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Network games

[Galeotti ea, “Network Games,” Rev. of Economic Studies, 2010]:

“even the simplest games played on networks have multiple
equilibria, which display a bewildering range of possible outcomes”

complexity vs structure

I multiple Nash equilibria, behavior of learning dynamics

I impact of network topology, strategic complements/substitutes

I tractable classes: potential, super-modular, quadratic games

I network intervention, targeting

I network formation



Network coordination games

I (weighted, directed) graph G = (V, E ,W )

I node i player choosing xi ∈ {0, 1} so as to maximize utility

ui (x) =
∑

j 6=i

Wij (rixixj + (1− ri )(1− xi )(1− xj))

where ri ∈ [0, 1] threshold



Network coordination games

ui (x) =
∑

j 6=i

Wij (rixixj + (1− ri )(1− xi )(1− xj)) xi ∈ {0, 1}

I best response: threshold rule

Bi (x−i ) =





{1} if
∑

j Pijxj > ri
{0, 1} if

∑
j Pijxj = ri

{0} if
∑

j Pijxj < ri

where P normalized weight matrix



Network coordination games

I [Morris,2000] Nash equilibria ↔ network cohesiveness

I [Granovetter, 1978] sync best response dynamics, complete G

I [Kempe, Kleinberg & Tardos, 2003] Optimal targeting (max
contagion), submodularity in expectation with random thresholds

I . . .



Controlling network coordination games

I how to force the system to the most efficient Nash equilibrium?

I optimal targeting: selection of k nodes that if forced to play 1 have
the largest possible impact on the system

I applications in marketing, election campaigns, diffusion of
innovation in social networks, ...



Maximizing the Spread of Influence through a Social
Network [Kempe, Kleinberg & Tardos, 2003]

I coordination game on given graph G = (V, E ,W )

ui (x) =
∑

j 6=i

Wij (rixixj + (1− ri )(1− xi )(1− xj)) xi ∈ {0, 1}

I Problem: what is the set of nodes S ⊆ Z with |S| = k such that, if
the actions of players in S is frozen at 1, while the others start at 0
and iteratively do “irreversible” best response, then the final
number of nodes converted to 1 is maximized?
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I coordination game on given graph G = (V, E ,W )

ui (x) =
∑

j 6=i

Wij (rixixj + (1− ri )(1− xi )(1− xj)) xi ∈ {0, 1}

I Given G, let

f (S) = E [# nodes finally converted to play 1]

where expectation is taken over thresholds ri that are assumed
independent and identically distributed uniformly on [0, 1]

I Theorem: f : {0, 1}V → R is submodular, i.e.,

S ⊆ U =⇒ f (S∪{i})−f (S) ≥ f (U∪{i})−f (U) ∀i ∈ V

“decreasing differences”
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Maximizing the Spread of Influence through a Social
Network [Kempe, Kleinberg & Tardos, 2003]

f (S) = E [# nodes finally converted to play 1]

I Theorem: f : {0, 1}V → R is submodular, i.e.,

S ⊆ U =⇒ f (S∪{i})−f (S) ≥ f (U∪{i})−f (U) ∀i ∈ V

I Note that f (S) is also monotone: S ⊆ U =⇒ f (S) ≤ f (U)

I Theorem [Nemhauser ea’78]: f : {0, 1}V → R monotone
submodular. Let S ⊆ V with |S| = k be obtained by selecting
elements one at a time, each time choosing an element that
provides the largest marginal increase in the function value. Let
S∗ ⊆ V be a maximizer of f (U) among all U ⊆ V with |U| = k .
Then,

f (S) ≥
(

1− 1

e

)
f (S∗)

(while optimizing submodular functions is NP-hard in general)
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Maximizing the Spread of Influence through a Social
Network [Kempe, Kleinberg & Tardos, 2003]

f (S) = E [# nodes finally converted to play 1]

I Theorem: f : {0, 1}V → R is submodular

I Corollary: Greedy optimal targeting with sub-optimality
guarantees

I with given thresholds ri , problem is no longer submodular



Optimal targeting in super-modular games

ui (x) =
∑

j 6=i
Wij (rixixj + (1− ri )(1− xi )(1− xj)) xi ∈ {0, 1}

I strategic complements, super-modular game

x−i ≥ y−i =⇒ ui (1, x−i )− ui (0, x−i ) ≥ ui (1, y−i )− ui (0, y−i )

I how to force the system to maximal Nash equilibrium x∗ = 1?



Optimal targeting in super-modular games

I Control set S ⊆ V =⇒ game with xS frozen to 1

I Monotone Best Response (MBR) Path:

S = U0 ⊂ U1 ⊂ . . . ⊂ Ul = V

Uk = Uk−1 ∪ {ik} uik (1Uk ) ≥ uik (1Uk−1
) k = 1, . . . , l
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Optimal targeting in super-modular games

Fig. 1. Example : on trees, the set of the leaves (in green)
is always a valid control set.In red you can see another
valid control set, of size 2, minimal for this particular
tree

Fig. 2. An example of a clique, the sets of size
P

k
2

T ´ 1 are
exactly the minimal control sets

Fig. 3. If all node have degree at most 2, then choosing one
node per connected component gives a control set

decreasing the potential.
More formally:

Definition 2. (Adapted Monotone Crusade). Let C Ñ V.
A monotone crusade from C is a sequence of vectors
xk P X , for k “ 0, . . . , m such that

(1) x0 “ C , xm “
(2) for every k “ 1, . . . , m ´ 1 there exists ik P VzC such

that xk`1 “ xk ` �ik

Moreover, if given a function V : X Ñ R, it holds

3. V pxk`1q • V pxkq for k “ 0, . . . , n ´ 1

then the sequence xk is called a V -adapted monotone
crusade from C.

A few comments on the above definition:

Remark 3. All nodes i1, . . . , 1m appearing in (2) are nec-
essarily distinct otherwise the condition xk P t0, 1un

for all k would be violated. Indeed, we must have that
VzC “ ti1, . . . , 1mu and thus m “ |VzC|. This allows for a
monotone crusade from C to be equivalently characterized
by the sequence of nodes pikq, the induced order on the
nodes or by the sequence of increasing support sets pSkq
defined by Sk “ Sxk , for k “ 0, . . . , m having the property
that S0 “ C and Sm “ V.

Remark 4. We can also define a decreasing version of the
monotone crusade where x0 “ , xm “ C and where. for
every k, xk`1 “ xk ´ �ik

. This will be called a decreasing
monotone crusade to C (V -adapted if property 3. holds
true).

Definition 5. (Valid control set). A set C is V -valid if
there exists a V -adapted monotonous crusade from C.

Main goal of the rest of this section is to show that the class
of �c-valid control sets (we recall that �c is the potential
of the majority game) coincides with the class of su�cient
control sets defined in (Definition 1).

The following property is instrumental to our results.

Lemma 6. (monotonicity of Coordination Game). For all
x,y P X and i P V, the following conditions hold:

(1) if x § y and �cp1,x´iq • �cpxq then �cp1,y´iq •
�cpyq;

(2) if x • y and �cp0,x´iq • �cpxq then �cp0,y´iq •
�cpyq.

Proof We only prove the first assertion, the second can
be obtained by exchanging the role of 0 and 1.

If yi “ 1, we have that p1,y´iq “ y and there is nothing
to prove. If xi “ 1, then the inequality x § y ensure that
yi “ 1 and we are thus in the previous case.

We now consider the case when both xi and yi have value
0. Note that, if z is such that zi “ 0, the variation of the
potential when player i changes its action from 0 to 1 can
be expressed as

�cp1, z´iq ´ �cpzq “ ni,1pzq ´ ni,0pzq
where, we recall, ni,1pzq and ni,0pzq are the number of
neighbors of i whose action is, respectively, 1 and 0. As x §
y, we have that ni,0pyq § ni,0pxq and ni,1pyq • ni,0pxq.
Hence,

�cp1,y´iq ´ �cpyq “ ni,1pyq ´ ni,0pyq
• ni,1pxq ´ ni,0pxq “ �cp1,x´iq ´ �cpxq

This yields the thesis.

Proposition 7. (monotonicity for inclusion). A superset of
a �c-valid control set is a �c-valid control set.

Proof Assume that C is a �c-valid control set and let
C1 Ö C. Let xk be a �c-adapted monotone crusade from C
with associated sequence of points pikq for k “ 1, . . . , m “
n ´ |C| such that xk`1 ´ xk “ �ik

for each k. Consider the
subsequence of points ik1

, ik2
, . . . , ikm1 that are in VzC1 and

put yh “ maxt C1 ,xkhu. By construction, we have that
yh • xkh`1´1 and thus, by Lemma 6 and the fact that xk

is a �c-adapted monotone crusade from C, we have that
�cpyhq § �cpyh`1q.

Remark 8. (full set). The full set is always a �c-valid
control set

The following clarifies the connection between valid control
sets for the majority game and su�cient control sets
introduced in the previous section.

Theorem 9. A subset C Ñ V is a su�cient control set i↵ it
is a �c-valid control set.

Proof We first show that a su�cient control set is �c-
valid. If C is a su�cient control set, there exists a sequence
of vectors y0, . . . ,yT P X pCq such that y0 “ C and
yT “ that the best response dynamics follows with
positive probability. This is equivalent to saying, using
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Fig. 3. Two examples of sufficient control sets for a tree: the one consisting of the leaves in green and the one consisting of

the neighbors of the leaves in red. This second one is optimal.

Fig. 4. An optimal sufficient control set for a 2-dimensional grid.

E =
n

(a,b) 2 V ⇥ V |
Xk

h=1
|ah � bh| = 1

o
.

Put Sl = {(a1, . . . , ad) 2 V | P
ai = l}. We claim that Sk�1 is a sufficient control set. To

see this, notice that any a in Sl has exactly d neighbors in Sl+1 if l < k� 1. Similarly, any

a in Sl has exactly d neighbors in Sl�1 if l > k � 1. Considering that the degree of every

node is at most 2d in G, a simple induction argument then allows to construct a monotone

improvement path from Sk�1 to the whole of V . It can be checked directly that this control

set is optimal for d = 1 and d = 2, while is not for d � 3.

The examples considered above show that optimal sufficient control sets for the majority game

may exhibit different relative sizes depending on the considered graph. In complete graphs, their

size is a constant fraction of the number n of players and we expect the same to hold in very well

connected graphs as for instance random Erdos-Renji graphs. This conjecture is corroborated by

numerical simulations presented in Section VI. In contrast, for more loosely connected graphs

(trees, grids), the size of optimal sufficient control sets scales as a negligible fraction of the size

n.
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I sufficient control set: S ⊆ V s.t. ∃ MIP from S to V
I Minimal Sufficient Control (MSC) Problem:

Find sufficient control set S ⊆ V of minimal size |S|
I c.f. [Kempe, Kleinberg & Tardos, 2003]: choose k nodes for max

contagion, submodularity in expectation with random thresholds



Complexity of optimal targeting

I problem MSC: find sufficient control set S ⊆ V of minimal size

I Theorem [Durand, Como & Fagnani, 2020]:

MSC is NP-hard on general graph

I Proof: 3-SAT can be reduced to MSC

1

1b

3
4

2

2b

Y

Ȳ

C zL M

I c.f. [Kempe, Kleinberg & Tardos, 2003]









Distributed optimal targeting

I Idea: start from maximal Nash x∗ = 1, try to follow a MBR path

backwards by moving according to “worst response”. Add noise.
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I Idea: start from maximal Nash x∗ = 1, try to follow a MBR path

backwards by moving according to “worst response”. Add noise.

I Z εt Markov chain on {0, 1}V , transition probabilities

Pεx ,y =





1/n if y = x − δi and ui (y) ≤ ui (x)
ε/n if y = x + δi and ui (y) ≥ ui (x)
0 if otherwise

I Theorem [Durand, Como & Fagnani, 2020]

Z εt reversible Markov chain with stationary distribution

µεx

{
∝ ε||x ||1 if supp(x) sufficient control set

= 0 if supp(x) otherwise

I Corollary:

µε concentrates on sufficient control sets of minimal size as ε ↓ 0



Distributed optimal targeting: simulations
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Distributed optimal targeting vs heuristics
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Conclusion

Optimal targeting in super-modular games:

I NP-hard problem

I distributed approximation algorithm

I different interventions and costs?

I richer action spaces?

I games with strategic substitutes? E.g, public good


