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Network games

[Galeotti ea, “Network Games,” Rev. of Economic Studies, 2010]:

“even the simplest games played on networks have multiple
equilibria, which display a bewildering range of possible outcomes”
complexity vs structure

» multiple Nash equilibria, behavior of learning dynamics

» impact of network topology, strategic complements/substitutes
» tractable classes: potential, super-modular, quadratic games

» network intervention, targeting

» network formation



Network coordination games

» (weighted, directed) graph G = (V, &, W)

» node i player choosing x; € {0,1} so as to maximize utility

ui(x) = > W (rixixg + (1 = r)(1 = x)(1 = 7))
J#i

where r; € [0,1] threshold



Network coordination games

ui(x) =D Wy (roxpg + (L= r)(L=x)(1 =) x €{0,1}
J#i
» best response: threshold rule
{1} if > Pyxi>ri
B,’(X,,') = { {0, 1} if Z_/ P,JXJ =TI
{0} if Zj P,JXJ < r

where P normalized weight matrix



Network coordination games

» [Morris,2000] Nash equilibria <> network cohesiveness
» [Granovetter, 1978] sync best response dynamics, complete G

> [Kempe, Kleinberg & Tardos, 2003] Optimal targeting (max
contagion), submodularity in expectation with random thresholds

> ...



Controlling network coordination games

» how to force the system to the most efficient Nash equilibrium?

» optimal targeting: selection of k nodes that if forced to play 1 have
the largest possible impact on the system

» applications in marketing, election campaigns, diffusion of
innovation in social networks, ...



Maximizing the Spread of Influence through a Social
Network [Kempe, Kleinberg & Tardos, 2003]

» coordination game on given graph G = (V, &, W)

=Y Wy (rixixi + (1— )1 —x)(1—x))  x €{0,1}
J#i

» Problem: what is the set of nodes S C Z with |S| = k such that, if

the actions of players in S is frozen at 1, while the others start at 0

and iteratively do “irreversible” best response, then the final

number of nodes converted to 1 is maximized?



Maximizing the Spread of Influence through a Social
Network [Kempe, Kleinberg & Tardos, 2003]

» coordination game on given graph G = (V, &, W)

Z Wi (rixixi + (1 — ri)(1 — x;)(1 — xj)) x; € {0,1}
J#i

» Given G, let
f(S) = E [# nodes finally converted to play 1]

where expectation is taken over thresholds r; that are assumed
independent and identically distributed uniformly on [0, 1]
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Maximizing the Spread of Influence through a Social
Network [Kempe, Kleinberg & Tardos, 2003]

f(S) = E [# nodes finally converted to play 1]
» Theorem: f:{0,1}V — R is submodular, i.e.,

ScuU = f(SU{iN-F(S) > FUL{iI})—FU) VieV

» Note that f(S) is also monotone: § CU = f(S) < f(U)

» Theorem [Nemhauser ea'78]: f : {0,1}¥ — R monotone
submodular. Let S C V with |S| = k be obtained by selecting
elements one at a time, each time choosing an element that
provides the largest marginal increase in the function value. Let
S* C 'V be a maximizer of f(U) among all U/ C V with [U| = k.

Then,
f(S) > <1 — l) f(S*)

(while optimizing submodular functions is NP-hard in general)



Maximizing the Spread of Influence through a Social
Network [Kempe, Kleinberg & Tardos, 2003]

f(S) = E[# nodes finally converted to play 1]
» Theorem: f:{0,1}Y — R is submodular

» Corollary: Greedy optimal targeting with sub-optimality
guarantees

» with given thresholds r;, problem is no longer submodular



Optimal targeting in super-modular games

ui(x) = Z#, Wi (rixixj + (1 = ri)(1 = x)(1 — %))~ x € {0,1}
» strategic complements, super-modular game
xizy-i = ui(l,x-;) = ui(0,x;) > ui(1, y—;) — ui(0, y—;)

» how to force the system to maximal Nash equilibrium x* = 17



Optimal targeting in super-modular games

» Control set S CV — game with xs frozen to 1
» Monotone Best Response (MBR) Path:

S=UpclhC...CU =V

Uy = U1 U {ik} U;k(]luk) > u,'k(]luk_l) k=1,...
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Optimal targeting in super-modular games

» sufficient control set: S C V s.t. 3 MIP from S to V

» Minimal Sufficient Control (MSC) Problem:
Find sufficient control set S C V of minimal size |S|

» c.f. [Kempe, Kleinberg & Tardos, 2003]: choose k nodes for max
contagion, submodularity in expectation with random thresholds



Complexity of optimal targeting

» problem MSC: find sufficient control set S C V of minimal size

» Theorem [Durand, Como & Fagnani, 2020]:
MSC is NP-hard on general graph

» Proof: 3-SAT can be reduced to MSC

» c.f. [Kempe, Kleinberg & Tardos, 2003]












Distributed optimal targeting

» Idea: start from maximal Nash x* = 1, try to follow a MBR path

backwards by moving according to “worst response”. Add noise.
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Distributed optimal targeting

» Idea: start from maximal Nash x* = 1, try to follow a MBR path

backwards by moving according to “worst response”. Add noise.

» Z¢ Markov chain on {0,1}Y, transition probabilities

1/n if y=x-—4¢;and ui(y) < ui(x)
P, =14 ¢€/n if y=x+46 and ui(y) > ui(x)
0 if  otherwise

» Theorem [Durand, Como & Fagnani, 2020]

Z; reversible Markov chain with stationary distribution
L) x el if  supp(x) sufficient control set
1
“1 =0 if  supp(x) otherwise

» Corollary:

u° concentrates on sufficient control sets of minimal size as € | 0



Distributed optimal targeting: simulations
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Distributed optimal targeting

size of sufficient set

vs heuristics
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Conclusion

Optimal targeting in super-modular games:
» NP-hard problem

» distributed approximation algorithm

» different interventions and costs?

» richer action spaces?

» games with strategic substitutes? E.g, public good



