provides the largest marginal increase in the function value. Let $S^* \subseteq \mathcal{V}$ be a maximizer of $f(\mathcal{U})$ among all $\mathcal{U} \subseteq \mathcal{V}$ with $|\mathcal{U}| = k$. Then,

$$f(\mathcal{S}) \ge \left(1 - \frac{1}{e}\right) f(\mathcal{S}^*)$$

(while optimizing submodular functions is NP-hard in general)

 $f(S) = \mathbb{E} [\# \text{ nodes finally converted to play 1}]$

▶ Theorem: $f : \{0,1\}^{\mathcal{V}} \to \mathbb{R}$ is submodular

► Corollary: Greedy optimal targeting with sub-optimality guarantees

 \blacktriangleright with given thresholds r_i , problem is no longer submodular

$$u_i(x) = \sum_{j \neq i} W_{ij} \left(r_i x_i x_j + (1 - r_i)(1 - x_i)(1 - x_j) \right) \qquad x_i \in \{0, 1\}$$

strategic complements, super-modular game

$$x_{-i} \ge y_{-i} \implies u_i(1, x_{-i}) - u_i(0, x_{-i}) \ge u_i(1, y_{-i}) - u_i(0, y_{-i})$$

▶ how to force the system to maximal Nash equilibrium $x^* = 1$?

 $\blacktriangleright \text{ Control set } \mathcal{S} \subseteq \mathcal{V} \implies \text{ game with } x_{\mathcal{S}} \text{ frozen to } 1$

▶ Monotone Best Response (MBR) Path:

$$\mathcal{S} = \mathcal{U}_0 \subset \mathcal{U}_1 \subset \ldots \subset \mathcal{U}_l = \mathcal{V}$$

 $\mathcal{U}_k = \mathcal{U}_{k-1} \cup \{i_k\} \qquad u_{i_k}(\mathbb{1}_{\mathcal{U}_k}) \ge u_{i_k}(\mathbb{1}_{\mathcal{U}_{k-1}}) \qquad k = 1, \dots, l$

 $\blacktriangleright \text{ Control set } \mathcal{S} \subseteq \mathcal{V} \implies \text{ game with } x_{\mathcal{S}} \text{ frozen to } 1$

▶ Monotone Best Response (MBR) Path:

$$\mathcal{S} = \mathcal{U}_0 \subset \mathcal{U}_1 \subset \ldots \subset \mathcal{U}_l = \mathcal{V}$$

 $\mathcal{U}_k = \mathcal{U}_{k-1} \cup \{i_k\} \qquad u_{i_k}(\mathbb{1}_{\mathcal{U}_k}) \ge u_{i_k}(\mathbb{1}_{\mathcal{U}_{k-1}}) \qquad k = 1, \dots, l$

▶ Control set $S \subseteq V \implies$ game with x_S frozen to 1

▶ Monotone Best Response (MBR) Path:

$$\mathcal{S} = \mathcal{U}_0 \subset \mathcal{U}_1 \subset \ldots \subset \mathcal{U}_l = \mathcal{V}$$

 $\mathcal{U}_k = \mathcal{U}_{k-1} \cup \{i_k\} \qquad u_{i_k}(\mathbb{1}_{\mathcal{U}_k}) \ge u_{i_k}(\mathbb{1}_{\mathcal{U}_{k-1}}) \qquad k = 1, \dots, l$

- ▶ Control set $S \subseteq V \implies$ game with x_S frozen to 1
- ▶ MBR Path: $S = U_0 \subset U_1 \subset \ldots \subset U_l = V$

$$\mathcal{U}_k = \mathcal{U}_{k-1} \cup \{i_k\}$$
 $u_{i_k}(\mathbb{1}_{\mathcal{U}_k}) \ge u_{i_k}(\mathbb{1}_{\mathcal{U}_{k-1}})$ $k = 1, \ldots, l$

- ▶ Sufficient control set: $S \subseteq V$ s.t. \exists MBR path from S to V
- **Lemma**: For super-modular games \exists MBR path $\Leftrightarrow \exists$ BR path

- ▶ Control set $S \subseteq V \implies$ game with x_S frozen to 1
- ▶ MBR Path: $S = U_0 \subset U_1 \subset \ldots \subset U_l = V$

$$\mathcal{U}_k = \mathcal{U}_{k-1} \cup \{i_k\}$$
 $u_{i_k}(\mathbb{1}_{\mathcal{U}_k}) \ge u_{i_k}(\mathbb{1}_{\mathcal{U}_{k-1}})$ $k = 1, \ldots, N$

- ▶ Sufficient control set: $S \subseteq V$ s.t. \exists MBR path from S to V
- **Lemma**: For super-modular games \exists MBR path $\Leftrightarrow \exists$ BR path

- ▶ Control set $S \subseteq V \implies$ game with x_S frozen to 1
- ▶ MBR Path: $S = U_0 \subset U_1 \subset \ldots \subset U_l = V$

$$\mathcal{U}_k = \mathcal{U}_{k-1} \cup \{i_k\}$$
 $u_{i_k}(\mathbb{1}_{\mathcal{U}_k}) \ge u_{i_k}(\mathbb{1}_{\mathcal{U}_{k-1}})$ $k = 1, \ldots, N$

- ▶ Sufficient control set: $S \subseteq V$ s.t. \exists MBR path from S to V
- **Lemma**: For super-modular games \exists MBR path $\Leftrightarrow \exists$ BR path

- ▶ Control set $S \subseteq V \implies$ game with x_S frozen to 1
- ▶ MBR Path: $S = U_0 \subset U_1 \subset \ldots \subset U_l = V$

$$\mathcal{U}_k = \mathcal{U}_{k-1} \cup \{i_k\}$$
 $u_{i_k}(\mathbb{1}_{\mathcal{U}_k}) \ge u_{i_k}(\mathbb{1}_{\mathcal{U}_{k-1}})$ $k = 1, \ldots, N$

- ▶ Sufficient control set: $S \subseteq V$ s.t. \exists MBR path from S to V
- **Lemma**: For super-modular games \exists MBR path $\Leftrightarrow \exists$ BR path

- $\blacktriangleright \text{ Control set } \mathcal{S} \subseteq \mathcal{V} \implies \text{ game with } x_{\mathcal{S}} \text{ frozen to } 1$
- ▶ MBR Path: $S = U_0 \subset U_1 \subset \ldots \subset U_l = V$

$$\mathcal{U}_k = \mathcal{U}_{k-1} \cup \{i_k\} \qquad u_{i_k}(\mathbb{1}_{\mathcal{U}_k}) \ge u_{i_k}(\mathbb{1}_{\mathcal{U}_{k-1}}) \qquad k = 1, \dots, l$$

- ▶ Sufficient control set: $S \subseteq V$ s.t. \exists MBR path from S to V
- **Lemma**: For super-modular games \exists MBR path $\Leftrightarrow \exists$ BR path

- ▶ Control set $S \subseteq V \implies$ game with x_S frozen to 1
- ▶ MBR Path: $S = U_0 \subset U_1 \subset \ldots \subset U_l = V$

$$\mathcal{U}_k = \mathcal{U}_{k-1} \cup \{i_k\}$$
 $u_{i_k}(\mathbb{1}_{\mathcal{U}_k}) \ge u_{i_k}(\mathbb{1}_{\mathcal{U}_{k-1}})$ $k = 1, \ldots, N$

- ▶ Sufficient control set: $S \subseteq V$ s.t. \exists MBR path from S to V
- **Lemma**: For super-modular games \exists MBR path $\Leftrightarrow \exists$ BR path

▶ sufficient control set: $S \subseteq V$ s.t. \exists MIP from S to V

- ► Minimal Sufficient Control (MSC) Problem: Find sufficient control set S ⊆ V of minimal size |S|
- ▶ c.f. [Kempe, Kleinberg & Tardos, 2003]: choose k nodes for max contagion, submodularity in expectation with random thresholds

Complexity of optimal targeting

- ▶ problem MSC: find sufficient control set $S \subseteq V$ of minimal size
- Theorem [Durand, Como & Fagnani, 2020]:
 MSC is NP-hard on general graph
- ▶ Proof: 3-SAT can be reduced to MSC

▶ c.f. [Kempe, Kleinberg & Tardos, 2003]

Distributed optimal targeting

► Idea: start from maximal Nash x* = 1, try to follow a MBR path backwards by moving according to "worst response". Add noise.

Distributed optimal targeting

► Idea: start from maximal Nash x* = 1, try to follow a MBR path backwards by moving according to "worst response". Add noise.

▶ Z_t^{ε} Markov chain on $\{0,1\}^{\mathcal{V}}$, transition probabilities

$$P_{x,y}^{\epsilon} = \begin{cases} 1/n & \text{if } y = x - \delta_i \text{ and } u_i(y) \le u_i(x) \\ \varepsilon/n & \text{if } y = x + \delta_i \text{ and } u_i(y) \ge u_i(x) \\ 0 & \text{if } \text{ otherwise} \end{cases}$$

Distributed optimal targeting

► Idea: start from maximal Nash x* = 1, try to follow a MBR path backwards by moving according to "worst response". Add noise.

▶ Z_t^{ε} Markov chain on $\{0,1\}^{\mathcal{V}}$, transition probabilities

$$P_{x,y}^{\epsilon} = \begin{cases} 1/n & \text{if } y = x - \delta_i \text{ and } u_i(y) \le u_i(x) \\ \varepsilon/n & \text{if } y = x + \delta_i \text{ and } u_i(y) \ge u_i(x) \\ 0 & \text{if } \text{ otherwise} \end{cases}$$

▶ Theorem [Durand, Como & Fagnani, 2020]

 Z_t^{ε} reversible Markov chain with stationary distribution

$$\mu_x^{\varepsilon} \begin{cases} \propto \varepsilon^{||x||_1} & \text{if } \sup p(x) \text{ sufficient control set} \\ = 0 & \text{if } \sup p(x) \text{ otherwise} \end{cases}$$

► Corollary:

 μ^{ε} concentrates on sufficient control sets of minimal size as $\varepsilon \downarrow \mathbf{0}$

Distributed optimal targeting: simulations

Erdos-Renyi with p = 0.4 (dense) and $p = \frac{4}{n} \log n$ (sparse), n = 100

Distributed optimal targeting vs heuristics

Conclusion

- ▶ NP-hard problem
- distributed approximation algorithm
- different interventions and costs?
- richer action spaces?
- ▶ games with strategic substitutes? E.g, public good