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Preface

Books which try to digest, coordinate, get rid of the duplication, get rid of the less fruitful methods and
present the underlying ideas clearly of what we know now, will be the things the future generations will
value. (Richard Hamming 1986)

Topics These lecture notes provide a mathematical introduction to multi-agent dynamical systems, including

their analysis via algebraic graph theory and their application to engineering design problems. The focus is on

fundamental dynamical phenomena over interconnected network systems, including consensus and disagreement

in averaging systems, stable equilibria in compartmental flow networks, and synchronization in coupled oscillators

and networked control systems. The theoretical results are complemented by numerous examples arising from the

analysis of physical and natural systems and from the design of network estimation, control, and optimization

systems.

The book is organized in three parts: Linear Systems, Topics in Averaging Systems, and Nonlinear Systems.

The Linear Systems part, together with part on the Topics in Averaging Systems, includes

(i) several key motivating examples systems drawn from social, sensor, and compartmental networks, as well

as additional ones from robotics,

(ii) basic concepts and results in matrix and graph theory, with an emphasis on Perron–Frobenius theory,

algebraic graph theory and linear dynamical systems,

(iii) averaging systems in discrete and continuous time, described by static, time-varying and random matrices,

and

(iv) positive and compartmental systems, described by Metzler matrices, with examples from ecology, epidemiol-

ogy and chemical kinetics.

The Nonlinear Systems part includes

(v) networks of phase oscillator systems with an emphasis on the Kuramoto model and models of power

networks, and

(vi) population dynamic models, describing mutualism, competition and cooperation in multi-species systems.

Teaching instructions This book is intended for first-year graduate students in science, technology, engineering,

and mathematics programs. For the first part on Linear Systems, the required background includes competency in

linear algebra and only very basic notions of dynamical systems. For the third part on Nonlinear Systems, the
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required background includes a calculus course. The treatment is self-contained and does not require a nonlinear

systems course.

These lecture notes are meant to be taught over a quarter-long or semester-long course with a total 35 to 40

hours of contact time. On average, each chapter should require approximately 2 hours of lecture time or more.

Indeed, these lecture notes are an outgrowth of an introductory graduate course that I taught at UC Santa Barbara

over the last several years.

Part I is the core of the course. The order of Parts II and III is exchangeable. For example, it is possible to teach

Lyapunov stability theory in Chapter 15 before the analysis of time-varying averaging systems in Chapter 12.

Book versions These lecture notes are provided in multiple formats:

• a printed paperback version, published by Kindle Direct Publishing (former Amazon CreateSpace) (7in×10in,

gray-scale), ISBN 978-1-986425-64-3,

• a tablet PDF version, optimized for viewing on tablets (3× 4 aspect ratio, color), freely downloadable from

the book website,

• three documents meant for instructors and classroom teaching:

(i) a slides PDF version, that is an abbreviated version suited for displaying on a classroom projector,

(ii) a classroom markup PDF version, that is, an abbreviated version of these notes (letter size, with large

sans-serif fonts, small margins), meant as markup copy for classroom teaching (i.e., print, mark, teach,

discard), and

(iii) a solution manual, available upon request by instructors at accredited institutions.

The book website is:

http://motion.me.ucsb.edu/book-lns

Self-publishing print-on-demand books There are several reasons why I decided to self-publish this book

via the print-on-demand book publishing service by Kindle Direct Publishing (former Amazon CreateSpace). I

appreciate being able to

(i) retain the full copyrights of all the material,

(ii) make the document freely available online in multiple versions (see above),

(iii) retain direct anytime control over the paperback publication costs, retain a majority of the royalties after

low fix costs, and set a low price,

(iv) update the book revision at any time (simply re-upload the PDF file, minimal turn-around time, no need for

any permission, and never out-of-print), and

(v) make available a high-quality paperback book through a broad distribution network.

Similar arguments are presented in the write-up Why I Self-Publish My Mathematics Texts With Amazon by Robert

Ghrist, the self-publishing author of (Ghrist, 2014).

Acknowledgments I am extremely grateful to Florian Dörfler for his extensive contributions to Chapter 17

“Networks of Coupled Oscillators,” Sections 5.5, 6.4, 9.4 and 11.3, and a large number of exercises. I am extremely

grateful to Jorge Cortés and Sonia Martínez for their fundamental contribution to my understanding and our joint

work on distributed algorithms and robotic networks; their scientific contribution is most obviously present in

Chapter 1 “Motivating Problems and Systems,” and Chapter 3 “Elements of Graph Theory.”

I am extremely grateful to Noah Friedkin, Alessandro Giua, Roberto Tempo, and Sandro Zampieri for numerous

detailed comments and insightful suggestions; their inputs helped shape the numerous chapters, especially the
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treatment of averaging and social influence networks. I wish to thank Enrique Mallada, Stacy Patterson, Victor

Preciado, and Tao Yang for adopting an early version of these notes and providing me with detailed feedback. I

wish to thank Jason Marden and Lucy Pao for their invitation to visit the University of Colorado at Boulder and

deliver an early version of these lecture notes.

A special thank you goes to all scientists who read these lecture notes and sent me feedback, including Alex

Olshevsky, Ali Karimpour, Anahita Mirtabatabaei, Armin Mohammadie Zand, Ashish Cherukuri, Bala Kameshwar

Poolla, Basilio Gentile, Catalin Arghir, Deepti Kannapan, Fabio Pasqualetti, Francesca Parise, Hancheng Min,

Hideaki Ishii, John W. Simpson-Porco, Luca Furieri, Marcello Colombino, Paolo Frasca, Pedro Cisneros-Velarde,

Peng Jia, Saber Jafarpour, Samuel Coogan, Shadi Mohagheghi, Tyler Summers, Dominic Groß, Vaibhav Srivastava,

Wenjun Mei, Xiaobo Tan, and Xiaoming Duan.

I also would like to acknowledge the generous support received from funding agencies. This book is based on

work supported in part by the Army Research Office through grants W911NF-11-1-0092 and W911NF-15-1-0577,

the Air Force Office of Scientific Research through grant FA9550-15-1-0138, the Defense Threat Reduction Agency

through grant HDTRA1-19-1-0017, the National Science Foundation through grants CPS-1035917 and CPS-1135819,

and the University of California at Santa Barbara. I wish to thank the contributing authors and maintainers of

LATEX, Openclipart.org, Ghostscript, ImageMagick, and Wikipedia.

Finally, I thank Marcello, Gabriella, Lily, and my whole family for their loving support.

Santa Barbara, California, USA Francesco Bullo
Mar 29, 2012 — May 1, 2018

Comments on revision 1.2 Since the first edition on May 1, 2018, I have corrected several typos and incon-

sistencies, redrawn a few figures, added assumptions missing in a few theorems, corrected an incomplete proof,

added a few new exercises, removed an inaccurate exercise, and polished a few old exercises.

Jan 1, 2019, Santa Barbara, California, USA Francesco Bullo

Comments on revision 1.3 For this revision, I have added a new Chapter 8 on diffusively-coupled linear systems

and polished various sections in Chapters 2, 5, and 7. The book is now published by Kindle Direct Publishing.

Jun 1, 2019, Santa Barbara, California, USA Francesco Bullo

Comments on revision 1.4 This revision includes several changes. The examples in Chapter 1 have been

re-organized and extended to include flocking dynamics and dynamical flow systems in discrete and continuous

time. The discussion on spectral graph theory in Section 4.5 includes sharper bounds and monotonicity properties.

The treatment of semisimplicity of row-stochastic and Laplacian matrices in Chapters 5 and 6 is more complete. So

is the treatment of matrix exponential and convergence to consensus for Laplacian matrices in Chapter 7. Chapter 8

features a sharper synchronization theorem, the instructive state-feedback case, and improved proofs. Parts of

Chapters 9 and 10 have been reorganized and rewritten.

Much work has focused on exercises: new exercises have been added, some reworked, and several solutions

have been included and corrected. In this edition, recommended exercises in the first 10 chapters are marked with

the symbol ▶.

I wish to thank Enrico Bozzo, Ethan Epperly, Sean Jeaffe, Elijah Pivo, Gösta Stomberg, and Guosong Yang for

their contributions. Special thanks go to Professor Timm Faulwasser for meaningful contributions to improving

Chapter 8.

Jul 1, 2020, Santa Barbara, California, USA Francesco Bullo
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Comments on revision 1.5 This revision features only corrections to numerous typos and several new exercises.

Special thanks to Ivano Notarnicola, Vaibhav Srivastava, and Michael Schaub.

Sep 1, 2021, Santa Barbara, California, USA Francesco Bullo

Comments on revision 1.6 This revision features three new sections. First, Section 5.3 contains a treatment of

disagreement Lyapunov functions and ergodicity coefficients as contraction factors. Second, Section 10.4 contains

an extended treatment of the properties of Metzler Hurwitz matrices. Third and final, Section 15.9 contains a

treatment of interconnected stable systems via the Metzler Hurwitz method.

Additionally, numerous exercises in essentially all first 10 chapters have been revised or added. Historical and

bibliographical information has been added in various chapters. Programming examples in Python have been

added. A few exercises are now presented with solutions included.

Special thanks to Robin Delabays, Francesco Seccamonte, and Kevin D. Smith.

Jan 1, 2022, Santa Barbara, California, USA Francesco Bullo
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Linear Systems
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Chapter1

Motivating Problems and Systems

In this chapter, we introduce some example problems and systems from multiple disciplines to motivate our

treatment of linear network systems in the following chapters. We look at the following examples:

(i) In the context of social influence networks, we discuss a classic model on how opinions evolve and possibly

reach a consensus opinion in groups of individuals.

(ii) In the context of wireless sensor networks, we discuss a simple distributed averaging algorithms and, in the

appendix, two advanced design problems for parameter estimation and hypothesis testing.

(iii) In the context of animal behavior, we present a flocking model involving a simple alignment rule.

(iv) In the context of dynamical flow systems, we discuss flows of commodities among compartments in both

discrete-time and continuous-time, with classic examples including Markov chains and affine dynamics for

water flows in desert ecosystems.

In all cases we are interested in presenting the basic models and motivating interest in understanding their dynamic

behaviors, such as the existence and attractivity of equilibria.

1.1 Opinion dynamics in social influence networks

Figure 1.1: Interactions in a social influ-

ence network

We consider a group of n individuals who must act together as a team.

Each individual has his own subjective probability density function

(pdf) pi for the unknown value of some parameter (or more simply an

estimate of the parameter). We assume now that individual i is appraised
of the pdf pj of each other member j ̸= i of the group. Then the model

by (French Jr., 1956; Harary, 1959), see also the later (DeGroot, 1974),

predicts that the individual will revise its pdf to be:

p+i =

n∑

j=1

aijpj , (1.1)

where aij denotes the weight that individual i assigns to the pdf of indi-

vidual j when carrying out this revision. More precisely, the coefficient

aii describes the attachment of individual i to its own opinion and aij ,
j ̸= i, is an interpersonal influence weight that individual i accords to individual j.

3



4 Chapter 1. Motivating Problems and Systems

We will refer to equation (1.1) as to the French-Harary-DeGroot model of opinion dynamics. In this model, the

coefficients aij satisfy the following constraints: they are non-negative, that is, aij ≥ 0, and, for each individual,

the sum of self-weight and accorded weights equals 1, that is,
∑n

j=1 aij = 1 for all i. In mathematical terms, the

matrix

A =



a11 . . . a1n
.
.
.

.
.
.

.

.

.

an1 . . . ann




has non-negative entries and each of its rows has unit sum. Such matrices are said to be row-stochastic.
Scientific questions of interest include:

(i) Is this model of human opinion dynamics believable? Is there empirical evidence in its support?

(ii) How does one measure the coefficients aij?

(iii) Under what conditions do the pdfs converge to the same pdf? In other words, when do the agents achieve

consensus? And to what final pdf?

(iv) What are more realistic, empirically-motivated models, possibly including stubborn individuals or antagonis-

tic interactions?

1.2 Averaging algorithms in wireless sensor networks

gateway node

sensor node

Figure 1.2: A wireless sensor network composed of a collection of spatially-distributed sensors in a field and a

gateway node to carry information to an operator. The nodes are meant to measure environmental variables, such

as temperature, sound, pressure, and cooperatively filter and transmit the information to an operator.

A wireless sensor network is a collection of spatially-distributed devices capable of measuring physical and

environmental variables (e.g., temperature, vibrations, sound, light, etc), performing local computations, and

transmitting information to neighboring devices and, in turn, throughout the network (including, possibly, an

external operator).

Suppose that each node in a wireless sensor network has measured a scalar environmental quantity, say

xi. Consider the following simple distributed algorithm, based on the concepts of linear averaging: each node

repeatedly executes

x+i := average
(
xi, {xj , for all neighbor nodes j}

)
, (1.2)

where x+i denotes the new value of xi. For example, for the graph in Figure 1.3, one can
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1.3. Flocking dynamics in animal behavior 5

1 2

43

Figure 1.3: Example graph

easily write x+1 := (x1 + x2)/2, x
+
2 := (x1 + x2 + x3 + x4)/4, and so forth.

In summary, the algorithm’s behavior is described by

x+ =




1/2 1/2 0 0
1/4 1/4 1/4 1/4
0 1/3 1/3 1/3
0 1/3 1/3 1/3


x = Awsnx,

where the matrix Awsn in equation is again row-stochastic.

Motivated by these examples from social influence networks and wireless

sensor networks, we define the averaging system to be the dynamical system

x(k + 1) = Ax(k), (1.3)

where A has non-negative entries and unit row sums. Here, k is the discrete-time variable.

Scientific questions of interest for the averaging model include:

(i) Does each node converge to a value? Is this value the same for all nodes?

(ii) Is this value equal to the average of the initial conditions? In other words, when do the agents achieve

average consensus?

(iii) What properties do the graph and the corresponding matrix need to have in order for the algorithm to

converge?

(iv) How quick is the convergence?

1.3 Flocking dynamics in animal behavior

Next, we draw inspiration from biology and we consider swarming and flocking behavior that many animal species

exhibit, e.g., see Figure 1.4. To model this behavior as arising from decentralized interactions, we consider a

(a) A flock of snow geese (Chen caerulescens). Public domain image

from the U.S. Fish and Wildlife Service.

(b) A swarm of pacific threadfins (Polydactylus sexfilis). Public do-
main image from the U.S. National Oceanic and Atmospheric Ad-

ministration.

Figure 1.4: Examples of animal flocking behaviors

simple “alignment rule” for each animal to steer towards the average heading of its neighbors; see Figure 1.5. This
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6 Chapter 1. Motivating Problems and Systems

Figure 1.5: Alignment rule: the center fish rotates clockwise to align itself with the average heading of its neighbors.

alignment rule amounts to a “spring-like” attractive force, described as follows:

θ̇i =





(θj − θi), if ith animal has one neighbor

1
2(θj1 − θi) +

1
2(θj2 − θi), if ith animal has two neighbors

1
m(θj1 − θi) + · · ·+ 1

m(θjm − θi), if ith animal hasm neighbors

= average
(
{θj , for all neighbors j}

)
− θi, (1.4)

where we are assuming that each animal is a node with edges sensing the heading of other animals. We can now

proceed as before and define an averaging matrix A exactly as in the wireless sensor network example. Before

proceeding, it is now customary to define a new matrix, called the Laplacian matrix, by

L = diag(A1n)−A. (1.5)

The interaction law (1.4) can be written the continuous-time averaging system:

θ̇ = (A− In)θ = −Lθ. (1.6)

This dynamical system is usually referred to as Laplacian flow.
Note: this incomplete model does not concern itself with positions. In other words, we do not discuss collision

avoidance and formation/cohesion maintenance. Moreover, the interaction pairs should be really state dependent.

For example, we may assume that two animals see each other and interact if and only if their pairwise Euclidean

distance is below a certain threshold. Finally, note that it is mathematically ill-posed to compute averages on a

circle. For now, we will not worry about these matters.

Scientific questions of interest for this continuous-time averaging system are similar to those in the last two

sections:

(i) how valid is this model in understanding and reproducing animal behavior?

(ii) what are equilibrium headings and when are they attractive?

(iii) what properties does the graph need to have to ensure a proper flocking behavior?

1.4 Dynamical flow systems in ecosystems

Dynamical flow systems, also called compartmental systems, model dynamical processes characterized by conserva-

tion laws and by the flow of material and commodities between units known as compartments. Dynamical flow

systems are widespread in engineering applications; commodity flows among compartments include power, energy

and water/gas networks, data routing and communication networks, traffic networks, and logistic networks.

In this section we introduce dynamical flow systems evolving in discrete and continuous time. We consider

a low-dimensional schematic example from the study of ecosystems, where living and non-living components
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1.4. Dynamical flow systems in ecosystems 7

interact through nutrient cycles (water, nitrates, phosphates, etc) and energy flows. Specifically, we consider the

widely-cited water flow model for a desert ecosystem (Noy-Meir, 1973), depicted in Figure 1.6. As illustrated in

figure, each node of a dynamical flow network is a called a compartment and functions as a storage element for

the commodity (i.e., water in this case). Each edge describes a flow of the commodity, including edges describing

inflows from the environment and edges describing outflows into the environment.

herbivory

uptake

drinking

precipitation

evaporation

soil

animals

plants

evaporation, drainage, runo↵

transpiration

Figure 1.6: The Noy-Meir water flow model

for a desert ecosystem. The black dashed

line denotes an inflow from the outside en-

vironment. Each compartment functions as

storage unit. The light-gray dashed lines de-

note outflows into the outside environment.

1.4.1 Discrete-time model

Given n interconnected compartments, e.g., as depicted in Figure 1.6, let

• qi(k) denote the quantity of commodity at compartment i at the discrete time k ∈ N,

• aij , called routing fractions (or split ratios in traffic networks), denote the fraction of commodity at compart-

ment i flowing to compartment j during one time-step, and

• ui ≥ 0 denote a non-negative supply to compartment i.

It is convenient to collect the routing fractions aij ≥ 0 into a so-called routing matrix A ∈ Rn×n≥0 . With these

definitions, we note the total commodity flowing at time k from i to j is aijqi(k). Writing the discrete-time mass

balance equation for each compartment, we obtain the discrete-time dynamical flow system:

qi(k + 1) =
n∑

j=1

ajiqj(k) + ui ⇐⇒ q(k + 1) = ATq(k) + u. (1.7)

Because the mass qi(k) either remains in the system or outflows into the environment at time k + 1, we know
that qi(k) is equal to

∑n
j=1 aijqi(k) plus a zero or positive outflow. Therefore, the ith row-sum of A satisfies:

∑n

j=1
aij < 1 if and only if compartment i has an outflow into the environment,

∑n

j=1
aij = 1 if and only if compartment i has no outflows into the environment.

In summary, in general open systems with outflows, the routing matrix A is row-substochastic, that is, A is non-

negative and at least one of its rows has sum strictly less than 1. In closed systems without outflows, the routing
matrix A is row-stochastic, as in averaging models we reviewed earlier in the chapter.

For example, we report the routing matrix for the Noy-Meir water flowmodel in Figure 1.6. First, we let q1, q2, q3
denote the quantity of water in the soil compartment, the plants compartment and the animals compartment,

respectively. Second, we let ae-d-r, atrnsp, aevap, adrnk, auptk, aherb, denote the routing fractions for, respectively,

evaporation-drainage-runoff, transpiration, evaporation, drinking, uptake, and herbivory. This notation means

that, for example, the water q1(k) in the soil at time k is split four-ways at time k + 1: ae-d-rq1(k) evaporates,
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8 Chapter 1. Motivating Problems and Systems

auptkq1(k) is uptaken by plants, adrnkq1(k) is drank by animals, and the remainder remains in the soil. Simple

book-keeping leads to the routing matrix:

ANoy-Meir =



1− ae-d-r − auptk − adrnk auptk adrnk

0 1− atrnsp − aherb aherb
0 0 1− aevap


 . (1.8)

Note that each diagonal term (ANoy-Meir)ii is the fraction of water in compartment i that remains in compartment

i after one time-step. As predicted, ANoy-Meir is row-substochastic in general and row-stochastic precisely when

ae-d-r = atrnsp = aevap = 0.

1.4.2 Continuous-time models

We now present the continuous-time version of the notions in the previous section. Given n interconnected

compartments, e.g., as depicted in Figure 1.6, let

• qi(t) denote the quantity of commodity at compartment i at the continuous time t ∈ R≥0,

• fij denote the flow rates of commodity at compartment i flowing to compartment j, and

• ui ≥ 0 denote a non-negative supply to compartment i.

In other words, we assume that

the flow of commodity from i to j at time t ∈ R≥0 = fijqi(t). (1.9)

for a positive constant flow rate fij . As before, by writing the mass balance equation at each compartment, the

continuous-time dynamical flow system is

q̇i(t) =

n∑

j=1,j ̸=i
(fjiqj(t)− fijqi(t))− f0,iqi(t) + ui, (1.10)

where we let f0,i denote the outflow rate at compartment i into the environment.

It is convenient to collect the flow rates fij into a so-called flow rate matrix F ∈ Rn×n≥0 , with zero diagonal entries

by convention. Then, as in the flocking example in Section 1.3, we define the Laplacian matrix L = diag(F1n)−F
and we claim that

∑n
j=1,j ̸=i (fjiqj − fijqi) = (−LTq)i; see Exercise E1.2. In turn, the continuous-time dynamical

flow system (1.10) can be written as

q̇(t) = Cq(t) + u. (1.11)

where the compartmental matrix C is defined by C = −LT − diag(f0) and where diag(f0) is a diagonal matrix

with diagonal entries equal to the outflow rates. The matrix C has non-negative off-diagonal entries and it is

therefore a so-called Metzler matrix. Moreover, C has non-positive column sums, which will play an important

role in understanding its properties.

Finally, we report the flow rate matrix F and the compartmental matrix C for the water flow model in

Figure 1.6. Corresponding to each edge in figure, we let fe-d-r, ftrnsp, fevap, fdrnk, fuptk, fherb, denote the flow rates

for, respectively, evaporation-drainage-runoff, transpiration, evaporation, drinking, uptake, and herbivory. With
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1.5. Appendix: Markov chains 9

this notation, we can write

FNoy-Meir =



0 fuptk fdrnk
0 0 fherb
0 0 0


 , LNoy-Meir =



fuptk + fdrnk −fuptk −fdrnk

0 fherb −fherb
0 0 0


 , and

CNoy-Meir = −LT
Noy-Meir

− diag



fe-d-r
ftrnsp
fevap


 =



−fe-d-r −fuptk −fdrnk 0 0

fuptk −ftrnsp −fherb 0
fdrnk fherb −fevap


 .

1.4.3 Summary

We conclude by summarizing the model presented. First, the discrete-time dynamical flow model is

q(k + 1) = ATq(k) + u(k), (1.12)

where the routing matrix A is row-substochastic (or row-stochastic) and the supply vector u is typically non-

negative. Second, the continuous-time dynamical flow model is

q̇(t) =
(
−LT − diag(f0)

)
q(t) + u(t), (1.13)

where L is a Laplacian matrix, the outflow vector f0 is non-negative, and the supply vector u is non-negative. Note:

this section has focused on linear models. We remark that various nonlinearities arise in important engineering

applications; their modeling and analysis is postponed.

For both discrete and continuous-time flow systems, scientific questions of interest include:

(i) for constant inflows u, does the total mass in the system remain bounded?

(ii) for constant inflows u, is there a single (or multiple) final mass distribution among the nodes? In other

words, does an equilibrium for the dynamics exist?

(iii) if an equilibrium exists, do all solutions converge to it?

(iv) does the mass at some nodes vanish asymptotically?

1.5 Appendix: Markov chains

In this section we provide a very basic review of (finite-dimensional) Markov chains and random walks over

graphs. We consider both discrete-time and continuous-time models and show that the dynamics of the location

probabilities for the random walk are special cases of dynamical flow systems.

Discrete-time Markov chains Consider a discrete-time random walk on a graph, i.e., a sequence of locations

on the graph selected in the following random fashion. At time k, we let

xi(k) = P[location(k) = i]. (1.14)

We assume the Markovian property for this stochastic process: transition probabilities are independent of history

and of time. Therefore, at each time k, transitions from node i to other nodes are described by a constant probability
vector {aij}j . Specifically, we let aij = P[transition event i→ j] denote the probability of a transition from note i
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10 Chapter 1. Motivating Problems and Systems

1/21/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/21/2

1/2

Figure 1.7: An example random walk on a graph: a random walker

moves across the graph obeying a simple Markovian rule: the walker

remains at its current node with probability 50% and moves clockwise

with probability 50%.

to note j. Using Bayes’ Theorem we obtain

xi(k + 1) = P[location(k + 1) = i] (1.15)

=
n∑

j=1

P[location(k + 1) = i | location(k) = j︸ ︷︷ ︸
transition event j→i

]× P[location(k) = j] (1.16)

=

n∑

j=1

ajixj(k) ⇐⇒ x(k + 1) = ATx(k). (1.17)

Accordingly, the matrix A is referred to as the transition matrix of the Markov chain. As for discrete-time flow

systems, A has row sums equal to 1, that is, 1T
nA

T = 1T
n and this property immediately implies that the total mass

1T
nx(k) is constant.

Continuous-time Markov chains We next consider a continuous-time Markov chain model, where xi(t) =
P[location(t) = i], for t ∈ R, instead of k ∈ N. Here, the non-negative edge-weight aji denote the rate of transition
from node j to node i. Clearly, rates are non-negative, but the sum of transition rates out of a given node does

not necessarily sum to 1. In other words, if we let A denote the matrix containing transition rates (and set for

simplicity aii = 0), then A is non-negative, but does not need to have unit row sums.

Next, we derive the dynamics of a continuous-time Markov chain. First, we explain the probability of a

transition over a short interval based on the transition rates:

P[location(t+ τ) = i | location(t) = j︸ ︷︷ ︸
transition event j→i over duration τ

] =

{
ajiτ +O(τ2), for i ̸= j,

1−∑k ̸=i aikτ +O(τ2), for i = j.
(1.18)

Using again the Markovian assumption, we compute

xi(t+ τ) =

n∑

j=1

P[location(t+ τ) = i | location(t) = j︸ ︷︷ ︸
transition event j→i over duration τ

]× P[location(t) = j]

=
(
1−

n∑

k=1,k ̸=i
aikτ +O(τ2)

)
xi(t) +

n∑

j=1,j ̸=i
ajiτxj(t) +O(τ2),

and, in turn,

xi(t+ τ)− xi(t)

τ
+O(τ) = −

( n∑

k=1

aik

)
xi(t) +

n∑

j=1

ajixj(t). (1.19)
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1.6. Appendix: Robotic networks in cyclic pursuit and balancing 11

Finally, in the limit as the duration vanishes τ → 0+, we obtain:

ẋ(t) =
(
− diag(AT1n) +AT

)
x(t) := −LTx(t), where L = diag(A1n)−A. (1.20)

Here, the Laplacian matrix L is referred to as the transition rate matrix of the continuous-time Markov chain. As

for continuous-time dynamical flow systems, L has zero row sums, that is, 1TLT = 0T
n and this property implies

that the total mass 1T
nx(t) is constant.

1.6 Appendix: Robotic networks in cyclic pursuit and balancing

In this section we consider two simple examples of coordination motion in robotic networks. The standing

assumption is that n robots, amicably referred to as “bugs,” are placed and restricted to move on a circle of unit

radius. Because of this bio-inspiration and because this language is common in the literature (Klamkin and Newman,

1971; Bruckstein et al., 1991), we refer to the following two problems as n-bugs systems.
On this unit circle the bugs’ positions are angles measured counterclockwise from the positive horizontal axis.

We let angles take value in [0, 2π), that is, an arbitrary position θ satisfies 0 ≤ θ < 2π. The bugs are numbered

counterclockwise with identities i ∈ {1, . . . , n} and are at positions θ1, . . . , θn. It is convenient to identify n+ 1
with 1. We assume the bugs move in discrete times k in a counterclockwise direction by a controllable amount ui
(i.e., a control signal), that is:

θi(k + 1) = mod(θi(k) + ui(k), 2π),

where mod(ϑ, 2π) is the remainder of the division of ϑ by 2π and its introduction is required to ensure that

θi(k + 1) remains inside [0, 2π).

Objective: optimal patrolling of a perimeter. Approach: Cyclic pursuit

We now suppose that each bug feels an attraction and moves towards the closest counterclockwise neigh-

bor, as illustrated in Figure 1.8. Recall that the counterclockwise distance from θi and θi+1 is the length of the

counterclockwise arc from θi and θi+1 and satisfies:

distcc(θi, θi+1) = mod(θi+1 − θi, 2π),

In short, given a control gain κ ∈ [0, 1], we assume that the ith bug sets adopts the cyclic pursuit control law

upursuit,i(k) = κdistcc(θi(k), θi+1(k)).

✓i

✓i+1

 distcc(✓i, ✓i+1)

(a) Cyclic pursuit control law

✓i

✓i+1
✓i�1

 distcc(✓i, ✓i+1) �  distc(✓i, ✓i�1)

(b) Cyclic balancing control law

Figure 1.8: Cyclic pursuit and balancing are prototypical n-bug problems.

Scientific questions of interest include:

(i) Does this system have any equilibrium?
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12 Chapter 1. Motivating Problems and Systems

(ii) Is a rotating equally-spaced configuration a solution? An equally-spaced angle configuration is one for

whichmod(θi+1 − θi, 2π) = mod(θi− θi−1, 2π) for all i ∈ {1, . . . , n}. Such configurations are sometimes

called splay states.

(iii) For which values of κ do the bugs converge to an equally-spaced configuration and with what pairwise

distance?

Objective: optimal sensor placement. Approach: Cyclic balancing

Next, we suppose that each bug feels an attraction towards both the closest counterclockwise and the closest

clockwise neighbor, as illustrated in Figure 1.8. Given a “control gain” κ ∈ [0, 1/2] and the natural notion of

clockwise distance, the ith bug adopts the cyclic balancing control law

ubalancing,i(k) = κdistcc(θi(k), θi+1(k))− κdistc(θi(k), θi−1(k)),

where distc(θi(k), θi−1(k)) = distcc(θi−1(k), θi(k)).
Questions of interest are:

(i) Is a static equally-spaced configuration a solution?

(ii) For which values of κ do the bugs converge to a static equally-spaced configuration?

(iii) Is it true that the bugs will approach an equally-spaced configuration and that each of them will converge to

a stationary position on the circle?

A preliminary analysis

It is unrealistic (among other aspects of this setup) to assume that the bugs know the absolute position of

themselves and of their neighbors. Therefore, it is interesting to rewrite the dynamical system in terms of pairwise

distances between nearby bugs.

For i ∈ {1, . . . , n}, we define the relative angular distances (the lengths of the counterclockwise arcs) di =
distcc(θi, θi+1) ≥ 0. (We also adopt the usual convention that dn+1 = d1 and that d0 = dn). The change of
coordinates from (θ1, . . . , θn) to (d1, . . . , dn) leads us to rewrite the cyclic pursuit and the cyclic balancing laws

as:

upursuit,i(k) = κdi,

ubalancing,i(k) = κdi − κdi−1.

In this new set of coordinates, one can show that the cyclic pursuit and cyclic balancing systems are, respectively,

di(k + 1) = (1− κ)di(k) + κdi+1(k), (1.21)

di(k + 1) = κdi+1(k) + (1− 2κ)di(k) + κdi−1(k). (1.22)

These are two linear time-invariant dynamical systems with state d = (d1, . . . , dn) and governing equation

described by the two n× n matrices:

Apursuit =




1− κ κ . . . 0 0
0 1− κ .

.
.

.
.
. 0

.

.

.
.
.
.

.
.
.

.
.
. 0

0 .
.
.

.
.
. 1− κ κ

κ 0 . . . 0 1− κ



, (1.23)
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1.7. Appendix: Design problems in wireless sensor networks 13

and

Abalancing =




1− 2κ κ . . . 0 κ
κ 1− 2κ .

.
.

.
.
. 0

.

.

.
.
.
.

.
.
.

.
.
. 0

0 .
.
.

.
.
. 1− 2κ κ

κ 0 . . . κ 1− 2κ



.

We conclude with the following remarks.

(i) Equations (1.21) and (1.22) are correct if the counterclockwise order of the bugs is never violated. One can

show that this is true for κ < 1 in the pursuit case and κ < 1/2 in the balancing case; we leave this proof to

the reader in Exercise E1.6.

(ii) The matrices Apursuit and Abalancing, for varying n and κ, are called Toeplitz and circulant based on the

nonzero/zero patterns of their entries; we study the properties of such matrices in later chapters. Moreover,

they have non-negative entries for the stated ranges of κ and are row-stochastic.

(iii) If one defines the agreement space, i.e., {(α, α, . . . , α) ∈ Rn | α ∈ R}, then each point in this set is an

equilibrium for both systems.

(iv) It must be true for all times that (d1, . . . , dn) ∈ {x ∈ Rn | xi ≥ 0,
∑n

i=1 xi = 2π}. This property is

indeed the consequence of the non-negative matrices Apursuit and Abalancing being doubly-stochastic, i.e., each
row-sum and each column-sum is equal to 1.

(v) We will later study for which values of κ the system converges to the agreement space.

1.7 Appendix: Design problems in wireless sensor networks

In this appendix we show how averaging algorithms are relevant in wireless sensor network problems and can be

used to tackle more sophisticated than what shown in Section 1.2.

1.7.1 Wireless sensor networks: distributed parameter estimation

The next two examples are also drawn from the field of wireless sensor network, but they feature a more advanced

setup and require a basic background in estimation and detection theory, respectively. The key lessons to be learned

from these examples is that it is useful to have algorithms that compute the average of distributed quantities.

Following ideas from (Xiao et al., 2005; Garin and Schenato, 2010), we aim to estimate an unknown parameter

θ ∈ Rm via the measurements taken by a sensor network. Each node i ∈ {1, . . . , n} measures

yi = Biθ + vi,

where yi ∈ Rmi
, Bi is a known matrix and vi is random measurement noise. We assume that

(A1) the noise vectors v1, . . . , vn are independent jointly-Gaussian variables with zero-mean E[vi] = 0mi and

positive-definite covariance E[vivTi ] = Σi = ΣT
i , for i ∈ {1, . . . , n}; and

(A2) the measurement parameters satisfy:

∑
imi ≥ m and



B1
.
.
.

Bn


 is full rank.
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14 Chapter 1. Motivating Problems and Systems

Given the measurements y1, . . . , yn, it is of interest to compute a least-square estimate of θ, that is, an estimate

of θ that minimizes a least-square error. Specifically, we aim to minimize the following weighted least-square error :

min
θ̂

n∑

i=1

∥∥yi −Biθ̂
∥∥2
Σ−1

i
=

n∑

i=1

(
yi −Biθ̂

)T
Σ−1
i

(
yi −Biθ̂

)
.

In this weighted least-square error, individual errors are weighted by their corresponding inverse covariance

matrices so that an accurate (respectively, inaccurate) measurement corresponds to a high (respectively, low) error

weight. With this particular choice of weights, the least-square estimate coincides with the so-called maximum-

likelihood estimate; see (Poor, 1998) for more details. Under assumptions (A1) and (A2), the optimal solution

is

θ̂∗ =
( n∑

i=1

BT
i Σ

−1
i Bi

)−1
n∑

i=1

BT
i Σ

−1
i yi.

This formula is easy to implement by a single processor with all the information about the problem, i.e., the

parameters and the measurements.

To compute θ̂∗ in the sensor (and processor) network, we perform two steps:

[Step 1:] we run two distributed algorithms in parallel to compute the average of the quantities BT
i Σ

−1
i Bi and

BT
i Σ

−1
i yi.

[Step 2:] we compute the optimal estimate via

θ̂∗ = average
(
BT

1 Σ
−1
1 B1, . . . , B

T
nΣ

−1
n Bn

)−1
average

(
BT

1 Σ
−1
1 y1, . . . , B

T
nΣ

−1
n yn

)
.

Questions of interest are:

(i) How do we design algorithms to compute the average of distributed quantities?

(ii) What properties does the graph need to have in order for such an algorithm to exist?

(iii) How do we design an algorithm with fastest convergence?

1.7.2 Wireless sensor networks: distributed hypothesis testing

We consider a distributed hypothesis testing problem; inspired by (Rao and Durrant-Whyte, 1993; Olfati-Saber

et al., 2006). Let hγ , for γ ∈ Γ in a finite set Γ, be a set of two or more hypotheses about an uncertain event. For

example, given an area of interest, we could have:

h0 = “no target is present”,

h1 = “one target is present”, and

h2 = “two or more targets are present”.

Suppose that we know the a priori probabilities p(hγ) of the hypotheses and that n nodes of a sensor network

take measurements yi, for i ∈ {1, . . . , n}, related to the event. Independently of the type of measurements, assume

you can compute

p(yi|hγ) = probability of measuring yi given that hγ is the true hypothesis.

Also, assume that each observation is conditionally independent of all other observations, given any hypothesis.

(i) We wish to compute the maximum a posteriori estimate, that is, we want to identify which one is the most

likely hypothesis, given the measurements. Note that, under the independence assumption, Bayes’ Theorem

implies that the a posteriori probabilities satisfy

p(hγ |y1, . . . , yn) =
p(hγ)

p(y1, . . . , yn)

n∏

i=1

p(yi|hγ).
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1.8. Appendix: List of examples and applications 15

(ii) Observe that p(hγ) is known, and p(y1, . . . , yn) is a constant normalization factor scaling all posteriori

probabilities equally. Therefore, for each hypothesis γ ∈ Γ, we need to compute

∏n

i=1
p(yi|hγ),

or equivalently, we aim to exchange data among the sensors in order to compute:

exp
( n∑

i=1

log(p(yi|hγ))
)
= exp

(
n average

(
log p(y1|hγ), . . . , log p(yn|hγ)

))
.

(iii) In summary, even in this hypothesis testing problem, we need algorithms to compute the average of the n
numbers log p(y1|hγ), . . . , log p(yn|hγ), for each hypothesis γ.

Questions of interest here are the same as in the previous section.

1.8 Appendix: List of examples and applications

These lecture notes focus on a rigorous understanding of dynamics phenomena over networks, drawing examples

from numerous application domains. As a guide for an instructor or reader with a specific interest, a list of examples

and application is included here.

Analysis of physical and natural systems:
Network System Sections, Examples, and Exercises

Electric networks static and dynamics models of resistive circuits in Sections 6.1.2 and 7.1.2, equilibrium

analysis in Section 6.3.2, Thomson’s principle and energy routing in Exercise E6.14,

Kirchhoff’s and Ohm’s laws in Section 9.3, synchronization of inductors/capacitors circuits

in Exercise E8.5, and resistive circuits as compartmental systems in Exercise E10.13

Mechanical networks spring networks in Section 6.1.1, equilibrium analysis in Section 6.3.2, grounded spring

networks in Exercise E6.15, spring networks on a ring in Section 14.2, and symmetric

flow systems and hydraulic flow systems in Section 10.5.1

Social influence systems

and network science

French-Harary-DeGroot model in Section 1.1 and it analysis in Chapter 5, Friedkin-

Johnsen model in Exercise E5.26, Abelson model in Section 7.1.1, centrality measures in

Section 5.5, community detection in Section 6.4, and hubs and authorities in Exercise E5.15

Animal behavior, popula-

tion dynamics, and ecosys-

tems

flocking behavior in Section 1.3, Noy-Meir model in Section 1.4 and their analysis in

Chapter 10, Leslie population dynamics in Exercise E4.19, and Lotka-Volterra models and

analysis in Chapter 16
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16 Chapter 1. Motivating Problems and Systems

Design of engineering systems:
Network System Sections, Examples, and Exercises

Networked control systems control design for clock synchronization in Section 6.5, control design for synchronization

of diffusively-coupled linear systems in Section 8.4, second-order Laplacian flows in

Section 8.1.1, distributed estimation from relative measurements in Section 9.5, averaging-

based integral control in Exercises E6.18 and E9.6

Robotic networks design of robotic coordination control laws for cyclic pursuit on the circle in Section 1.6

and on the plane in Exercise E1.7, for rendezvous in Example E2.18, for deployment and

centering in Exercises E5.14 and E7.10

Power networks the analysis of coupled oscillators in Chapter 17 and of second-order Laplacian flows in

Section 8.1.1

Parallel and scientific com-

putation

Jacobi relaxation in Exercises E2.15 and E2.16, parallel averaging in Exercise E5.11, dis-

cretization of PDEs in Section 7.1.3, discretization of the Laplace PDE in Example E10.14,

accelerated averaging in Section 11.5

1.9 Historical notes and further reading

Numerous other examples of multi-agent and large-scale interconnected systems can be found in the texts (Michel

and Miller, 1977; Šiljak, 1978; Vidyasagar, 1981; Šiljak, 1991; Lakshmikantham et al., 1991; Wu, 2007; Ren and

Beard, 2008; Bullo et al., 2009; Mesbahi and Egerstedt, 2010; Bai et al., 2011; Cristiani et al., 2014; Li and Duan,

2014; Fuhrmann and Helmke, 2015; Chen et al., 2015; Francis and Maggiore, 2016; Arcak et al., 2016; Porter and

Gleeson, 2016; Fagnani and Frasca, 2017). Other, related, and instructive examples are presented in surveys such

as (Martínez et al., 2007; Ren et al., 2007; Murray, 2007; Garin and Schenato, 2010). Textbooks, monographs and

surveys on the broader and different theme of network science include (Newman, 2003; Boccaletti et al., 2006;

Castellano et al., 2009; Easley and Kleinberg, 2010; Jackson, 2010; Newman, 2010; Spielman, 2017).

The opinion dynamics example in Section 1.1 is an illustration of the rich literature on social influence

networks, starting with the early works by French Jr. (1956), Harary (1959), Abelson (1964), and DeGroot (1974).

While the linear averaging model is by now known as the DeGroot model, the key ideas were already present

in French Jr. (1956) and the main results (e.g., average consensus for doubly stochastic matrices) were already

obtained by (Harary, 1959). Empirical evidence in support of the averaging model (including its variations) is

described in (Friedkin and Johnsen, 2011; Friedkin et al., 2016; Chandrasekhar et al., 2020). An outstanding tutorial

and survey on dynamic social networks is (Proskurnikov and Tempo, 2017). We postpone to Chapter 10 the

literature review on compartmental systems.

The n-bugs problem is related to the study of pursuit curves and inquires about what the paths of n bugs are

when they chase one another. We refer to (Klamkin and Newman, 1971; Watton and Kydon, 1969; Bruckstein et al.,

1991; Marshall et al., 2004; Smith et al., 2005) for some classic works, surveys, and recent results.
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1.10. Exercises 17

1.10 Exercises

▶ E1.1 Basic properties of averaging systems. Given a row-stochastic matrixA ∈ Rn×n, consider the averaging system (1.3)

x(k + 1) = Ax(k).

Show that

(i) for all initial conditions x(0) ∈ Rn, all times k ∈ N, and all indices i ∈ {1, . . . , n},

min
i
xi(0) ≤ min

i
xi(k) ≤ min

i
xi(k + 1) ≤ max

i
xi(k + 1) ≤ max

i
xi(k) ≤ max

i
xi(0);

(ii) for all x ∈ Rn, compute y = Ax and show

max
i
yi −min

i
yi ≤ max

i
xi −min

i
xi; (E1.1)

(iii) any consensus configuration, i.e., any point in {β1n ∈ Rn | β ∈ R}, is an equilibrium point of the averaging

system; and

(iv) there exist row-stochastic matrices A such that Ax = x and x is not a consensus configuration.

▶ E1.2 Basic equivalences for dynamical flow networks. In this exercise we review a few basic equivalences for a

nonlinear dynamical flow network; for simplicity of notation, we assume the system is closed (no inflow or outflows).

Given n compartments, let Fi→j(q) denote the flow from compartment i to compartment j as function of the state

q. Let Fflows(q) denote the matrix with (i, j) entries Fi→j(q). Let F ∈ Rn×n≥0 denote a zero-diagonal flow rate matrix,

as in Section 1.4.2. Show

(i) the nonlinear model in components and in vector form are equivalent:

q̇i =
∑n

j=1,j ̸=i
(Fj→i(q)− Fi→j(q)) ⇐⇒ q̇ = Fflows(q)

T1n − Fflows(q)1n,

(ii) the flow linearity assumption in components and in vector form are equivalent:

Fi→j(q) = fijqi ⇐⇒ Fflows(q) = diag(q)F,

(iii) linear dynamical flow networks are characterized by a negative transpose Laplacian matrix, as follows:

q̇ = Fflows(q)
T1n − Fflows(q)1n ⇐⇒ q̇ = (FT − diag(F1n))q = −LTq.

E1.3 Basic properties of dynamical flow networks. Given a flow rate matrix F and outflow rate vector f0, consider
the linear model (1.11), namely, q̇ = Cq + u, where C = −LT − diag(f0) and L = diag(F1n) − F . Perform the

following tasks:

(i) show that, if there are no inflows, i.e., if ui = 0 for all i, then the total mass in the system does not increase with

time,

(ii) write a formula for the diagonal and off-diagonal entries of the compartmental matrix C as a function of the

flow rate constants, and

(iii) show that the column sums of C are non-positive.

E1.4 Constants of motion. In the study of mechanics, energy and momentum are two constants of motion, that is, these

quantities are constant along each evolution of the mechanical system. Show that

(i) if A is a row stochastic matrix with wTA = wT
, then wTx(k) = wTx(0) for all times k ∈ Z≥0 where

x(k + 1) = Ax(k); and

(ii) if L is a Laplacian matrix with with wTL = 0T
n, then w

Tx(t) = wTx(0) for all times t ∈ R≥0 where ẋ(t) =
−Lx(t).

E1.5 Simulating the averaging dynamics. Simulate in your favorite programming language and software package the

linear averaging algorithm in equation (1.2). Set n = 5, select the initial state equal to (−2,−1, 0,+1,+2), and use

the following undirected unweighted graphs, depicted in Figure E1.1:
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18 Chapter 1. Motivating Problems and Systems

(i) the complete graph,

(ii) the cycle graph, and

(iii) the star graph with node 1 as center.

Which value do all nodes converge to? Is it equal to the average of the initial values? Verify that the evolution of the

averaging dynamics for the star graph is as in Figure E1.2. Turn in your code, a few printouts (as few as possible), and

your written responses.

Complete graph Cycle graph Star graph

Figure E1.1: Three simple graphs
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Figure E1.2: Linear averaging over a star graph: five distinct initial values converge to consensus.

E1.6 Computing the bugs’ dynamics. Consider the cyclic pursuit and balancing dynamics described in Section 1.6. Verify

(i) the cyclic pursuit closed-loop equation (1.21),

(ii) the cyclic balancing closed-loop equation (1.22), and

(iii) the counterclockwise order of the bugs is never violated.

Hint: Recall the distributive property of modular addition: mod(a± b, n) = mod(mod(a, n)±mod(b, n), n).

E1.7 Robotic coordination: continuous-time cyclic pursuit on the plane. Consider four mobile robots on a plane

with positions pi ∈ C, i ∈ {1, . . . , 4}, and moving according to ṗi = ui, where ui ∈ C are the velocity commands.

The task of the robots is rendezvous at a common point (while using only onboard sensors). A simple strategy to

achieve rendezvous is cyclic pursuit: each robot i picks another robot, say i+ 1, and pursues it. (Here 4 + 1 = 1.) In
other words, we set ui = pi+1 − pi and obtain the closed-loop system (see also corresponding simulation below):




ṗ1
ṗ2
ṗ3
ṗ4


 =




−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1







p1
p2
p3
p4


 .
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x

y

1

2

3

4

Prove that:

(i) the average robot position average(p(t)) =
4∑
i=1

pi(t)/4 remains constant for all t ≥ 0;

(ii) the robots asymptotically rendezvous at the initial average robot position mass, that is,

lim
t→∞

pi(t) = average(p(0)) for i ∈ {1, . . . , 4} ;

(iii) if the robots are initially arranged in a square formation, then they remain in a square formation.

Hint: Given a matrix A with semisimple eigenvalues, the solution to ẋ = Ax is given by the modal expansion x(t) =∑n
i=1 e

λitviw
T
i x(0), where vi and wi are the right and left eigenvectors associated to the eigenvalue λi and normalized

to wT
i vi = 1. The modal decomposition will be reviewed in Sections 2.1 and 11.1.
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Chapter2

Elements of Matrix Theory

In this chapter we review basic concepts from matrix theory with a special emphasis on the so-called Perron–

Frobenius theory. These concepts will be useful when analyzing the convergence of the linear dynamical systems

discussed in Chapter 1.

Notation

It is useful to start with some basic notations from matrix theory and linear algebra. We let f : X → Y denote a

function from set X to set Y . We let R, N and Z denote respectively the set of real, natural and integer numbers;

also R≥0 and Z≥0 are the set of non-negative real numbers and non-negative integer numbers. For real numbers

a < b, we let

[a, b] = {x ∈ R | a ≤ x ≤ b}, ]a, b] = {x ∈ R | a < x ≤ b},
[a, b[ = {x ∈ R | a ≤ x < b}, ]a, b[ = {x ∈ R | a < x < b}.

Given a complex number z ∈ C, its absolute value (sometimes referred to as modulus or magnitude) is denoted

by |z|, its real part by ℜ(z) and its imaginary part by ℑ(z). We let i denote the imaginary unit

√
−1.

We let 1n ∈ Rn (respectively 0n ∈ Rn) be the column vector with all entries equal to +1 (respectively 0). Let
e1, . . . , en be the standard basis vectors of Rn, that is, ei has all entries equal to zero except for the ith entry equal

to 1. The 1-norm, 2-norm, and∞-norm of a vector x ∈ Rn are defined by, respectively,

∥x∥1 = |x1|+ · · ·+ |xn|, ∥x∥2 =
√
x21 + · · ·+ x2n, ∥x∥∞ = max{|x1|, . . . , |xn|}.

We let In denote the n-dimensional identity matrix and A ∈ Rn×n denote a square n × n matrix with real

entries {aij}, i, j ∈ {1, . . . , n}. The matrix A is symmetric if AT = A.

For a matrix A ∈ Rn×n, λ ∈ C is an eigenvalue and v ∈ Cn is a right eigenvector , or simply an eigenvector , if
they together satisfy the eigenvalue equation Av = λv. Sometimes it will be convenient to refer to (λ, v) as an
eigenpair . A left eigenvector of the eigenvalue λ is a vector w ∈ Cn satisfying wTA = λwT

.

A symmetric matrix A is positive definite, denoted by A ≻ 0 (resp. positive semidefinite, denoted by A ⪰ 0) if
all its eigenvalues are positive (resp. non-negative). We also let A ≺ 0 and A ⪯ 0 denote negative definite and
negative semidefinite matrices. The kernel of A is the subspace kernel(A) = {x ∈ Rn | Ax = 0n}, the image of
A is image(A) = {y ∈ Rn | Ax = y, for some x ∈ Rn}, and the rank of A is the dimension of its image. Given

vectors v1, . . . , vj ∈ Rn, their span is span(v1, . . . , vj) = {a1v1 + · · ·+ ajvj | a1, . . . , aj ∈ R} ⊂ Rn.

21



22 Chapter 2. Elements of Matrix Theory

2.1 Linear systems and the Jordan normal form

In this section we introduce a prototypical model for dynamical systems and study its stability properties via

the so-called Jordan normal form, that is a key tool from matrix theory. We will later apply these results to the

averaging model (1.3).

2.1.1 Discrete-time linear systems

We start with a basic definition.

Definition 2.1 (Discrete-time linear system). A square matrix A defines a discrete-time linear system by

x(k + 1) = Ax(k), x(0) = x0, (2.1)

or, equivalently by x(k) = Akx0, where the sequence {x(k)}k∈Z≥0
is called the solution, trajectory or evolution of the

system.

Sometimes it is convenient to write x+ = f(x) to denote the system x(k + 1) = f(x(k)).
We are interested in understanding when a solution from an arbitrary initial condition has an asymptotic limit

as time diverges and to what value the solution converges. We formally define this property as follows.

Definition 2.2 (Semi-convergent and convergent matrices). A matrix A ∈ Rn×n is

(i) semi-convergent if limk→+∞Ak exists, and

(ii) convergent (also called Schur stable) if it is semi-convergent and limk→+∞Ak = 0n×n.

It is clear that, if A is semi-convergent with limiting matrix A∞ = limk→+∞Ak, then

lim
k→+∞

x(k) = A∞x0.

In what follows we characterize the sets of semi-convergent and convergent matrices.

Remark 2.3 (Modal decomposition for symmetric matrices). Before treating the general analysis method,
we present the self-contained and instructive case of symmetric matrices. Recall that a symmetric matrix A has real
eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn and corresponding orthonormal (i.e., orthogonal and unit-length) eigenvectors
v1, . . . , vn. Because the eigenvectors are an orthonormal basis for Rn, we can write the modal decomposition

x(k) = y1(k)v1 + · · ·+ yn(k)vn,

where the ith normal mode is defined by yi(k) = vTi x(k). We then left-multiply the two equalities (2.1) by vTi and
exploit Avi = λivi to obtain

yi(k + 1) = λiyi(k), yi(0) = vTi x0, =⇒ yi(k) = λki (v
T
i x0).

In short, the evolution of the linear system (2.1) is

x(k) = λk1(v
T
1 x0)v1 + . . .+ λkn(v

T
nx0)vn.

Therefore, each evolution starting from an arbitrary initial condition satisfies

(i) limk→∞ x(k) = 0n if and only if |λi| < 1 for all i ∈ {1, . . . , n}, and
(ii) limk→∞ x(k) = (vT1 x0)v1 + · · · + (vTmx0)vm if and only if λ1 = · · · = λm = 1 and |λi| < 1 for all

i ∈ {m+ 1, . . . , n}.
•
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2.1. Linear systems and the Jordan normal form 23

2.1.2 The Jordan normal form

In this section we review a very useful canonical decomposition of a square matrix. Recall that two n× n matrices

A and B are similar if B = TAT−1
for some invertible matrix T . Also recall that a similarity transform does not

change the eigenvalues of a matrix.

Theorem 2.4 (Jordan normal form). Each matrix A ∈ Cn×n is similar to a block diagonal matrix J ∈ Cn×n,
called the Jordan normal form of A, given by

J =




J1 0 . . . 0
0 J2

. . . 0
... . . . . . . 0
0 . . . 0 Jm


 ∈ Cn×n,

where each block Ji, called a Jordan block, is a square matrix of size ji and of the form

Ji =




λi 1 . . . 0
0 λi

. . . 0
... . . . . . . 1
0 . . . 0 λi


 ∈ Cji×ji . (2.2)

Clearly,m ≤ n and j1 + · · ·+ jm = n.

We refer to (Horn and Johnson, 1985) for a standard proof of this theorem. Note that the matrix J is unique,

modulo a re-ordering of the Jordan blocks.

Regarding the eigenvalues of A, we note the following. The eigenvalues of J , and therefore also of A, are the
(not necessarily distinct) complex numbers λ1, . . . , λm. Given an eigenvalue λ,

(i) the algebraic multiplicity of λ is the sum of the sizes of all Jordan blocks with eigenvalue λ (or, equivalently,

the multiplicity of λ as a root of the characteristic polynomial of A), and

(ii) the geometric multiplicity of λ is the number of Jordan blocks with eigenvalue λ (or, equivalently, the number

of linearly-independent eigenvectors associated to λ).

An eigenvalue is

(i) simple if it has algebraic and geometric multiplicity equal precisely to 1, that is, a single Jordan block of

size 1, and

(ii) semisimple if all its Jordan blocks have size 1, so that its algebraic and geometric multiplicity are equal.

Here is an example matrix in Jordan form and the multiplicities of its eigenvalues:




7 1 0 0 0 0 0
0 7 1 0 0 0 0
0 0 7 0 0 0 0
0 0 0 7 0 0 0
0 0 0 0 8 0 0
0 0 0 0 0 8 0
0 0 0 0 0 0 9




,





7 has algebraic mult. 4 and geometric mult. 2,

so that 7 is neither simple nor semisimple,

8 has algebraic and geometric mult. 2, so it is semisimple,

9 has algebraic and geometric mult. 1, so it is simple.
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24 Chapter 2. Elements of Matrix Theory

Regarding the eigenvectors of A, Theorem 2.4 implies there exists an invertible matrix T such that

A = TJT−1
(2.3)

⇐⇒ AT = TJ (2.4)

⇐⇒ T−1A = JT−1. (2.5)

Let t1, . . . , tn and r1, . . . , rn denote the columns and rows of T and T−1
respectively. If all eigenvalues of A are

semisimple, then the equations (2.4) and (2.5) imply, for all i ∈ {1, . . . , n},

Ati = λiti and riA = λiri.

In other words, the ith column of T is the right eigenvector (or simply eigenvector) of A corresponding to the

eigenvalue λi, and the ith row of T−1
is the corresponding left eigenvector of A.

If an eigenvalue is not semisimple, then it has larger algebraic than geometric multiplicity. For such eigenvalues,

the columns of the matrix T are the right eigenvectors and the generalized right eigenvectors of A, whereas the
rows of T−1

are the left eigenvectors and the generalized left eigenvector of A. For more details about generalized

eigenvectors, we refer to reader to (Horn and Johnson, 1985).

Example 2.5 (Revisiting the wireless sensor network example). As a numerical example, let us reconsider

the wireless sensor network discussed in Section 1.2 and the 4-dimensional row-stochastic matrix Awsn, which we

report here for convenience:

Awsn =




1/2 1/2 0 0
1/4 1/4 1/4 1/4
0 1/3 1/3 1/3
0 1/3 1/3 1/3


 .

With the aid of a symbolic mathematics program, we compute Awsn = TJT−1
where

J =




1 0 0 0
0 0 0 0

0 0 1
24(5−

√
73) 0

0 0 0 1
24(5 +

√
73)


 , T =




1 0 −2 + 2
√
73 −2− 2

√
73

1 0 −11−
√
73 −11 +

√
73

1 −1 8 8
1 1 8 8


 ,

and T−1 =




1
6

1
3

1
4

1
4

0 0 −1
2

1
2

− 1
96 + 19

96
√
73

− 1
48 − 5

48
√
73

1
64 − 3

64
√
73

1
64 − 3

64
√
73

− 1
96 − 19

96
√
73

− 1
48 + 5

48
√
73

1
64 + 3

64
√
73

1
64 + 3

64
√
73


 .

Therefore, the eigenvalues of A are 1, 0, 124(5−
√
73) ≈ −0.14, and 1

24(5 +
√
73) ≈ 0.56. Corresponding to the

eigenvalue 1, the right and left eigenvector equations are:

Awsn




1
1
1
1


 =




1
1
1
1


 and




1/6
1/3
1/4
1/4




T

Awsn =




1/6
1/3
1/4
1/4




T

. •
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2.1.3 Semi-convergence and convergence for discrete-time linear systems

We can now use the Jordan normal form to study the powers of the matrix A. We start by computing

Ak = TJT−1 · TJT−1 · . . . · TJT−1
︸ ︷︷ ︸

k times

= TJkT−1 = T




Jk1 0 . . . 0
0 Jk2

.
.
. 0

.

.

.
.
.
.

.
.
. 0

0 . . . 0 Jkm


T

−1,

so that, for a square matrix A with Jordan blocks Ji, i ∈ {1, . . . ,m}, the following statements are equivalent:

(i) A is semi-convergent (resp. convergent),

(ii) J is semi-convergent (resp. convergent), and

(iii) each block Ji is semi-convergent (resp. convergent).

Next, we compute the kth power of the generic Jordan block Ji with eigenvalue λi as a function of block size

1, 2, 3, . . . , ji; they are, respectively,

[
λki
]
,

[
λki kλk−1

i

0 λki

]
,




λki kλk−1
i

(
k
2

)
λk−2
i

0 λki kλk−1
i

0 0 λki


 ,

. . . ,




λki
(
k
1

)
λk−1
i

(
k
2

)
λk−2
i . . .

(
k

ji−1

)
λk−ji+1
i

0 λki
(
k
1

)
λk−1
i

.
.
.

.

.

.

.

.

.
.
.
.

.
.
.

.
.
.

(
k
2

)
λk−2
i

0 . . . 0 λki
(
k
1

)
λk−1
i

0 . . . . . . 0 λki




, (2.6)

where the binomial coefficient

(
k
m

)
= k!/(m!(k −m)!) satisfies

(
k
m

)
≤ km/m!. Note that, independently of the

size of Ji, each entry of the kth power of Ji is upper bounded by a constant times khλki for some non-negative

integer h.

To study the limit as k → ∞ of the generic block Jki , we study the limit as k → ∞ of each term of the form

khλki . Because exponentially-decaying factors dominate polynomially-growing terms, we know

lim
k→∞

khλk =





0, if |λ| < 1,

1, if λ = 1 and h = 0,

non-existent or unbounded, if (|λ| = 1 with λ ̸= 1) or (|λ| > 1)

or (λ = 1 and h = 1, 2, . . . ).

(2.7)

In summary, for each block Ji with eigenvalues λi, we can infer that:

(i) a block Ji of size 1 is convergent if and only if |λi| < 1,

(ii) a block Ji of size 1 is semi-convergent if and only if |λi| < 1 or λi = 1, and

(iii) a block Ji of size larger than 1 is semi-convergent and convergent if and only if |λi| < 1.
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1

(a) The spectrum of a convergent matrix

1

(b) The spectrum of a semi-convergent matrix,

provided the eigenvalue 1 is semisimple.

1

(c) The spectrum of amatrix that is not semi-

convergent.

Figure 2.1: Eigenvalues and convergence properties of discrete-time linear systems

Based on this discussion, we are now ready to present necessary and sufficient conditions for semi-convergence

and convergence of an arbitrary square matrix. We state these conditions using two useful definitions.

Definition 2.6 (Spectrum and spectral radius of a matrix). Given a square matrix A,

(i) the spectrum of A, denoted spec(A), is the set of eigenvalues of A; and

(ii) the spectral radius of A is the maximum norm of the eigenvalues of A, that is,

ρ(A) = max{|λ| | λ ∈ spec(A)},

or, equivalently, the radius of the smallest disk in C centered at the origin and containing the spectrum of A.

Theorem 2.7 (Convergence and spectral radius). For a square matrix A, the following statements hold:

(i) A is convergent (i.e., limk→+∞Ak = 0n×n) if and only if ρ(A) < 1,

(ii) A is semi-convergent and not convergent (i.e., limk→+∞Ak exists different from 0n×n) if and only if

a) 1 is an eigenvalue,
b) 1 is a semisimple eigenvalue, and
c) all other eigenvalues have magnitude less than 1.

2.2 Row-stochastic matrices and their spectral radius

Motivated by the averaging model introduced in Chapter 1, we now consider in discrete-time linear systems

defined by matrices with special properties. Specifically, we are interested in matrices with non-negative entries

and whose row-sums are all equal to 1.

The square matrix A ∈ Rn×n is

(i) non-negative (respectively positive) if aij ≥ 0 (respectively aij > 0) for all i and j in {1, . . . , n};
(ii) row-stochastic if non-negative and A1n = 1n;

(iii) column-stochastic if non-negative and AT1n = 1n; and
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2.2. Row-stochastic matrices and their spectral radius 27

(iv) doubly-stochastic if it is row- and column-stochastic.

In the following, we write A > 0 and v > 0 (respectively A ≥ 0 and v ≥ 0) for a positive (respectively

non-negative) matrix A and vector v.
Given a finite number of points p1, . . . , pn in Rn, a convex combination of p1, . . . , pn is a point of the form

η1p1 + η2p2 + . . .+ ηnpn,

where the real numbers η1, . . . , ηn satisfy η1 + · · ·+ ηn = 1 and ηi ≥ 0 for all i ∈ {1, . . . , n}. (For example, on

the plane R2
, the set of convex combinations of two distinct points is the segment connecting them and the set of

convex combinations of three distinct points is the triangle (including its interior) defined by them.) The numbers

η1, . . . , ηn are called convex combination coefficients and each row of a row-stochastic matrix consists of convex

combination coefficients.

2.2.1 The spectral radius for row-stochastic matrices

We now introduce a useful general method to localize the spectrum of a matrix and then use it to characterize the

spectral radius of a row-stochastic matrix.

Theorem 2.8 (Geršgorin Disks Theorem). For any square matrix A ∈ Rn×n,

spec(A) ⊂
⋃

i∈{1,. . .,n}

{
z ∈ C

∣∣ |z − aii| ≤
∑n

j=1,j ̸=i
|aij |

}

︸ ︷︷ ︸
disk in the complex plane centered at aii with radius

∑n
j=1,j ̸=i |aij |

.

Proof. Consider the eigenvalue equation Ax = λx for the eigenpair (λ, x), where λ and x ̸= 0n are in general

complex. Choose the index i ∈ {1, . . . , n} so that

|xi| = maxj∈{1,. . .,n} |xj | > 0.

The ith component of the eigenvalue equation can be rewritten as

λ− aii =
∑n

j=1,j ̸=i
aijxj/xi.

Now, take the complex magnitude of this equality and upper-bound its right-hand side:

|λ− aii| =
∣∣∣∣∣

n∑

j=1,j ̸=i
aij

xj
xi

∣∣∣∣∣ ≤
n∑

j=1,j ̸=i
|aij |

|xj |
|xi|

≤
n∑

j=1,j ̸=i
|aij | .

This inequality defines a set of the possible locations for the arbitrary eigenvalue λ of A. The statement follows by

taking the union of such sets for each eigenvalue of A. ■

Each disk in the theorem statement is referred to as a Geršgorin disk, or more accurately, as a Geršgorin row
disk; an analogous disk theorem can be stated for Geršgorin column disks. Exercise E2.15 showcases an instructive

application to distributed computing of numerous topics covered so far, including convergence notions and the

Geršgorin Disks Theorem.

Lemma 2.9 (Spectral properties of a row-stochastic matrix). For a row-stochastic matrix A,

(i) 1 is an eigenvalue, and
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28 Chapter 2. Elements of Matrix Theory

(ii) spec(A) is a subset of the unit disk and ρ(A) = 1.

Proof. First, recall thatA being row-stochastic is equivalent to two facts: aij ≥ 0, i, j ∈ {1, . . . , n}, andA1n = 1n.
The second fact implies that 1n is an eigenvector with eigenvalue 1. Therefore, by definition of spectral radius,

ρ(A) ≥ 1. Next, we prove that ρ(A) ≤ 1 by invoking the Geršgorin Disks Theorem 2.8 to show that spec(A) is
contained in the unit disk centered at the origin. The Geršgorin disks of a row-stochastic matrix as illustrated

in Figure 2.2. Note that A being row-stochastic implies aii ∈ [0, 1] and aii +
∑

j ̸=i aij = 1. Hence, the center of

aii

<latexit sha1_base64="tdZPiR4vjhGIQ0LYop8ff+pehuo="></latexit>

ajj

<latexit sha1_base64="sNd4DljdhFx0VYT+hCQypvNeZLA="></latexit>

akk

<latexit sha1_base64="GXHEI013TVapnkwdGk8uKtF1nJs=">AAAB93icbZDLSsNAFIZP6q3WW9Wlm8EiuJCSSMEuC25cVrAXaEOZTCftmMkkzEyKIfQd3OrGnbj1cQQfxmmahbYeGPj4/3M4Z34v5kxp2/6yShubW9s75d3K3v7B4VH1+KSrokQS2iERj2Tfw4pyJmhHM81pP5YUhx6nPS+4Xfi9GZWKReJBpzF1QzwRzGcEayN18SgLgvmoWrPrdl5oHZwCalBUe1T9Ho4jkoRUaMKxUgPHjrWbYakZ4XReGSaKxpgEeEIHBgUOqbpSs0kObvaU3z1HF8YbIz+S5gmNcvX3bIZDpdLQM50h1lO16i3E/7xBov2mmzERJ5oKslzkJxzpCC1CQGMmKdE8NYCJZOZqRKZYYqJNVBUTh7P6+XXoXtedRr1536i1mkUwZTiDc7gEB26gBXfQhg4QeIRneIFXK7XerHfrY9lasoqZU/hT1ucPBIKTiQ==</latexit>

1

<latexit sha1_base64="anIEUKHrFeu632l1+CHHNBBtzzI="></latexit>

Figure 2.2: All Geršgorin disks of a row-stochastic matrix are contained in the unit disk.

the ith Geršgorin disk belongs to the positive real axis between 0 and 1, and the right-most point in the disk is at

1. ■

Note: because 1 is an eigenvalue of each row-stochastic matrix A, clearly A is not convergent. But it is possible

for A to be semi-convergent.

2.3 Perron–Frobenius theory

We have seen how row-stochastic matrices are not convergent; we now focus on characterizing those that are semi-

convergent. To establish whether a row-stochastic matrix is semi-convergent, we introduce the widely-established

Perron–Frobenius theory for non-negative matrices.

2.3.1 Classification of non-negative matrices

In the previous section we already defined non-negative and positive matrices. In this section we are interested in

classifying non-negative matrices in terms of their zero/nonzero pattern and of the asymptotic behavior of their

powers. We start by introducing simple example non-negative matrices and related comments in Table 2.1.

Based on these examples, we now introduce two sets of non-negative matrices with certain characteristic

properties.

Definition 2.10 (Irreducible and primitive matrices). For n ≥ 2, an n× n non-negative matrix A is

(i) irreducible if
∑n−1

k=0 A
k is positive,

(ii) primitive if there exists k ∈ N such that Ak positive.

A matrix that is not irreducible is said to be reducible.
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2.3. Perron–Frobenius theory 29

A1 =

[
1 0
0 1

]
: spec(A1) = {1, 1}, the zero/nonzero pattern in Ak1 is constant, and
limk→∞Ak1 = I2,

A2 =

[
0 1
1 0

]
: spec(A2) = {1,−1}, the zero/nonzero pattern in Ak2 is periodic, and

limk→∞Ak2 does not exist,

A3 =

[
0 1
0 0

]
: spec(A3) = {0, 0}, the zero/nonzero pattern is Ak3 = 0 for all k ≥ 2, and
limk→∞Ak3 = 0,

A4 =

[
1
2

1
2

1 0

]
: spec(A4) = {1,−1/2}, the zero/nonzero pattern is Ak4 > 0 for all k ≥ 2,

and limk→∞Ak4 = 1
3

[
2 1
2 1

]
, and

A5 =

[
1 1
0 1

]
: spec(A5) = {1, 1}, the zero/nonzero pattern in Ak5 is constant and

limk→∞Ak5 is unbounded.

Table 2.1: Example 2-dimensional non-negative matrices and their properties

Note that A1, A3 and A5 are reducible whereas A2 and A4 are irreducible. Moreover, note that A2 is not

primitive whereas A4 is. Additionally, note that a positive matrix is clearly primitive. Finally, if there is k ∈ N
such that Ak is positive, then (one can show that) all subsequent powers Ak+1

, Ak+2
, . . . are necessarily positive

as well; see Exercise E2.5.

Note: In other words, A is irreducible if, for any (i, j) ∈ {1, . . . , n}2 there is a k = k(i, j) ≤ (n − 1) such
that (Ak)ij > 0. There are multiple equivalent ways to define irreducible matrices. We discuss four equivalent

characterizations later in Theorem 4.3.

The following result is immediate consequences of the well-known Cayley-Hamilton Theorem.

Lemma 2.11 (A primitive matrix is irreducible). If the n× n non-negative matrix A is primitive, then it is also
irreducible.

Proof. Assume by contradition that A is reducible so that In + A+ · · ·+ An−1
has at least one zero entry, say

the entry i, j. Since A ≥ 0, this implies that (Ak)ij = 0 for each k ∈ {0, . . . , n − 1}. By the Caley-Hamilton

Theorem, each matrix power Ah, h ∈ N, is a linear combination of In, A, . . . , A
n−1

. But then also (Ah)ij = 0, for
each power h ≥ n, which means that A is not primitive. ■

As a consequence of this lemma we can draw the set diagram in Figure 2.3 describing the set of non-negative

square matrices and its subsets of irreducible, primitive and positive matrices. Note that the inclusions in the

diagram are strict in the sense that:

(i) A3 is non-negative but not irreducible;

(ii) A2 is irreducible but not primitive; and

(iii) A4 is primitive but not positive.

2.3.2 Main results

We are now ready to state the main results in Perron–Frobenius theory and characterize the properties of the

spectral radius of a non-negative matrix as a function of the matrix properties.

Theorem 2.12 (Perron–Frobenius Theorem). Let A ∈ Rn×n, n ≥ 2. If A is non-negative, then
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non-negative
(A � 0)

primitive
(there exists k

such that Ak > 0)

positive
(A > 0)

irreducible
(
Pn�1

k=0 Ak > 0)

Figure 2.3: The set of non-negative square matrices and its subsets of irreducible, primitive and positive matrices.

(i) there exists a real eigenvalue λ ≥ |µ| ≥ 0 for all other eigenvalues µ,

(ii) the right and left eigenvectors v and w of λ can be selected non-negative.

If additionally A is irreducible, then

(iii) the eigenvalue λ is strictly positive and simple,

(iv) the right and left eigenvectors v and w of λ are unique and positive, up to rescaling.

If additionally A is primitive, then

(v) the eigenvalue λ satisfies λ > |µ| for all other eigenvalues µ.

Some remarks and some additional statements are in order. For non-negative matrices, the real non-negative

eigenvalue λ is the spectral radius ρ(A) of A. We refer to λ as the dominant eigenvalue of A; it is also referred to

as the Perron eigenvalue. We illustrate the results in the theorem in Figure 2.4.

� = 0
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(a) The matrix A3 is reducible: its

dominant eigenvalue is 0 and so is

its other eigenvalue.

� = +1
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(b) ThematrixA2 is irreducible but not primitive:

its dominant eigenvalues+1 is not strictly larger,
in magnitude, than the other eigenvalue −1.
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<latexit sha1_base64="UT+wz5RatzrExLNS3oA3qQFCEH4=">AAAB9HicbZDNSsNAFIVv6l+tf1WXbgaL4EJrUgTrruDGZQVjC20ok+mkHTqZhJlJtYS+glvduBK3vo/gwzhJu9DWCwMf59zLvXP8mDOlbfvLKqysrq1vFDdLW9s7u3vl/YMHFSWSUJdEPJJtHyvKmaCuZprTdiwpDn1OW/7oJvNbYyoVi8S9nsTUC/FAsIARrDPp3Lmo9coVu2rnhZbBmUMF5tXslb+7/YgkIRWacKxUx7Fj7aVYakY4nZa6iaIxJiM8oB2DAodUnanxIAcvfcqvnqIT4/VREEnzhEa5+ns2xaFSk9A3nSHWQ7XoZeJ/XifRQd1LmYgTTQWZLQoSjnSEsghQn0lKNJ8YwEQyczUiQywx0SaokonDWfz8Mri16nXVubusNOrzXIpwBMdwCg5cQQNuoQkuEBjCM7zAq/VovVnv1sestWDNZw7hT1mfP0wLkW8=</latexit><latexit sha1_base64="UT+wz5RatzrExLNS3oA3qQFCEH4=">AAAB9HicbZDNSsNAFIVv6l+tf1WXbgaL4EJrUgTrruDGZQVjC20ok+mkHTqZhJlJtYS+glvduBK3vo/gwzhJu9DWCwMf59zLvXP8mDOlbfvLKqysrq1vFDdLW9s7u3vl/YMHFSWSUJdEPJJtHyvKmaCuZprTdiwpDn1OW/7oJvNbYyoVi8S9nsTUC/FAsIARrDPp3Lmo9coVu2rnhZbBmUMF5tXslb+7/YgkIRWacKxUx7Fj7aVYakY4nZa6iaIxJiM8oB2DAodUnanxIAcvfcqvnqIT4/VREEnzhEa5+ns2xaFSk9A3nSHWQ7XoZeJ/XifRQd1LmYgTTQWZLQoSjnSEsghQn0lKNJ8YwEQyczUiQywx0SaokonDWfz8Mri16nXVubusNOrzXIpwBMdwCg5cQQNuoQkuEBjCM7zAq/VovVnv1sestWDNZw7hT1mfP0wLkW8=</latexit><latexit sha1_base64="UT+wz5RatzrExLNS3oA3qQFCEH4=">AAAB9HicbZDNSsNAFIVv6l+tf1WXbgaL4EJrUgTrruDGZQVjC20ok+mkHTqZhJlJtYS+glvduBK3vo/gwzhJu9DWCwMf59zLvXP8mDOlbfvLKqysrq1vFDdLW9s7u3vl/YMHFSWSUJdEPJJtHyvKmaCuZprTdiwpDn1OW/7oJvNbYyoVi8S9nsTUC/FAsIARrDPp3Lmo9coVu2rnhZbBmUMF5tXslb+7/YgkIRWacKxUx7Fj7aVYakY4nZa6iaIxJiM8oB2DAodUnanxIAcvfcqvnqIT4/VREEnzhEa5+ns2xaFSk9A3nSHWQ7XoZeJ/XifRQd1LmYgTTQWZLQoSjnSEsghQn0lKNJ8YwEQyczUiQywx0SaokonDWfz8Mri16nXVubusNOrzXIpwBMdwCg5cQQNuoQkuEBjCM7zAq/VovVnv1sestWDNZw7hT1mfP0wLkW8=</latexit><latexit sha1_base64="UT+wz5RatzrExLNS3oA3qQFCEH4=">AAAB9HicbZDNSsNAFIVv6l+tf1WXbgaL4EJrUgTrruDGZQVjC20ok+mkHTqZhJlJtYS+glvduBK3vo/gwzhJu9DWCwMf59zLvXP8mDOlbfvLKqysrq1vFDdLW9s7u3vl/YMHFSWSUJdEPJJtHyvKmaCuZprTdiwpDn1OW/7oJvNbYyoVi8S9nsTUC/FAsIARrDPp3Lmo9coVu2rnhZbBmUMF5tXslb+7/YgkIRWacKxUx7Fj7aVYakY4nZa6iaIxJiM8oB2DAodUnanxIAcvfcqvnqIT4/VREEnzhEa5+ns2xaFSk9A3nSHWQ7XoZeJ/XifRQd1LmYgTTQWZLQoSjnSEsghQn0lKNJ8YwEQyczUiQywx0SaokonDWfz8Mri16nXVubusNOrzXIpwBMdwCg5cQQNuoQkuEBjCM7zAq/VovVnv1sestWDNZw7hT1mfP0wLkW8=</latexit>

(c) The matrix A4 is primitive: its

dominant eigenvalue +1 is strictly

larger than the other eigenvalue

−1/2.

Figure 2.4: Spectra of non-negative matrices consistent with the Perron–Frobenius Theorem

For irreducible matrices, the right and left eigenvectors v and w (unique up to rescaling and selected non-

negative) of the dominant eigenvalue λ are called the right and left dominant eigenvector , respectively. One can
show that, up to rescaling, the right dominant eigenvector is the only positive right eigenvector of a primitive

matrix A (a similar statement holds for the left dominant eigenvector); see also Exercise E2.4.

We refer to Theorem 4.11 in Section 4.5 for some useful bounds on the dominant eigenvalue and to Theorem 5.1

in Section 5.1 for a version of the Perron–Frobenius Theorem for reducible matrices.
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2.3.3 Applications to matrix powers and averaging systems

Given a primitive non-negative matrix A, the Perron–Frobenius Theorem for primitive matrices has immediate

consequences for the behavior of Ak as k → ∞. We start with a semi-convergence result that applies to primitive

matrices. We postpone the proof to Section 2.3.4.

Theorem 2.13 (Powers of non-negative matrices with a simple and strictly dominant eigenvalue). Let A
be a non-negative matrix. Assume the dominant eigenvalue λ is simple and strictly larger, in magnitude, than all
other eigenvalues. Then A/λ is semi-convergent and

lim
k→∞

Ak

λk
= vwT,

where v and w are the right and left dominant eigenvectors of A normalized so that v ≥ 0, w ≥ 0 and vTw = 1.

Note: The matrix vwT
is a rank-one projection matrix with numerous properties, which we discuss in

Exercise E5.9.

We apply this theorem to a row-stochastic matrix A as arising in the French-Harary-DeGroot averaging model.

For such a matrix, the dominant eigenvalue is λ = 1 and the corresponding right eigenvector is naturally selected

to be 1n. Therefore, if 1 is simple and strictly dominant, then

lim
k→∞

Ak = 1nw
T =



wT

.

.

.

wT


 =



w1 w2 . . . wn
.
.
.

.

.

.

.

.

.

.

.

.

w1 w2 . . . wn


 ,

where w is the left dominant eigenvector of A satisfying w1 + · · ·+ wn = 1.

Example 2.14 (Revisiting the wireless sensor network example). Let us reconsider the wireless sensor

network discussed in Section 1.2 and the 4-dimensional row-stochastic matrix Awsn. Recall that this matrix arises

in the context of the French-Harary-DeGroot model averaging model. First, note that Awsn is primitive because

A2
wsn

is positive:

Awsn =




1/2 1/2 0 0
1/4 1/4 1/4 1/4
0 1/3 1/3 1/3
0 1/3 1/3 1/3


 =⇒ A2

wsn
=




3/8 3/8 1/8 1/8
3/16 17/48 11/48 11/48
1/12 11/36 11/36 11/36
1/12 11/36 11/36 11/36


 .

Therefore, the Perron–Frobenius Theorem 2.12 for primitive matrices applies toAwsn and implies that the dominant

eigenvalue 1 is simple and strictly dominant. Indeed, the four pairs of eigenvalues and right eigenvectors of Awsn

(as computed in Example 2.5) are (1, 14) and



1

24
(5 +

√
73),




−2− 2
√
73

−11 +
√
73

8
8





 ,




1

24
(5−

√
73),




2(−1 +
√
73)

−11−
√
73

8
8





 ,


0,




0
0
1
−1





 .

Moreover, we know that Awsn is semi-convergent. To apply the convergence results in Theorem 2.13, we compute

its left dominant eigenvector, normalized to have unit sum, to be w = [1/6, 1/3, 1/4, 1/4]T so that we have:

lim
k→∞

Ak
wsn

= 14w
T =




1/6 1/3 1/4 1/4
1/6 1/3 1/4 1/4
1/6 1/3 1/4 1/4
1/6 1/3 1/4 1/4


 . •
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To fully understand the behavior of averaging systems and the properties of row-stochastic matrices, we study

graph theory in Chapters 3 and 4 and postpone a comprehensive analysis to Chapter 5.

2.3.4 Selected proofs

We conclude this section with the proof of some selected statements.

Proof of Perron–Frobenius Theorem 2.12. We start by establishing that a primitive A matrix satisfies ρ(A) > 0. By
contradiction, if spec(A) = {0, . . . , 0}, then the Jordan normal form J of A is nilpotent, that is, there is a k∗ ∈ N
so that Jk = Ak = 0 for all k ≥ k∗. But this is a contradiction because A being primitive implies that there is

k∗ ∈ N so that Ak > 0 for all k ≥ k∗.

Next, we prove that ρ(A) is a real positive eigenvalue with a positive right eigenvector v > 0. We first focus

on the case that A is a positive matrix, and later show how to generalize the proof to the case of primitive matrices.

Without loss of generality, assume ρ(A) = 1. If (λ, x) is an eigenpair for A such that |λ| = ρ(A) = 1, then

|x| = |λ||x| = |λx| = |Ax| ≤ |A||x| = A|x| =⇒ |x| ≤ A|x|. (2.8)

Here, we use the notation |x| = (|xi|)i∈{1,. . .,n}, |A| = {|aij |}i,j∈{1,. . .,n}, and vector inequalities are understood

component-wise. In what follows, we show |x| = A|x|. Adopting the notation z = A|x| and y = z − |x|,
equation (2.8) reads y ≥ 0 and we aim to show y = 0. By contradiction, assume y has a non-zero component.

Therefore, Ay > 0. Independently, we also know z = A|x| > 0. Thus, there must exist ε > 0 such that Ay > εz.
Eliminating the variable y in the latter equation, we obtain Aεz > z, where we define Aε = A/(1 + ε). The
inequality Aεz > z implies Akεz > z for all k > 0. Now, observe that ρ(Aε) < 1 so that limk→∞Akε = 0n×n and

therefore 0 > z. Since we also knew z > 0, we now have a contradiction. Therefore, we know y = 0.

So far, we have established that |x| = A|x|, so that (1, |x|) is an eigenpair for A. Also note that A > 0 and

x ̸= 0 together imply A|x| > 0. Therefore we have established that 1 is an eigenvalue of A with eigenvector

|x| > 0. Next, observe that the above reasoning is correct also for primitive matrices if one replaces the first

equality (2.8) by |x| = |λk||x| and carries the exponent k throughout the proof.

In summary, we have established that there exists a real eigenvalue λ > 0 such that λ ≥ |µ| for all other
eigenvalues µ, and that each right (and therefore also left) eigenvector of λ can be selected positive up to rescaling.

It remains to prove that λ is simple and is strictly greater than the magnitude of all other eigenvalues. For the

proof of these two points, we refer to (Meyer, 2001, Chapter 8). ■

Proof of Theorem 2.13. The proof is organized in three steps. First, because λ is simple, we write the Jordan normal

form of A as

A = T

[
λ 01×(n−1)

0(n−1)×1 B

]
T−1, (2.9)

where the block-diagonal matrix B ∈ R(n−1)×(n−1)
contains the Jordan blocks of all eigenvalues of A except for λ.

Because λ is strictly dominant, we know that ρ(B/λ) < 1, which in turn implies

lim
k→+∞

Bk/λk = 0(n−1)×(n−1).

Recall Ak = T

[
λ 0
0 B

]k
T−1

so that

lim
k→+∞

(A
λ

)k
= T

(
lim

k→+∞

[
1k 0
0 (B/λ)k

])
T−1 = T

[
1 0
0 0

]
T−1. (2.10)
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Second, we let v1, . . . , vn (respectively, w1, . . . , wn) denote the columns of T (respectively the rows of T−1
), that

is, T =
[
v1 . . . vn

]
, and (T−1)T =

[
w1 . . . wn

]
. Equation (2.9) is equivalently written as

A
[
v1 . . . vn

]
︸ ︷︷ ︸

=T

=
[
v1 . . . vn

]
︸ ︷︷ ︸

=T

[
λ 0
0 B

]
.

The first column of the above matrix equation isAv1 = λv1, that is, v1 is the right dominant eigenvector v ofA, up
to rescaling. Recall that λ is simple so that its right eigenvector is unique up to rescaling. By analogous arguments,

we find that w1 is the left dominant eigenvector w of A, up to rescaling. With this notation, equation (2.10) leads to

lim
k→+∞

(A
λ

)k
=
[
v1 v2 . . . vn

]



1 0 . . . 0
0 0 . . . 0
.
.
.

.

.

.
.
.
.

.

.

.

0 0 . . . 0







wT
1

wT
2
.
.
.

wT
n


 = v1w

T
1 .

As third and final step, the (1, 1) entry of the matrix equality T−1T = In gives precisely the normalization

wT
1 v1 = 1. In summary, v1 and w1 are the right and left dominant eigenvectors, up to rescaling, and they are

known to satisfy vT1 w1 = 1. Hence, vwT = v1w
T
1 . This concludes the proof of Theorem 2.13. ■

2.4 Historical notes and further reading

For comprehensive treatments on matrix theory we refer to the classic texts by Gantmacher (1959), Horn and

Johnson (1985), and Meyer (2001).

Regarding the main Perron–Frobenius Theorem 2.12, historically, Perron (1907) established the original result

for the case of positive matrices. Frobenius (1912) provided the substantial extension to the settings of primitive

and irreducible matrices. More historical information is given in (Meyer, 2001, Chapter 8).

Theorem 2.13 is generalized as follows: an irreducible row-stochastic matrixAwith left dominant eigenvectorw
satisfies limk→∞

1
k (In + A + · · · + Ak−1) = 1nwT

. We refer to (Meyer, 2001, Section 8.4) for more details on

this result and to (Breiman, 1992, Chapter 6) for the more general Ergodic Theorem. (Essentially, (Hartfiel, 1998,

Theorem 1.6) refers to Theorem 2.13 already as the Ergodic Theorem for Markov chains.)
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2.5 Exercises

E2.1 Simple properties of stochastic matrices. Let A1, . . . , Ak be n× n matrices, let A1 . . . Ak be their product and let

η1A1 + · · ·+ ηkAk be their convex combination with arbitrary convex combination coefficients. Show that

(i) if A1, . . . , Ak are non-negative, then their product and all their convex combinations are non-negative,

(ii) if A1, . . . , Ak are row-stochastic, then their product and all their convex combinations are row-stochastic, and

(iii) if A1, . . . , Ak are doubly-stochastic, then their product and all their convex combinations are doubly-stochastic.

▶ E2.2 Semi-convergence and Jordan block decomposition. Consider a matrix A ∈ Cn×n, n ≥ 2, with ρ(A) = 1. Show
that the following statements are equivalent:

(i) A is semi-convergent,

(ii) either A = In or there exists a nonsingular matrix T ∈ Cn×n and a numberm ∈ {1, . . . , n− 1} such that

A = T

[
Im 0m×(n−m)

0(n−m)×m B

]
T−1,

where B ∈ C(n−m)×(n−m)
is convergent, that is, ρ(B) < 1.

Note: If A is real, then it is possible to find real-valued matrices T and B in statement (ii) by using the notion of real
Jordan normal form (Hogben, 2013).

E2.3 Row-stochastic matrices after pairwise-difference similarity transform. For n ≥ 2, let A ∈ Rn×n be row

stochastic. Define T ∈ Rn×n by

T =




−1 1
.
.
.

.
.
.

−1 1
1/n 1/n . . . 1/n


 .

Perform the following tasks:

(i) for x = [x1, . . . , xn]
T
, write Tx in components and show T is invertible,

(ii) show TAT−1 =

[
Astable 0n−1

cT 1

]
for some Astable ∈ R(n−1)×(n−1)

and c ∈ Rn−1
,

(iii) if A is doubly-stochastic, then c = 0,

(iv) show that A primitive implies ρ(Astable) < 1, and

(v) compute TAT−1
for A =

[
0 1
1 0

]
.

E2.4 Uniqueness of the non-negative eigenvector in irreducible non-negative matrices. Given a square matrix

A ∈ Rn×n, show that:

(i) if v1 is a right eigenvector of A corresponding to the eigenvalue λ1, w2 is a left eigenvector of A relative to λ2,
and λ1 ̸= λ2, then v1 ⊥ w2; and

(ii) if A is non-negative and irreducible and u ∈ Rn≥0 is a right non-negative eigenvector of A, then u is an

eigenvector corresponding to the eigenvalue ρ(A).

Note: Statement (i) is sometimes referred to as the principle of bi-orthogonality.

▶ E2.5 Powers of primitive matrices. For any non-negative A ∈ Rn×n and any numbers k andm ∈ N, show that:

(i) if the ith row of Ak is positive, then the ith row of Ak+m > 0,

(ii) if the jth column of Ak is positive, then the jth column of Ak+m > 0,

(iii) if Ak > 0, then Ak+m > 0.

E2.6 Sufficient conditions for primitivity. Let A ∈ Rn×n be non-negative.

(i) Is the following statement true? If yes, explain why; if not, provide a counterexample.
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If A has a zero entry, then A is reducible, because the zero entry can be moved to position An,1 via a
permutation similarity transformation.

(ii) Show that A is primitive if there exists r ∈ {1, . . . , n} such that Arj > 0 and Air > 0 for all i, j ∈ {1, . . . , n}.
E2.7 Some properties of doubly-stochastic matrices. For A ∈ Rn×n, show that:

(i) ifA is doubly-stochastic, then the matrixATA is doubly-stochastic and its spectrum satisfies spec(ATA) ⊂ [0, 1],

(ii) if A is doubly-stochastic and irreducible, then ATA has positive diagonal and does not need to be irreducible

(give a counterexample), and

(iii) if A is doubly-stochastic, irreducible and with positive diagonal, then ATA is doubly-stochastic, irreducible and

with positive diagonal.

Hint: Show that, if mini aii = amin > 0, then ATA ≥ aminA.

E2.8 On some non-negative matrices. How many 2×2matrices do there exist that are simultaneously doubly stochastic,

irreducible and not primitive?

▶ E2.9 Discrete-time affine systems. Given A ∈ Rn×n and b ∈ Rn, consider the discrete-time affine system

x(k + 1) = Ax(k) + b.

Assume A is convergent and show that

(i) the matrix (In −A) is invertible,

(ii) the only equilibrium point of the system is (In −A)−1b, and

(iii) limk→∞ x(k) = (In −A)−1b for all initial conditions x(0) ∈ Rn.
Hint: Define a new sequence y(k), k ∈ Z≥0, by y(k) = x(k)− x∗ for an appropriate x∗.

E2.10 An affine averaging system. Given a primitive doubly-stochastic matrix A and a vector b satisfying 1T
nb = 0,

consider the affine averaging system
x(k + 1) = Ax(k) + b.

Show that

(i) the quantity 1T
nx(k) is constant for all k,

(ii) for each α ∈ R, there exists a unique equilibrium point x∗α satisfying 1T
nx

∗
α = α and satisfying generically

x∗α ̸∈ span{1n}, and
(iii) all solutions {x(k)}k∈Z≥0

satisfying 1T
nx(0) = α converge to x∗α.

Hint: First, use Exercise E2.2 and study the properties of the similarity transformation matrix T and its inverse T−1.
Second, define y(k) = T−1x(k), show the evolution of y1(k) is decoupled from that of the other entries and apply E2.9.

▶ E2.11 The Neumann series. For A ∈ Cn×n, show that the following statements are equivalent:

(i) ρ(A) < 1,

(ii) limk→∞Ak = 0n×n, and

(iii) the Neumann series
∑∞
k=0A

k
converges.

Additionally show that, if any and hence all of these conditions hold, then

(iv) the matrix (In −A) is invertible, and

(v)

∞∑

k=0

Ak = (In −A)−1
.

Hint: This statement is an extension of Theorem 2.7 and a generalization of the classic geometric series 1
1−x =

∑∞
k=0 x

k ,
convergent for all |x| < 1. For the proof, the hint is to use the Jordan normal form.

E2.12 Permutation and orthogonal matrices. Consider the following three notions. A set G with a binary operation

mapping two elements of G into another element of G, denoted by (a, b) 7→ a ⋆ b, is a group if:

(G1) a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c for all a, b, c ∈ G (associativity property);
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(G2) there exists e ∈ G such that a ⋆ e = e ⋆ a = a for all a ∈ G (existence of an identity element); and

(G3) there exists a−1 ∈ G such that a ⋆ a−1 = a−1 ⋆ a = e for all a ∈ G (existence of inverse elements).

A matrix P ∈ {0, 1}n×n is a permutation matrix if each of its rows and each of its columns contains precisely only

one entry equal to 1. A permutation matrix acts on a vector by permuting its entries.

A matrix R ∈ Rn×n is an orthogonal matrix if RRT = RTR = In. In other words, the columns and rows of R are

orthonormal vectors.

Prove that

(i) the set of n× n permutation matrices with the operation of matrix multiplication is a group;

(ii) the set of n× n orthogonal matrices with the operation of matrix multiplication is a group; and

(iii) each permutation matrix is orthogonal.

E2.13 On doubly-stochastic and permutation matrices. The following result is known as the Birkhoff – Von Neumann

Theorem. For a matrix A ∈ Rn×n, the following statements are equivalent:

(i) A is doubly-stochastic; and

(ii) A is a convex combination of permutation matrices.

Do the following:

• show that the set of doubly-stochastic matrices is convex (i.e., given any two doubly-stochastic matrices A1 and

A2, any matrix of the form λA1 + (1− λ)A2, for λ ∈ [0, 1], is again doubly-stochastic);

• show that (ii) =⇒ (i);

• find in the literature a proof of (i) =⇒ (ii) and sketch it in one or two paragraphs.

E2.14 Determinants of block matrices (Silvester, 2000). Given square matrices A,B,C,D ∈ Rn×n, n ≥ 1, useful
identities are

det

[
A B
C D

]
=





det(D) det(A−BD−1C), if D is invertible, (E2.1a)

det(AD −BC), if CD = DC , (E2.1b)

det(DA−BC), if BD = DB. (E2.1c)

(i) Prove equality (E2.1a).

(ii) Prove equality (E2.1b) and (E2.1c) assuming D is invertible.

Hint: Show
[
A B
C D

] [
In 0n×n

−D−1C In

]
=

[
A−BD−1C B

0n×n D

]
. We refer to (Silvester, 2000) for the complete proofs

and for the additional identities

det

[
A B
C D

]
=

{
det(AD − CB), if AC = CA, (E2.2a)

det(DA− CB), if AB = BA. (E2.2b)

E2.15 The Jacobi relaxation in parallel computation. Consider n distributed processors that aim to collectively solve the

linear equation Ax = b, where b ∈ Rn and A ∈ Rn×n is invertible and its diagonal elements aii are nonzero. Each
processor stores a variable xi(k) as the discrete-time variable k evolves and applies the following iterative strategy

termed Jacobi relaxation. At time step k ∈ N each processor performs the local computation

xi(k + 1) =
1

aii

(
bi −

n∑

j=1,j ̸=i
aijxj(k)

)
, i ∈ {1, . . . , n}.

Next, each processor i ∈ {1, . . . , n} sends its value xi(k + 1) to all other processors j ∈ {1, . . . , n} with aji ̸= 0,
and they iteratively repeat the previous computation. The initial values of the processors are arbitrary.

(i) Assume the Jacobi relaxation converges, i.e., assume limk→∞ x(k) = x∗. Show that Ax∗ = b.

(ii) Give a necessary and sufficient condition for the Jacobi relaxation to converge.
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(iii) Use Geršgorin Disks Theorem 2.8 to show that the Jacobi relaxation converges if the matrix A is strictly row
diagonally dominant, that is, if |aii| >

∑n
j=1,j ̸=i |aij |, for all rows i ∈ {1, . . . , n}.

Note: We refer to (Bertsekas and Tsitsiklis, 1997) for a standard treatment of the Jacobi relaxation and related methods.

E2.16 The Jacobi over-relaxation in parallel computation. We now consider a more sophisticated version of the Jacobi

relaxation presented in Exercise E2.15. Consider again n distributed processors that aim to collectively solve the

linear equation Ax = b, where b ∈ Rn and A ∈ Rn×n is invertible and its diagonal elements aii are nonzero. Each
processor stores a variable xi(k) as the discrete-time variable k evolves and applies the following iterative strategy

termed Jacobi over-relaxation. At time step k ∈ N each processor performs the local computation

xi(k + 1) = (1− ω)xi(k) +
ω

aii

(
bi −

n∑

j=1,j ̸=i
aijxj(k)

)
, i ∈ {1, . . . , n},

where ω ∈ R is an adjustable parameter. Next, each processor i ∈ {1, . . . , n} sends its value xi(k + 1) to all other

processors j ̸= iwith aji ̸= 0, and they iteratively repeat the previous computation. The initial values of the processors

are arbitrary.

(i) Assume the Jacobi over-relaxation converges to x⋆ and show that Ax⋆ = b if ω ̸= 0.

(ii) Find the expression governing the dynamics of the error variable e(k) := x(k)− x⋆.

(iii) Suppose that A is strictly row diagonally dominant, that is |aii| >
∑
j ̸=i |aij |, for all rows i ∈ {1, . . . , n}. Use

the Geršgorin Disks Theorem 2.8 to discuss the convergence properties of the algorithm for all possible values

of ω ∈ R.
Hint: Consider different thresholds for ω.

E2.17 Simulation (cont’d). This is a followup to Exercise E1.5. Consider the linear averaging algorithm in equation (1.2):

set n = 5, select the initial state equal to (1,−1, 1,−1, 1), and use (a) the complete graph (b) a cycle graph, and (c) a

star graph with node 1 as center.

(i) To which value do all nodes converge to?

(ii) Compute the dominant left eigenvector of the averaging matrix associated to each of the three graphs and verify

that the asymptotic result in Theorem 2.13 (illustrated in Example 2.14) is correct.

E2.18 Robotic coordination: continuous- and discrete-time rendezvous on the real line. Consider n robots moving

on the line with positions z1, z2, . . . zn ∈ R. In order to gather at a common location (i.e., reach rendezvous), each

robot heads for the centroid of its neighbors, that is,

żi =
1

n− 1

( n∑

j=1,j ̸=i
zj

)
− zi.

(i) Will the robots asymptotically rendezvous at a common location?

(ii) Consider the Euler discretization of the above closed-loop dynamics with sampling period T > 0:

zi(k + 1) = zi(k) + T
( 1

n− 1

( n∑

j=1,j ̸=i
zj(k)

)
− zi(k)

)
.

For which values of the sampling period T will the robots rendezvous?

Hint: Use the modal decomposition in Remark 2.3.

E2.19 Perron eigenvalue as solution to optimization problems. Given a positive matrix A > 0, show that

(i) the Perron eigenvalue and eigenvector of A are the unique solution of

max
(µ,x)∈R×Rn

µ

subject to Ax ≥ µx

x > 0 and 1T
nx = 1;
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(ii) the Perron eigenvector is the unique solution, and the Perron eigenvalue the optimal value, of

max
x∈Rn

min
i∈{1,. . .,n}

(Ax)i/xi

subject to x > 0 and 1T
nx = 1.

Note: The following equalities are referred to as the Collatz–Wielandt formula for the Perron eigenvalue λ:

λ = max
x>0,1T

nx=1
min

i∈{1,. . .,n}
(Ax)i
xi

= min
x>0,1T

nx=1
max

i∈{1,. . .,n}
(Ax)i
xi

.

E2.20 The pseudoinverse and the singular value decomposition. Let A ∈ Rm×n
with rank r ≤ min{m,n}. The

pseudoinverse (also referred to as the Moore-Penrose pseudoinverse) of A is the unique matrix A† ∈ Rn×m satisfying:

AA†A = A, A†AA† = A†,

AA†
is symmetric, and A†A is symmetric.

(E2.3)

Show

(i) ifm = n = r, then A† = A−1
,

(ii) ifm > n = r, then A† = (ATA)−1AT
,

(iii) if r = m < n, then A† = AT(AAT)−1
.

Next, a triple (U,Σ, V ) is a singular value decomposition (SVD) of A if

A = UΣV T,

where U ∈ Rm×m
and V ∈ Rn×n are orthogonal and, for a positive diagonal matrix Σ̃ ∈ Rr×r ,

Σ =

[
Σ̃ 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

]
∈ Rm×n.

Show

(iv) A† = V Σ†UT
, where Σ† =

[
Σ̃−1 0r×(m−r)

0(n−r)×r 0(n−r)×(m−r)

]
∈ Rn×m.
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Chapter3

Elements of Graph Theory

Graph theory provides key concepts to model, analyze and design network systems and distributed algorithms; the

language of graphs pervades modern science and technology and is therefore essential.

3.1 Graphs and digraphs

[Graphs] An undirected graph (in short, a graph) consists of a set V of nodes and of a set E of unordered pairs of

nodes, called edges. For u, v ∈ V and u ̸= v, the set {u, v} denotes an unordered edge.

[Neighbors and degrees in graphs] Two nodes u and v of a given graph are neighbors if {u, v} is an undirected edge.

Given a graph G, we let NG(v) denote the set of neighbors of v.

The degree of v is the number of neighbors of v. A graph is regular if all the nodes have the same degree;

e.g., in Figure 3.1, the cycle graph is regular with degree 2 whereas the complete bipartite graphK(3, 3) and the

Petersen graph are regular with degree 3.

Example 3.1 (Basic graphs). We define various basic graphs of dimension n as follows: Path graph: nodes are
ordered in a sequence and edges connect subsequent nodes in the sequence. Cycle (or ring) graph: all nodes and
edges can be arranged as the vertices and edges of a regular polygon. Star graph: edges connect a specific node,
called the center , to all other nodes. Complete graph: every pair of nodes is connected by an edge. Complete bipartite
graph: nodes are divided into two sets and every node of the first set is connected with every node of the second

set. Figure 3.1 illustrates these five definitions and two other examples. •

[Digraphs and self-loops] A directed graph (in short, a digraph) of order n is a pair G = (V,E), where V is a set

with n elements called nodes and E is a set of ordered pairs of nodes called edges. In other words, E ⊆ V × V . As

for graphs, V and E are the node set and edge set, respectively. For u, v ∈ V , the ordered pair (u, v) denotes an
edge from u to v. A digraph is undirected if (v, u) ∈ E anytime (u, v) ∈ E. In a digraph, a self-loop is an edge from

a node to itself. Consistently with a customary convention, self-loops are not allowed in graphs. We define and

visualize some basic example digraphs in Figure 3.2.
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(a) Path graph with 6 nodes,

denoted by P6

(b) Cycle (ring) graph with 6
nodes, denoted by C6

(c) Star graph with 6 nodes, de-

noted by S6

(d) Complete graph with 6 nodes,
denoted byK6

(e) Complete bipartite graph with 3 + 3
nodes, denoted byK3,3

(f) Two-dimensional grid graphwith 4×7
nodes, denoted by G4,7

(g) Petersen graph

Figure 3.1: Example graphs.

(a) Cycle digraph with 6 nodes (b) Complete digraph with 6 nodes (c) A digraph with no directed cycles

Figure 3.2: Example digraphs

[Subgraphs] A digraph (V ′, E′) is a subgraph of a digraph (V,E) if V ′ ⊆ V and E′ ⊆ E. A digraph (V ′, E′) is a
spanning subgraph of (V,E) if it is a subgraph and V ′ = V . The subgraph of (V,E) induced by V ′ ⊆ V is the

digraph (V ′, E′), where E′
contains all edges in E between two nodes in V ′

.

[In- and out-neighbors] In a digraph G with an edge (u, v) ∈ E, u is called an in-neighbor of v, and v is called an

out-neighbor of u. We let N in(v) (resp., N out(v)) denote the set of in-neighbors, (resp. the set of out-neighbors) of
v. Given a digraph G = (V,E), an in-neighbor of a nonempty set of nodes U is a node v ∈ V \ U for which there

exists an edge (v, u) ∈ E for some u ∈ U .

[In- and out-degree] The in-degree din(v) and out-degree dout(v) of v are the number of in-neighbors and out-

neighbors of v, respectively. Note that a self-loop at a node vmakes v both an in-neighbor as well as an out-neighbor
of itself. A digraph is topologically balanced if each node has the same in- and out-degrees (even if distinct nodes

have distinct degrees).

Lectures on Network Systems, F. Bullo, edition 1.6 – Jan 1, 2022. Tablet PDF version. Copyright © 2012-22.



3.2. Walks and connectivity in undirected graphs 41

3.2 Walks and connectivity in undirected graphs

[Walks] A walk (or path) in a graph is an ordered sequence of nodes such that any pair of consecutive nodes in the

sequence is an edge of the graph. A walk is simple if no node appears more than once in it, except possibly for the

case in which the initial node is the same as the final node. (Note: some authors adopt the term “path” to refer to a

walk.)

[Connectivity and connected components] A graph is connected if there exists a walk between any two nodes. If a

graph is not connected, then it is composed of multiple connected components, that is, multiple connected subgraphs.

[Cycles] A cycle is a simple walk that starts and ends at the same node and has at least three distinct nodes. A

graph is acyclic if it contains no cycles. A connected acyclic graph is a tree.

Figure 3.3: This graph has two connected components. The leftmost connected component is a tree, while the

rightmost connected component is a cycle.

3.3 Walks and connectivity in digraphs

[Directed walks] A directed walk in a digraph is an ordered sequence of nodes such that any pair of consecutive

nodes in the sequence is a directed edge of the digraph. A directed walk is simple if no node appears more than

once in it, except possibly for the initial and final node.

[Cycles in digraphs] A cycle (or directed cycle in a digraph is a directed walk that starts and ends at the same node.

It is customary to accept, as feasible cycles in digraphs, also cycles of length 1 (that is, a self-loop) and cycles of

length 2 (that is, composed of just 2 nodes). A cycle is simple if no node appears more than once in it, except the

initial and final nodes. The set of simple cycles of a directed graph is finite. A digraph is acyclic if it contains no
cycles. In computer science, a directed acylic graph is sometimes referred to as a DAG.

[Sources and sinks] In a digraph, every node with in-degree 0 is called a source, and every node with out-degree 0 is
called a sink. Every acyclic digraph has at least one source and at least one sink; see Figure 3.4 and Exercise E3.2.

[Directed trees] A directed tree (sometimes called a rooted tree) is an acyclic digraph with the following property:

there exists a node, called the root, such that any other node of the digraph can be reached by one and only one

directed walk starting at the root. A directed spanning tree of a digraph is a spanning subgraph that is a directed

tree.

3.3.1 Connectivity properties of digraphs

Next, we present four useful connectivity notions for a digraph G:
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42 Chapter 3. Elements of Graph Theory

(a) An acyclic digraph with one sink and two sources (b) A directed cycle

Figure 3.4: Examples of sources and sinks

(i) G is strongly connected if there exists a directed walk from any node to any other node;

(ii) G is weakly connected if the undirected version of the digraph is connected;

(iii) G possesses a globally reachable node if one of its nodes can be reached from any other node by traversing a

directed walk; and

(iv) G possesses a directed spanning tree if one of its nodes is the root of directed walks to every other node.

These notions are illustrated in Figure 3.5.

2

3

5

1 6

4

(a) A strongly connected digraph

2

3

1 6

4

5

(b) A weakly connected digraph with a globally reachable node

Figure 3.5: Connectivity examples for digraphs

For a digraph G = (V,E), the reverse digraph G(rev) has node set V and edge set E(rev) composed of all

edges in E with reversed direction. Clearly, a digraph contains a directed spanning tree if and only if the reverse

digraph contains a globally reachable node.

3.3.2 Periodicity of strongly-connected digraphs

[Periodic and aperiodic digraphs] A strongly-connected directed graph is periodic if there exists a k > 1, called
the period, that divides the length of every simple cycle of the graph. In other words, a digraph is periodic if the

greatest common divisor of the lengths of all its simple cycles is larger than one. A digraph is aperiodic if it is not
periodic.

Note: the definition of periodic digraph is well-posed because a digraph has only a finite number of simple

cycles (because nodes are not repeated in simple walks). The notions of periodicity and aperiodicity only apply to

digraphs and not to undirected graphs (where the notion of a cycle is defined differently). Any strongly-connected

digraph with a self-loop is aperiodic.
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3.3. Walks and connectivity in digraphs 43

(a) A periodic digraph with period 2 (b) An aperiodic digraph with simple cycles

of length 1 and 2.
(c) An aperiodic digraph with simple cycles

of length 2 and 3.

Figure 3.6: Example periodic and aperiodic digraphs.

3.3.3 Condensation digraphs

[Strongly connected components] A subgraph H is a strongly connected component of G if H is strongly connected

and any other subgraph of G strictly containing H is not strongly connected.

[Condensation digraph] The condensation digraph of a digraphG, denoted by C(G), is defined as follows: the nodes
of C(G) are the strongly connected components of G, and there exists a directed edge in C(G) from node H1 to

node H2 if and only if there exists a directed edge in G from a node of H1 to a node of H2. The condensation

digraph has no self-loops. This construction is illustrated in Figure 3.7.

(a) An example digraph G (b) The strongly connected components of the di-

graph G
(c) The condensation di-

graph C(G)

Figure 3.7: An example digraph, its strongly connected components and its condensation digraph.

Lemma 3.2 (Properties of the condensation digraph). For a digraph G and its condensation digraph C(G),

(i) C(G) is acyclic,

(ii) G is weakly connected if and only if C(G) is weakly connected, and

(iii) the following statement are equivalent:

a) G contains a globally reachable node,

b) C(G) contains a globally reachable node, and

c) C(G) contains a unique sink.
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Proof. We prove statement (i) by contradiction. If there exists a cycle (H1, H2, . . . ,Hm, H1) in C(G), then the set

of nodes H1, . . . ,Hm are strongly connected in C(G). But this implies that also the subgraph of G containing all

node of H1, . . . ,Hm is strongly connected in G. But this is a contradiction with the fact that any subgraph of G
strictly containing any of theH1, . . . ,Hm must be not strongly connected. Statement (ii) is intuitive and simple to

prove; we leave this task to the reader.

Regarding statement (iii), we start by proving that (iii)a =⇒ (iii)b. Let v be a a globally reachable node in G
and letH denote the node in C(G) containing v. Pick an arbitrary node H̄ of C(G) and let v̄ be a node of G in H̄ .

Since v is globally reachable, there exists a directed walk from v̄ to v in G. This directed walk induces naturally a

directed walk in C(G) from H̄ to H . This shows that H is a globally reachable node in C(G).
Regarding (iii)b =⇒ (iii)a, let H be a globally reachable node of C(G) and pick a node v in H . We claim v

is globally reachable in G. Indeed, pick any node v̄ in G belonging to a strongly connected component Ū of G.
BecauseH is globally reachable inC(G), there exists a directed walk of the form H̄ = H0, H1, . . . ,Hk, Hk+1 = H
in C(G). One can now piece together a directed walk in G from v̄ to v, by walking inside each of the strongly

connected componentsHi and moving to the subsequent strongly connected componentsHi+1, for i ∈ {0, . . . , k}.
The final equivalence between statement (iii)b and statement (iii)c is an immediate consequence of C(G) being

acyclic. ■

Finally, we provide some example to compute and visualize condensation digraphs using the NetworkX library

and Python; see Table 3.1.

3.4 Weighted digraphs

A weighted digraph is a triplet G = (V,E, {ae}e∈E), where the pair (V,E) is a digraph with nodes V =
{v1, . . . , vn}, and where {ae}e∈E is a collection of strictly positive weights for the edges E.

Note: for simplicity we let V = {1, . . . , n}. It is therefore equivalent to write {ae}e∈E or {aij}(i,j)∈E .

1.2

4.4

8.9

2.3

3.7

4.4

2

31 5

4

2.6
<latexit sha1_base64="fT7KEWt2cPfhU91YkPTMkY+6poc=">AAAB9HicbZDLSsNAFIZP6q3WW9Wlm8EidCEhqaIuC25cVrQXaEOZTCfp0MkkzEyKpfQR3OrGnbj1fQQfxmmahbYeGPj4/3M4Z34/4Uxpx/myCmvrG5tbxe3Szu7e/kH58Kil4lQS2iQxj2XHx4pyJmhTM81pJ5EURz6nbX90O/fbYyoVi8WjniTUi3AoWMAI1kZ6qNlX/XLFsZ2s0Cq4OVQgr0a//N0bxCSNqNCEY6W6rpNob4qlZoTTWamXKppgMsIh7RoUOKLqXI3DDLzpU3b0DJ0Zb4CCWJonNMrU37NTHCk1iXzTGWE9VMveXPzP66Y6uPGmTCSppoIsFgUpRzpG8wTQgElKNJ8YwEQyczUiQywx0SankonDXf78KrRqtnthO/eXlXo1D6YIJ3AKVXDhGupwBw1oAoEQnuEFXq2x9Wa9Wx+L1oKVzxzDn7I+fwB4pZFa</latexit>

1.9
<latexit sha1_base64="3bXv2RtsRX6tUN0t5BfXOf8b6+I=">AAAB9HicbZDLSsNAFIZPvNZ6q7p0M1iELiQkKqi7ghuXFe0F2lAm00k6dDIJM5NiCX0Et7pxJ259H8GHcZpmoa0HBj7+/xzOmd9POFPacb6sldW19Y3N0lZ5e2d3b79ycNhScSoJbZKYx7LjY0U5E7Spmea0k0iKI5/Ttj+6nfntMZWKxeJRTxLqRTgULGAEayM9uPZNv1J1bCcvtAxuAVUoqtGvfPcGMUkjKjThWKmu6yTay7DUjHA6LfdSRRNMRjikXYMCR1SdqXGYg5c95UdP0anxBiiIpXlCo1z9PZvhSKlJ5JvOCOuhWvRm4n9eN9XBtZcxkaSaCjJfFKQc6RjNEkADJinRfGIAE8nM1YgMscREm5zKJg538fPL0Dq33Qvbub+s1mtFMCU4hhOogQtXUIc7aEATCITwDC/wao2tN+vd+pi3rljFzBH8KevzB3u/kVw=</latexit>

2.7
<latexit sha1_base64="bow67AvubBOYZ7rwFHnYI3XI9ZM=">AAAB9HicbZDLSsNAFIZP6q3WW9Wlm8EidCEhqUJdFty4rGgv0IYymU7SoZNJmJkUS+kjuNWNO3Hr+wg+jNM0C209MPDx/+dwzvx+wpnSjvNlFTY2t7Z3irulvf2Dw6Py8UlbxakktEViHsuujxXlTNCWZprTbiIpjnxOO/74duF3JlQqFotHPU2oF+FQsIARrI30ULPrg3LFsZ2s0Dq4OVQgr+ag/N0fxiSNqNCEY6V6rpNob4alZoTTeamfKppgMsYh7RkUOKLqUk3CDLzZU3b0HF0Yb4iCWJonNMrU37MzHCk1jXzTGWE9UqveQvzP66U6uPFmTCSppoIsFwUpRzpGiwTQkElKNJ8awEQyczUiIywx0SankonDXf38OrRrtntlO/fXlUY1D6YIZ3AOVXChDg24gya0gEAIz/ACr9bEerPerY9la8HKZ07hT1mfP3ozkVs=</latexit>

The set of weights for this weighted digraph is

a12 = 3.7, a13 = 2.6, a21 = 8.9,

a24 = 1.2, a34 = 1.9, a35 = 2.3,

a51 = 4.4, a54 = 2.7, a55 = 4.4.

A digraph G = (V = {v1, . . . , vn}, E) can be regarded as a weighted digraph by defining its set of weights

to be all equal to 1, that is, setting ae = 1 for all e ∈ E. A weighted digraph is undirected if aij = aji for all
i, j ∈ {1, . . . , n}.

The notions of connectivity and definitions of in- and out-neighbors, introduced for digraphs, remain equally

valid for weighted digraphs. The notions of in- and out-degree are generalized to weighted digraphs as follows.

In a weighted digraph with V = {v1, . . . , vn}, the weighted out-degree and the weighted in-degree of node vi are
defined by, respectively,

dout(vi) =
n∑

j=1

aij (i.e., dout(vi) is the sum of the weights of all the out-edges of vi) ,

din(vi) =
n∑

j=1

aji (i.e., din(vi) is the sum of the weights of all the in-edges of vi) .
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1 # Python3 code to compute condensed digraphs via the NetworkX library
2 # Import the NetworkX library and other tools
3 import numpy as np; import matplotlib.pyplot as plt; import networkx as nx
4 myfs= (30, 10); fig, axs343 = plt.subplots(1, 3, figsize=(myfs[0]*1.2, myfs[1]))
5

6 def plot_condensated_graph(G, axs3):
7 """
8 :param G: Digraph to be condensed
9 :param axs3: 1 dim axs with at least 3 subplots locations
10 """
11

12 # Visualize initial digraph
13 Gpos = nx.spring_layout(G) #setting the position with respect to G
14 nx.draw_networkx(G, Gpos, node_size=40, ax=axs3[0], connectionstyle='arc3, rad = ...

0.2', with_labels=False)
15

16 # Algorithm to compute the condensed digraph:
17 G_conden = nx.algorithms.components.condensation(G)
18

19 all_col = []
20 # Compute coloring scheme for the condensated graph
21 for u, node in G_conden.nodes(data=True):
22 sg = node['members'] # This contains a set of nodes from previous graph, ...

that belongs to the condensated node
23 co = np.random.rand(1,3)
24 all_col.append(co)
25 nx.draw_networkx_nodes(G.subgraph(sg), Gpos, node_size=40, node_color=co, ...

ax=axs3[1])
26 nx.draw_networkx_edges(G, Gpos, edgelist=G.edges(sg), edge_color=co, ...

ax=axs3[1], connectionstyle='arc3, rad = 0.2')
27

28 nx.draw_networkx(G_conden, node_size=40, ax=axs3[2], node_color=all_col, ...
connectionstyle='arc3, rad = 0.2', with_labels=False)

29 axs3[0].set_xlabel("Original digraph"); axs3[1].set_xlabel("Strongly connected ...
components");

30 axs3[2].set_xlabel("Condensed digraph");
31

32 # Generate and plot random digraph:
33 G_random = nx.random_k_out_graph(40, 5, 1)
34 plot_condensated_graph(G_random, axs343)

Table 3.1: Python code for computation and visualization of condensed digraphs
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A weighted digraph is weight-balanced if each node has the same weighted in- and out-degrees (even if

distinct nodes have distinct weighted degrees), that is, dout(vi) = din(vi) for all vi ∈ V . For unweighted digraphs,

weight-balance is the same property as topological balance.

3.5 Appendix: Database collections and software libraries

Useful collections of example networks are freely available online; here are some examples:

(i) A broad range of example networks is available online at the Stanford Large Network Dataset Collection,

see http://snap.stanford.edu/data.

(ii) The SuiteSparse Matrix Collection (formerly known as the University of Florida Sparse Matrix Collection),

available at http://suitesparse.com and described in (Davis and Hu, 2011), contains a large and growing

set of sparse matrices and complex graphs arising in a broad range of applications; e.g., see Figure 3.8.

(iii) The UCI Network Data Repository, available at http://networkdata.ics.uci.edu, is an effort to facilitate

the scientific study of networks; see also (DuBois, 2008).
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Figure 3.8: Example networks from distinct domains: Figure 3.8a illustrates a simplified aggregated model with 16

generators and 25 load busses of the Western North American power grid (Trudnowski et al., 1991); Figure 3.8b

illustrates the Sampson monastery dataset (Sampson, 1969), describing social relations among a set of 18 monk-

novitiates in an American monastery; Figure 3.8c illustrates the water supply network EPANET 3, described

in (Rossman, 2000).

Useful software libraries for network analysis and visualization are freely available online; here are some

examples:

(i) NetworkX, available at https://networkx.org, is a Python library for network analysis. For example, one

feature is the ability to compute condensation digraphs.
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(ii) Gephi, available at https://gephi.org, is an interactive visualization and exploration platform for all kinds

of networks and complex systems, dynamic and hierarchical graphs.

(iii) Cytoscape, available at http://www.cytoscape.org, is an open-source software platform for visualizing

complex networks and integrating them with attribute data.

(iv) Graphviz, available at http://www.graphviz.org/, is an open source graph visualization software.

3.6 Historical notes and further reading

Paraphrasing from Chapter 1 “Discovery!” in the classic work by Harary (1969),

(Euler, 1741) became the father of graph theory as well as topology when he settled a famous unsolved

problem of his day called the Königsberg Bridge Problem.

Subsequent rediscoveries of graph theory by Kirchhoff (1847) and Cayley (1857) also had their roots in

the physical world. Kirchhoff’s investigations of electric networks led to his development of the basic

concepts and theorems concerning trees in graphs, while Cayley considered trees arising from the

enumeration of organic chemical isomers.

For modern comprehensive treatments we refer the reader to standard books in graph theory such as (Diestel,

2000; Bollobás, 1998).

An early reference about the condensation decomposition is (Harary, 1962).

A classic reference in graph drawing is (Fruchterman and Reingold, 1991). The layout of the three graphs in

Figure 3.8 is obtained via the algorithm proposed by Hu (2005). Geometric representations of graphs are reviewed

in the remarkable recent text (Lovász, 2019).
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3.7 Exercises

E3.1 Properties of undirected trees. Consider an undirected graphG with n nodes andm edges (and without self-loops).

Show that the following statements are equivalent:

(i) G is a tree;

(ii) G is connected andm = n− 1; and

(iii) G is acyclic andm = n− 1.

▶ E3.2 Topological sort of acyclic digraphs. Let G be an acyclic digraph (DAG) with nodes {1, . . . , n}. A topological sort
of G is a re-numbering of the nodes of G with the property that, if (u, v) is an edge of G, then u > v.

(i) Show that G contains at least one sink, i.e., a node without out-neighbors and at least one source, i.e., a node

without in-neighbors.

(ii) Provide an algorithm to perform a topological sort of G. Is the topological sort unique?

Hint: Use high-level pseudo-code instructions such as “select a node satisfying property A” or “remove all edges
satisfying property B.”

(iii) Show that, after topologically sorting the nodes of G, the adjacency matrix of G is lower-triangular, i.e., all its

entries above the main diagonal are equal to zero.

E3.3 Globally reachable nodes and disjoint closed subsets. Consider a digraph G = (V,E) with at least two nodes.

Prove that the following statements are equivalent:

(i) G has a globally reachable node, and

(ii) for every pair S1, S2 of non-empty disjoint subsets of V , there exists a node that is an out-neighbor of S1 or S2.

E3.4 Condensation digraphs. Draw the condensation for each of the following digraphs.

E3.5 Directed spanning trees in the condensation digraph. For a digraph G and its condensation digraph C(G), show
that the following statements are equivalent:

(i) G contains a directed spanning tree, and

(ii) C(G) contains a directed spanning tree.

▶ E3.6 Connectivity in weight-balanced digraphs. Let G be a weight-balanced weighted digraph. Show that

(i) for every subset of nodes U , the total weight of edges from nodes outside U to nodes inside U equals the total

weight of edges from nodes inside U to nodes outside U , and

(ii) if G is weakly connected, then it is strongly connected.

E3.7 Line graph. The line graph Line(G) of an undirected graph G is the undirected graph whose vertices are the edges

of G and whose edge set is defined as follows: there is an edge between two vertices e1, e2 of L(G) if and only if e1
and e2, regarded as edges of G, have a common node. Show that

(i) if G is connected, then Line(G) is connected;

(ii) if d1, . . . , dn are the degrees of the nodes of G andm denotes the number of edges of G, then

number of edges in Line(G) =
1

2

n∑

i=1

d2i −m. (E3.1)

Lectures on Network Systems, F. Bullo, edition 1.6 – Jan 1, 2022. Tablet PDF version. Copyright © 2012-22.



Exercises for Chapter 3 49

E3.8 Alternative definition of aperiodicity. Given a directed graph G, a recurrence time of a node i is a natural number

k > 0 such that there exists a directed walk from i to i of length k. The period of node i is the greatest common divisor

of all recurrence times of i. Show that

(i) all nodes belonging to the same strongly-connected component of G have the same period,

(ii) if G is strongly connected, then G is aperiodic if and only if the period of each node is 1.

E3.9 Euler’s formula and the sparsity of planar graphs. An undirected graph G is planar if, loosely speaking, it can be

drawn on the plane in such a way that its edges intersect only at their endpoints.

(a) Two drawings of K4. The right figure demonstrates that

K4 is planar. Euler’s formula is satisfied with n = 4, m = 6
and f = 4.

(b) K5 and K3,3 are not planar and play a fundamental role in

Kuratowski’s characterization of planar graphs; see (Diestel,

2000, Section 4.4).

Assuming a planar graph G is drawn on the plane without edge intersections, the edges of G divide the plane into

regions called faces; all faces are bounded, except for the outer infinite face. For a connected undirected graph G with

n nodes,m edges and f faces, Euler’s formula states

n−m+ f = 2.

Show that

(i) each planar graph with n ≥ 3 is sparse, in the sense thatm ≤ 3n− 6, and

(ii) the equality is strict when every face is a triangle.

Note: Planar graphs are reviewed in (Diestel, 2000, Section 4.4) and (Godsil and Royle, 2001, Section 1.8).
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Chapter4

Elements of Algebraic Graph Theory

In this chapter we present results on the adjacency matrices as part of the broader field of algebraic graph theory.

The key results in this area relate, through necessary and sufficient conditions, matrix properties with graphical

properties. For example, we will show how a matrix is primitive if and only if its associated digraph is strongly

connected and aperiodic.

4.1 The adjacency matrix

Given a weighted digraph G = (V,E, {ae}e∈E), with V = {1, . . . , n}, the weighted adjacency matrix of G is the

n × n non-negative matrix A defined as follows: for each edge (i, j) ∈ E, the entry (i, j) of A is equal to the

weight a(i,j) of the edge (i, j), and all other entries of A are equal to zero. In other words, aij > 0 if and only if

(i, j) is an edge of G, and aij = 0 otherwise. Figure 4.1 shows an example of a weighted digraph.
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.

Figure 4.1: A weighted digraph and its adjacency matrix

The binary adjacency matrix A ∈ {0, 1}n×n of a digraph G = (V = {1, . . . , n}, E) or of a weighted digraph

is defined by

aij =

{
1, if (i, j) ∈ E,

0, otherwise.
(4.1)

Here, a binary matrix is any matrix with entries taking values in 0, 1.

Finally, the weighted out-degree matrix Dout and the weighted in-degree matrix Din of a weighted digraph are

the diagonal matrices defined by

Dout = diag(A1n) =



dout(1) 0 0

0 .
.
. 0

0 0 dout(n)


 , and Din = diag(AT1n),
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where diag(z1, . . . , zn) is the diagonal matrix with diagonal entries equal to z1, . . . , zn.
We conclude this section with some basic examples.

Example 4.1 (Basic graphs and their adjacency matrices). Recall the definitions of walk, cycle, star, complete

and complete bipartite graph from Example 3.1. Figure 4.2 illustrates their adjacency matrices.

P6 C6 S6 K6 K3,3

Figure 4.2: Walk, cycle, star, complete and complete bipartite graph (from Figure 3.1) and their binary adjacency

matrices depicted in their respective pixel picture representation.

Note that the adjacency matrices of walk and cycle graphs have a particular structure. An n× n matrix T is

Toeplitz (also called diagonal-constant) if there exist scalar numbers a−(n−1), . . . , a−1, a0, a1, . . . , an−1 such that

T =




a0 a1 . . . . . . an−1

a−1 a0 a1 . . .
.
.
.

.

.

.
.
.
.

.
.
.

.
.
.

.

.

.

.

.

. . . . a−1 a0 a1
a−(n−1) . . . . . . a−1 a0



.

Two special cases are of interest, namely, those of tridiagonal Toeplitz and circulant matrices. For these two cases

it is possible to compute eigenvalues and eigenvectors in closed form for arbitrary dimensions n; we refer to
Exercises E4.2 and E4.3 for more information. We conclude with a table containing the adjacency spectrum of the

basic graphs, i.e., the spectrum of their binary adjacency matrices.

Graph Adjacency Matrix Adjacency Spectrum

path graph Pn Toeplitz tridiagonal {2 cos(πi/(n+ 1)) | i ∈ {1, . . . , n}}
cycle graph Cn circulant {2 cos(2πi/n)) | i ∈ {1, . . . , n}}
star graph Sn e1eT−1 + e−1eT1 {

√
n− 1, 0, . . . , 0,−

√
n− 1}

complete graphKn 1n1T
n − In {(n− 1),−1, . . . ,−1}

complete bipartiteKn,m

[
0n×n 1n×m
1m×n 0m×m

]
{√nm, 0, . . . , 0,−√

nm}

Table 4.1: Adjacency spectrum for basic graphs (we adopt the notation e−i = 1n − ei)

We ask the reader to prove the statements in the table in Exercise E4.4. •
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4.2 Algebraic graph theory: basic and prototypical results

In this section we review some basic and prototypical results that involve correspondences between graphs and

adjacency matrices.

In what follows we let G denote a weighted digraph and A its weighted adjacency matrix or, equivalently, we

let A be a non-negative matrix and G be its associated weighted digraph (i.e., the digraph with nodes {1, . . . , n}
and with weighted adjacency matrix A). We start with some straightforward statements, organized as a table of

correspondences.

Digraph G Non-negative matrix A (adjacency of G)

G is undirected A = AT

G is weight-balanced A1n = AT1n, that is, Dout = Din

(no self-loops) node i is a sink (zero diagonal) ith row-sum of A is zero

(no self-loops) node i is a source (zero diagonal) ith column-sum of A is zero

each node has weighted out-degree equal to 1 (Dout =
In)

A is row-stochastic

each node has weighted out- and in-degree equal to 1
(Dout = Din = In)

A is doubly-stochastic

Next, we relate the powers of the adjacency matrix with the existence of directed walks in the digraph. We

start with some simple observation.

• First, pick two nodes i and j and note that there exists a directed walk from i to j of length 1 (i.e., an edge) if

and only if aij = (A)ij > 0.

• Next, consider the formula for the matrix power:

(A2)ij = (ith row of A) · (jth column of A) =

n∑

h=1

(A)ih(A)hj .

• This formula implies that:

(A2)ij > 0 if and only if there exists a node h such that (A)ih > 0 and (A)hj > 0,
if and only if (i, h) and (h, j) are edges of G,
if and only if there exists a directed walk of length 2 from i to j.

• In short, we now know that a directed walk from i to j of length 2 exists if and only if (A2)ij > 0.

These observations lead to the following simple, but central result. We leave the detailed proof as Exercise E4.6.

Lemma 4.2 (Directed walks and powers of the adjacency matrix). Let G be a weighted digraph with n nodes,
with adjacency matrix A and binary adjacency matrix A0,1 ∈ {0, 1}n×n. For all i, j ∈ {1, . . . , n} and k ∈ N

(i) the (i, j) entry of Ak0,1 equals the number of walks of length k from node i to node j; and

(ii) the (i, j) entry of Ak is positive if and only if there exists a walk of length k from node i to node j.

(Walks here are directed walks that possibly include self-loops.)
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4.3 Graph theoretical characterization of irreducible matrices

In this section we provide three equivalent characterizations of the notion of irreducibility and we can now

characterize certain connectivity properties of digraphs based on the powers of the adjacency matrix.

Before proceeding, we introduce a few useful concepts. First, {I,J } is a partition of the index set {1, . . . , n}
if I ∪J = {1, . . . , n}, I ≠ ∅, J ≠ ∅, and I ∩J = ∅. Second, a permutation matrix is a square binary matrix

with precisely one entry equal to 1 in every row and every column. (In other words, the columns of a permutation

matrix are a reordering of the basis vectors e1, . . . , en; a permutation matrix acts on a vector by permuting its

entries.) Finally, an n× n matrix A is block triangular if there exists r ∈ {1, . . . , n− 1} such that

A =

[
B C

0(n−r)×r D

]
,

where B ∈ Rr×r , C ∈ Rr×(n−r)
and D ∈ R(n−r)×(n−r)

are arbitrary.

We are now ready to state the main result of this section.

Theorem 4.3 (Strongly connected digraphs and irreducible adjacency matrices). Let G be a weighted
digraph with n ≥ 2 nodes and with weighted adjacency matrix A. The following statements are equivalent:

(i) A is irreducible, that is,
∑n−1

k=0 A
k > 0;

(ii) there exists no permutation matrix P such that PAPT is block triangular;

(iii) G is strongly connected;

(iv) for all partitions {I,J } of the index set {1, . . . , n}, there exists i ∈ I and j ∈ J such that (i, j) is a directed
edge in G.

Note: as the theorem establishes, there are four equivalent characterizations of irreducibility. In the literature,

it is common to define irreducibility through property (ii) or (iv). We next see two simple examples.

3

1

2

This digraph is strongly connected and, accordingly, its adja-

cency matrix is irreducible:



0 1 0
0 0 1
1 1 0


 .

3

1

2

This digraph is not strongly connected (nodes 2 and 3 are glob-

ally reachable, but 1 is not) and, accordingly, its adjacency

matrix is reducible: 

0 1 1
0 0 1
0 1 0


 .

Proof of Theorem 4.3. We start with the main equivalence. Regarding (i) =⇒ (iii), pick two nodes i and j. Because∑n−1
k=0 A

k > 0, there must exists k such that (Ak)ij > 0. Lemma 4.2(ii) implies the existence of a walk of length k
from i to j. Hence, G is strongly connected.

Conversely, regarding (iii) =⇒ (i), because G is strongly connected, there exists a directed walk of length

k′ connecting node i to node j, for all i and j. By removing any closed sub-walk from such a walk (so that no
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intermediate node is repeated), one can compute a walk from i to j of length k < n. Hence, by Lemma 4.2(ii), the

entry (Ak)ij is strictly positive and, in turn, so is the entire matrix sum

∑n−1
k=0 A

k
.

Next, we establish the equivalence between the two graph-theoretical statements. Regarding (iii) =⇒ (iv),

pick a partition {I,J } of the index set {1, . . . , n} and two nodes i0 ∈ I and j0 ∈ J . By assumptions there exists

a directed walk from i0 to j0. Hence there must exist an edge from a node in I to a node in J .

Regarding (iv) =⇒ (iii), pick a node i ∈ {1, . . . , n} and let Ri ⊂ {1, . . . , n} be the set of nodes reachable

from i, i.e., the set of nodes that belong to directed walks originating from node i. Denote the unreachable nodes
by Ui = {1, . . . , n} \ Ri. Second, by contradiction, assume Ui is not empty. Then Ri ∪Ui is a partition of the

index set {1, . . . , n} and statement (iv) implies the existence of a non-zero entry ajh with j ∈ Ri and h ∈ Ui. But
then the node h is reachable. Therefore, Ui = ∅, and all nodes are reachable from i.

We establish the last two equivalences as follows. Regarding (ii) =⇒ (iv), by contradiction, assume there

exists a partition (I,J ) of {1, . . . , n} such that aij = 0 for all (i, j) ∈ I ×J . Let π : {1, . . . , n} → {1, . . . , n} be
the permutation that maps all entries of I into the last |I| entries of {1, . . . , n}. Here, |I| denotes the number of

elements of I . Let P be the corresponding permutation matrix. We now compute PAPT
and block partition it as:

PAPT =

[
AJJ AJI
AIJ AII

]
,

where AJJ ∈ R|J |×|J |
, AII ∈ R|I|×|I|

, AIJ ∈ R|I|×|J |
, and AJI ∈ R|J |×|I|

. By construction, AIJ = 0|I|×|J |
so that PAPT

is block triangular, which is in contradiction with the assumed statement (ii).

Regarding (iv) =⇒ (ii), by contradiction, assume there exists a permutation matrix P and a number r < n
such that

PAPT =

[
B C

0(n−r)×r D

]
,

where the matrices B ∈ Rr×r, C ∈ Rr×(n−r)
, and D ∈ R(n−r)×(n−r)

are arbitrary. The permutation matrix

P defines a unique permutation π : {1, . . . , n} → {1, . . . , n} with the property that the columns of P are

eπ(1), . . . , eπ(n). Let J = {π−1(1), . . . , π(r)−1} and I = {1, . . . , n} \ J . Then, by construction, for any pair

(i, j) ∈ I × J , we know aij = 0, which is in contradiction with the assumed statement (iv). ■

Next we present two results, whose proof are analogous to those of the previous theorem and left to the reader

as an exercise.

Lemma 4.4 (Global reachability and powers of the adjacency matrix). Let G be a weighted digraph with
n ≥ 2 nodes and weighted adjacency matrix A. For any j ∈ {1, . . . , n}, the following statements are equivalent:

(i) the jth node of G is globally reachable, and

(ii) the jth column of
∑n−1

k=0 A
k is positive.

Next, we notice that if node j is reachable from node i via a walk of length k and at least one node along that

walk has a self-loop, then node j is reachable from node i via walks of length k, k + 1, k + 2, and so on. This

observation and the last lemma lead to the following corollary.

Corollary 4.5 (Connectivity properties of the digraph and positive powers of the adjacency matrix:
cont’d). Let G be a weighted digraph with n nodes, weighted adjacency matrix A and a self-loop at each node. The
following statements are equivalent:

(i) G is strongly connected; and

(ii) An−1 is positive, so that A is primitive.
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For any j ∈ {1, . . . , n}, the following two statements are equivalent:

(iii) the jth node of G is globally reachable; and

(iv) the jth column of An−1 has positive entries.

Finally, we conclude this section with a clarification.

Remark 4.6 (Similarity transformations defined by permutationmatrices). Note thatPAPT is the similarity
transformation of A defined by P because the permutation matrix P satisfies P−1 = PT; see Exercise E2.12.

Moreover, note that PAPT is simply a reordering of rows and columns. For example, consider P =



0 1 0
0 0 1
1 0 0


 with

PT =



0 0 1
1 0 0
0 1 0


. Note P



1
2
3


 =



2
3
1


 and PT



1
2
3


 =



3
1
2


 and compute

A =



a11 a12 a13
a21 a22 a23
a31 a32 a33


 =⇒ PAPT =



a22 a23 a21
a32 a33 a31
a12 a13 a11


 ,

so that the entries of the 1st, 2nd and 3rd rows of A are mapped respectively to the 3rd, 1st and 2nd rows of PAPT —
and, at the same time, — the entries of the 1st, 2nd and 3rd columns of A are mapped respectively to the 3rd, 1st and
2nd columns of PAPT. •

4.4 Graph theoretical characterization of primitive matrices

In this section we present the main result of this chapter, an immediate corollary and its proof; see also Figure 4.3.

Theorem 4.7 (Strongly connected and aperiodic digraphs and primitive adjacency matrices). Let G be
a weighted digraph with n ≥ 2 nodes and with weighted adjacency matrix A. The following two statements are
equivalent:

(i) G is strongly connected and aperiodic; and

(ii) A is primitive, that is, there exists k ∈ N such that Ak is positive.

Before proving Theorem 4.7, we introduce a useful fact from number theory, whose proof we leave as Exer-

cise E4.16. First, we recall a useful notion: a set of integers are coprime if its elements share no common positive

factor except 1, that is, their greatest common divisor is 1. Loosely, the following lemma states that coprime

numbers generate, via linear combinations with non-negative integer coefficients, all numbers larger than a given

threshold.

Lemma 4.8 (Frobenius number). Given a finite set A = {a1, a2, . . . , an} of positive integers, an integerM is said
to be representable by A if there exist non-negative integers {α1, α2, . . . , αn} such thatM = α1a1 + . . .+ αNaN .
The following statements are equivalent:

(i) there exists a (finite) largest unrepresentable integer, called the Frobenius number of A, and

(ii) the greatest common divisor of A is 1.
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A A2 A3 A4 A5

Figure 4.3: Pixel pictures of the increasing powers of a non-negative matrix A ∈ R25×25
. The digraph associated

to A is strongly connected and has self-loops at each node; as predicted by Theorem 4.7, there exists k = 5 such
that Ak > 0.

For example, one can show that, for the set of coprime numbersA = {3, 5}, the largest unrepresentable integer
is 7. As another example, the set A = {5, 10} (imagine nickels and dimes in US currency) is not coprime and,

indeed, there is an infinite sequence of unrepresentable numbers (i.e., there is an infinite number of monetary

amounts that cannot be obtained using only nickels and dimes).

Proof of Theorem 4.7. Regarding (i) =⇒ (ii), pick any ordered pair (i, j). We claim that there exists a number

k(i, j) with the property that, for all m > k(i, j), we have (Am)ij > 0, that is, there exists a directed walk

from i to j of length m for all m > k(i, j). If this claim is correct, then the statement (ii) is proved with

k = max{k(i, j) | i, j ∈ {1, . . . , n}}. To show this claim, let {c1, . . . , cN} be the set of the simple cycles

of G and let {ℓ1, . . . , ℓN} be their lengths. Because G is aperiodic, the lengths {ℓ1, . . . , ℓN} are coprime and

Lemma 4.8 implies the existence of a number h(ℓ1, . . . , ℓN ) such that any number larger than h(ℓ1, . . . , ℓN ) is a
linear combination of ℓ1, . . . , ℓN with non-negative integer as coefficients. Because G is strongly connected, there

exists a walk γ of arbitrary length Γ(i, j) that starts at i, contains a node of each of the cycles c1, . . . , cN , and
terminates at j. Now, we claim that k(i, j) = Γ(i, j) + h(ℓ1, . . . , ℓN ) has the desired property. Indeed, pick any

numberm > k(i, j) and write it asm = Γ(i, j) + β1ℓ1 + · · ·+ βNℓN for appropriate numbers β1, . . . , βN ∈ N.
As illustrated in Figure 4.4, a directed walk from i to j of lengthm is constructed by attaching to the walk γ the

following cycles: β1 times the cycle c1, β2 times the cycle c2, . . . , βN times the cycle cN .

i
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Figure 4.4: Illustration of the proof of Theorem 4.7: since 2 and 3 are coprime numbers, there exist only a finite set

of numbers k for which there is no walk from i to j of length k.

Regarding (ii) =⇒ (i), from Lemma 4.2 we know that Ak > 0 means that there are walks of length k from

every node to every other node. Hence, the digraph G is strongly connected. Next, we prove aperiodicity. Because

G is strongly connected, each node of G has at least one outgoing edge, that is, for all i, there exists at least one
index j such that aij > 0. This fact implies that the matrix Ak+1 = AAk is positive via the following simple

calculation: (Ak+1)il =
∑n

h=1 aih(A
k)hl ≥ aij(A

k)jl > 0. In summary, if Ak is positive for some k, then Am is

positive for all subsequentm > k (see also Exercise E2.5). Therefore, there are closed walks inG of any sufficiently

large length. By Exercise E3.8, this fact implies that G is aperiodic. ■
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58 Chapter 4. Elements of Algebraic Graph Theory

4.5 Elements of spectral graph theory

In this section we switch topic and provide some elementary useful results on the spectral radius of a non-negative

matrix A. These bounds play an important role, e.g., in understanding various monotonicity and convergence

results in later chapters.

Lemma 4.9 (Bounds on the spectral radius of non-negativematrices, I). For a non-negative matrixA ∈ Rn×n≥0 ,
vector x ∈ Rn≥0, x ̸= 0n, and scalars r1, r2 > 0, the following statements hold:

(i) if r1x ≤ Ax, then r1 ≤ ρ(A),

(ii) if Ax ≤ r2x and x ∈ Rn>0, then ρ(A) ≤ r2.

Moreover, for an irreducible matrix A,

(iii) if r1x ≤ Ax ≤ r2x and r1x ̸= Ax ̸= r2x, then r1 < ρ(A) < r2 and x ∈ Rn>0.

Proof. Regarding statement (i), define Ar1 = A/r1 and assume by absurd ρ(Ar1) < 1. If Ar1x ≥ x, then
multiplying the left and right hand side by Ar1 one can see that Akr1x ≥ x for all k ∈ N. But ρ(Ar1) < 1 implies

limk→∞Akr1 = 0n×n. Therefore, for all nonzero non-negative x, we know there exists sufficiently large k such

that Akr1x > x. We found a contradiction and so we know ρ(A/r1) ≥ 1.
Regarding statement (ii), the Perron–Frobenius Theorem 2.12 for non-negative matrices implies the existence

of w ≥ 0, w ̸= 0n, such that wTA = ρ(A)wT
. Left-multiplying Ax ≤ r2x by wT

leads to

ρ(A)(wTx) ≤ r2(w
Tx)

and the claims follows from noting that x > 0 implies wTx > 0.
Regarding statement (iii), we prove the lower bound. First, we note that the left dominant eigenvector w

is now strictly positive because A is irreducible. This implies wTx > 0. Second, by assumption we know that

r1xi ≤ (Ax)i for all i and that there exists at least one index j such that r1xj < (Ax)j . Therefore, since w > 0,
we know wT(r1x) < wT(Ax). This last inequality immediately implies r1 < ρ(A). The upper bound is obtained

similarly.

The proof of positivity of x is left as an exercise to the reader. ■

We next show how these bounds allow us to establish the monotonicity of the spectral radius as a function of

matrix entries. The following lemma is the first result on this type of monotonicity property; we refer to Lemma 6.9,

Example 6.13, Exercises E10.5 and E10.6 for similar results later in the book.

Lemma 4.10 (Monotonicity of spectral radius of non-negative matrices). Let A and A′ be non-negative
matrices in Rn×n≥0 . Then

(i) if A ≤ A′, then ρ(A) ≤ ρ(A′),

(ii) if additionally A ̸= A′ and A′ is irreducible, then ρ(A) < ρ(A′).

Proof. Regarding statement (i), from the Perron–Frobenius Theorem 2.12 for non-negative matrices let (ρ(A), v)
be a non-negative eigenpair for A. Compute

ρ(A)v = Av ≤ A′v. (4.2)

Therefore Lemma 4.9(i) applied to the matrixA′
states that ρ(A) ≤ ρ(A′). This proves statement (i). (An alternative

proof relies upon Gelfand’s formula; see Exercise E4.18.)
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Next, we prove statement (ii) under the additional assumption thatA is irreducible. From the Perron–Frobenius

Theorem 2.12 for irreducible matrices let (ρ(A), v) be a positive eigenpair for A. Equation (4.2) continues to hold,

but v > 0 now implies also that A′v ̸= Av = ρ(A)v. Therefore, Lemma 4.9(iii) implies that ρ(A) < ρ(A′).

Finally, we prove statement (ii) without the additional assumption that A is irreducible, i.e., we assume A is

reducible and A′
is irreducible. Define B ∈ Rn×n≥0 by bij = aij if aij ̸= 0, and bij = a′ij/2 if aij = 0. By design,

B satisfies A ≤ B ≤ A′
, and, therefore, statement (i) implies ρ(A) ≤ ρ(B) ≤ ρ(A′). Moreover, B is irreducible

(since it has the same zero/positive pattern as A′
) and B ̸= A′

so that the argument in the previous paragraph

(where A is assumed irreducible) implies ρ(B) < ρ(A′). ■

Next, we specialize the results in Lemma 4.9 and provide a necessary and sufficient characterization for the

spectral radius to be strictly less than the maximum out-degree. In what follows, recall that ith entry of the vector

A1n contains the ith row-sum of the matrix A and the out-degree of the ith node of the digraph associated to A.
In other words, dout(i) = eTi A1n.

Theorem 4.11 (Bounds on the spectral radius of non-negative matrices, II). For a non-negative matrix
A ∈ Rn×n≥0 with associated digraph G, the following statements hold:

(i) min(A1n) ≤ ρ(A) ≤ max(A1n); and

(ii) if min(A1n) < max(A1n), then the following two statements are equivalent:

a) for each node i with eTi A1n = max(A1n), there exists a directed walk in G from node i to a node j with
eTj A1n < max(A1n); and

b) ρ(A) < max(A1n).

An illustration of this result is given in Figure 4.5. Before providing the proof, we introduce a useful notion

and establish a corollary.

(a) Complete bipartite graph K3,3 with binary

adjacency matrix AK3,3

(b) Two-dimensional grid graph G4,7

with binary adjacency matrix AG4,7

Figure 4.5: Illustration of Theorem 4.11 applied to the symmetric binary adjacency matrices of two undirected

graphs. By counting the number of neighbors of each node (i.e., by computing the row sums of A) and observing

that the grid graph is connected, we can establish that ρ(AK3,3) = 3 and 2 < ρ(AG4,7) < 4.

We now apply this necessary and sufficient characterization to a useful class of non-negative matrices.

Definition 4.12 (Row-substochastic matrix). A non-negative matrix A ∈ Rn×n is row-substochastic if its
row-sums are at most 1 and at least one row-sum is strictly less than 1, that is,

A1n ≤ 1n, and there exists i ∈ {1, . . . , n} such that eTi A1n < 1.

Note that any row-substochastic matrixAwith at least one row-sum equal to 1 satisfiesmin(A1n) < max(A1n)
and that any irreducible row-substochastic matrix satisfies condition (ii)a in Theorem 4.11 because the associated
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digraph is strongly connected. These two observations allow us to characterize when row-substochastic matrices

are convergent.

Corollary 4.13 (Convergent row-substochastic matrices). Let A be row-substochastic with associated digraph
G.

(i) A is convergent if and only if its G contains directed walks from each node with out-degree 1 to a node with
out-degree less than 1, and

(ii) if A is irreducible, then A is convergent.

We now present the proof of the main theorem in this section.

Proof of Theorem 4.11. We start by noting that statement (i) is an immediate consequence of Lemma 4.9(i) and (ii)

with x = 1n, r1 = min(A1n) and r2 = max(A1n).
Next, we establish that the condition (ii)a implies the bound (ii)b. It suffices to focus on row-substochastic

matrices (ifmax(A1n) ̸= 1, we consider the row-substochastic matrix A/max(A1n)). We now claim that:

(1) if eTi A
h1n < 1 for some h ∈ N, then eTi A

h+11n < 1,

(2) if i has an out-neighbor j (that is, Aij > 0) with eTj A
h1n < 1 for some h ∈ N, then eTi A

h+11n < 1,

(3) there exists k such that Ak1n < 1n, and

(4) ρ(A) < 1.

Regarding statement (1), for a node i satisfying eTi A
h1n < 1, we compute

eTi A
h+11n = eTi A

h(A1n) ≤ eTi A
h1n < 1,

where we used the implication: if 0n ≤ v ≤ 1n and w ≥ 0n, then wTv ≤ wT1n. This proves statement (1). Next,
note that A1n ≤ 1n implies Ah1n ≤ 1n. Moreover, eTj A

h1n < 1 implies that the jth entry can be written as

(Ah1n)j = eTj A
h1n = 1− (1− eTj A

h1n), where (1− eTj A
h1n) > 0. In summary,

Ah1n ≤ 1n −
(
1− eTj A

h1n
)
ej .

Therefore, we compute

eTi A
h+11n = (eTi A)(A

h1n)

≤ (eTi A)
(

1n −
(
1− eTj A

h1n
)
ej
)

= eTi A1n −
(
1− eTj A

h1n
)
eTi Aej ≤ 1−

(
1− eTj A

h1n
)
Aij < 1.

This concludes the proof of statement (2).
Regarding statement (3), note that, if A is row-substochastic, then Ah is row-substochastic for any natural

h ≥ 1. Let Sh be the set of indices i such that the ith row-sum of Ah is strictly less than 1. Statement (1) implies

Sh ⊆ Sh+1. Moreover, because of the existence of directed walks from every node to nodes with row-sum less

than 1, statement (2) implies that there exists k such that Sk = {1, . . . , n}. This proves statement (3).
Next, define the maximum row-sum at time k by

γ = max
i∈{1,. . .,n}

n∑

j=1

(Ak)ij < 1.
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Given any natural number k∗ ≥ k, we can write k∗ = ak+ b with a positive integer and b ∈ {0, . . . , k− 1}. Note
that

Ak
∗
1n ≤ Aak1n ≤ γa1n.

The last inequality implies that, as k∗ → ∞ and therefore a → ∞, the sequence Ak
∗
converges to 0. This fact

proves statement (4) and, in turn, that the condition (ii)a implies the bound (ii)b.

Finally, we sketch the proof that the bound (ii)b implies the condition (ii)a. By contradiction, if condition (ii)a

does not hold, then the condensation of G contains a sink whose corresponding row-sums in A are all equal to

max(A1n). But to that sink corresponds an eigenvector of A whose eigenvalue is thereforemax(A1n). We refer

to Theorem 5.2 for a brief review of the properties of reducible non-negative matrix and leave to the reader the

details of the proof. ■

4.6 Appendix: Balancing and scaling nonnegative matrices

In this appendix we consider balancing and scaling problems. These optimization problems have a rich history,

going back all the way to the 1960s. As reviewed by Idel (2016), these problems are related transportation planning

in geography, contingency table analysis in statistics, pre-conditioning matrices in scientific computing, matching

problems in combinatorial optimization.

A nonnegative matrix A ∈ Rn×n≥0 is

(i) balanced if it has identical row and column sums, that is, A1n = AT1n, and

(ii) (r, c)-scaled, for nonnegative vectors r, c ∈ Rn≥0, if it has row sums r and column sums c, that is, A1n = r

and AT1n = c.

For example, it is known
1
that, for any tridiagonal matrix A, there exists a diagonal positive D such that

DAD−1
is symmetric. Therefore any nonnegative tridiagonal matrix is balancable.

Recall the notion of the open simplex ∆̊n = {x ∈ Rn | x > 0,1T
nx = 1}.

Theorem 4.14 (Balancing and block irreducibility). Given a nonnegative A ∈ Rn×n≥0 , the following statements
are equivalent:

(i) there exists a positive diagonal matrix D such that DAD−1 is balanced (i.e., A is balancable and balanced by
D);

(ii) the digraph associated to A is the union of strongly connected components;

(iii) the balancing function f : ∆̊n → R defined by f(x) =
∑n

i,j=1 aijxix
−1
j has a minimum point x∗ ∈ ∆̊n such

that diag(x∗)Adiag(x∗)−1 is balanced;

(iv) there exists a matrix B ∈ Rn×n≥0 with the same pattern as A satisfying B1n = BT1n; and

(v) the matrix D1D2 . . . Dk defined by the diagonal balancing algorithm, given below, approximately balances A.

The scaling of A is unique and D is unique up to scalars for each irreducible block of A.

Next, we consider scaling problems.

Theorem 4.15 (Scaling and matrix patterns). Given a nonnegative A ∈ Rn×n≥0 and nonnegative vectors vectors
r, c ∈ Rn≥0 such that 1Tr = 1Tc, the following statements are equivalent:

1

For example see https://en.wikipedia.org/wiki/Tridiagonal_matrix
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Diagonal balancing algorithm. At each iteration, the diagonal balancing algorithm identifies the index corre-

sponding to the maximum violation of the “row sum is equal to colum sum” condition. The resulting row and

columns are scaled in such a way as that their sums are equal.

Input: nonnegative matrix A ∈ Rn×n and error threshold ε > 0
Output: a diagonal positive matrixD approximately balancing A, with a maximum “row sum minus column sum”

error upper bounded by ε

1: A1 := A, k := 0
2: repeat
3: k := k + 1
4: compute r := Ak1n and c := AT

k 1n
5: find index i such that |ri − ci| = ∥r − c∥∞

// (this step identifies the index with maximum violation)
6: define Dk := diag(1, . . . ,

√
ci/ri︸ ︷︷ ︸

ith entry

, . . . , 1)

7: update Ak+1 := DkAkD
−1
k

8: until ∥r − c∥∞ ≤ ε
9: return D1D2 . . . Dk

(i) there exists positive diagonal matrices D1 and D2 such that D1AD2 is (r, c)-scaled;

(ii) there exists a matrix B ∈ Rn×n≥0 with the same pattern as A satisfying B1n = r and BT1n = c;

(iii) for every I,J ⊂ {1, . . . , n} such that AIcJ = 0, we have that
∑

i∈I ri ≥
∑

j∈J cj and equality holds if and
only if AIJ c = 0; and

(iv) the matrices L1L2 . . . Lk and R1R2 . . . Rk defined by the SK scaling algorithm, given below, approximately
(r, c)-scales A.

Sinkhorn-Knopp (SK) scaling algorithm. The SK algorithm alternates between scaling rows and columns of

A. At each iteration, each row is multiplies by a positive constant to ensure the desired row sum; then the same

operation is executed for each column. The symbol ⊘ mean entry-wise division.

Input: nonnegative matrix A ∈ Rn×n and nonnegative vectors vectors r, c ∈ Rn≥0 such that 1Tr = 1Tc
Output: an approximately (r, c)-scaled matrix related to A by left and right multiplication by positive diagonal

matrices

1: Atmp := A, k := 1
2: repeat
3: Lk := diag(r ⊘ (Atmp1n)), Atmp := LkAtmp

// (this step amounts to rescaling Atmp so that its row sums are equal to r)
4: Rk := diag(c⊘ (AT

tmp
1n)), Atmp := AtmpRk

// (this step amounts to rescaling Atmp so that its column sums are equal to c)
5: k := k + 1
6: until row sums of Atmp are approximately equal to r
7: return L1L2 . . . Lk and R1R2 . . . Rk
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4.7 Historical notes and further reading

All results in this chapter are well documented in standard books on non-negative matrices such as (Seneta, 1981;

Minc, 1988; Berman and Plemmons, 1994). For example, Lemma 4.9 is (Berman and Plemmons, 1994, Chapter 2,

Theorem 1.11, page 28) and a slightly weaker version of Lemma 4.10 is (Berman and Plemmons, 1994, Chapter 2,

Corollary 1.5, page 27). Also relevant are standard books on algebraic graph theory (Biggs, 1994; Godsil and Royle,

2001).

For more information on the Frobenius number we refer to (Owens, 2003) and, for an informal read, to

Wikipedia:Coin_Problem.

More results on spectral graph theory and, specifically, a review and recent results on bounding the spectral

radius of an adjacency matrix are given, for example, by Nikiforov (2002) and Das and Kumar (2004). Bounds on

the eigenvalues of the Laplacian matrix are given in Section 6.2 and Exercise E6.6.

A comprehensive review of balancing and scaling problems is given by Idel (2016). Early references include (Os-

borne, 1960) on balancing and (Sinkhorn and Knopp, 1967) on scaling problems. Theorem 4.14 presents analysis

results from (Idel, 2016, Theorem 5.1) and (Eaves et al., 1985, Theorem 3) and algorithmic results from (Schneider

and Zenios, 1990). The results in Theorem 4.15 are taken from (Idel, 2016, Theorem 4.1). State-of-the-art algorithms

are given by (Cohen et al., 2017).
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4.8 Exercises

E4.1 Example row-stochastic matrices and associated digraph. Consider the row-stochastic matrices

A1 =
1

2




0 0 1 1
1 0 1 0
0 1 0 1
1 1 0 0


 , A2 =

1

2




1 0 1 0
1 0 1 0
0 1 0 1
0 1 0 1


 , and A3 =

1

2




1 0 1 0
1 1 0 0
0 0 1 1
0 1 0 1


 .

(i) Draw the digraphs G1, G2 and G3 associated with these three matrices.

Using only the original definitions and without relying on the characterizations in Theorems 4.3 and 4.7, show that:

(ii) the matrices A1, A2 and A3 are irreducible and primitive,

(iii) the digraphs G1, G2 and G3 are strongly connected and aperiodic, and

(iv) the averaging algorithm defined by A2 converges in a finite number of steps.

E4.2 Tridiagonal Toeplitz matrices. An n× n matrix A is tridiagonal Toeplitz if there exist numbers a, b, and c, with
a ̸= 0 and c ̸= 0 such that

A =




b a 0 . . . 0
c b a . . . 0
.
.
.

.
.
.

.
.
.

.
.
.

.

.

.

0 . . . c b a
0 . . . 0 c b



.

Show that the eigenvalues and right eigenvectors of a tridiagonal Toeplitz A are, for j ∈ {1, . . . , n},

λj = b+ 2a
√
c/a cos

( jπ

n+ 1

)
, and vj =




(c/a)1/2 sin(1jπ/(n+ 1))
(c/a)2/2 sin(2jπ/(n+ 1))

.

.

.

(c/a)n/2 sin(njπ/(n+ 1))


 .

E4.3 Circulant matrices. A matrix C ∈ Cn×n is circulant if there exists numbers c0, . . . , cn−1 such that

C =




c0 c1 . . . cn−1

cn−1 c0 . . . cn−2
.
.
.

.
.
.

.
.
.

.

.

.

c1 c2 . . . c0


 .

In other words, a circulant matrix is fully specified by its first row; the remaining row of C are cyclic permutations of

the first row. A circulant matrix is Toeplitz. Show that

(i) the eigenvalues and eigenvectors C are, for j ∈ {0, . . . , n− 1},

λj = c0 + c1ωj + c2ω
2
j + · · ·+ cn−1ω

n−1
j , and vj =




1
ωj
.
.
.

ωn−1
j


 ,

where ωj = exp
(2jπi

n

)
, j ∈ {0, . . . , n− 1}, are the nth complex roots of the number 1, and i =

√
−1.

(ii) for n even, κ ∈ R, and (c0, c1, . . . , cn−1) = (1− 2κ, κ, 0, . . . , 0, κ), the eigenvalues are

λj = 2κ cos
2π(j − 1)

n
+ (1− 2κ), j ∈ {1, . . . , n}.
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Note: Circulant matrices enjoy numerous properties; e.g., if C1 and C2 are circulant, so are CT
1 , C1 + C2 and C1C2.

Additional properties are discussed for example by Davis (1979).

E4.4 Adjacency spectrum of basic graphs. Given the basic graphs in Examples 3.1 and 4.1 and the properties of

tridiagonal Toeplitz and circulant matrices in Exercises E4.2 and E4.3, prove the statements in Table 4.1. In other

words, show that, for n ≥ 2,

(i) for the path graph Pn, the adjacency matrix is Toeplitz tridiagonal and the adjacency spectrum is {2 cos(πi/(n+
1)) | i ∈ {1, . . . , n}};

(ii) for the cycle graph Cn, the adjacency matrix is circulant and the adjacency spectrum is {2 cos(2πi/n)) | i ∈
{1, . . . , n}};

(iii) for the star graph Sn, the adjacency matrix is e1e−1 + e−1e1, where e−i = 1n− ei, and the adjacency spectrum

is {
√
n− 1, 0, . . . , 0,−

√
n− 1};

(iv) for the complete graphKn, the adjacencymatrix is 1n1T
n−In, and the adjacency spectrum is {(n−1),−1, . . . ,−1};

and

(v) for the complete bipartite graphKn,m, the adjacency matrix is

[
0n×n 1n×m
1m×n 0m×m

]
and the adjacency spectrum is

{√nm, 0, . . . , 0,−√
nm}.

E4.5 Edges and triangles in an undirected graph. Let A be the binary adjacency matrix for an undirected graph G
without self-loops. Recall that the trace of A is trace(A) =

∑n
i=1 aii.

(i) Show trace(A) = 0.

(ii) Show trace(A2) = 2|E|, where |E| is the u number of edges of G.

(iii) Show trace(A3) = 6|T |, where |T | is the number of triangles of G. (A triangle is a complete subgraph with

three nodes.)

(iv) Verify results (i)–(iii) on the matrix A =



0 1 1
1 0 1
1 1 0


.

▶ E4.6 Directed walks and powers of the adjacency matrix. Prove Lemma 4.2.

E4.7 An additional characterization of irreducibility. In this exercise we provide an additional characterization of

irreducibility to Theorem 4.3. Given a non-negative matrix A of dimension n, show that the following statements are

equivalent:

(i) there exists no permutation matrix P such that PAPT
is block triangular, and

(ii) for any non-negative vector y ∈ Rn≥0 with 0 < k < n strictly positive components, the vector (In +A)y has at
least k + 1 strictly positive components.

E4.8 An example reducible or irreducible matrix. Consider the binary matrix:

A =




0 0 0 1 1
1 0 1 0 1
0 1 0 1 1
1 0 0 0 1
1 0 0 1 0



.

Draw the digraph associated to A. Prove that A is irreducible or prove that A is reducible by providing a permutation

matrix P that transforms A into an upper block-triangular matrix.

▶ E4.9 Characterization of indecomposable matrices. Following (Wolfowitz, 1963), we say a non-negative matrix A is

indecomposable if its associated digraph contains a globally reachable node. Generalizing the proof of Theorem 4.7,

show that the following statements are equivalent:

(i) A is indecomposable and the subgraph of globally reachable nodes is aperiodic, and

(ii) there exists an index h ∈ N such that Ah has a positive column.
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E4.10 A sufficient but not necessary condition for primitivity. Assume the square matrix A is non-negative and

irreducible. Show that

(i) if A has a positive diagonal element, then A is primitive,

(ii) if A is primitive, then it is false that A must have a positive diagonal element.

E4.11 Primitive matrices are irreducible. Prove Lemma 2.11 relying upon Theorem 4.3 instead of the Caley-Hamilton

Theorem.

▶ E4.12 The exponent of a primitive matrix.
(i) Let G be the digraph with nodes {1, 2, 3} and edges {(1, 2), (2, 3), (3, 1), (2, 1)}. Explain if and why G is

strongly connected and aperiodic.

(ii) Recall a non-negative matrix A is primitive if there exists a number k such that Ak > 0; the smallest such

number k is called the exponent of the primitive matrix A. Do one of the following:

a) prove that the exponent of a primitive matrix A ∈ Rn×n is less than or equal to n, or
b) provide a counterexample.

Note: Wielandt (1950) proved that the exponent of a primitive matrix of dimension n is upper bounded by (n− 1)2 + 1

and that this bound is sharp in the sense that there exist primitive matrices for which A(n−1)2 is not positive. It is also
known that the exponent of a primitive matrix with positive diagonal is at most n− 1. We refer to (Brualdi and Ryser,
1991, Section 3.5) for an elegant treatment, including a generalization of the example in this exercise.

E4.13 Normalization of non-negative irreducible matrices. Consider a weighted digraph G and with an irreducible

adjacency matrix A ∈ Rn×n. The matrix A is not necessarily row-stochastic. Find a positive vector w ∈ Rn so that

the normalized matrix

P =
1

ρ(A)
(diag(w))−1Adiag(w)

is non-negative, irreducible, and row-stochastic.

E4.14 Eigenvalue shifting for stochastic matrices. Let A ∈ Rn×n be an irreducible row-stochastic matrix. Let E be a

diagonal matrix with diagonal elements Eii ∈ {0, 1}, with at least one diagonal element equal to zero. Show that AE
and EA are convergent.

E4.15 Decomposition of irreducible row-stochastic matrices. Let A ∈ Rn×n be row-stochastic and irreducible. Pick a

dimension 1 < k < n, and define the block-matrix decomposition

A =

[
W11 W12

W21 W22

]
, whereW11 ∈ Rk×k andW22 ∈ R(n−k)×(n−k).

Show that

(i) Ik −W11 and In−k −W22 are invertible, and

(ii) (Ik −W11)
−1W121n−k = 1k and (In−k −W22)

−1W211k = 1n−k .

E4.16 The Frobenius number. Prove Lemma 4.8.

Hint: Read up on the Frobenius number in (Owens, 2003).

E4.17 Induced norms and Gelfand’s formula. In this exercise we review the notion of induced norm and some of its

useful properties. Given a norm ∥ · ∥ on Cn, the induced norm of a square matrix A ∈ Cn×n is

∥A∥ = max
{
∥Ax∥ | x ∈ Cn and ∥x∥ = 1

}
= sup
x ̸=0n

∥Ax∥
∥x∥ .

Specifically, in the context of p-norms, for p ∈ N∪{∞}, it is well known that, for x ∈ Cn and A ∈ Cn,

∥x∥1 =
∑n

i=1
|xi| ∥A∥1 = max

j∈{1,. . .,n}

∑n

i=1
|aij |, (E4.1)

∥x∥2 =

√∑n

i=1
|xi|2 ∥A∥2 =

√
λmax(A∗A), (E4.2)

∥x∥∞ = max
i∈{1,. . .,n}

|xi| ∥A∥∞ = max
i∈{1,. . .,n}

∑n

j=1
|aij |, (E4.3)
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where A∗
is the complex conjugate of A. The induced 2-norm of A is also known as the maximum singular value of A

and ∥A∥2 = ρ(A), if A = A∗
.

For any A ∈ Cn×n and any induced matrix norm ∥ · ∥, show that

(i) ρ(A) ≤ ∥A∥,
(ii) ρ(A) ≤ ∥Ak∥1/k for all k ∈ Z≥0, and

(iii) ρ(A) = limk→∞ ∥Ak∥1/k , also known as Gelfand’s formula.

E4.18 Monotonicity properties of spectral radius of non-negative matrices. Given A ∈ Cn×n, let |A| ∈ Rn≥0 denote

the matrix with entries |aij |. Given A ∈ Cn×n and E ∈ Rn≥0, use Gelfand’s formula in Exercise E4.17 to show

ρ(A) ≤ ρ(|A|) ≤ ρ(|A|+ E).

Note: This result implies that, for example, if A and A′ be two non-negative n× n dimensional matrices, then A ≤ A′

implies ρ(A) ≤ ρ(A′).

E4.19 Leslie population model. The Leslie model is used in population ecology to model the changes in a population of

organisms over a period of time; see the original reference (Leslie, 1945) and a comprehensive text (Caswell, 2006).

In this model, the population is divided into n groups based on age classes; the indices i are ordered increasingly

with the age, so that i = 1 is the class of the newborns. The variable xi(k), i ∈ {1, . . . , n}, denotes the number of

individuals in the age class i at time k; at every time step k the xi(k) individuals

• produce a number αixi(k) of offsprings (i.e., individuals belonging to the first age class), where αi ≥ 0 is a

fecundity rate, and

• progress to the next age class with a survival rate βi ∈ [0, 1].

If x(k) denotes the vector of individuals at time k, the Leslie population model reads

x(k + 1) = Ax(k) =




α1 α2 . . . αn−1 αn
β1 0 . . . 0 0
0 β2

.
.
.

.
.
. 0

.

.

.
.
.
.

.
.
.

.
.
.

.

.

.

0 0 . . . βn−1 0



x(k), (E4.4)

where A is referred to as the Leslie matrix. Consider the following two independent sets of questions. First, assume

αi > 0 for all i ∈ {1, . . . , n} and 0 < βi ≤ 1 for all i ∈ {1, . . . , n− 1}.
(i) Prove that the matrix A is primitive.

(ii) Let pi(k) =
xi(k)∑n
i=1 xi(k)

denote the percentage of the total population in class i at time k. Call p(k) the population
distribution at time k. Compute limk→+∞ p(k) as a function of the spectral radius ρ(A) and the parameters

(αi, βi), i ∈ {1, . . . , n}.
Hint: Obtain a recursive expression for the components of the right dominant eigenvector of A

(iii) Assume βi = β > 0 and αi =
β
n for i ∈ {1, . . . , n}. What percentage of the total population belongs to the

eldest class asymptotically, that is, what is limk→∞ pn(k)?

(iv) Find a sufficient condition on the parameters (αi, βi), i ∈ {1, . . . , n}, so that the population will eventually

become extinct.

Second, assume αi ≥ 0 for i ∈ {1, . . . , n} and 0 ≤ βi ≤ 1 for all i ∈ {1, . . . , n− 1}.
(v) Find a necessary and sufficient condition on α1, . . . , αn, and β1, . . . , βn−1, so that the Leslie matrix A is

irreducible.

(vi) For an irreducible Leslie matrix (as in the previous point (v)), find a sufficient condition on the parameters

(αi, βi), i ∈ {1, . . . , n}, that ensures that the population will not go extinct.

E4.20 Swiss railroads. Consider the fictitious railroad map of Switzerland given in figure below.

(i) Can a passenger go from any station to any other?

(ii) Is the graph acyclic? Is it aperiodic? If not, what is its period?
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BASEL

BERN

INTERLAKEN

ZURICH

ST. GALLEN

CHUR

LUGANOZERMATT

LAUSANNE

1

2

4

5

6

7

8
9

3

Next, write the unweighted adjacency matrix A of this transportation network and, relying upon A and its powers,

answer the following questions:

(iii) what is the number of links of the shortest walk connecting St. Gallen to Zermatt?

(iv) is it possible to go from Bern to Chur using 4 links? And 5?

(v) how many different routes, with strictly less then 9 links and possibly visiting the same station more than once,

start from Zürich and end in Lausanne?

E4.21 Normal, irreducible, row-stochastic matrices are doubly stochastic. Assume A ∈ Rn×n is row-stochastic,

irreducible, and normal, i.e., AAT = ATA. Show that

(i) A is doubly-stochastic,

(ii) any row-stochastic circulant matrix (see E4.3) is doubly stochastic, and

(iii) any orthogonal row-stochastic matrix (see E2.12) is a permutation matrix.
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Chapter5

Discrete-time Averaging Systems

After discussing matrix theory and graph theory, we are ready to go back to the averaging

Figure 5.1: Opinion averaging is believed

to be a key mechanism in social influ-

ence network.

model introduced in Chapter 1 with examples from sociology, wireless

sensor networks and robotics. Recall that the discrete-time averaging

systems, as given in equation (1.3), is

x(k + 1) = Ax(k), (5.1)

where the matrix A = [aij ] is row-stochastic.

This chapter presents comprehensive convergence results for this

model, based on Perron–Frobenius theory and algebraic graph theory.

We pay special attention to how the structure of the network determines

its function, i.e., the asymptotic behavior of the averaging system. First,

we discuss the emergence of consensus for primitive matrices and re-

ducible matrices with a single sink and then we discuss the emerge of

asymptotic disagreement for matrices with multiple sinks. Additionally,

we provide alternative equivalent proofs of convergence to consensus

via certain ergodicity coefficients. We then discuss the equal-neighbor and the Metropolis–Hastings models of

row-stochastic matrices. Finally, we present some centrality notions from network science.

5.1 Averaging systems achieving asymptotic consensus

We start by considering three simple averaging systems.

First example: Let us start the analysis where we left it off at the end of Chapter 2, i.e., with the wireless sensor

network example illustrated in Figure 5.2. From the figure, we note that the weighted digraph Gwsn is strongly

1/2

1/3

1/41/2

1/41/4

1/4

1/3

1/3

1/3 1/3

1/3

3

1 2

4

Figure 5.2: Wireless sensor network example introduced in Section 1.2

and studied in Example 2.14. This weighted directed graph Gwsn corre-

sponds to the row-stochastic matrix Awsn =




1/2 1/2 0 0
1/4 1/4 1/4 1/4
0 1/3 1/3 1/3
0 1/3 1/3 1/3


,

as defined in equation (1.2).
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connected and aperiodic and that the row stochastic matrix Awsn is not column stochastic. We now reason as

follows. First, Theorem 4.7 (on the graph theoretical characterization of primitive matrices) states that the strongly

connected and aperiodic digraph Gwsn has a primitive adjacency matrix Awsn. Second, the Perron–Frobenius

Theorem 2.12 states that the eigenvalue 1 is simple and strictly dominant for the primitive row-stochastic matrix

Awsn. Therefore, Theorem 2.13 (on the powers of non-negative matrices with a simple and strictly dominant

eigenvalue) states that

lim
k→∞

Ak
wsn

= 14w
T,

where w = [1/6, 1/3, 1/4, 1/4]T is the left dominant eigenvector of Awsn. Next, each solution x(k) = Ak
wsn
x(0)

to the averaging system x(k + 1) = Awsnx(k) satisfies

lim
k→∞

x(k) = lim
k→∞

Ak
wsn
x(0) = (14w

T)x(0) = (wTx(0))14 =



wTx(0)

.

.

.

wTx(0)


 .

In other words, the value at each node of the wireless sensor network converges to a consensus value wTx(0) =
(1/6)x1(0) + (1/3)x2(0) + (1/4)x3(0) + (1/4)x4(0). Note that the averaging algorithm Awsn does not achieve

average consensus, since the final value is not equal to the exact average of the initial conditions. Indeed, Awsn is

not column stochastic and node 2 has more influence than the other nodes.

Second example: As second example, Figure 5.3 illustrates the robotic pursuit digraph, denoted by Gpursuit,

1/21/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/21/2

1/2

Figure 5.3: Robotic cyclic pursuit example introduced in Sec-

tion 1.6, see equation (1.23) with κ = 1/2. This weighted di-

graph Gpursuit corresponds to the row-stochastic matrix Apursuit =


1/2 1/2 . . . 0 0
0 1/2 .

.
.

.
.
. 0

.

.

.
.
.
.

.
.
.

.
.
. 0

0 .
.
.

.
.
. 1/2 1/2

1/2 0 . . . 0 1/2



.

introduced in Section 1.6. We note that Gpursuit is strongly connected, aperiodic, and weight-balanced. Therefore,

the row-stochastic matrix Apursuit is primitive and column stochastic and, in turn, the averaging system achieves

average consensus:

lim
k→∞

x(k) = lim
k→∞

Ak
pursuit

x(0) = average
(
x(0)

)
1n.

Third example: As third example, we consider a reducible row-stochastic matrix whose associated digraph is

not strongly connected. Such a matrix with its associated digraph and spectrum is illustrated in Figure 5.4. We note

that this digraph has an aperiodic subgraph of globally reachable nodes and that the eigenvalue 1 is still simple and

strictly dominant. We call such row-stochastic matrices indecomposable; we refer to Exercise E4.9 for additional
properties of such matrices. We will show that the associated averaging algorithm is akin to an averaging system

of the form

x1(k + 1) = x1(k),

x2(k + 1) = (1/2)x1(k) + (1/2)x2(k),

and still achieves consensus.

We are finally ready to state and prove the main result of this section.
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(a) Pixel picture of a 10 × 10 row-

stochastic matrix; we assume each row

contains equal entries summing to 1.
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(b) The corresponding digraph has an ape-

riodic subgraph of globally reachable nodes

(all nodes in dark gray).

1

(c) The spectrum of the adjacency matrix

includes a dominant eigenvalue.

Figure 5.4: An example indecomposable row-stochastic matrix, its associated digraph (consistent with Theo-

rem 5.1(A2)), and its spectrum (consistent with Theorem 5.1(A1))

Theorem 5.1 (Consensus for row-stochastic matrices with a globally-reachable aperiodic strongly-con-
nected component). Let A be a row-stochastic matrix and let G be its associated digraph. The following statements
are equivalent:

(A1) the eigenvalue 1 is simple and all other eigenvalues µ satisfy |µ| < 1;

(A2) A is semi-convergent and limk→∞Ak = 1nwT, where w ∈ Rn satisfies w ≥ 0, 1T
nw = 1, and wTA = wT;

and

(A3) G contains a globally reachable node and the subgraph of globally reachable nodes is aperiodic.

If any, and therefore all, of the previous conditions are satisfied, then the matrix A is said to be indecomposable and

(i) w ≥ 0 is the left dominant eigenvector of A and wi > 0 if and only if node i is globally reachable;

(ii) the solution to the averaging model (5.1) x(k + 1) = Ax(k) satisfies

lim
k→∞

x(k) =
(
wTx(0)

)
1n;

(iii) if additionally A is doubly-stochastic, then w = 1
n1n (since AT1n = 1n and 1

n1T
n1n = 1) so that

lim
k→∞

x(k) =
1T
nx(0)

n
1n = average

(
x(0)

)
1n.

Note: statement (ii) implies that the limiting value is a weighted average of the initial conditions with relative

weights given by the convex combination coefficients w1, . . . , wn. The eigenvector is positive w > 0 if and only if

the digraph associated to A is strongly connected. In digraphs that are not strongly connected, the initial values

xi(0) of all nodes i which are not globally reachable have no effect on the final convergence value. In a social

influence network, the coefficient wi is regarded as the “social influence” of agent i. We illustrate the concept of

social influence by introducing the Krackhardt’s advice network in Figure 5.5.

Note: to clarify statement (A3) it is useful to review some properties of globally reachable nodes. We first recall

a useful property from Lemma 3.2: G has a globally reachable node if and only if its condensation digraph has
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Figure 5.5: The empirically-observed Krackhardt’s advice network (Krackhardt, 1987) describing the social influence

among 21 managers in a manufacturing firm: each directed edge (i, j) means that manager i seeks advice from
manager j. This weighted digraph contains an aperiodic subgraph of globally reachable nodes. Therefore, the

corresponding row-stochastic matrix is reducible, but with simple and strictly dominant eigenvalue equal to 1.
Moreover, the corresponding averaging system achieve consensus with social influence value illustrated by the the

gray level of each node in figure.

a globally reachable node (i.e., the condensation of G has a single sink). Second, it is easy to see that the set of

globally reachable nodes induces a strongly connected component of G.
Note: The theorem is consistent with the following result stated in Exercise E3.6: a weight-balanced digraph

with a globally reachable node is strongly connected.

Proof of Theorem 5.1. The statement (A1) =⇒ (A2) is precisely Theorem 2.13 with λ = 1 (whose proof is given in

Section 2.3.4).

Next, we prove that (A2) =⇒ (A3). The assumption 1T
nw = 1 implies that at least one element, say the

jth element, of w is positive. Because limk→∞Ak = 1nwT
, we know that the jth column of limk→∞Ak has

all-positive elements. Thus, for sufficiently largeK , the jth column of AK has all-positive elements, so there is a

walk of lengthK from every node to the jth node. Thus, the jth node is globally reachable. Similarly, since the

(j, j) entry of AK converges to a positive number asK → ∞, we know that there are walks of arbitrary length

from j to j. By Exercise E3.8, the subgraph of globally reachable nodes is aperiodic. Hence, (A2) =⇒ (A3).

Finally, we prove the implications (A3) =⇒ (A1) and (A2). By assumption the condensation digraph of A
contains a sink that is globally reachable, hence it is unique. Assuming 0 < n1 < n nodes are globally reachable, a

permutation of rows and columns (see Exercise E3.2), brings the matrix A into the lower-triangular form

A =

[
A11 0n1×n2

A21 A22

]
, (5.2)

where A11 ∈ Rn1×n1
, A22 ∈ Rn2×n2

, with n1 + n2 = n. The state vector x is correspondingly partitioned into

x1 ∈ Rn1
and x2 ∈ Rn2

so that

x1(k + 1) = A11x1(k), (5.3)

x2(k + 1) = A21x1(k) +A22x2(k). (5.4)

In other words, x1 and A11 are the variables and the matrix corresponding to the sink. Because the sink, as a

subgraph of G, is strongly connected and aperiodic, A11 is primitive and row-stochastic and, by Theorem 2.13 on

the powers of non-negative matrices, we compute

lim
k→∞

Ak11 = 1n1w
T
1 ,
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where w1 > 0 is the left eigenvector with eigenvalue 1 for A11 normalized so that 1T
n1
w1 = 1.

We next analyze the matrix A22 as follows. Recall from Corollary 4.13 that an irreducible row-substochastic

matrix has spectral radius less than 1. Now, because A21 cannot be zero (otherwise the sink would not be globally

reachable), the matrix A22 is row-substochastic. Moreover, (after appropriately permuting rows and columns of

A22) it can be observed that A22 is a lower-triangular matrix such that each diagonal block is row-substochastic

and irreducible (corresponding to each node in the condensation digraph). Therefore, we know ρ(A22) < 1 and, in

turn, In2 −A22 is invertible. Because A11 is primitive and ρ(A22) < 1, A is semi-convergent and limk→∞ x2(k)
exists. This establishes that (A3) =⇒ (A1). Taking the limit as k → ∞ in equation (5.4), some straightforward

algebra shows that

lim
k→∞

x2(k) = (In2 −A22)
−1A21

(
lim
k→∞

x1(k)
)
= (In2 −A22)

−1A21 (1n1w
T
1 ) x1(0).

Since A is row-stochastic, we know A211n1 +A221n2 = 1n2 and hence (In2 −A22)
−1A211n1 = 1n2 . Collecting

these results, we write

lim
k→∞

[
A11 0n1×n2

A21 A22

]k
=

[
1n1w

T
1 0n1×n2

1n2w
T
1 0n2×n2

]
= 1n

[
w1

0n2

]T
.

This establishes that (A3) =⇒ (A2) and (A1) =⇒ (i). The implications (A2) =⇒ (ii) and (A2) =⇒ (iii) are

straightforward. ■

5.2 Averaging systems reaching asymptotic disagreement

In this section we consider the general case of digraphs that do not contain globally reachable nodes, that is,

digraphs whose condensation digraph has multiple sinks. Such an example digraph is the famous Sampson

monastery network (Sampson, 1969); see Figure 5.6.
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Figure 5.6: This image illustrates the Sampson monastery dataset (Sampson, 1969). This dataset describes the

social relations among a set of 18 monk-novitiates in an isolated contemporary American monastery. This digraph

contains two sinks in its condensation.

The main result of this section is a generalization of the consensus Theorem 5.1 in the previous section.

Theorem 5.2 (Convergence for row-stochastic matrices with multiple aperiodic sinks). Let A be a row-
stochastic matrix, G be its associated digraph, and ns ≥ 2 be the number of sinks in the condensation digraph C(G).
The following statements are equivalent:

(A1) the eigenvalue 1 is semi-simple with multiplicity ns and all other eigenvalues µ satisfy |µ| < 1,
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(A2) A is semi-convergent, and

(A3) each sink of C(G), regarded as a subgraph of G, is aperiodic.

If any, and therefore all, of the previous conditions are satisfied, then

(i) the left eigenvectors wp ∈ Rn, p ∈ {1, . . . , ns}, of A corresponding to the eigenvalue 1 can be selected to satisfy:
wp ≥ 0, 1T

nw
p = 1, and wpi > 0 if and only if node i belongs to sink p,

(ii) the solution to the averaging model x(k + 1) = Ax(k) with initial condition x(0) satisfies

lim
k→∞

xi(k) =





(wp)Tx(0), if node i belongs to sink p,
ns∑

p=1

zi,p
(
(wp)Tx(0)

)
, otherwise,

where zi,p, p ∈ {1, . . . , ns}, are convex combination coefficients and zi,p > 0 if and only if there exists a directed
walk from node i to the sink p.

Proof sketch. Rather than treating the general case, we work out a significant example with the key ideas of

the general proof. We invite the reader to provide a proof in Exercise E5.25 and refer to (DeMarzo et al., 2003,

Theorem 10) for additional details. Assume the condensation digraph of A is composed of three nodes, two of

which are sinks, as in this figure.

x2x1

x3

Therefore, after a permutation of rows and columns (see Exercise E3.2), A can be written as

A =



A11 0 0
0 A22 0
A31 A32 A33




and the state vector x is correspondingly partitioned into the vectors x1, x2 and x3. The state equations are:

x1(k + 1) = A11x1(k), (5.5)

x2(k + 1) = A22x2(k), (5.6)

x3(k + 1) = A31x1(k) +A32x2(k) +A33x3(k). (5.7)

By the properties of the condensation digraph and the assumption of aperiodicity of the sinks, the digraphs

associated to the row-stochastic matrices A11 and A22 are strongly connected and aperiodic. Therefore, we

immediately conclude that

lim
k→∞

x1(k) =
(
wT
1 x1(0)

)
1n1 and lim

k→∞
x2(k) =

(
wT
2 x2(0)

)
1n2 ,

wherew1 (resp. w2) is the left eigenvector of the eigenvalue 1 formatrixA11 (resp. A22) with the usual normalization

1T
n1
w1 = 1T

n2
w2 = 1.

Regarding the matrix A33, the same discussion as in the proof of Theorem 5.1 ensures that ρ(A33) < 1 and
that, in turn, In3 −A33 is nonsingular. We have now established that the eigenvalue 1 of A is semisimple with
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multiplicity 2 = ns and that all other eigenvalues are strictly inside the unit disk. By taking the limit as k → ∞ in

equation (5.7), straightforward calculations show that

lim
k→∞

x3(k) = (In3 −A33)
−1
(
A31 lim

k→∞
x1(k) +A32 lim

k→∞
x2(k)

)

= (wT
1 x1(0))

(
(In3 −A33)

−1A311n1

)
+ (wT

2 x2(0))
(
(In3 −A33)

−1A321n2

)
.

Moreover, because A is row-stochastic, we know

A311n1 +A321n2 +A331n3 = 1n3 ,

and, using again the fact that In3 −A33 is nonsingular,

1n3 = (In3 −A33)
−1A311n1 + (In3 −A33)

−1A321n2 .

This concludes our incomplete proof of Theorem 5.2 for the simplified case C(G) having three nodes and two

sinks. ■

Note that: convergence does not occur to consensus (not all components of the state are equal) and the final

value of all nodes is independent of the initial values at nodes which are not in the sinks of the condensation

digraph.

We conclude this section with a figure providing a summary of the asymptotic behavior of discrete-time

averaging systems and its relationships with properties of matrices and graphs; see Figure 5.7.

Properties of row-stochastic matrix A
Properties of digraph G

Converges to consensus
on the average

Properties of x(k + 1) = Ax(k)

Does not converge

Converges to consensus
depending on all nodes

Converges to consensus
that does not depend
on all the nodes

Converges
not to consensus

Primitive

Irreducible
but not primitive

Strongly connected
and periodic

Strongly connected
and aperiodic

Strongly connected,
aperiodic and
weight-balanced

One aperiodic
sink component

Multiple aperiodic
sink components

Doubly stochastic

and primitive

Indecomposable

Figure 5.7: Equivalent properties for a digraph G, a row-stochastic matrix A (being the adjacency matrix of G),
and a discrete-time averaging dynamical system x(k + 1) = Ax(k).

5.3 Consensus via disagreement and Lyapunov functions

In this section we present alternative analysis methods for averaging system. We postpone to Chapter 15 a

treatment of Lyapunov stability theory.

5.3.1 Disagreement and deflated matrices

Consider a row-stochastic A ∈ Rn×n with left dominant eigenvector w ∈ Rn≥0 normalized so that 1T
nw = 1. For

the averaging system x(k + 1) = Ax(k), define
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(i) the disagreement vector δ(k) = x(k)− (wTx(0))1n ∈ Rn, and

(ii) the deflated matrix A− 1nwT
.

In other words, subtract from the sequence x(k) and from the matrix A their respective final values (here by final

value of A is meant limk A
k
).

Note: wTx(k) is a weighted average of the entries of x(k) and it is constant over time (e.g., see Exercise E1.4);

therefore, δ(k) = x(k)− (wTx(k))1n. Also note that 1nwT
is a rank-1 projection matrix (for more properties of

this matrix see Exercise E5.9). Finally, to motivate the nomenclature “deflated matrix,” note that “deflating” the

matrix A removes the influence of the dominant eigenvalue 1. Accordingly, we define the essential spectral radius
of A by

ρess(A) =

{
0, if spec(A) = {1, . . . , 1},
max{|λ| | λ ∈ spec(A) \ {1}}, otherwise.

Lemma 5.3 (Convergence of disagreement vector). Given a row-stochastic matrix A with left dominant eigen-
vector w normalized so that 1T

nw = 1,

(i) the dynamics of the disagreement vector is

δ(k + 1) = (A− 1nw
T)δ(k); (5.8)

(ii) if A is primitive, then the deflated matrix A− 1nwT has the same eigenvalues and eigenvectors of A, except the
eigenvalue 1 which is replaced by 0 (with same right and left eigenvectors);

(iii) if A is primitive, then
ρ(A− 1nw

T) = ρess(A) < 1, (5.9)

and, in turn, limk→∞ δ(k) = 0n and limk→∞ x(k) = (wTx(0))1n.

Note: Lemma 5.3(iii) and the bounds established in Exercise E5.10 together imply that, for all ε > 0, there
exists cε such that

∥δ(k)∥2 ≤ cε(ρess(A) + ε)k∥δ(0)∥2.

But the decrease is not monotonic, in the sense that it is not true in general that ∥δ(k)∥2 ≤ ∥δ(0)∥2.

Proof of Lemma 5.3. Regarding statement (i), note δ(k) = (In − 1nwT)x(k). Therefore

δ(k + 1) = (In − 1nw
T)x(k + 1) = (In − 1nw

T)Ax(k) (5.10)

= (A− 1nw
T)x(k) = (A− 1nw

T)(In − 1nw
T)x(k), (5.11)

where we used 1nwTA = 1nwT
and (A− 1nwT)(In− 1nwT) = A− 1nwT− 1nwT+ 1nwT1nwT = A− 1nwT

.

Regarding statement (ii), the right eigenpair (1, 1n) of A corresponds to the eigenpair (0, 1n) of A− 1nwT
,

since (A− 1nwT)1n = 0n. Since A is primitive, all other eigenvalues have magnitude strictly less than 1. Next,
pick an arbitrary right eigenpair (µ, z) of A with |µ| < 1. Because w is a left eigenvector of 1 and z is a right
eigenvector of eigenvalue µ ̸= 1, we know that wTz = 0, e.g., see Exercise E2.4(i). Therefore, we compute

(A− 1nwT)z = Az = µz. This proves that (µ, z) is a right eigenpair of A− 1nwT
.

Statement (iii) is an immediate consequence of statement (ii). ■
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5.3.2 Quadratic disagreement

Define the quadratic disagreement function Vqd : Rn → R≥0 by

Vqd(x) =
1

n

∑n

i,j=1
(xi − xj)

2. (5.12)

Clearly, Vqd(x) ≥ 0 and Vqd(x) = 0 if and only if x is a consensus vector.

Note: It is simple to check that Vqd(x) = xTΠnx, whereΠn = In− 1
n1n1T

n ∈ Rn×n is the orthogonal projection
onto span{1}⊥, is symmetric and positive-semidefinite. Also, it is simple to check that, whenA is doubly-stochastic

with w = 1
n1n, the disagreement vector is δ(x) = x− average(x)1n ∈ Rn and Vqd(x) = ∥δ(x)∥22.

Given a symmetric row-stochastic matrix A = AT
, define the 2-coefficient of ergodicity of A by one of the

following equal expressions:

τ2(A) =
∥∥A− 1

n1n1T
n

∥∥
2
= max

∥y∥2=1,y⊥1n

∥Ay∥2. (5.13)

where we recall the definition of induced matrix norm ∥A∥2 = max{∥Ax∥2 | ∥x∥2 = 1} (e.g, for more details see

Exercise E4.17).

Lemma 5.4 (Convergence of quadratic disagreement). Given a symmetric row-stochastic matrix A = AT with
associated graph G,

(i) for all x ∈ Rn,
Vqd(Ax) ≤ τ2(A)

2Vqd(x);

(ii) if G is connected, then τ2(A) = ρess(A) < 1;

(iii) if G is connected, then any solution to x(k + 1) = Ax(k) satisfies

Vqd(x(k)) ≤ τ2(A)︸ ︷︷ ︸
<1

2kVqd(x(0)), for all k ∈ N.

Note: under the conditions in the theorem, the quadratic disagreement diminishes monotonically along each

solution and we say that the function Vqd is a quadratic Lyapunov function for x(k + 1) = Ax(k).

Proof of Lemma 5.4. Regarding statement (i), for any x ∈ Rn, we note that 1T
nAx = 1T

nx so that

Vqd(Ax) = ∥Ax− average(Ax)1n∥22 = ∥A(x− average(x)1n)∥22
=
∥∥A 1

∥x−average(x)1n∥2 (x− average(x)1n)
∥∥2
2
Vqd(x)

≤ max
∥y∥2=1,y⊥1n

∥Ay∥22 Vqd(x).

Regarding statement (ii), recall the modal decomposition of symmetric matrices, e.g., see Remark 2.3. Since

A = AT
, we know A admits eigenvalues λ1 ≥ · · · ≥ λn with orthonormal eigenvectors v1, . . . , vn. Since A is row

stochastic and irreducible, we know λ1 = 1, λ1 > maxj∈{2,. . .,n} |λj |, v1 = 1n/
√
n. The modal decomposition of

A is A = 1
n1n1T

n +
∑n

i=2 λiviv
T
i . For any y ∈ span(1n)⊥,

∥Ay∥22 =
n∑

i=2

λ2i (v
T
i y)

2 ≤
(

max
j∈{2,. . .,n}

λ2j

) n∑

i=2

(vTi y)
2 = ρess(A)

2∥y∥22,

where we noted ρess(A) = maxj∈{2,. . .,n} |λj | < 1. This implies τ2(A) ≤ ρess(A). The converse follows from
taking y = vj where i = argmaxj∈{2,. . .,n} |λj |. Statement (iii) follows from the previous statements. ■
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5.3.3 Max-min disagreement

Define the max-min disagreement function Vmax-min : Rn → R≥0 by

Vmax-min(x) = max
i∈{1,. . .,n}

xi − min
i∈{1,. . .,n}

xi = max
i,j∈{1,. . .,n}

(xi − xj). (5.14)

Clearly, Vmax-min(x) ≥ 0 and Vmax-min(x) = 0 if and only if x is a consensus vector.

(Recall that Exercise E1.1 asks the reader to verify that any row-stochastic A ∈ Rn×n and x ∈ Rn satisfy

Vmax-min(Ax) ≤ Vmax-min(x). We will establish a stronger property below.)

Given a row-stochastic matrix A, define the 1-coefficient of ergodicity of A by one of the following equal

expressions:

τ1(A) = max
∥y∥1=1,y⊥1n

∥ATy∥1

=
1

2
max

i,j∈{1,. . .,n}

n∑

h=1

|aih − ajh| = 1− min
i,j∈{1,. . .,n}

n∑

h=1

min{aih, ajh}.
(5.15)

(Exercise E5.22 asks the reader to prove that the three expressions for τ1(A) are indeed equivalent, as claimed.)

Lemma 5.5 (Convergence ofmax-min disagreement). Given a row-stochastic primitive matrixAwith associated
digraph G,

(i) for all x ∈ Rn, the max-min function satisfies

Vmax-min(Ax) ≤ τ1(A)Vmax-min(x);

(ii) τ1(A) < 1 if and only if A is scrambling, i.e., any two nodes have a common out-neighbor in G;

(iii) if G contains a node that is globally reachable in h steps, then Ah is scrambling and any solution to x(k+ 1) =
Ax(k) satisfies

Vmax-min(x(k)) ≤ τ1(A
h)︸ ︷︷ ︸

<1

⌊k/h⌋
Vmax-min(x(0)), for all k ∈ N.

Note: under the conditions in the theorem, the max-min disagreement diminishes monotonically along each

solution and we say that the function Vmax-min is a Lyapunov function for x(k + 1) = Ax(k).

Note: G contains a node that is globally reachable in h steps, for some h (i.e., there exists h such that from each

node there exists a directed path of length h to the specific node) if and only if G contains a globally reachable

node and the strongly connected component of globally reachable nodes is aperiodic. This statement is a slight

generalization of Theorem 4.7.

Note: if A is scrambling and each of its non-zero entries is lower bounded by amin > 0, then statement (ii) can

be strenghtened to state that τ1(A) ≤ 1− amin.

We postpone to Chapter 15 a treatment of Lyapunov stability theory and to Chapter 11 a treatment of

convergence factors and scalability.

Proof of Lemma 5.5. Regarding statement (i), for any two indices i and j ∈ {1, . . . , n}, define u(i,j),h = aih−ajh ∈
R, for h ∈ {1, . . . , n}, so that

(Ax)i − (Ax)j =

n∑

h=1

u(i,j),hxh. (5.16)
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Note

∑n
h=1 u(i,j),h =

∑n
h=1 aih −

∑n
j=1 ajh = 1− 1 = 0, because A1n = 1n. Therefore, some entries of u(i,j),h,

for h ∈ {1, . . . , n}, are positive and others negative. Define

τ(i,j) =
∑

h :u(i,j),h≥0

u(i,j),h = −
∑

h :u(i,j),h<0

u(i,j),h (5.17)

=
1

2

n∑

h=1

|u(i,j),h| =
1

2

n∑

h=1

|aih − ajh|, (5.18)

where the third equality follows from realizing that the absolute sum of positive and negative entries is twice the

sum of the positive entries alone. Next, we obtain a useful upper bound:

(Ax)i − (Ax)j =
∑

h :u(i,j),h≥0

u(i,j),hxh −
∑

h :u(i,j),h<0

|u(i,j),h|xh

= τ(i,j)

(∑
h :u(i,j),h≥0 |u(i,j),h|xh∑
h :u(i,j),h≥0 |u(i,j),h|

−
∑

h :u(i,j),h<0 |u(i,j),h|xh∑
h :u(i,j),h<0 |u(i,j),h|

)

≤ τ(i,j)
(
max
i
xi −min

i
xi
)
≤ τ1(A)

(
max
i
xi −min

i
xi
)
,

where we used the equality τ1(A) =
1
2 maxi,j∈{1,. . .,n}

∑n
h=1 |aih−ajh|. This completes the proof of statement (i).

Regarding statement (ii), using the equality τ1(A) = 1−mini,j∈{1,. . .,n}
∑n

h=1min{aih, ajh}, clearly τ1(A) < 1
if and only if

∑n
h=1min{aih, ajh} > 0 for all i, j. But this condition holds if and only if for each pair of nodes i, j

there exists a node h such that (i, h) and (j, h) are directed edges in G.
Regarding statement (iii), if the jth node in G that is globally reachable in h steps, then the jth column of Ah

is strictly positive. Therefore Ah is scrambling, since each node has the node j as common out-neighbor in the

digraph associated to Ah. The final bound follows from the previous statements. ■

5.4 Appendix: Design of graphs weights

In this section we describe two widely-adopted algorithms to design weights for unweighted graphs.

5.4.1 The equal-neighbor model

Let G be a connected undirected graph, binary adjacency matrix A, and degree matrix D = diag(d1, . . . , dn),
where d1, . . . , dn are the node degrees. Define the equal-neighbor matrix

Aequal-nghbr = D−1A. (5.19)

For example, consider the graph in Figure 5.8, for which we have:

A =




0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0


 , D =




1 0 0 0
0 3 0 0
0 0 2 0
0 0 0 2


 =⇒ Aequal-nghbr =




0 1 0 0
1/3 0 1/3 1/3
0 1/2 0 1/2
0 1/2 1/2 0


 . (5.20)

It is convenient now to introduce some simple generalizing notions. We say that an undirected graph G
(possibly with self-loops) is aperiodic if G, regarded as a digraph, is aperiodic. To regard G as a digraph, we

substitute each undirected edge of G with two directed edges (self-loops remain unchanged). Note that an acyclic

undirected graph without self-loops is periodic with period 2.
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Figure 5.8: The equal-neighbor matrix

Lemma 5.6 (The equal-neighbor row-stochastic matrix). Let G be a connected weighted undirected graph
(possibly with self-loops) with weighted adjacency matrix A and weighted degrees d1, . . . , dn. For the equal-neighbor
matrix Aequal-nghbr defined as in (5.19),

(i) Aequal-nghbr is well-defined, row-stochastic, and irreducible;

(ii) the left dominant eigenvector of Aequal-nghbr, normalized to have unit sum, is

wequal-nghbr =
1∑n
i=1 di



d1...
dn


 ,

so that, assuming that G is aperiodic, the solution to the averaging model (5.1) x(k + 1) = Ax(k) satisfies

lim
k→∞

xi(k) =
1∑n
i=1 di

n∑

i=1

dixi(0); (5.21)

(iii) Aequal-nghbr is doubly-stochastic if and only if G is regular (i.e., all nodes have the same degree).

For example, for the equal-neighbor matrix in equation (5.20) and Figure 5.8, one can easily verify that the

dominant eigenvector is

[
1 3 2 2

]T
/8.

Proof of Lemma 5.6. Because G is connected, each node degree is strictly positive, the degree matrix is invertible,

and Aequal-nghbr is well-defined. Because G is connected and because the zero/positive pattern of Aequal-nghbr is the

same as that ofA, we knowAequal-nghbr is irreducible. Next, we note a simple fact: any v ∈ Rn with non-zero entries
satisfies diag(v)−1v = 1n. Let d = A1n denote the vector of node degrees so that D = diag(d). Statement (i)

follows from

Aequal-nghbr1n = diag(d)−1(A1n) = diag(d)−1d = 1n.

Statement (ii) follows from

AT
equal-nghbr

wequal-nghbr = Adiag(d)−1
( 1

1T
nd
d
)
=

1

1T
nd
A1n =

1

1T
nd
d = wequal-nghbr,

where we used the fact that A is symmetric. The convergence property follows because Aequal-nghbr is irreducible

and aperiodic. Statement (iii) is an immediate consequence of (ii). ■

We conclude this section by reviewing the distributed averaging algorithm introduced in Section 1.2.
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Example 5.7 (Averaging in wireless sensor networks). As in equation (1.2), assume each node of a wireless

sensor network contains a value xi and repeatedly executes:

xi(k + 1) := average
(
xi(k), {xj(k), for all neighbor nodes j}

)
, (5.22)

or, more explicitly, xi(k + 1) = 1
1+di

(xi(k) +
∑

j∈N (i) xj(k)). Algorithm (5.22) can be written as:

x(k + 1) =




1/2 1/2 0 0
1/4 1/4 1/4 1/4
0 1/3 1/3 1/3
0 1/3 1/3 1/3


x(k) =: Awsnx(k),

where the matrix Awsn is defined as in Section 1.2 and where it is easy to verify that

Awsn = (D + I4)
−1(A+ I4).

Clearly, A+ I4 is the adjacency matrix of a graph that is equal to the graph in figure with the addition of a self-loop

at each node; this new graph has degree matrix D + I4. Therefore, the matrix Awsn is an equal-neighbor matrix

for the graph with added self-loops. We illustrate this observation in Figure 5.9. From Lemma 5.6 we know that the

3

1 2

4

1/2

1/3

1/41/2

1/41/4

1/4

1/3

1/3

1/3 1/3

1/3

3

1 2

4

Figure 5.9: The equal-neighbor matrix for an undirected graph with added self-loops

left dominant eigenvector of Awsn is

wequal-neighbor+selfloops =
1

n+
∑

i di



d1 + 1

.

.

.

dn + 1


 =




1/6
1/3
1/4
1/4


 ,

because (d1, d2, d3, d4) = (1, 3, 2, 2) and n = 4. This result is consistent with the eigenvector computed numeri-

cally in Example 2.5. •

5.4.2 The Metropolis–Hastings model

Next, we suggest a second way of assigning weights to a graph for the purpose of designing an averaging algorithm

(that achieves average consensus). Given an undirected unweighted graphGwith edge setE and degrees d1, . . . , dn,
define the weighted adjacency matrix AMetr-Hast, called othe Metropolis–Hastings matrix, by

(AMetr-Hast)ij =





1

1 + max{di, dj}
, if {i, j} ∈ E and i ̸= j,

1−
∑

{i,h}∈E,h ̸=i

(AMetr-Hast)ih, if i = j,

0, otherwise.
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In our example,

A =




0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0


 , D =




1 0 0 0
0 3 0 0
0 0 2 0
0 0 0 2


 =⇒ AMetr-Hast =




3/4 1/4 0 0
1/4 1/4 1/4 1/4
0 1/4 5/12 1/3
0 1/4 1/3 5/12


 .

3

1 2

4

3/4

1/4

1/4

1/3

1/4 1/4

5/12

5/12

1 2

3 4

Figure 5.10: The Metropolis–Hastings model

One can verify that the Metropolis–Hastings weights have the following properties:

(i) (AMetr-Hast)ii > 0 for all nodes i ∈ {1, . . . , n}, (AMetr-Hast)ij > 0 for all pairs {i, j} ∈ E, and (AMetr-Hast)ij =
0 otherwise;

(ii) AMetr-Hast is symmetric and doubly-stochastic;

(iii) AMetr-Hast is primitive if and only if G is connected; and

(iv) the averaging model (5.1) x(k + 1) = Ax(k) achieves average consensus.

5.5 Appendix: Design and computation of centrality measures

In network science it is of interest to determine the relative importance of a node in a network. There are many

ways to do so and they are referred to as centrality measures or centrality scores. This section presents six centrality

notions based on the adjacency matrix. We treat the general case of a weighted digraphG with weighted adjacency

matrix A (warning: many articles in the literature deal with undirected graphs only.) The matrix A is non-negative,

but not necessarily row stochastic. From the Perron–Frobenius theory, recall the following facts:

(i) if G is strongly connected, then the spectral radius ρ(A) is an eigenvalue of maximum magnitude and its

corresponding left eigenvector can be selected to be strictly positive and with unit sum (see Theorem 2.12);

and

(ii) ifG contains a globally reachable node, then the spectral radius ρ(A) is an eigenvalue of maximummagnitude

and its corresponding left eigenvector is non-negative and has positive entries corresponding to each globally

reachable node (see Theorem 5.1).

Degree centrality For an arbitrary weighted digraph G, the degree centrality cdegree(i) of node i is its in-degree:

cdegree(i) = din(i) =

n∑

j=1

aji, (5.23)
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that is, the number of in-neighbors (if G is unweighted) or the sum of the weights of the incoming edges. Degree

centrality is relevant, for example, in (typically unweighted) citation networks whereby articles are ranked on the

basis of their citation records. (Warning: the notion that a high citation count is an indicator of quality is clearly a

fallacy.)

Eigenvector centrality One problem with degree centrality is that each in-edge has unit count, even if the

in-neighbor has negligible importance. To remedy this potential drawback, one could define the importance of a

node to be proportional to the weighted sum of the importance of its in-neighbors (see (Bonacich, 1972b) for an

early reference). This line of reasoning leads to the following definition.

For a weighted digraph G with globally reachable nodes (or for an undirected graph that is connected), define

the eigenvector centrality vector, denoted by cev, to be the left dominant eigenvector of the adjacency matrix A
associated with the dominant eigenvalue and normalized to satisfy 1T

ncev = 1.

Note that the eigenvector centrality satisfies

ATcev =
1

α
cev ⇐⇒ cev(i) = α

n∑

j=1

ajicev(j). (5.24)

where α = 1
ρ(A) is the only possible choice of scalar coefficient in equation (5.24) ensuring that there exists a unique

solution and that the solution, denoted cev, is strictly positive in a strongly connected digraph and non-negative in

a digraph with globally reachable nodes. Note that this connectivity property may be restrictive in some cases.

Figure 5.11: Comparing degree centrality versus eigenvector centrality: the node with maximum in-degree has

zero eigenvector centrality in this graph

Katz centrality For a weighted digraphG, pick an attenuation factor α < 1/ρ(A) and define the Katz centrality
vector (see (Katz, 1953)), denoted by cK, by the following equivalent formulations:

cK(i) = α

n∑

j=1

aji(cK(j) + 1), (5.25)

or

cK(i) =

∞∑

k=1

n∑

j=1

αk(Ak)ji. (5.26)

Katz centrality has therefore two interpretations:

(i) the importance of a node is an attenuated sum of the importance and of the number of the in-neighbors –

note indeed how equation (5.25) is a combination of equations (5.23) and (5.24), and

(ii) the importance of a node is α times number of length-1 walks into i (i.e., the in-degree) plus α2
times the

number of length-2 walks into i, etc. (From Lemma 4.2, recall that, for an unweighted digraph, (Ak)ji is
equal to the number of directed walks of length k from j to i.)
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Note how, for α < 1/ρ(A), equation (5.25) is well-posed and equivalent to

cK = αAT(cK + 1n)

⇐⇒ cK + 1n = αAT(cK + 1n) + 1n

⇐⇒ (In − αAT)(cK + 1n) = 1n

⇐⇒ cK = (In − αAT)−11n − 1n (5.27)

⇐⇒ cK =
∞∑

k=1

αk(AT)k1n,

where we used the identity (In −A)−1 =
∑∞

k=0Ak
valid for any matrix A with ρ(A) < 1; see Exercise E2.11.

There are two simple ways to compute the Katz centrality. According to equation (5.27), for limited size

problems, one can invert the matrix (In−αAT). Alternatively, one can show (see Exercise E5.13) that the following

iteration converges to the correct value: c+
K
:= αAT(cK + 1n).

0 1000 2000 3000

0

1000

2000

3000

Index  j

In
de

x 
 i

Figure 5.12: The pattern in figure is the pixel picture of the so-called

hyperlink matrix, i.e., the transpose of the adjacency matrix, for

a collection of websites at the Lincoln University in New Zealand

from the year 2006. Dark-colored points are nonzero entries of the

adjacency matrix; light-colored points are outgoing links toward

dangling nodes. Each empty column corresponds to a webpage

without any outgoing link, that is, to a so-called dangling node.

This network has 3756 nodes with 31,718 links. A fairly large

portion of the nodes are dangling nodes: in this example, there are

3255 dangling nodes, which is over 85% of the total. Image courtesy

of Hideaki Ishii and Roberto Tempo from data described in (Ishii

and Tempo, 2014).

PageRank centrality For a weighted digraph G with row-stochastic adjacency matrix (i.e., unit out-degree for

each node), pick a convex combination coefficient α ∈ ]0, 1[ and define the PageRank centrality vector , denoted by

cpr, as the unique positive solution to

cpr(i) = α
n∑

j=1

ajicpr(j) +
1− α

n
, (5.28)

or, equivalently, to

cpr =Mcpr, 1T
ncpr = 1, whereM = αAT +

1− α

n
1n1T

n . (5.29)

(To establish the equivalence between these two definitions, the only non-trivial step is to notice that if cpr solves
equation (5.28), then it must satisfy 1T

ncpr = 1.)
Note that, for arbitrary unweighted digraphs and binary adjacency matrices A0,1, it is natural to compute

the PageRank vector with A = D−1
out
A0,1. We refer to (Ishii and Tempo, 2014; Gleich, 2015) for the important

interpretation of the PageRank score as the stationary distribution of the so-called random surfer of an hyperlinked

document network — it is under this disguise that the PageRank score was conceived by the Google co-founders

and a corresponding algorithm led to the establishment of the Google search engine. In the Google problem it is

customary to set α ≈ .85.
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Closeness and betweenness centrality (based on shortest walks) Degree, eigenvector, Katz and PageRank

centrality are presented using the adjacency matrix. Next we present two centrality measures based on the notions

of shortest walk and geodesic distance; these two notions belong to the class of radial and medial centrality
measures (Borgatti and Everett, 2006).

We start by introducing some additional graph theory. For a weighted digraph with n nodes, the length of a

directed walk is the sum of the weights of edges in the directed walk. For i, j ∈ {1, . . . , n}, a shortest walk from a

node i to a node j is a directed walk of smallest length. Note: it is easy to construct examples with multiple shortest

walks, so that the shortest walk is not unique. The geodesic distance di→j from node i to node j is the length of a

shortest walk from node i to node j; we also stipulate that the geodesic distance di→j takes the value zero if i = j
and is infinite if there is no walk from i to j. Note: in general di→j ̸= dj→i. Finally, for i, j, k ∈ {1, . . . , n}, we let
gi→k→j denote the number of shortest walks from a node i to a node j that pass through node k.

For a strongly-connected weighted digraph, the closeness centrality score of node i ∈ {1, . . . , n} is the inverse

sum over the geodesic distances di→j from node i to all other nodes j ∈ {1, . . . , n}, that is:

ccloseness(i) =
1∑n

j=1 di→j
. (5.30)

For a strongly-connected weighted digraph, the betweenness centrality score of node i ∈ {1, . . . , n} is the

fraction of all shortest walks gk→i→j from any node k to any other node j passing through node i, that is:

cbetweenness(i) =

∑n
j,k=1 gk→i→j∑n

h=1

∑n
j,k=1 gk→h→j

. (5.31)

Summary To conclude this section, in Table 5.1, we summarize the various centrality definitions for a weighted

directed graph.

Measure Definition Assumptions

degree centrality cdegree = AT1n

eigenvector centrality cev = αATcev α =
1

ρ(A)
, G has a

globally reachable node

PageRank centrality cpr = αATcpr +
1− α

n
1n α < 1, A1n = 1n

Katz centrality cK = αAT(cK + 1n) α <
1

ρ(A)

closeness centrality ccloseness(i) =
1∑n

j=1 di→j
G strongly connected

betweenness centrality cbetweenness(i) =

∑n
j,k=1 gk→i→j∑n

h=1

∑n
j,k=1 gk→h→j

G strongly connected

Table 5.1: Definitions of centrality measures for a weighted digraph G with adjacency matrix A

Figure 5.13 illustrates some centrality notions on an instructive example due to Brandes (2006). As it can

be computed via the code in Table 5.2, a different node is the most central one in each metric; this variability

is naturally expected and highlights the need to select a centrality notion relevant to the specific application of

interest.
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(a) degree centrality
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(b) eigenvector centrality
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(c) closeness centrality

9
<latexit sha1_base64="azaq2jl68XaK+1Dcnx5muIk6dps=">AAAB8nicbZBNS8NAEIY3ftb6VfXoJViEHqQkKqi3ghePLdgPaEPZbCft0s0m7E6KJfQXeNWLN/HqHxL8MW7THLT1hYWHeWfYmdePBdfoOF/W2vrG5tZ2Yae4u7d/cFg6Om7pKFEMmiwSker4VIPgEprIUUAnVkBDX0DbH9/P/fYElOaRfMRpDF5Ih5IHnFE0pcZdv1R2qk4mexXcHMokV71f+u4NIpaEIJEJqnXXdWL0UqqQMwGzYi/REFM2pkPoGpQ0BH2hJ8MMvPQpW3lmnxtvYAeRMk+inVV/z6Y01Hoa+qYzpDjSy968+J/XTTC49VIu4wRBssVHQSJsjOz5/faAK2AopgYoU9xsbbMRVZShSalo4nCXj1+F1mXVvao6jetyrZIHUyCn5IxUiEtuSI08kDppEkaAPJMX8mqh9Wa9Wx+L1jUrnzkhf2R9/gCdkJDp</latexit>

(d) betweenness centrality

Figure 5.13: Degree, eigenvector, closeness, and betweenness centrality for an undirected unweighted graph. The

dark node is the most central node in the respective metric; a different node is the most central one in each metric.

1 # Python3 code for centrality computation via the NetworkX library
2 import networkx as nx
3 # define graph
4 G = nx.Graph(); G.add_nodes_from(range(1,11)); G.add_edges_from([(1,2), (2,6), ...

(2,7), (2,3), (3,4), (3,8), (7,8), (8,9), (4,9), (9,10), (10,5), (10,11)])
5

6 # Node 2 has the highest degree centrality
7 degree_centrality = nx.degree_centrality(G)
8 # Node 3 has the highest eigenvector centrality
9 eigenvector_centrality = nx.eigenvector_centrality_numpy(G)
10 # Node 8 has highest closeness centrality
11 closeness_centrality = nx.closeness_centrality(G)
12 # Node 9 has highest closeness centrality
13 betweenness_centrality = nx.betweenness_centrality(G)

Table 5.2: Python code for centrality computation

5.6 Historical notes and further reading

The convergence of powers of row-stochastic matrices and of repeated averaging operations has been studied since

the original work by Markov (1906), who proved an early version of Lemma 5.5. The τ1 ergodicity coefficient is

also referred to as the Doeblin–Dobrushin coefficient because of their early work Dobrushin (1956). Another early

references on ergodicity coefficients and indecomposable stochastic matrices is (Wolfowitz, 1963); the interpretation

of the word “ergodic” comes from the study of stochastic processes. An historic review is (Seneta, 1973), a notable

review is (Ipsen and Selee, 2011), control theoretic approaches include (Liu et al., 2011), recent progress is detailed

in (Marsli and Hall, 2020). In this literature, the max-min disagreement function Vmax-min is sometime referred to

as the diameter or the spread of the vector.

For references on social influence networks and opinion dynamics we refer to Chapter 1. An early reference

for Theorem 5.2 is (DeMarzo et al., 2003, Appendix C and, specifically, Theorem 10).

Opinion dynamics models are surveyed by Proskurnikov and Tempo (2017); for example, for nonlinear models

based on bounded confidence we refer to (Hegselmann and Krause, 2002; MirTabatabaei and Bullo, 2012).

On the topic of computing optimal row-stochastic matrices, we postpone to Chapter 11 the study of related

optimization problems.

Lectures on Network Systems, F. Bullo, edition 1.6 – Jan 1, 2022. Tablet PDF version. Copyright © 2012-22.



5.6. Historical notes and further reading 87

A standard modern treatment of centrality notions is (Newman, 2010, Chapter 7); see also (Easley and Kleinberg,

2010, Chapter 14) for an introductory discussion. We also refer to (Brandes and Erlebach, 2005) for a comprehensive

review of network analysis metrics and related computational algorithms, beyond centrality measures. Historically,

centrality measures were originally studied in sociology, An incomplete list of early references and historical

reviews in sociology includes (Bavelas, 1950) on closeness centrality, (Katz, 1953) on Katz centrality, (Freeman,

1977) on betweenness centrality, and (Bonacich, 1972a,b) on eigenvector centrality. Kleinberg (1999) generalizes

centrality notions to networks with hubs and authorities; see Exercise E5.15.

PageRank is a centrality measure that has received tremendous recent attention due to the success of the

Google search engines; this notion was popularized by (Brin and Page, 1998; Page, 2001), but see also the previous

work (Friedkin, 1991) on total effective centrality and its relationship with PageRank (Friedkin and Johnsen, 2014).

We refer to (Ishii and Tempo, 2014; Gleich, 2015; Nesterov, 2012) for recent works on PageRank and its multiple

extensions and applications; we refer to (Ishii and Tempo, 2010; Zhao et al., 2013) for randomized distributed

algorithms for PageRank computation.
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5.7 Exercises

E5.1 The final opinion of a French-Harary-DeGroot panel. A conversation between 5 panelists is modeled according

to the French-Harary-DeGroot model x+ = Apanelx, where

Apanel =




0.15 0.15 0.1 0.2 0.4
0 0.55 0 0 0.45
0.3 0.05 0.05 0 0.6
0 0.4 0.1 0.5 0
0 0.3 0 0 0.7



.

Assuming that the panel has sufficiently long deliberations, answer the following:

(i) Draw the condensation of the associated digraph.

(ii) Do the panelists finally agree on a common decision?

(iii) In the event of agreement, does the initial opinion of any panelists get rejected? If so, which ones?

(iv) Assume the panelists’ initial opinions are their self-appraisals (that is, the self-weights a11, . . . , a55) and compute

the final opinion via elementary calculations.

E5.2 Three averaging panels. Consider the French-Harary-DeGroot opinion dynamics model x(k + 1) = Ax(k), where
xi(k) denotes the opinion of individual i at time k and whereA is row-stochastic. Recall that the coefficient aij ∈ [0, 1]
is the influence of individual j on the update of the opinion of individual i, subject to the constraint

∑n
j=1 aij = 1.

Consider the following three scenarios:

(i) Everybody gives equal weight to the opinion of everybody (including themselves).

(ii) Individual 1 gives equal weight to the opinions of herself and all others. Each individual 2, . . . , n computes the

average between her own opinion and that of individual 1.

(iii) Individual 1 does not change her opinion. Each individual 2, . . . , n computes the average between her own

opinion and that of individual 1.

For each scenario, derive the averaging matrix A, show that the opinions converge asymptotically to a final opinion

vector, and characterize this final opinion vector.

▶ E5.3 Designing averaging weights for an example topology. Let G be the digraph in the following figure and let A be

its adjacency matrix.
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<latexit sha1_base64="gWlJNE8f+zuzEfx5objQHvB8H9M=">AAAB8nicbZDLSsNAFIZP6q3WW9Wlm2ARXEhJxNuy4MZlC/YCbSiT6Uk7dDIJM5NiCX0Ct7pxJ259IcGHcZpmoa0/DHyc/xzmnN+POVPacb6swtr6xuZWcbu0s7u3f1A+PGqpKJEUmzTikez4RCFnApuaaY6dWCIJfY5tf3w/99sTlIpF4lFPY/RCMhQsYJRoU2pc98sVp+pkslfBzaECuer98ndvENEkRKEpJ0p1XSfWXkqkZpTjrNRLFMaEjskQuwYFCVFdqMkwAy99ylae2WfGG9hBJM0T2s6qv2dTEio1DX3TGRI9UsvevPif1010cOelTMSJRkEXHwUJt3Vkz++3B0wi1XxqgFDJzNY2HRFJqDYplUwc7vLxq9C6rLpO1W1cVWo3eTBFOIFTOAcXbqEGD1CHJlBAeIYXeLW09Wa9Wx+L1oKVzxzDH1mfP5rkkPE=</latexit><latexit sha1_base64="gWlJNE8f+zuzEfx5objQHvB8H9M=">AAAB8nicbZDLSsNAFIZP6q3WW9Wlm2ARXEhJxNuy4MZlC/YCbSiT6Uk7dDIJM5NiCX0Ct7pxJ259IcGHcZpmoa0/DHyc/xzmnN+POVPacb6swtr6xuZWcbu0s7u3f1A+PGqpKJEUmzTikez4RCFnApuaaY6dWCIJfY5tf3w/99sTlIpF4lFPY/RCMhQsYJRoU2pc98sVp+pkslfBzaECuer98ndvENEkRKEpJ0p1XSfWXkqkZpTjrNRLFMaEjskQuwYFCVFdqMkwAy99ylae2WfGG9hBJM0T2s6qv2dTEio1DX3TGRI9UsvevPif1010cOelTMSJRkEXHwUJt3Vkz++3B0wi1XxqgFDJzNY2HRFJqDYplUwc7vLxq9C6rLpO1W1cVWo3eTBFOIFTOAcXbqEGD1CHJlBAeIYXeLW09Wa9Wx+L1oKVzxzDH1mfP5rkkPE=</latexit><latexit sha1_base64="gWlJNE8f+zuzEfx5objQHvB8H9M=">AAAB8nicbZDLSsNAFIZP6q3WW9Wlm2ARXEhJxNuy4MZlC/YCbSiT6Uk7dDIJM5NiCX0Ct7pxJ259IcGHcZpmoa0/DHyc/xzmnN+POVPacb6swtr6xuZWcbu0s7u3f1A+PGqpKJEUmzTikez4RCFnApuaaY6dWCIJfY5tf3w/99sTlIpF4lFPY/RCMhQsYJRoU2pc98sVp+pkslfBzaECuer98ndvENEkRKEpJ0p1XSfWXkqkZpTjrNRLFMaEjskQuwYFCVFdqMkwAy99ylae2WfGG9hBJM0T2s6qv2dTEio1DX3TGRI9UsvevPif1010cOelTMSJRkEXHwUJt3Vkz++3B0wi1XxqgFDJzNY2HRFJqDYplUwc7vLxq9C6rLpO1W1cVWo3eTBFOIFTOAcXbqEGD1CHJlBAeIYXeLW09Wa9Wx+L1oKVzxzDH1mfP5rkkPE=</latexit><latexit sha1_base64="gWlJNE8f+zuzEfx5objQHvB8H9M=">AAAB8nicbZDLSsNAFIZP6q3WW9Wlm2ARXEhJxNuy4MZlC/YCbSiT6Uk7dDIJM5NiCX0Ct7pxJ259IcGHcZpmoa0/DHyc/xzmnN+POVPacb6swtr6xuZWcbu0s7u3f1A+PGqpKJEUmzTikez4RCFnApuaaY6dWCIJfY5tf3w/99sTlIpF4lFPY/RCMhQsYJRoU2pc98sVp+pkslfBzaECuer98ndvENEkRKEpJ0p1XSfWXkqkZpTjrNRLFMaEjskQuwYFCVFdqMkwAy99ylae2WfGG9hBJM0T2s6qv2dTEio1DX3TGRI9UsvevPif1010cOelTMSJRkEXHwUJt3Vkz++3B0wi1XxqgFDJzNY2HRFJqDYplUwc7vLxq9C6rLpO1W1cVWo3eTBFOIFTOAcXbqEGD1CHJlBAeIYXeLW09Wa9Wx+L1oKVzxzDH1mfP5rkkPE=</latexit>

(i) Determine whether A is reducible or irreducible.

• If A is reducible, compute a permutation matrix P ∈ {0, 1}6×6
such that

PAPT =

[
Br×r Cr×(n−r)

0(n−r)×r D(n−r)×(n−r)

]
, (E5.1)

for some matrices B,C,D and r ≥ 1. Moreover, determine an edge to be added or removed from G, so
that the accordingly modified adjacency matrix becomes irreducible.

• If A is irreducible, determine an edge to be added or removed from G so that the accordingly modified

adjacency matrix becomes reducible and compute the corresponding permutation matrix P as in (E5.1).
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(ii) Design a new weighted digraph G′
with weighted adjacency matrix A′

by starting with G and performing only

the following actions:

• either add or remove (not both) a single edge from the digraph G, and
• select the weight of each edge of G′

to be any real value of your choice.

Consider the iteration xk+1 = A′xk, for xk ∈ R6
and k ∈ Z≥0, and design a weighted digraph G′

so that

limk→∞ xk = α16, for some α ∈ R.

▶ E5.4 The equal-neighbor model over undirected topologies. Given an irreducible symmetric non-negative matrix

A ∈ Rn×n and a vector x ∈ Rn>0, define

B(x) = diag(Ax)−1A diag(x). (E5.2)

Show that

(i) the matrix B(x) is well-defined and row-stochastic with same irreducible off-diagonal pattern as A,

(ii) has dominant left eigenvector π(x) = 1
xTAx

diag(x)Ax, and

(iii) is reversible, that is, diag(π(x))B(x) = B(x)T diag(π(x)).

Note: This classic result in Markov chain theory is related to Markov chains with maximal entropy (George et al., 2019).

E5.5 The equal-neighbor row-stochastic matrix for weighted directed graphs. Let G be a weighted digraph with n
nodes, weighted adjacency matrix A and weighted out-degree matrix Dout. Define the equal-neighbor-after-addition
matrix

Aequal-nghbr = (In +Dout)
−1(In +A).

Show that

(i) Aequal-nghbr is row-stochastic;

(ii) Aequal-nghbr is primitive if and only if G is strongly connected; and

(iii) Aequal-nghbr is doubly-stochastic if G is weight-balanced and the weighted degree is constant for all nodes (i.e.,

Dout = Din = dIn for some d ∈ R>0).

E5.6 A stubborn individual. Pick α ∈ ]0, 1[, and consider the discrete-time averaging algorithm

x1(k + 1) = x1(k),

x2(k + 1) = αx1(k) + (1− α)x2(k).

Perform the following tasks:

(i) compute the matrix A representing this algorithm and verify it is row-stochastic,

(ii) compute the eigenvalues and left and right eigenvectors of A,

(iii) draw the directed graph G representing this algorithm and discuss its connectivity properties,

(iv) draw the condensation digraph of G,

(v) compute the final value of this algorithm as a function of the initial values in two alternate ways:

a) invoking Exercise E2.9, and

b) invoking Theorem 5.1.

E5.7 Individuals with self-confidence levels. Consider 2 individuals, labeled+1 and−1, described by the self-confidence
levels s+1 and s−1. Assume s+1 ≥ 0, s−1 ≥ 0, and s+1 + s−1 = 1. For i ∈ {+1,−1}, define

x+i := sixi + (1− si)x−i.

Perform the following tasks:

(i) compute the matrix A representing this algorithm and verify it is row-stochastic,

(ii) compute A2
,

(iii) compute the eigenvalues, the right eigenvectors, and the left eigenvectors of A,
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(iv) compute the final value of this algorithm as a function of the initial values and of the self-confidence levels. Is it

true that an individual with higher self-confidence makes a larger contribution to the final value?

E5.8 Rescaling row stochastic matrices and left dominant eigenvectors. Let A ∈ Rn×n be row-stochastic and

irreducible with dominant left eigenvector v ∈ Rn>0 (not necessarily normalized). Given x ∈ Rn, define

A(x) = diag(x) + (In − diag(x))A ∈ Rn×n.

Show that

(i) A(x) is row-stochastic and has the same irreducible off-diagonal pattern as A if and only if x ∈ [0, 1[n.

Next, assume x ∈ [0, 1[n and show

(ii) if A is primitive, then so is A(x),

(iii) a left dominant eigenvector of A(x) is v(x) = (In − diag(x))−1v,

(iv) w ∈ Rn>0 (not necessarily normalized) is a left dominant eigenvector of A(x) if and only if

x = 1n − β diag(w)−1v ∈ [0, 1[n, for 0 < β ≤ min
i∈{1,. . .,n}

wi/vi.

▶ E5.9 The rank-one projection matrix defined by a primitive matrix. From linear algebra recall:

• a square matrix B is a projection matrix if B2 = B,

• a vector space V is the direct sum of two subspaces U andW , written V = U ⊕W , if each v ∈ V defines unique

u ∈ U and w ∈W such that v = u+ w, and

• a subspace U is invariant under a linear map B if u ∈ U implies Bu ∈ U .

Let A be an n-dimensional primitive matrix with dominant eigenvalue λ, right dominant eigenvector v > 0 and left

dominant eigenvector w > 0 with the normalization vTw = 1. Define the rank-one matrix PA := vwT
. Show that:

(i) PA = P 2
A is a projection matrix with image span{v} and it is an orthogonal projection if A is symmetric,

(ii) In−PA = (In−PA)2 is a projection matrix whose image is kernel(PA) = {q ∈ Rn | wTq = 0} = span{w}⊥,
(iii) APA = PAA = λPA,

(iv) Rn = span{v} ⊕ span{w}⊥ and both subspaces span{v} and span{w}⊥ are invariant under A,

(v) the restriction of A to the span{v} is multiplication by λ and the restriction of A to span{w}⊥ has eigenvalues

equal to all eigenvalues of A except λ, and

(vi) (A− λvwT)k = Ak − λkvwT
for all k ∈ N.

Note: In some references, the matrix PA is referred to as the spectral projector of A associated to the eigenvalue λ.

E5.10 Bounds on the norm of a matrix power. Given a matrix B ∈ Rn×n and an index k ∈ N, show that

(i) there exists c > 0 such that

∥Bk∥2 ≤ c kn−1ρ(B)k,

(ii) for all ε > 0, there exists cε > 0 such that

∥Bk∥2 ≤ cε(ρ(B) + ε)k.

Hint: Use the Jordan normal form.

E5.11 Average consensus via the parallel averaging algorithm. Let G be a weighted graph with weighted adjacency

matrix A and weighted degrees d1, . . . , dn. Assume G is connected and aperiodic and consider the equal-neighbor

matrix Aen = diag(d1, . . . , dn)
−1A. Assign a value xi ∈ R to each node i and consider the parallel averaging

algorithm:
1: each node i sets yi(0) = 1/di and zi(0) = xi/di
2: the nodes run the averaging algorithms y(k + 1) = Aeny(k) and z(k + 1) = Aenz(k) for k ∈ Z≥0

3: each node i sets xi(k) = zi(k)/yi(k) at each k ∈ Z≥0

Show that the parallel averaging algorithm
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(i) is well posed, i.e., yi(k) does not vanish for any i ∈ {1, . . . , n} and k ∈ Z≥0, and

(ii) achieves average consensus, that is, limk→∞ x(k) = average(x1, . . . , xn)1n.

Note: This algorithm is also referred to as the push sum iteration, because it may implemented over directional communi-
cation by “summing the pushed variables.” This algorithm was originally introduced by Kempe et al. (2003) and later
studied in (Olshevsky and Tsitsiklis, 2009; Benezit et al., 2010).

E5.12 Computing centrality. Write in your favorite programming language algorithms to compute degree, eigenvector,

Katz and PageRank centralities. Compute these four centralities for the following undirected unweighted graphs

(without self-loops):

(i) the complete graph with 5 nodes;

(ii) the cycle graph with 5 nodes;

(iii) the star graph with 5 nodes; and

(iv) the Zachary karate club network dataset. This dataset can be found for example at https://en.wikipedia.org/
wiki/Zachary%27s_karate_club.

To compute the PageRank centrality, use α = .85. To compute the Katz centrality of a matrix A, select for example

α = 1/(2ρ(A)).

E5.13 Iterative computation of Katz centrality. Given a graph with adjacency matrix A, show that the solution to the

iteration x(k + 1) := αAT(x(k) + 1n) with α < 1/ρ(A) converges to the Katz centrality vector cK, for all initial
conditions x(0).

E5.14 Robotic coordination: deployment and centering as a discrete-time reducible averaging systems. Consider
n ≥ 3 robots with positions pi ∈ R, i ∈ {1, . . . , n}, dynamics pi(k + 1) = ui(k), where ui ∈ R is a steering control

input. Assume that the robots are indexed according to their initial position: p1(0) ≤ p2(0) ≤ · · · ≤ pn(0). Consider
two walls at the positions p0 ≤ p1(0) and pn+1 ≥ pn(0) so that all robots are contained between the walls. The walls

are stationary, that is, p0(k + 1) = p0(k) = p0 and pn+1(k + 1) = pn+1(k) = pn+1 for all times k.
Consider the following coordination law: robots i ∈ {1, . . . , n} (each having two neighbors) move to the centroid

of the local subset {pi−1, pi, pi+1} or, in other words,

pi(k + 1) =
1

3
(pi−1(k) + pi(k) + pi+1(k)) , i ∈ {1, . . . , n} .

Show that the robots become asymptotically uniformly spaced on the interval [p0, pn+1].

E5.15 Hubs and authorities (Kleinberg, 1999). Let G be a digraph with node set {1, . . . , n} and edge set E. Assume G
has a globally reachable node and the subgraph of globally reachable nodes is aperiodic.

We define two scores for each node j ∈ {1, . . . , n}: the hub score hj ∈ R and the authority score aj ∈ R. We

initialize these scores with positive values and updated them simultaneously as follows: the hub score of node j is set
equal to the sum of the authority scores of all nodex pointed to by j, and, similarly, the authority score of node j is set
equal to the sum of the hub scores of all nodes pointing to j. In concise formulas, for k ∈ N,

{
hj(k + 1) =

∑
i: (j,i)∈E ai ,

aj(k + 1) =
∑
i: (i,j)∈E hi .

(E5.3)

(i) Let x(k) =
[
h(k)T a(k)T

]T
denote the stacked vector of hub and authority scores. Provide an update equation

for the hub and authority scores of the form

x(k + 1) =Mx(k),

for some matrixM ∈ R2n×2n
.

(ii) Will the sequence x(k) converge as k → ∞?

In what follows, we consider the modified iteration

y(k + 1) =
My(k)

∥My(k)∥2
,

whereM is defined as in statement (i) above.
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(iii) Will the sequence y(k) converge as k → ∞?

(iv) Show that the two subsequences of even and odd iterates {y(2k)}k and {y(2k + 1)}k converge, that is,

lim
k→∞

y(2k) = yeven(y0), lim
k→∞

y(2k + 1) = yodd(y0),

where y0 = x(0) is the stacked vector of initial hub and authority scores.

(v) Provide expressions for yeven(y0) and yodd(y0).

E5.16 Reversible primitive row-stochastic matrices. Let A be a primitive row-stochastic n× n matrix and w be its left

dominant eigenvector. The matrix A is reversible if

wiAij = Ajiwj , for all i, j ∈ {1, . . . , n}, (E5.4)

or, equivalently,

diag(w)A = AT diag(w).

Prove the following statements:

(i) if A is reversible, then its associated digraph is undirected, that is, if (i, j) is an edge, then so is (j, i),

(ii) if A is reversible, then diag(w)1/2Adiag(w)−1/2
is symmetric and, hence, A has n real eigenvalues and n

eigenvectors, and

(iii) if A is an equal-neighbor matrix for an unweighted undirected graph, then A is reversible.

Recall that, for w = (w1, . . . , wn) > 0, the following definitions hold:

diag(w)1/2 = diag(
√
w1, . . . ,

√
wn), and diag(w)−1/2 = diag(1/

√
w1, . . . , 1/

√
wn).

E5.17 Maximum entropy random walk (Burda et al., 2009). Let G be an unweighted connected graph with binary

adjacency matrix A ∈ {0, 1}n. Let (λ, v) be the dominant eigenpair, i.e, Av = λv and 1T
nv = 1. Similarly to E4.13,

define the square matrix P by

pij =
1

λ

vj
vi
aij , for i, j ∈ {1, . . . , n}.

Perform the following tasks:

(i) show that P is well defined, row stochastic, and irreducible,

(ii) pick i, j ∈ {1, . . . , n} and k ≥ 1. Assuming there exists a walk of length k from i to j, let c
[k]
ij denote the

product of the edge weights along the walk and show that

c
[k]
ij =

1

λk
vj
vi
,

(iii) let w > 0 be the left dominant eigenvector of P , normalized so that 1T
nw = 1, and show that

wi =
1

∥v∥22
v2i .

E5.18 The role of the nodal degree in averaging systems. Let G be an connected undirected graph without self-loops.

Consider the averaging dynamics:

x(k + 1) = Ax(k),

where A = D−1A01, D is the degree matrix, and A01 is the binary adjacency matrix of G.

(i) Under which conditions on G will the system converge to a final consensus state, i.e., an element of span{1n}?
(ii) Assuming the state converges to a final consensus value, what is this steady state value?

(iii) Find a function f(k, λ2, . . . , λn, d1, . . . , dn) depending on the time step k, the eigenvalues λ2, . . . , λn of A,
and the degrees of the nodes d1, . . . , dn such that

∥e(k)∥2 ≤ f(k, λ2, . . . , λn, d1, . . . , dn)∥e(0)∥2.
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E5.19 On the Metropolis-Hastings algorithm. This exercise generalize the treatment in Section 5.4.2. Consider an

irreducible n× n row-stochastic matrix A satisfying the symmetric structure condition: aij ̸= 0 if and only if aji ̸= 0,
for all i, j. Given a positive unit-sum vector π (i.e., πi > 0 and

∑n
i=1 πi = 1), define the Metropolis–Hastings matrix

M by

Mij =

{
aij min(1, Rij), if i ̸= j,

aii +
∑
k ̸=i aik(1−min(1, Rik)), if i = j,

(E5.5)

where Rij =
πjaji
πiaij

for all i, j such aij ̸= 0, and Rij = 1 otherwise. Show

(i) M is row-stochastic with the same topology as A,

(ii) πiMij = πjMji, that is,M is reversible, and

(iii) πTM = πT
.

Note: The Metropolis algorithm was introduced by Metropolis et al. (1953) and extended to non-symmetric matrices
by Hastings (1970); (Billera and Diaconis, 2001) contains a geometric interpretation and (Bierkens, 2016) a non-reversible
extension. RegardingM as the transition matrix of a Markov chain, equation (E5.5) has the following interpretation: from
node i, choose node j with probability aij and accept this choice with probabilitymin(1, Rij), otherwise remain at node i.

E5.20 Approximate optimization via random walks with Metropolis filter. Given a finite set V , consider an opti-

mization problem with objective function f : V → R≥0. In order to amplify the differences in f , define a function
F : V → R≥0 by F (v) = exp(f(v)/T ) for 0 < T ≪ 1. We now design an algorithm that allows us to draw a random

sample from a distribution over V proportional to F ; such an algorithm therefore allows us to pick a good solution to

the optimization problem with high probability.

Given a regular graph with node set V , define the Metropolis-filtered random walk over V in the following two-step

process. Let vk denote the node visited at time k. First, select uniformly a random neighbor u of vk. Second, if
F (u) ≥ F (vk), then move to u; otherwise, move to u with probability F (u)/F (vk) and stay at vk with probability

1 − F (u)/F (vk). Show that the Metropolis-filtered random walk is a reversible Markov chain with stationary

distribution π satisfying

π(v) =
F (v)∑

w∈V F (w)
. (E5.6)

Note: The Metropolis-filtered algorithm is due to Metropolis et al. (1953) and nicely reviewed by Lovász (1993). Note that
an explicit representation of the graph G is not required.

E5.21 Balanced vectors as positive sums of appropriate basis vectors. Two vectors v, w ∈ Rn are sign compatible if
viwi ≥ 0 for all i ∈ {1, . . . , n}. If v and w are sign compatible, then

∥v + w∥1 = ∥v∥1 + ∥w∥1. (E5.7)

Being sign compatible is transitive, that is, if v and w are sign compatible and w and z are sign compatible, then also v
and z are sign compatible.

Consider a vector x ∈ Rn such that 1T
nx = 0. Then there exist nonnegative coefficients yij ≥ 0, i, j ∈ {1, . . . , n},

i ̸= j, such that

(i) x = 1
2

∑n

i,j=1
yij(ei − ej),

(ii) x and each yij(ei − ej) are sign compatible, and

(iii) ∥x∥1 =
∑n

i,j=1,i̸=j
yij .

Note: This exercise is (Seneta, 1981, Lemma 2.4 at page 62).

E5.22 Equivalent definitions of the 1-coefficient of ergodicity. Given a row-stochastic matrix A, show that the

expressions for τ1(A) in equation (5.15) in Section 5.3 are equal, i.e., prove that

max
∥y∥1=1,y⊥1n

∥ATy∥1 =
1

2
max

i,j∈{1,. . .,n}

n∑

h=1

|aih − ajh| = 1− min
i,j∈{1,. . .,n}

n∑

h=1

min{aih, ajh}.
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E5.23 An alternative ergodicity coefficient. Given a row-stochastic matrix A ∈ Rn×n, define its column-maximum
row-minimum entry, denoted γ(A), by

γ(A) = max
j∈{1,. . .,n}

min
i∈{1,. . .,n}

aij ∈ [0, 1]. (E5.8)

It is useful to clarify how to compute this quantity: for each column j the quantity bj = mini aij is the smallest entry

over the n rows, and then γ(A) = maxj bj is the largest of these entries over the n columns. Show that

(i) for all x ∈ Rn, the max-min function satisfies

Vmax-min(Ax) ≤
(
1− γ(A)

)
Vmax-min(x);

(ii) γ(A) > 0 if and only if A has a strictly positive column;

(iii) if there exists an index h ∈ N such that Ah has a positive column, then k 7→ Vmax-min(x(k)) converges
exponentially fast to zero in the sense that, for all time k ∈ N,

Vmax-min(x(k)) ≤
(
1− γ(Ah)

)
︸ ︷︷ ︸

<1

⌊k/h⌋
Vmax-min(x(0)).

E5.24 Perturbation bounds on the left dominant eigenvector. Let A and A+∆ be row-stochastic and irreducible; let

v(A) and v(A+∆) denote their left dominant eigenvectors, normalized to have unit sum. If A is scrambling so that

τ1(A) < 1, then

∥v(A)− v(A+∆)∥1 ≤ ∥∆∥∞
1− τ1(A)

. (E5.9)

Note: This result is originally by Seneta (1988). A comparison of various perturbation bounds, also referred to sensitivity
bounds or condition numbers, is given by Cho and Meyer (2001).

Exercises with solution

E5.25 Necessary and sufficient conditions for semi-convergence. With the same notation as in Theorem 5.2, prove that

the following three properties are equivalent:

(A1) the eigenvalue 1 is semi-simple with multiplicity ns and all other eigenvalues µ satisfy |µ| < 1,

(A2) A is semi-convergent,

(A3) each sink of the condensation of G, regarded as a subgraph of G, is aperiodic.

Note: Gantmacher (1959) calls "regular" the semi-convergent row-stochastic matrices and "fully regular" the semi-
convergent row-stochastic matrices whose limiting matrix has rank one, i.e., the indecomposable row-stochastic matrices.
Answer: The equivalence (A1) ⇐⇒ (A2), is a consequence of Theorem 2.7, where necessary and sufficient conditions

for semi-convergence are given on the spectrum of A. In this case A is row-stochastic so that 1 is an eigenvalue.

(Recall Theorem 2.7 states that A is semi-convergent if and only if 1 is semi-simple and all other eigenvalues have

magnitude less than 1.) In the implication (A2) =⇒ (A1), the fact that the multiplicity is ns can be seen by writing

the matrix in its Jordan normal form.

Regarding (A3) =⇒ (A1): This statement amounts to one of the claims of Theorem 5.2, for which we provide a

full proof here. Suppose each sink of the condensation of G, viewed as a subgraph of G, is aperiodic. By definition,

each sink of the condensation of G, viewed as a subgraph of G, has no outgoing edges. Thus, if we reorder A by a

permutation which groups each of the ns sinks of the condensation of G, A has the following block structure:

PAPT =




A11 0 . . . 0 0
0 A22 . . . 0 0
.
.
.

.

.

.
.
.
.

.

.

.

.

.

.

0 0 . . . Ansns
0

AU1 AU2 . . . AUns
AUU



.
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Since PAPT
is row-stochastic (PAPT1n = PA1n = P1n = 1n), we also have that the constituent diagonal blocks

A11, A22, . . . , Ansns
are row-stochastic. If we consider the collection of nodes U which do not belong to any of

the ns sinks, there must be an out-going edge from U or else one of those nodes would belong to a sink. Thus,[
AU1 AU2 . . . AUns

]
̸= 0 and the matrix AUU is thus row substochastic. Every node i in U must have a walk

to a node j belonging to a sink. Clearly, j is not in U . But then every i must have a walk to a node k with a directed

edge to a node not in U . Thus, by Corollary 4.13, AUU is convergent: ρ(AUU ) < 1.
Since each sink of the condensation of G is strongly connected (since every node in the condensation is a maximal

strongly connected component) and aperiodic (by hypothesis) when viewed as a subgraph of G, each of the matrices

A11, A22, . . . , Ansns
is primitive by Theorem 4.7 and thus have 1 as a strictly dominant eigenvalue by the Perron–

Frobenius Theorem 2.12.

Since the eigenvalues of a block triangular matrix are the union of the eigenvalues of the blocks and the eigenvalues

of a matrix are invariant under a symmetric permutation (or indeed any similarity transformation), A has eigenvalue

1 with multiplicity ns and all other eigenvalues strictly smaller in magnitude. Moreover, since 1 has multiplicity one

in each of the ns blocks A11, . . . , Ansns
, 1 is semisimple.

Regarding (A1) =⇒ (A3), suppose that 1 is a semisimple eigenvalue of multiplicity ns and all other eigenvalues are
strictly smaller. Consider the block structure of PAPT

shown above. Recall that the eigenvalues of A are the union of

the eigenvalues of the diagonal blocks A11, A22, . . . , Ansns
, AUU . Since A11, A22, . . . , Ansns

are row stochastic and

thus have eigenvalue 1, we conclude that all of the eigenvalues of AUU are smaller than 1, ρ(AUU ) < 1, and that

A11, A22, . . . , Ansns
all have simple eigenvalue 1 with all eigenvalues strictly smaller than 1.

Now, assume by contradiction that the jth sink S of the condensation of G, viewed as a subgraph of G, is periodic

with period k. Define B := Ajj . Pick any node k in S and assign each node ℓ in S a number between 0 and k − 1
defined to be the length of any directed walk from k to ℓ modulo the period k. Since S is a node in the condensation

of G, S is strongly connected so every node has a number. The number of a node is well-defined since if there are

walks of length p and p′ from k to ℓ, then concatenating with a walk of length L from ℓ to k (which exists because S
is strongly connected) gives cycles with lengths p+ L and p′ + L. Since p+ L and p′ + L are both multiples of k,
p− p′ is as well so p and p′ have the same remainder modulo k.

Notice that all edges from nodes with number m must be to nodes with number (m + 1) mod k. Thus, after
permuting B such that the nodes with the same number are grouped together, we have

PBPT =




0 B01 0 . . . 0 0
0 0 B12 . . . 0 0
0 0 0 . . . 0 0
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

0 0 0 . . . 0 B(k−2)(k−1)

B(k−1)0 0 0 . . . 0 0



.

Since B is row stochastic (and so is PBPT
) we have that 1|S| is an eigenvector of PBPT

with eigenvalue 1. This
implies that Bi(i+1)1|S|/p = 1|S|/p for 0 ≤ i ≤ k − 2 and B(k−1)01|S|/p = 1|S|/p. Define the primitive kth root of

unity ω := exp(2πi/|S|) where i =
√
−1 is the imaginary unit. Observe that ωk = 1. Then

PBPT




1|S|/p
ω1|S|/p
ω21|S|/p

.

.

.

ωk−21|S|/p
ωk−11|S|/p



=




0 B01 0 . . . 0 0
0 0 B12 . . . 0 0
0 0 0 . . . 0 0
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

0 0 0 . . . 0 B(k−2)(k−1)

B(k−1)0 0 0 . . . 0 0







1|S|/p
ω1|S|/p
ω21|S|/p

.

.

.

ωk−21|S|/p
ωk−11|S|/p




= ω




1|S|/p
ω1|S|/p
ω21|S|/p

.

.

.

ωk−21|S|/p
ωk−11|S|/p



.
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Thus ω is an eigenvalue ofB with |ω| = 1, contradicting the fact that all eigenvalues ofB other than 1 have magnitude

smaller than 1. Thus, we conclude that each of the sinks of the condensation of G must be aperiodic.

E5.26 Persistent disagreement in the opinion dynamics model by Friedkin and Johnsen (1999). Let A be a row-

stochastic matrix whose associated digraph describes an interpersonal influence network. Let each individual possess

an openness level λi ∈ [0, 1], i ∈ {1, . . . , n}, describing how open is the individual to changing her initial opinion

about a subject; set Λ = diag(λ1, . . . , λn). Consider the Friedkin-Johnsen model of opinion dynamics

x(k + 1) = ΛAx(k) + (In − Λ)x(0). (E5.1)

In other words, in this model, each individual i exhibits an attachment (1 − λi) to its initial opinion xi(0), xi(k)
represents the current opinion and xi(0) represents a prejudice by individual i. Consider the following two assumptions:

(A1) at least one individual has a strictly positive attachment to its initial opinion, that is, λi < 1 for at least one

individual i; and

(A2) the interpersonal influence network contains directed walks from each individual with openness level equal to 1
to an individual with openness level less than 1.

Note that, if Assumption (A1) is not satisfied and therefore Λ = In, then we recover the French-Harary-DeGroot

opinion dynamics model introduced in Section 1.1 and analyzed in this chapter. In what follows, let Assumption (A1)

hold.

(i) Show that the matrix ΛA is convergent if and only if Assumption (A2) holds.

Hint: Recall Corollary 4.13

Next, under Assumption (A2), perform the following tasks:

(ii) show that the so-called total influence matrix V = (In − ΛA)−1(In − Λ) is well-defined and row-stochastic,

Hint: Review Exercises E2.9 and E2.11
(iii) show that the limiting opinions satisfy limk→+∞ x(k) = V x(0),

(iv) show that A and V have the same left dominant eigenvector when Λ = λIn, for 0 < λ < 1,

(v) compute the matrix V and state whether two individuals will achieve consensus or maintain persistent disagree-

ment for the following pairs of matrices:

A1 =

[
1/2 1/2
1/2 1/2

]
, and Λ1 = diag(1/2, 1),

A2 =

[
1/2 1/2
1/2 1/2

]
, and Λ2 = diag(1/4, 3/4).

Note: Friedkin and Johnsen (1999, 2011) make the additional assumption that λi = 1 − aii, for i ∈ {1, . . . , n}; this
assumption couples the openness level with the interpersonal influences and has the effect of enhancing stubborness of the
individuals. This assumption is not needed here. The model (E5.1) is also referred to the averaging model with stubborn
individuals. Other properties of this model are studied in (Bindel et al., 2015; Friedkin et al., 2016; Ravazzi et al., 2015).

Answer: We start by proving fact (i). Because at least one individual i has λi < 1 for some i, then at least one of the

rows of ΛA has sum less than 1 and so ΛA is row-substochastic. Assumption (A2) states that the digraph associated

to ΛA contains directed walks from each node with out-degree equal to 1 to a node with out-degree less than 1 in ΛA.
But this property of the digraph is precisely a necessary a sufficient condition for ΛA to be convergent, as stated in

Corollary 4.13

Next we prove statement (ii). Since ΛA is convergent, we know from Exercise E2.9 that In−ΛA is invertible. From

Exercise E2.11 on the Neumann series, we write the matrix V as

V =

∞∑

k=0

(ΛA)k(In − Λ). (E5.2)
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The entries of V are non-negative because V is the infinite convergent sum of non-negative matrices. Next, because

A is stochastic, we reason:

(In − Λ)1n = (In − Λ)1n
=⇒ (In − ΛA)1n = (In − Λ)1n

=⇒ 1n = (In − ΛA)−1(In − Λ)1n,

so that V = (In − ΛA)−1(In − Λ) has row-sums equal to 1. Hence V is well-defined and row-stochastic.

Next, statement (iii) is an immediate consequence of Exercise E2.9: every solution to an affine system x(k + 1) =
Ax(k) + b, with A convergent, will converge to the unique equilibrium point (In −A)−1b. With the notation here,

the unique equilibrium point is (In − ΛA)−1(In − Λ)x(0) = V x(0).
Regarding statement (iv), let w be the left dominant eigenvector of A, that is, wTA = wT

and left-multiply

equation (E5.2) by w to obtain:

wTV = wT
∞∑

k=0

(λA)k(In − λIn) = (1− λ)wT
∞∑

k=0

λkAk

= (1− λ)
( ∞∑

k=0

λk
)
(wTAk) = (1− λ)

( 1

1− λ

)
wT = wT.

For statement (v), with the help of a computer, we easily compute V to be, respectively

V1 =

[
1 0
1 0

]
, and V2 =

[
15/16 1/16
9/16 7/16

]
,

so that consensus is achieved in the first case, but not in the second case for generic initial opinions.
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Chapter6

The Laplacian Matrix

The previous chapters studied adjacency matrices and their application to discrete-time averaging dynamics. This

chapter introduces and characterizes a second relevant matrix associated to a digraph, called the Laplacian matrix.

Laplacian matrices appear in numerous applications and enjoy numerous useful properties.

6.1 The Laplacian matrix

Definition 6.1 (Laplacian matrix of a digraph). Given a weighted digraph G with adjacency matrix A and
out-degree matrix Dout = diag(A1n), the Laplacian matrix of G is

L = Dout −A.

In components L = (ℓij)i,j∈{1,. . .,n}

ℓij =





−aij , if i ̸= j,
n∑

h=1,h̸=i

aih, if i = j,

or, for an unweighted undirected graph,

ℓij =





−1, if {i, j} is an edge and not a self-loop,

d(i), if i = j,

0, otherwise.

An example is illustrated in Figure 6.1.

1.2

4.4

8.9

2.3

3.7

4.4

2

31 5

4

2.6
<latexit sha1_base64="fT7KEWt2cPfhU91YkPTMkY+6poc=">AAAB9HicbZDLSsNAFIZP6q3WW9Wlm8EidCEhqaIuC25cVrQXaEOZTCfp0MkkzEyKpfQR3OrGnbj1fQQfxmmahbYeGPj4/3M4Z34/4Uxpx/myCmvrG5tbxe3Szu7e/kH58Kil4lQS2iQxj2XHx4pyJmhTM81pJ5EURz6nbX90O/fbYyoVi8WjniTUi3AoWMAI1kZ6qNlX/XLFsZ2s0Cq4OVQgr0a//N0bxCSNqNCEY6W6rpNob4qlZoTTWamXKppgMsIh7RoUOKLqXI3DDLzpU3b0DJ0Zb4CCWJonNMrU37NTHCk1iXzTGWE9VMveXPzP66Y6uPGmTCSppoIsFgUpRzpG8wTQgElKNJ8YwEQyczUiQywx0SankonDXf78KrRqtnthO/eXlXo1D6YIJ3AKVXDhGupwBw1oAoEQnuEFXq2x9Wa9Wx+L1oKVzxzDn7I+fwB4pZFa</latexit>

1.9
<latexit sha1_base64="3bXv2RtsRX6tUN0t5BfXOf8b6+I=">AAAB9HicbZDLSsNAFIZPvNZ6q7p0M1iELiQkKqi7ghuXFe0F2lAm00k6dDIJM5NiCX0Et7pxJ259H8GHcZpmoa0HBj7+/xzOmd9POFPacb6sldW19Y3N0lZ5e2d3b79ycNhScSoJbZKYx7LjY0U5E7Spmea0k0iKI5/Ttj+6nfntMZWKxeJRTxLqRTgULGAEayM9uPZNv1J1bCcvtAxuAVUoqtGvfPcGMUkjKjThWKmu6yTay7DUjHA6LfdSRRNMRjikXYMCR1SdqXGYg5c95UdP0anxBiiIpXlCo1z9PZvhSKlJ5JvOCOuhWvRm4n9eN9XBtZcxkaSaCjJfFKQc6RjNEkADJinRfGIAE8nM1YgMscREm5zKJg538fPL0Dq33Qvbub+s1mtFMCU4hhOogQtXUIc7aEATCITwDC/wao2tN+vd+pi3rljFzBH8KevzB3u/kVw=</latexit>

2.7
<latexit sha1_base64="bow67AvubBOYZ7rwFHnYI3XI9ZM=">AAAB9HicbZDLSsNAFIZP6q3WW9Wlm8EidCEhqUJdFty4rGgv0IYymU7SoZNJmJkUS+kjuNWNO3Hr+wg+jNM0C209MPDx/+dwzvx+wpnSjvNlFTY2t7Z3irulvf2Dw6Py8UlbxakktEViHsuujxXlTNCWZprTbiIpjnxOO/74duF3JlQqFotHPU2oF+FQsIARrI30ULPrg3LFsZ2s0Dq4OVQgr+ag/N0fxiSNqNCEY6V6rpNob4alZoTTeamfKppgMsYh7RkUOKLqUk3CDLzZU3b0HF0Yb4iCWJonNMrU37MzHCk1jXzTGWE9UqveQvzP66U6uPFmTCSppoIsFwUpRzpGiwTQkElKNJ8awEQyczUiIywx0SankonDXf38OrRrtntlO/fXlUY1D6YIZ3AOVXChDg24gya0gEAIz/ACr9bEerPerY9la8HKZ07hT1mfP3ozkVs=</latexit> L =




6.3 −3.7 −2.6 0 0
−8.9 10.1 0 −1.2 0
0 0 4.2 −1.9 −2.3
0 0 0 0 0

−4.4 0 0 −2.7 7.1



.

Figure 6.1: A weighted digraph and its Laplacian matrix
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As a second example, we consider the complete undirected graphKn. Recall from Table 4.1 that the adjacency

matrix is AKn = 1n1T
n − In and that each node has degree n− 1. Given the projection matrix Πn = In − 1

n1n1T
n

from Section 5.3, we compute the Laplacian ofKn to be

LKn = (n− 1)In − (1n1T
n − In) = nIn − 1n1T

n = nΠn. (6.1)

Note:

(i) the sign pattern of L is important — diagonal elements are non-negative (zero or positive) and off-diagonal

elements are non-positive (zero or negative);

(ii) the Laplacian matrix L of a digraph G does not depend upon the existence and values of self-loops in G;

(iii) the graph G is undirected (i.e., symmetric adjacency matrix) if and only if L is symmetric. In this case,

Dout = Din = D and A = AT
;

(iv) in a directed graph, ℓii = 0 (instead of ℓii > 0) if and only if node i has zero out-degree;

(v) L is said to be irreducible if G is strongly connected.

We conclude this section with some useful equalities. We start with the obvious

(Ax)i =
n∑

j=1

aijxj . (6.2)

First, for x ∈ Rn,

(Lx)i =

n∑

j=1

ℓijxj = ℓiixi +

n∑

j=1,j ̸=i
ℓijxj =

( n∑

j=1,j ̸=i
aij

)
xi +

n∑

j=1,j ̸=i
(−aij)xj

=
n∑

j=1,j ̸=i
aij(xi − xj) =

∑

j∈N out(i)

aij(xi − xj). (6.3)

Additionally, if G has no self-loops and dout(i) =
∑

j∈N out(i) aij > 0, then the values

{aij/dout(i), for all out-neighbors j}

are convex combination coefficients defining a weighted average and

(Lx)i = dout(i)
(
xi − weighted-average({xj , for all out-neighbors j})

)
,

for unit weights

= dout(i)
(
xi − average({xj , for all out-neighbors j})

)
.

Second, assume L = LT
(i.e., aij = aji) and compute:

xTLx =

n∑

i=1

xi(Lx)i =

n∑

i=1

xi

( n∑

j=1,j ̸=i
aij(xi − xj)

)

=
n∑

i,j=1

aijxi(xi − xj) =
(1
2
+

1

2

) n∑

i,j=1

aijx
2
i −

n∑

i,j=1

aijxixj

by symmetry

=
1

2

n∑

i,j=1

aijx
2
i +

1

2

n∑

i,j=1

aijx
2
j −

n∑

i,j=1

aijxixj

=
1

2

n∑

i,j=1

aij(xi − xj)
2 =

∑

{i,j}∈E

aij(xi − xj)
2. (6.4)
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6.1. The Laplacian matrix 101

The function x 7→ xTLx is sometimes referred to as the Laplacian potential function, because of the energy
and power interpretation we present in the next two subsections. Note that the quadratic function x 7→ xTLx is

a generalization of the quadratic disagreement function Vqd(x) = xTΠnx, defined in Section 5.3 when studying

convergence to consensus. Specifically, for the complete undirected graph, equation (6.1) implies xTLKnx =
n
2Vqd(x).

6.1.1 The Laplacian in mechanical networks of springs

x

Figure 6.2: A spring network

A spring network is a collection of rigid bodies interconnected by springs. Let xi ∈ R denote the displacement

of the ith rigid body. Assume that each spring is ideal linear-elastic and let aij be the spring constant, i.e., the

stiffness, of the spring connecting the ith and jth bodies.

Define a graph as follows: the nodes are the rigid bodies {1, . . . , n} with locations x1, . . . , xn, and the edges

are the springs with weights aij . Each node i is subject to a force

Fi =
∑

j ̸=i
aij(xj − xi) = −(Lstiffnessx)i,

where Lstiffness is the Laplacian for the spring network (modeled as an undirected weighted graph). Moreover,

recalling that the spring {i, j} stores the quadratic energy
1
2aij(xi − xj)

2
, the total elastic energy is

Eelastic =
1

2

∑

{i,j}∈E

aij(xi − xj)
2 =

1

2
xTLstiffnessx.

In this role, the Laplacian matrix is referred to as the stiffness matrix. Stiffness matrices can be defined for

spring networks in arbitrary dimensions (not only on the line) and with arbitrary topology (not only a chain

graph, or line graph, as in figure). More complex spring networks can be found, for example, in finite-element

discretization of flexible bodies and finite-difference discretization of diffusive media.

6.1.2 The Laplacian in electrical networks of resistors

current
source

Figure 6.3: A resistive circuit

Suppose the graph is an electrical network with pure resistors and ideal voltage or current sources: (i) each graph

node i ∈ {1, . . . , n} is possibly connected to an ideal voltage or current source or to ground, (ii) each edge is a

resistor, say with resistance rij between nodes i and j. (This is an undirected weighted graph.)
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102 Chapter 6. The Laplacian Matrix

Ohm’s law along each edge {i, j} gives the current flowing from i to j as

ci→j = (vi − vj)/rij = aij(vi − vj),

where vi is the voltage at node i and aij is the inverse resistance, called conductance. We set aij = 0 whenever
two nodes are not connected by a resistance and let Lconductance denote the Laplacian matrix of conductances.

Kirchhoff’s current law says that at each node i:

cinjected at i =

n∑

j=1,j ̸=i
ci→j =

n∑

j=1,j ̸=i
aij(vi − vj).

Hence, the vector of injected currents cinjected and the vector of voltages at the nodes v satisfy

cinjected = Lconductance v. (6.5)

Moreover, the power dissipated on resistor {i, j} is ci→j(vi − vj), so that the total dissipated power is

Pdissipated =
∑

{i,j}∈E

aij(vi − vj)
2 = v

TLconductancev.

6.2 Properties of the Laplacian matrix

In this section we present various properties of Laplacian matrices.

Lemma 6.2 (Zero row-sums). Let G be a weighted digraph with Laplacian L and n nodes. Then

L1n = 0n.

In equivalent words, 0 is an eigenvalue of L with right eigenvector 1n. We refer to the eigenvalue 0 of L and

to its left and right eigenvectors as dominant, since the eigenvalue 0 plays the same role for L as the eigenvalue 1
for a row-stochastic matrix.

Proof of Lemma 6.2. For all rows i, the ith row-sum is zero:

n∑

j=1

ℓij = ℓii +
n∑

j=1,j ̸=i
ℓij =

( n∑

j=1,j ̸=i
aij

)
+

n∑

j=1,j ̸=i
(−aij) = 0.

Equivalently, in vector format (remembering the weighted out-degree matrix Dout is diagonal and contains the

row-sums of A):

L1n = Dout1n −A1n =



dout(1)

.

.

.

dout(n)


−



dout(1)

.

.

.

dout(n)


 = 0n.

■

Based on this lemma, we now extend the notion of Laplacian matrix to a setting in which there is no digraph

to start with.

Definition 6.3 (Laplacian matrix). A matrix L ∈ Rn×n, n ≥ 2, is Laplacian if

(i) its row-sums are zero,
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(ii) its non-diagonal entries are non-positive, and
(iii) its diagonal entries are non-negative.

Note: property (iii) is a consequence of (i) and (ii).

A Laplacian matrix L induces a weighted digraph G without self-loops in the natural way, that is, by letting

(i, j) be an edge of G if and only if ℓij < 0. With this definition, L is the Laplacian matrix of G.
Next, we study when also the columns of a Laplacian matrix have vanishing sums.

Lemma 6.4 (Zero column-sums). Let G be a weighted digraph with Laplacian L and n nodes. The following
statements are equivalent:

(i) G is weight-balanced, that is, Dout = Din; and
(ii) 1T

nL = 0T
n .

Proof. Pick j ∈ {1, . . . , n} and compute

(1T
nL)j = (LT1n)j =

n∑

i=1

ℓij = ℓjj +
n∑

i=1,j ̸=i
ℓij = dout(j)− din(j),

where the last equality follows from

ℓjj = dout(j)− ajj and

n∑

i=1,j ̸=i
ℓij = −(din(j)− ajj).

In summary, we know that 1T
nL = 0T

n if and only if Dout = Din. ■

Next, we study the eigenvalues of a Laplacian matrix.

Lemma 6.5 (Spectrum of the Laplacian matrix). Given a weighted digraph G with Laplacian L, the eigenvalues
of L different from 0 have strictly-positive real part.

Proof. Recall ℓii =
∑n

j=1,j ̸=i aij ≥ 0 and ℓij = −aij ≤ 0 for i ̸= j. By the Geršgorin Disks Theorem 2.8, we know

that each eigenvalue of L belongs to at least one of the row disks

{
z ∈ C

∣∣ |z − ℓii| ≤
n∑

j=1,j ̸=i
|ℓij |

}
=
{
z ∈ C | |z − ℓii| ≤ ℓii

}
.

`ii

`jj

`kk

<latexit sha1_base64="B0pl2tFo2NFmpH3zxFRnWpLlt7A=">AAAB+nicbZDLSgMxFIbPeK31VnXpJlgEF1JmpGCXBTcuK9iLtEPJpJk2NMkMSaZYxj6FW924E7e+jODDmE5noa0HAh//fw7n5A9izrRx3S9nbX1jc2u7sFPc3ds/OCwdHbd0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY3c789oUqzSN6baUx9gYeShYxgY6WHHuW8n47Hs36p7FbcrNAqeDmUIa9Gv/TdG0QkEVQawrHWXc+NjZ9iZRjhdFbsJZrGmIzxkHYtSiyovtSTYQZ++pidPkPn1hugMFL2SYMy9fdsioXWUxHYToHNSC97c/E/r5uYsOanTMaJoZIsFoUJRyZC8xzQgClKDJ9awEQxezUiI6wwMTatoo3DW/78KrSuKl61Ururluu1PJgCnMIZXIAH11CHW2hAEwgIeIYXeHWenDfn3flYtK45+cwJ/Cnn8wdhAJTf</latexit>
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104 Chapter 6. The Laplacian Matrix

These disks, with radius equal to the center, contain the origin and complex numbers with positive real part. ■

The following result is a consequence of Theorem 5.2.

Theorem 6.6 (Semisimplicity of the zero eigenvalue of a Laplacian matrix). Let L be the Laplacian matrix
of a weighted digraph G with n nodes. Let ns ≥ 1 denote the number of sinks in the condensation digraph of G. Then

(i) the eigenvalue 0 is semisimple with multiplicity ns,
(ii) the following statements are equivalent:

a) G contains a globally reachable node,
b) the eigenvalue 0 is simple, and
c) rank(L) = n− 1.

Proof. First, we ask the reader to read and solve Exercise E6.1; with the notation in the exercise, we observe that if

C(GL) has ns sinks, so does C(GAL, ε
). Theorem 5.2 then implies that the eigenvalue 1 ofAL, ε is semisimple with

multiplicity ns and there exist left eigenvectors wp, p ∈ {1, . . . , ns}, such that (wp)TAL, ε = (wp)T. But the same

vectors therefore satisfy (wp)TL = 0T
n , which implies that the eigenvalue 0 of L is semisimple with multiplicity

ns. ■

6.3 Symmetric Laplacian matrices and the algebraic connectivity

We now specialize the results in the previous section to the setting of a weighted directed graphGwith a symmetric

adjacency matrix A = AT ∈ Rn×n.
Note: a digraph G with symmetric Laplacian is an undirected graph possibly with self-loops. Therefore, the

number of sinks of G is equal to the number of connected components of G.

6.3.1 Laplacian eigenvalues and algebraic connectivity

Assuming A and, therefore, L is symmetric, we know that all eigenvalues of L are real and that

(i) at least one is zero by Lemma 6.2, and

(ii) all eigenvalues are non-negative by Lemma 6.5.

Therefore, by convention, we write these eigenvalues as

0 = λ1 ≤ λ2 ≤ . . . ≤ λn.

Definition 6.7 (Algebraic connectivity). The second smallest eigenvalue λ2 of a symmetric Laplacian L of a
weighted digraph G is called the algebraic connectivity of G. The algebraic connectivity and its associated eigenvector
are also referred to as the Fiedler eigenvalue and Fiedler eigenvector (in recognition of the early work by Fiedler (1973)).

Theorem 6.6 directly implies the following simple results.

Corollary 6.8. For a weighted undirected graph G with symmetric Laplacian L:

(i) G is connected if and only if λ2 > 0; and
(ii) the multiplicity of 0 as an eigenvalue of L is equal to the number of connected components of G.

Moreover, the algebraic connectivity has numerous properties and is related to numerous concepts in graph

theory. We here present only a few selected results.
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6.3. Symmetric Laplacian matrices and the algebraic connectivity 105

Lemma 6.9 (Properties of the algebraic connectivity). Consider a weighted undirected graph with symmetric
adjacency matrixA, symmetric Laplacian matrix L, and algebraic connectivity λ2. The algebraic connectivity satisfies:

(i) the variational description:
λ2 = min

∥x∥2=1, x⊥1n

xTLx, (6.6)

(ii) the monotonicity property:
A ≤ A′ =⇒ λ2 ≤ λ′2,

where A′ is a symmetric adjacency matrix with algebraic connectivity λ′2.

The proof of these statements is postponed to Exercise E6.5. Statement (i) is a consequence of the Courant-Fisher

Theorem (Meyer, 2001, Chapter 7), also called the Min-Max Theorem. Statement (ii) explains in what sense λ2 is
monotonic with respect to edge weights (a similar result for the spectral radius of an adjacency matrix is given in

Lemma 4.10). Corollary 6.8(i) and Lemma 6.9(ii) together explain that λ2 is a measure of how well-connected a

graph is, thereby justifying the name algebraic connectivity.

We conclude this section with some basic examples.

Example 6.10 (Basic graphs and their algebraic connectivity). Recall the definitions of path, cycle, star,
complete and complete bipartite graph from Examples 3.1 and 4.1. We here report a table containing their algebraic

connectivity and Laplacian spectrum and leave their proof to the reader in Exercise E6.9.

Graph Algebraic connectivity Laplacian spectrum

path graph Pn 2(1− cos(π/n)) ∼ π2/n2 {0}∪{2(1− cos(πi/n)) | i ∈ {1, . . . , n− 1}}
cycle graph Cn 2(1− cos(2π/n)) ∼ 4π2/n2 {0}∪{2(1− cos(2πi/n)) | i ∈ {1, . . . , n− 1}}
star graph Sn 1 {0, 1, . . . , 1, n}
complete graphKn n {0, n, . . . , n}
complete bipartiteKn,m min(n,m) {0,m, . . . ,m, n, . . . , n,m + n}, where m has

multiplicity n− 1 and n has multiplicitym− 1

Table 6.1: The algebraic connectivity and Laplacian spectrum for basic graphs. Loosely speaking, the sparsely-

connected graphs Pn and Cn have algebraic connectivity λ2 ∼ 1/n2, the star graph Sn has constant algebraic

connectivity, and the fully connectedKn has linearly growing algebraic connectivity.

•

6.3.2 Laplacian systems and Laplacian pseudoinverses

In this section we study Laplacian systems because of their rich structure and numerous applications. We start by

revisiting the mechanical and electric example systems introduced in Sections 6.1.1 and 6.1.2. We are interested in

understanding when equilibrium configurations exist and, if so, how to compute them.

x
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(a) A spring network subject to a balanced force
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source
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(b) A resistive circuit subject to a balanced current injection

Figure 6.4: Laplacian systems
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106 Chapter 6. The Laplacian Matrix

The spring network consists of n masses at positions x ∈ Rn, described by a stiffness Laplacian matrix L, and
subject to a load force fload as in Figure 6.4a. Similarly, the resistive circuit consists of n nodes at voltage v and

subject to a current injection cinjected. The force balance equation for the equilibrium displacement in the spring

network and the flow balance equation for voltage equilibrium in the resistive circuit are

Lstiffnessx = fload, and Lconductancev = cinjected.

We formalize these two problems as follows.

Definition 6.11. A Laplacian system is a linear system of equations in the variable x ∈ Rn of the form

Lx = b, (6.7)

where L ∈ Rn×n is a Laplacian matrix and b ∈ Rn.

To characterize the solutions to a Laplacian system we recall the notion of pseudoinverse matrix from Exer-

cise E2.20 and present the following result.

Lemma 6.12 (The pseudoinverse Laplacian matrix). Consider the symmetric Laplacian matrix L of a connected
graph with decomposition L = U diag(0, λ2, . . . , λn)U

T, where U ∈ Rn×n is orthonormal. Then

(i) image(L) = 1⊥
n so that the system Lx = b admit solutions if and only if b ⊥ 1n,

(ii) if b ∈ Rn is balanced, that is, b ⊥ 1n, then the set of solutions to the Laplacian system is

{L†b+ β1n | β ∈ R},

(iii) the pseudoinverse of L is

L† = U




0 0 . . . 0
0 1/λ2 . . . 0
...

... . . .
...

0 0 . . . 1/λn


U

T
(6.8)

and satisfies

L† = (L†)T ⪰ 0, L†1n = (L†)T1n = 0n, and LL† = L†L = In −
1

n
1n1T

n .

In short, a Laplacian system is a static equilibrium problem with zero-mean (current / force) injections b that
determine nodal (voltage / displacement) equilibrium variables x∗ = L†b uniquely up to a uniform displacement

β1n.
We ask the reader to prove Lemma 6.12 in Exercise E6.10 and present here an example application.

Example 6.13 (Effective resistance). Given a connected weighted undirected graph G with Laplacian L, regard
G as a resistive circuit with conductances along the edges. The effective resistance between nodes i and j, denoted
by reffij , is the potential difference induced between i and j when a unit of current is injected at i and extracted at j;
see Figure 6.5

Simple calculations (starting with cinjected = ei − ej , where ei is the ith base vector of Rn) show that the

effective resistance between i and j satisfies

reffij = (ei − ej)
TL†(ei − ej). (6.9)

Indeed, by definition, we have reffij = vi − vj . We combine Lv = cinjected and cinjected = ei − ej to obtain

v = L†(ei − ej). Therefore, vi − vj = (ei − ej)Tv = (ei − ej)TL†(ei − ej), which is equation (6.9).

The resistance distance is a distance function on the graph in the following sense. For all i, j, k ∈ {1, . . . , n},
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Figure 6.5: The effective resistance reffij

(i) reffij ≥ 0 and reffij = 0 if and only if i = j (positive definiteness),

(ii) reffij = reffji (symmetry), and

(iii) reffij ≤ reffik + reffkj (subadditivity).

Moreover, the resistance distance satisfies the so-called Rayleigh monotonicity property, i.e., with the same notation

as in Lemma 6.9,

A ≤ A′ =⇒ reffij ≥ (reffij )
′

for all i, j.

We refer to (Klein and Randić, 1993) for additional properties and applications. •

6.4 Appendix: Community detection via algebraic connectivity

As just presented, the algebraic connectivity λ2 of an undirected and weighted graph G is positive if and only if G
is connected. We build on this insight and show that the algebraic connectivity does not only provide a binary

connectivity measure, but it also quantifies the “bottleneck” of the graph. To develop this intuition, we study

the problem of community detection in a large-scale undirected graph. This problem arises, for example, when

identifying group of friends in a social network by means of the interaction graph.

Specifically, we consider the problem of partitioning the nodes V of an undirected connected graph G in two

sets V1 and V2 so that

V1 ∪V2 = V, V1 ∩V2 = ∅, and V1, V2 ̸= ∅.
Of course, there are many such partitions. We measure the quality of a partition by the sum of the weights of all

edges that need to be cut to separate the nodes V1 and V2 into two disconnected components. Formally, the size of
the cut separating V1 and V2 is

J(V1, V2) =
∑

i∈V1,j∈V2

aij .

We are interested in finding the cut with minimal size that identifies the two groups of nodes that are most loosely

connected. The problem of minimizing the cut size J is combinatorial and computationally hard since we need

to consider all possible partitions of the node set V . We present here a tractable approach based on a so-called

relaxation step. First, define a vector x ∈ {−1,+1}n with entries xi = 1 for i ∈ V1 and xi = −1 for i ∈ V2. Then
the cut size J is a function of x and can be rewritten via the Laplacian potential as

J(x) =
1

8

n∑

i,j=1

aij(xi − xj)
2 =

1

4
xTLx

and the minimum cut size problem is:

minimize

x∈{−1,1}n\{−1n,1n}
xTLx.
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(Here we exclude the cases x ∈ {−1n, 1n} because they correspond to one of the two sets being empty.) Second,

since this problem is still computationally hard, we relax the problem from binary decision variables xi ∈ {−1,+1}
to continuous decision variables yi ∈ [−1, 1] (or ∥y∥∞ ≤ 1), where we exclude y ∈ span(1n) (corresponding to
one of the two groups being empty). Then the minimization problem becomes

minimize

y∈Rn, y⊥1n, ∥y∥∞=1
yTLy.

As a third and final step, we consider a 2-norm constraint ∥y∥2 = 1 instead of an∞-norm constraint ∥y∥∞ = 1
(recall that ∥y∥∞ ≤ ∥y∥2 ≤

√
n∥y∥∞) to obtain the following heuristic:

minimize

y∈Rn, y⊥1n, ∥y∥2=1
yTLy. (6.10)

The variational description in Lemma 6.9(i) now states that the unique minimum of the relaxed optimization

problem (6.10) is λ2 and the minimizer is v2, the eigenvector associated to λ2 normalized to have unit 2-norm. We

can then use as a heuristic x = sign(v2) to find the desired partition {V1, V2}. Hence, the algebraic connectivity
λ2 (the Fiedler eigenvalue) is an estimate for the size of the minimum cut and the signs of the entries of the Fiedler

eigenvector v2 identify the associated partition in the graph. In this sense, Fiedler eigenvalue and eigenvector

describe size and location of the “bottleneck” of a graph.

To illustrate these concepts, we borrow an example computational problem from (Gleich, 2006). We construct a

randomly generated graph as follows. First, we partition n = 1000 nodes in two groups V1 and V2 of sizes 450
and 550 nodes, respectively. Second, we connect any pair of nodes in the set V1 (respectively V2) with probability

50% (respectively 40%). Third and finally, any two nodes in distinct groups, i ∈ V1 and j ∈ V2, are connected
with a probability of 15%. The sparsity pattern of the associated adjacency matrix is shown in the left panel of

Figure 6.6. No obvious partition is visible at first glance since the indices are not necessarily sorted, that is, V1
is not necessarily {1, . . . , 450}. The second panel displays the sorted entries of the eigenvector v2 showing a

sharp transition between positive and negative entries. Finally, the third panel displays the correspondingly sorted

adjacency matrix Ã clearly indicating the partition V = V1 ∪V2. The Python code to generate Figure 6.6 is in the

Table 6.2 below.

Figure 6.6: The left figure shows a randomly-generated sparse adjacency matrix A for a graph with 1000 nodes.
The central figure displays the eigenvector ṽ2 which is identical to the normalized eigenvector v2 after sorting the

entries according to their magnitude, and the right figure displays the correspondingly sorted adjacency matrix Ã.
For additional analysis of this problem, we refer the reader to (Gleich, 2006).
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1 # Python3 code for community detection
2 import numpy as np; import scipy.sparse.linalg as sla;
3 import matplotlib.pyplot as plt; from matplotlib.colors import ListedColormap
4 # Draw binary plot of adjacency matrix
5 def plot_matrix_binary(M, ax, name=''):
6 blue_map = ListedColormap(["blue", "white"]); zeros = M == 0;
7 im = ax.imshow(zeros, cmap=blue_map); ax.set_xticks([]); ax.set_yticks([])
8

9 # For a given graph size, randomly assign the nodes to two groups
10 n = 1000; group_size = 450; A = np.zeros([1000, 1000]);
11 x = np.random.permutation(n) − 1 # Random permutation of indices for groups
12 group1 = x[0:group_size]; group2 = x[group_size:];
13 # Assign probabilities of connecting nodes
14 p_group1 = 0.5; p_group2 = 0.4; p_between_groups = 0.15
15 # Construct adjacency matrix
16 A[np.ix_(group1,group1)] = (np.random.rand(group_size, group_size) < p_group1) * 1 # ...

Ensure cast to integer
17 A[np.ix_(group2,group2)] = (np.random.rand(n−group_size,n−group_size) < p_group2) * 1
18 A[np.ix_(group1,group2)] = (np.random.rand(group_size, n−group_size) < ...

p_between_groups) * 1
19 # Ensure symmetry by copying the just created upper triangle part
20 A = np.triu(A,1); A = A + A.T;
21

22 # Construct Laplacian, Fiedler eigenpair, and sorting indices
23 L = np.diag(np.sum(A, 1)) − A
24 D, V = sla.eigs(L, 2, which='SM')
25 V_sort_ind = np.argsort(V[:, 1])
26

27 # Init plot
28 custom_figsize= (6, 4); fig, axs64 = plt.subplots(3, 1, ...

figsize=(custom_figsize[0]*1.2, custom_figsize[1]*3))
29 # Plot binary matrix
30 plot_matrix_binary(A, axs64[0]); axs64[0].set_xlabel("$A$")
31 # Plot the eigenvector values sorted by magnitude
32 axs64[1].plot(np.sort(V[:, 1]))
33 axs64[1].set_aspect(1 / axs64[1].get_data_ratio()) # Workaround to make it square ...

without equal axis ticks
34 axs64[1].set_xlabel(r"$\tilde{v}_2$")
35 # Plot the adjacency matrix sorted by the eigenvector
36 plot_matrix_binary(A[np.ix_(V_sort_ind,V_sort_ind)], axs64[2]); ...

axs64[2].set_xlabel(r"$\widetilde{A}$");

Table 6.2: Python code for community detection
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6.5 Appendix: Control design for clock synchronization

In this section we consider an idealized network of heterogeneous clocks and design a control strategy to ensure

they achieve synchronization.

Consider n simplified clocks modeled as discrete-time integrators: xi(k + 1) = xi(k) + di. The initial value
xi(0) is called the initial offset and di is called the clock speed (or skew); see Figure 6.7. Assume that we can control

each clock according to

x(k + 1) = x(k) + d+ u(k). (6.11)

Define the average clock speed by dave = average(d) = 1T
nd/n and the average time by tave(k) = davek + xave(0).

k

xi, ith clock

xj , jth clock

in
it

ia
l
o↵

se
ts

di, clock speed

xi(0)

xj(0)

Figure 6.7: Two clocks with different initial offset xi(0) ̸= xj(0) and speeds di ̸= dj .

The clock synchronization problem is to design a control law u such that, for all clocks i and j,

lim
k→∞

xi(k)− xj(k) = 0.

Averaging-based proportional control Suppose the clocks are interconnected by an connected undirected

graph so that each node i can measure the errors (xj(k)− xi(k)) for some neighbors j. For each edge {i, j}, let
κij = κji > 0 be a control gain (and set κpq = 0 whenever {p, q} is not an edge), and select the averaging-based
proportional control law

xi(k + 1) = xi(k) + di +

n∑

j=1

κij(xj(k)− xi(k)).

To analyze this control design, we proceed as follows. First, if L = LT
denotes the Laplacian matrix defined by

these control gains, then the control is u(k) = −Lx(k) and the closed-loop system is

x(k + 1) = (In − L)x(k) + d.

For maxi∈{1,. . .,n}
∑n

j=1,j ̸=i κij < 1, the matrix In − L is non-negative and therefore row-stochastic.

Note: we now see that the closed-loop system is an averaging system with a forcing term; this is the reason we

call this control action proportional/averaging.

Second, recall the average time tave(k) and define the error system y(k) = x(k)− tave(k)1n. One can show that

y(k + 1) = (In − L)y(k) + (d− dave1n),

and that this system is precisely an affine averaging system as studied in Exercise E2.10. According to Exer-

cise E2.10(iii), we know that, generically, y(k) → yfinal ̸∈ span{1n} so that

lim
k→∞

xi(k)− xj(k) = lim
k→∞

yi(k)− yj(k) ̸= 0.
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In other words, proportional control keeps the errors bounded (they would naturally diverge without it), but does

not achieve vanishing errors and therefore does not solve the clocks synchronization problem.

Proportional/averaging and integral control We now introduce a so-called integrator state wi at each node,

pick an integral control gain γ, and design the averaging-based proportional-integral control law as

u(k) = −Lx(k)− w(k),

w(k + 1) = w(k) + γLx(k),

so that the closed-loop system dynamics is

x(k + 1) = (In − L)x(k)− w(k) + d,

w(k + 1) = w(k) + γLx(k),
(6.12)

with corresponding system matrix in block form

[
In − L −In
γL In

]
.

The rationale for integral control is that, when in steady state with w(k + 1) = w(k), the integral equation
in (6.12) enforces 0n = Lx(k). Hence, if the closed loop (6.12) admits a steady state, then necessarily all clocks

must be synchronized. It is natural to assume a zero initial state for the initial integral state w(0) = 0n.

Lemma 6.14 (Asymptotic clock synchronization). Consider n clocks (6.11) with heterogeneous initial offsets
xi(0), speeds di, average speed dave = average(d), and average time tave(k) = davek+xave(0). Assume the undirected
communication graph among them is connected. Select proportional/averaging gains κij for all edges {i, j} and an
integral control gain γ satisfying

max
i∈{1,. . .,n}

∑n

j=1
κij < 1, and 0 < γ < 1. (6.13)

Then the proportional/averaging integral control ensures that, in the closed loop, the clocks synchronize and

lim
k→∞

(
x(k)− tave(k)1n

)
= 0n.

In other words, the clocks asymptotically synchronizes and their time grows linearly with a speed equal to the

average clock speed.

Proof. We start by studying the evolution of the affine dynamical system (6.12) using the modal decomposition as

illustrated in Section 2.1. Being a symmetric Laplacian matrix, L has real eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λn
with corresponding orthonormal eigenvectors v1 = 1n/

√
n, v2, . . . , vn. By left-multiplying the closed-loop system

dynamics (6.12) by vTα , α ∈ {1, . . . , n}, we obtain the following n decoupled 2-dimensional systems:

[
xα(k + 1)
wα(k + 1)

]
=

[
1− λα −1
γλα 1

] [
xα(k)
wα(k)

]
+

[
dα
0

]
, α ∈ {1, . . . , n}, (6.14)

where xα(k) = vTαx(k), wα(k) = vTαw(k), and dα = vTαd. From this decomposition, the full state can be

reconstructed by

x(k) =
n∑

α=1

xα(k)vα = xave(k)1n +
n∑

α=2

xα(k)vα,

w(k) =

n∑

α=1

wα(k)vα = wave(k)1n +
n∑

α=2

wα(k)vα.
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where xave(k) = average(x(k)) and wave(k) = average(w(k)).
For α = 1, after a simple rescaling, equation (6.14) reads

[
xave(k + 1)
wave(k + 1)

]
=

[
1 −1
0 1

] [
xave(k)
wave(k)

]
+

[
dave
0

]
.

Because w(0) = 0n, we compute w(k) = 0n and xave(k) = tave(k) = davek + xave(0).
It now suffices to show that the solutions to then−1 equations (6.14), forα ∈ {2, . . . , n}, satisfy limk→∞ xα(k) =

0. Simple calculations show that the only equilibrium solutions to the n− 1 equations (6.14), for α ∈ {2, . . . , n},
are x∗α = 0 and w∗

α = −dα. Hence, it suffices to show that all eigenvalues of the n− 1 matrices of dimension 2× 2
have magnitude strictly less than 1. For α ∈ {2, . . . , n}, the n− 1 characteristic equations are

(z − 1)2 + λα(z − 1 + γ) = 0.

We claim that these polynomials have both roots strictly inside the unit circle if and only if, for all α ∈ {2, . . . , n},

0 < γ < 1, and 0 < λα < 4/(2− γ). (6.15)

Recall from the proof of, and the discussion following, Lemma 6.5 that

λi ≤ λn < 2 max
i∈{1,. . .,n}

∑n

j=1
κij .

But by the assumption (6.13) we know maxi∈{1,. . .,n}
∑n

j=1 κij < 1, hence λn < 2 × 1 < 4/(2 − γ) for all
0 < γ < 1. Hence, the inequalities (6.15) are satisfied.

To verify that the inequalities (6.15) imply that all roots have magnitude less than 1, we use the so-called bilinear

transform method. This method is based on the equivalence between the following two properties: the original

polynomial has roots strictly inside the unit disk and the transformed polynomial has roots with strictly negative real

part. We proceed as follows: we take z = (1+s)/(1−s) and substitute it into the polynomial (z−1)2+λα(z−1+γ)
so that, removing the denominator, we obtain the polynomial (4 − 2λα + λαγ)s

2 − λα(2γ − 2)s + λαγ. By
the Routh-Hurwitz stability criterion, this polynomial has roots with negative real part if and only if all three

coefficients are strictly positive or strictly negative. Some elementary calculations show that all three coefficients

may never be negative and that all three coefficients are positive if and only if the inequalities (6.15) hold. ■

6.6 Historical notes and further reading

Standard books on algebraic graph theory with extensive characterizations of adjacency and Laplacian matrices

include (Biggs, 1994) and (Godsil and Royle, 2001). Laplacian matrices and their algebraic connectivity are surveyed

by (Mohar, 1991; Merris, 1994; Maia de Abreu, 2007). Laplacian systems are discussed in (Vishnoi, 2013).

The rank of the Laplacian, as characterized in Theorem 6.6, was studied as early as in (Fife, 1972; Foster

and Jacquez, 1975). A mathematical approach is given in (Agaev and Chebotarev, 2000) which features the first

necessary and sufficient characterization. We also refer to the more recent (Lin et al., 2005; Ren and Beard, 2005)

for the specific case of rank(L) = n− 1.
The generalized inverse of the Laplacian matrix appears in some applications and is studied by Gutman and

Xiao (2004). An informative overview is given by Dörfler et al. (2018).

The ground-breaking work in (Fiedler, 1973) established the use of the eigenvalues of the Laplacian matrix

for example as a way to quantify graph connectivity and to perform clustering, as illustrated in Section 6.4. For

surveys on community detection we refer to (Porter et al., 2009; Fortunato, 2010).

The example on clock synchronization via proportional/averaging and integral control in Section 6.5 is taken

from (Carli et al., 2008a). More realistic settings are studied in (Schenato and Fiorentin, 2011; Carli and Zampieri,
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2014; Mallada et al., 2015). Surveys include (Sundararaman et al., 2005; Sivrikaya and Yener, 2004; Simeone et al.,

2008).

Complex-valued graphs, adjacency and Laplacian matrices are studied in (Reff, 2012); see also (Lin et al., 2013;

Dong and Qiu, 2014) for some related applications.
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6.7 Exercises

▶ E6.1 Row-stochastic matrices associated to a Laplacian. Let L ∈ Rn×n be a Laplacian matrix and define ℓmax =
maxi∈{1,. . .,n} ℓii. Pick ε <

1
ℓmax

and define the ε-scaled matrix associated to L by

AL, ε = In − εL. (E6.1)

Let GL be the weighted digraph without self-loops associated to L and GAL, ε
be the weighted digraph associated to

AL, ε. Show that:

(i) AL, ε is row-stochastic with a strictly positive diagonal,

(ii) GAL, ε
has all edges in GL and self-loops at each node,

(iii) AL, ε is doubly-stochastic if and only if GL is weight-balanced,

(iv) AL, ε is primitive if and only if GL is strongly connected,

(v) (λA, v) is a right eigenpair for AL, ε if and only if

(
(1− λA)/ε, v

)
is a right eigenpair for L.

Note: The matrix AL, ε corresponds to the Euler discretization with step-size ε of the continuous-time Laplacian flow
ẋ = −Lx, introduced in Section 1.3 and studied in the next chapter.

▶ E6.2 Example Laplacian spectra. Let G⋆ be a graph with 8 nodes and with Laplacian matrix L(G⋆) ∈ R8×8
. For

i =
√
−1, assume the spectrum of L(G⋆) is

spec(L(G⋆)) = {0, 0, 0.5104, 1.6301, 2, 2.2045− 1.0038i, 2.2045 + 1.0038i, 2.8646} .

Consider the graphs G1, G2, and G3 shown below. Argue why the following statements are true:

(i) G1 cannot be G
⋆
,

(ii) G2 cannot be G
⋆
, and

(iii) G3 cannot be G
⋆
.

G1

⌫1

G2

0.5
0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.50.5
0.4

0.2 0.2

⌫2

G3

Figure E6.1: Example graphs and digraphs with 8 noses

E6.3 A symmetric Laplacian matrix is positive semidefinite. Let G be a weighted undirected graph with symmetric

LaplacianmatrixL ∈ Rn×n. AssumeG is connected and let (λ2, v) denote the Fiedler eigenpair. LetΠn = In− 1
n1n1T

n.

Show that

(i) L ⪰ 0 without relying on the Geršgorin Disks Theorem 2.8 and Lemma 6.5,

(ii) the Fiedler eigenvector satisfies v ⊥ 1n and vTLv = λ2∥v∥22,
(iii) for any x ∈ Rn with xave = 1T

nx/n,

xTLx ≥ λ2
∥∥x− xave1n

∥∥2
2
,

with equality if x is parallel to v.
(iv) Πn = In − 1

n1n1T
n is the orthogonal projection onto 1⊥

n and nΠn is the Laplacian of the complete undirected

graph, so that Πn = ΠT
n ⪰ 0, and

(v) ΠnL = LΠn = L and L ⪰ λ2Πn.

Note: Statement (v) implies thatL satisfies the so-called Lyapunov linear matrix inequality (LMI)ΠnL+LTΠn ⪰ 2λ2Πn.
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E6.4 The Laplacian matrix of a weight-balanced digraph. LetG be a weighted digraph with Laplacian matrix L. Prove
the following statements are equivalent:

(i) G is weight-balanced,

(ii) L+ LT
is the Laplacian matrix of the undirected digraph associated to the adjacency matrix A+AT

.

Moreover, with the notation in Exercise E6.3, show that

(iii) if G is weight-balanced, then L satisfies the Lyapunov LMI ΠnL+ LTΠn ⪰ λ2(L+ LT)Πn, and
(iv) if additionally G is weakly connected, then λ2(L+ LT) > 0.

E6.5 The algebraic connectivity is monotonic with respect to edge weights. Show Lemma 6.9.

Note: To establish the variational characterization in equation (6.6), recall from (Meyer, 2001, Chapter 7) the Courant-Fisher
minimax characterization of the eigenvalues of a symmetric matrix P = PT ∈ Rn×n:

λk = min
S∈Sk

max
x∈S,∥x∥=1

xTPx, (E6.2)

where Sk is the set of k-dimensional vector subspaces of Rn.

E6.6 Upper and lower bound on largest Laplacian eigenvalue. Let G be an undirected graph with symmetric

Laplacian matrix L = LT ∈ Rn×n, Laplacian eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λn, and maximum degree

dmax = maxi∈{1,. . .,n} di. Show that the maximum eigenvalue λn satisfies:

dmax ≤ λn ≤ 2dmax.

Hint: Review the proof of Lemmas 6.5 and 6.9.
Note: Several other bounds are reviewed in (Maia de Abreu, 2007). For example, for an unweighted undirected graph with
n nodes and minimum and maximum degree dmin, dmax, it is known that

2dmin − n+ 2 ≤ λ2 ≤ n

n− 1
dmax.

E6.7 The Laplacian potential function in a directed graph (Gao et al., 2008). Recall that the quadratic form associated

with a symmetric matrix B ∈ Rn×n is the function x 7→ xTBx. Let G be a weighted digraph with n nodes and define

the Laplacian potential function ΦG : Rn → R by

ΦG(x) =
1

2

n∑

i,j=1

aij(xj − xi)
2.

Show that:

(i) ΦG is the quadratic form associated with the symmetric positive-semidefinite matrix

P =
1

2
(Dout +Din −A−AT),

(ii) P = 1
2

(
L+ L(rev)

)
, where the Laplacian of the reverse digraph is L(rev) = Din −AT

.

E6.8 Scaled Laplacian matrices. Let L = LT ∈ Rn×n be the Laplacian matrix of a connected, undirected, and symmetri-

cally weighted graph. Given scalars d1, . . . , dn, define the matrices A and B by

A := diag{d1, . . . , dn}L and B := Ldiag{d1, . . . , dn}.

(i) Give necessary and sufficient conditions on {d1, . . . , dn} for A to be a Laplacian matrix.

(ii) Give necessary and sufficient conditions on {d1, . . . , dn} for B to be a Laplacian matrix.

(iii) Give a sufficient condition on {d1, . . . , dn} for A and B to be symmetric.

(iv) Assuming di ̸= 0, i ∈ {1, . . . , n}, do A and B possess a zero eigenvalue? If so, what are the corresponding right

and left eigenvectors for A and B?
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E6.9 Laplacian spectrum of basic graphs. Given the basic graphs in Examples 3.1 and 4.1 and the properties of tridiagonal

Toeplitz and circulant matrices in Exercises E4.2 and E4.3, compute the spectrum of the Laplacian matrix (and therefore

also prove the statements in Table 6.1) for basic graphs. Specifically, show that, for n ≥ 2,

(i) for the path graph Pn, the Laplacian spectrum is {0}∪{2(1− cos(πi/n)) | i ∈ {1, . . . , n− 1}};
(ii) for the cycle graph Cn, the Laplacian spectrum is {0}∪{2(1− cos(2πi/n)) | i ∈ {1, . . . , n− 1}};
(iii) for the star graph Sn, the Laplacian spectrum is {0, 1, . . . , 1, n} where 1 has multiplicity n− 2;
(iv) for the complete graphKn, the Laplacian spectrum is {0, n, . . . , n}; and
(v) for the complete bipartite graphKn,m, the Laplacian spectrum is {0,m, . . . ,m, n, . . . , n,m+ n}, wherem has

multiplicity n− 1 and n has multiplicitym− 1.

E6.10 The pseudoinverse Laplacian matrix. Prove Lemma 6.12.

E6.11 The regularized Laplacian matrix. Let L be the Laplacian matrix of a weighted connected undirected graph with n
nodes. Given a scalar β ∈ R, define the regularized Laplacian matrix Lreg,β = L+ β

n1n1Tn . Show that

(i) Lreg,β is nonsingular for β ̸= 0,
(ii) Lreg,β is positive definite for β > 0, and
(iii) the inverse of Lreg,β satisfies

L−1
reg,β =

(
L+

β

n
1n1Tn

)−1

= L† +
1

β n
1n1Tn .

E6.12 The Green matrix of a Laplacian matrix. Assume L is the Laplacian matrix of a weighted connected undirected

graph with n nodes. Show that

(i) the matrix L+ 1
n1n1T

n is positive definite,

(ii) the so-called Green matrix

X =
(
L+

1

n
1n1T

n

)−1

− 1

n
1n1T

n (E6.3)

is the unique solution to the system of equations:

{
LX = In − 1

n1n1T
n,

1T
nX = 0T

n,

(iii) X = L†
. In other words, the Green matrix formula (E6.3) is an alternative definition of the Laplacian pseudoin-

verse.

E6.13 Laplacian systems, Gaussian elimination and Kron reduction. Consider an undirected and connected graph

and its associated Laplacian matrix L ∈ Rn×n. Consider the associated Laplacian system y = Lx, where x ∈ Rn is

unknown and y ∈ Rn is a given vector. Verify that an elimination of xn from the last row of this equation yields the

following reduced set of equations:



y1
.
.
.

yn−1


+




−L1n/Lnn
.
.
.

−Ln−1,n/Lnn




︸ ︷︷ ︸
=A

yn =




.
.
.

.

.

. . .
.

. . . Lij − Lin·Ljn

Lnn
. . .

. .
. .

.

.
.
.
.




︸ ︷︷ ︸
=Lred



x1
.
.
.

xn−1


 ,

where the (i, j)-element of Lred is given by Lij − Lin · Ljn/Lnn. Show that the matrices A ∈ Rn−1×1
and L ∈

R(n−1)×(n−1)
obtained after Gaussian elimination have the following properties:

(i) A is non-negative and column-stochastic matrix with at least one strictly positive element; and

(ii) Lred is a symmetric and irreducible Laplacian matrix.

Hint: To show the irreducibility of Lred, verify the following property regarding the fill-in of the matrix Lred: The graph
associated to the Laplacian Lred has an edge between nodes i and j if and only if (i) either {i, j} was an edge in the
original graph associated to L, (ii) or {i, n} and {j, n} were edges in the original graph associated to L.
Note: The matrix Lred is called the Kron reduction of L with respect to node n. The properties of this reduction process are
discussed in (Dörfler and Bullo, 2013).
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E6.14 Thomson’s Principle and current flows. Consider a connected and undirected resistive electrical network with n
nodes, with external nodal current injections c ∈ Rn satisfying the balance condition 1T

nc = 0, and with resistances

rij > 0 for every undirected edge {i, j} ∈ E. For simplicity, we set rij = ∞ if there is no edge connecting i and j. As
shown earlier in this chapter, Kirchhoff’s and Ohm’s laws lead to the network equations

cinjected at i =
∑

j∈N (i)

ci→j =

n∑

j∈N (i)

1

rij
(vi − vj) ,

where vi is the potential at node i and ci→j = 1/rij · (vi − vj) is the current flow from node i to node j. Consider
now a more general set of current flows fi→j (for all i, j ∈ {1, . . . , n}) “routing energy through the network” and

compatible with the following basic assumptions:

(i) Skew-symmetry: fi→j = −fj→i for all i, j ∈ {1, . . . , n};
(ii) Consistency: fi→j = 0 if {i, j} ̸∈ E;

(iii) Conservation: cinjected at i =
∑
j∈N (i) fi→j for all i ∈ {1, . . . , n}.

Show that among all possible current flows fi→j , the physical current flow fi→j = ci→j = 1/rij · (vi − vj) uniquely
minimizes the energy dissipation:

minimize

fi→j , i,j∈{1,. . .,n}
J =

1

2

n∑

i,j=1

rijf
2
i→j

subject to fi→j = −fj→i for all i, j ∈ {1, . . . , n} ,
fi→j = 0 for all {i, j} ̸∈ E ,

cinjected at i =
∑

j∈N (i)

fi→j for all i ∈ {1, . . . , n} .

This result is known as Thomson’s Principle for electric circuits, e.g., see (Doyle and Snell, 1984).

Hint: The solution requires knowledge of the Karush-Kuhn-Tucker (KKT) conditions for optimality; this is a classic topic
in nonlinear constrained optimization discussed in numerous textbooks, e.g., in (Luenberger and Ye, 2008).

E6.15 Grounded spring networks subject to loads. Consider a connected spring networks with nmoving masses. Assume

one of the masses is connected to a wall with a spring, as in figure. We refer to such a spring network as grounded.

x

Let Lfree,n+ 1 be the (n+ 1)× (n+ 1) Laplacian matrix for the spring network of the n masses and the wall. Let

Lgrounded be the n× n grounded Laplacian constructed by removing the row and column of Lfree,n+ 1 corresponding

to the wall. And let Lfree,n be the n× n Laplacian matrix describing the spring network among the n moving masses

without the spring connection to the wall; Lfree,n = Lstiffness, as defined in Section 6.1.1.

For such a grounded spring network,

(i) derive an expression relating Lgrounded to Lfree,n,

(ii) show that Lgrounded is positive definite,

(iii) compute the equilibrium displacement for an arbitrary load force fload applied to the n moving masses.

Note: We refer to Chapter 10 and Exercise E10.11 for a comprehensive treatment of grounded Laplacian matrices as
compartmental matrices.

E6.16 Maximum power dissipation. As in Subsection 6.1.2, consider an electrical network composed by three voltage

sources (v1, v2, v3) connected by three resistors (each with unit resistance in an undirected ring topology. Let L be the

Laplacian matrix of conductances. Recall that the total power dissipated by the circuit is

Pdissipated = vTLv.

What is the maximum dissipated power if the voltages v satisfy ∥v∥2 = 1?
Hint: Recall the notion of induced 2-norm.
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118 Chapter 6. The Laplacian Matrix

E6.17 From algebraic to node connectivity. Consider an unweighted undirected graph G = (V,E) with second smallest

eigenvalue λ2(G). Given a subset of nodes S ⊆ V , we define a graph G′ = (V ′, E′) by deleting the nodes in S from

G as follows: we let V ′ = V \S and E′
contain all the edges in E except for those connected to a node in S. The node

connectivity κ(G) of G is defined by

κ(G) =

{
0, if G is disconnected,

minimum number of nodes whose deletion disconnects G, otherwise.

Show that

(i) 0 ≤ λ2(G) ≤ λ2(G
′) + |S|, where |S| is the cardinality of S,

(ii) λ2(G) ≤ κ(G).

Hint: Let z ∈ R|V ′|, ∥z∥2 = 1, denote the Fiedler eigenvector of the Laplacian L(G′) associated with λ2(G′). You may
find it useful to define q ∈ R|V | such that qi = zi for every i ∈ V ′ and qi = 0 for every i ∈ S.

Exercises with solution

E6.18 Averaging-based PID control. Consider a set of n controllable agents governed by the second-order dynamics

ẋi(t) = yi(t), (E6.1a)

ẏi(t) = ui(t) + ηi , (E6.1b)

where i ∈ {1, . . . , n} is the index set, t 7→ ui(t) ∈ R is a control input to agent i, and ηi ∈ R is an unknown

constant disturbance affecting agent i. Given an undirected, connected, and weighted graph G with adjacency matrix

A = AT ∈ Rn×n, assume each agent i can measure its velocity yi ∈ R and the relative position xi − xj for each
neighbor j. The agent then implements the averaging-based proportional, integral, derivative (PID) controller defined
by

ui(t) = −
∑n

j=1
aij
(
xi(t)− xj(t)

)
− yi(t)− qi(t), (E6.2a)

q̇i(t) = yi(t)−
∑n

j=1
aij
(
qi(t)− qj(t)

)
, (E6.2b)

where qi ∈ R is a dynamic control state for each agent i ∈ {1, . . . , n}. Show that

(i) the average state xave(t) =
1
n

∑n
i=1 xi(t) is bounded for all t ≥ 0,

(ii) the set of equilibria (x⋆, y⋆, q⋆) of the closed-loop system (E6.1)-(E6.2) satisfies x⋆ = β1n + L†η and y⋆ = 0n,
where β is an appropriate constant and L is the graph Laplacian, and

(iii) all trajectories converge to these closed-loop equilibria.

Hint: Recall the Routh-Hurwitz Criterion for third-degree polynomials: The polynomial s3 + a2s
2 + a1s+ a0 has

roots with strictly negative real part if and only if a0 > 0, a2 > 0, and a1a2 > a0.
Note: In other words the averaging-based PID control achieves zero velocity and position consensus with an error
proportional to the disturbance.
Answer: In compact vector form, the closed-loop model reads as

ẋ = y, (E6.3a)

ẏ = −Lx− y − q + η, (E6.3b)

q̇ = y − Lq, (E6.3c)

where x, y, q ∈ Rn are vectors with components xi, yi, qi for i ∈ {1, . . . , n}, and L = diag(
∑n
j=1Aij) − A is the

Laplacian matrix of G. Note the state matrix is




0 In 0
−L −In −In
0 In −L


 . (E6.4)
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Regarding statement (i), consider the 3-dimensional vector of aggregate states



x̄
ȳ
q̄


 =



∑n
i=1 xi∑n
i=1 yi∑n
i=1 qi


 ,

whose dynamics are given by

˙̄x = ȳ, (E6.5a)

˙̄y = −ȳ − q̄ + η̄, (E6.5b)

˙̄q = ȳ, (E6.5c)

where η̄ =
∑n
i=1 η̄i. The average dynamics (E6.5) admit a globally exponentially stable equilibrium which can be

seen, e.g., by integrating the third equation (E6.5c) as q̄(t) = x̄(t) − x̄0 + q̄0 and inserting the solution into (E6.5)

which yields the second-order system

¨̄x = − ˙̄x− x̄− σ , (E6.6)

where the σ = η̄− x̄0+ q̄0. The system (E6.6) admits the globally exponentially stable equilibrium x̄ = σ = η̄− x̄0+ q̄0.
Hence, the aggregate state and so the average state is bounded.

Regarding statement (ii), the equilibria of the closed loop system (E6.3) are given by

0n = y⋆, (E6.7a)

0n = −Lx⋆ − y⋆ − q⋆ + η, (E6.7b)

0n = y⋆ − Lq⋆ . (E6.7c)

From (E6.7a) we have that y⋆ = 0n, which yields the remaining equations

0n = −Lx⋆ − q⋆ + η, (E6.8a)

0n = −Lq⋆ . (E6.8b)

Equation (E6.8b) yields q⋆ = c1 · 1n for some c1 ∈ R. By multiplying equations (E6.8a) from the left by 1T
n, we obtain

1T
nq
⋆ = n · c1 = 1T

nη and, in turn,

q⋆ = c1 · 1n =
1T
nη

n
1n .

Equation (E6.8a) now reduces to

Lx⋆ = η − q⋆ =
(
In − 1

n
1n1T

n

)
η .

This is a Laplacian system, as studied in Lemma 6.12, and therefore the set of solutions is {L†η + c21n | c2 ∈ R},
where we used the identity L†(In − 1

n1n1T
n)η = L†η.

Finally, equation (E6.6) implies that the constant c2 must equal σ, that is, any equilibrium is of the form

x⋆ = (η̄ − x̄0 + q̄0) · 1n + L†η.

In summary, the unique equilibrium is

(x∗, y∗, q∗) =
(
(η̄ − x̄0 + q̄0) · 1n + L†η, 0n,

1T
nη

n
1n
)
.

Regarding statement (iii), we start with a preliminary small result. For λ ∈ R, define

Cλ =




0 1 0
−λ −1 −1
0 1 −λ


 ,

whose characteristic polynomial is:

det(sI3 − Cλ) = s3 + (1 + λ)s2 + (1 + 2λ)s+ λ2.
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If λ > 0, then the Routh-Hurwitz Criterion for a polynomial of the form s3 + a2s
2 + a1s+ a0 is satisfied because

a2 = 1 + λ > 0, a0 = λ2 > 0, and a1a2 = (1 + 2λ)(1 + λ) > λ2 = a0.

Therefore, the matrix Cλ is Hurwitz for any λ > 0.
Consider now the following change of coordinates shifting the desired equilibria to the origin



x̃
ỹ
q̃


 =



x− x⋆

y − y⋆

q − q⋆


 ,

where (x⋆, y⋆, q⋆) are an (more precisely, the unique) equilibrium of the closed loop (E6.3). Then the dynamics (E6.3)

read as

˙̃x = ỹ, (E6.9a)

˙̃y = −Lx̃− ỹ − q̃, (E6.9b)

˙̃q = ỹ − Lq̃ , (E6.9c)

with corresponding state matrix as in equation (E6.4). Since L is a symmetric irreducible Laplacian matrix, it has

eigenvalues 0 = λ1 < λ2 ≤ . . . ≤ λn with corresponding orthonormal eigenvectors v1 = 1n/
√
n, v2, . . . , vn. If we

now adopt the modal decomposition as in Remark 2.3 (and in Section 6.5), we obtain

d

dt



x̃j
ỹj
q̃j


 =




0 1 0
−λj −1 −1
0 1 −λj





x̃j
ỹj
q̃j


 = Cλj



x̃j
ỹj
q̃j


 ,

where x̃ =
∑n
j=1 x̃jvj , ỹ =

∑n
j=1 ỹjvj , and q̃ =

∑n
j=1 q̃jvj . The proof of statement (iii) now follows because the evolution

of the first mode (the average or aggregate state) was analyzed in statement (i) and the evolution of the all other modes is

exponentially stable since λj > 0 implies Cλj is Hurwitz.
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Continuous-time Averaging Systems

In this chapter we consider averaging algorithms in which the variables evolve in continuous time, instead of

discrete time. In other words, we consider a certain class of differential equations and show when their asymptotic

behavior is the emergence of consensus.

7.1 Example systems

We present here some simple examples of continuous-time averaging systems, along the lines of the flocking

dynamics example in Section 1.3.

7.1.1 Example #1: Continuous-time opinion dynamics

This first example is taken from (Abelson, 1964) and provides a continuous-time analog to the French-Harary-

DeGroot discrete-time averaging model

x(k + 1) = Ax(k), (7.1)

that we studied in detail in Chapters 1-5. Loosely speaking, we assume that

(i) there exists a time period τ ∈ R satisfying 0 < τ ≪ 1 such that the discrete-time indexes k and k + 1
correspond to real times t = kτ and t+ τ = (k + 1)τ , respectively, and

(ii) the edge weights of the influence systems are of the form aij = aijτ , where the coefficients aij can be regarded

as contact rates between the individuals.

We now compute the opinion change from time k to time k + 1:

x(k + 1)− x(k) = (A− In)x(k) = −Lx(k),

where L = In−A is the Laplacian of the matrix A. Note that the second assumption (ii) implies that the Laplacian

matrix L satisfies L = Lτ for a Laplacian matrix L containing the contact rates. Therefore, we can write

x(t+ τ)− x(t)

τ
=
x(k + 1)− x(k)

τ
= −Lx(t),

and, taking the limit as τ → 0+ in the left-hand side, we obtain the Abelson’s continuous-time opinion dynamics

model:

ẋ(t) = −Lx(t). (7.2)

121
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As we mentioned in Section 1.3, we refer to this equation as to the Laplacian flow. In summary, we have learnt that,

if the edge weights of the influence systems are of the form aij = aijτ , then the solution to the French-Harary-

DeGroot discrete-time averaging system (7.1) converges to the solution to the Abelson continuous-time averaging

system (7.2) in the limit as τ → 0+.

Note: Because of this correspondence, we expect to see consensus emerge along solutions to the systems (7.2),

at least for certain classes of digraphs.

7.1.2 Example #2: A simple RC circuit

Finally, we consider an electrical network with only pure resistors and with pure capacitors connecting each

node to ground. From the previous chapter, we know the vector of injected currents cinjected and the vector of

voltages at the nodes v satisfy

cinjected = L v,

where L is the Laplacian for the graph with coefficients aij = 1/rij . Additionally, assuming Ci is the capacitance
at node i, and keeping proper track of the current into each capacitor, we have

Ci
d

dt
vi = −cinjected at i

so that, defining C = diag(C1, . . . , Cn), we obtain

d

dt
v = −C−1L v. (7.3)

Note: C−1L is an asymmetric Laplacian matrix (for a directed weighted graph).

Note: it is physically intuitive that after some transient all nodes will have the same potential. This intuition

will be proved later in the chapter.

7.1.3 Example #3: Discretization of partial differential equations

The name Laplacian matrix is inherited from the Laplacian operator in the diffusion partial differential equation

(PDEs) named after the French mathematician Pierre-Simon Laplace.
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y
x

⌦

(a) Spatial domain

j
i

(i, j) (i+1, j)

(i, j+1)

(i�1, j)

(i, j�1)

(b) Discretization through a mesh graph

Consider a closed bounded spatial domain Ω ⊂ R2
and a spatio-temporal function u(t, x, y) denoting the

temperature at a point (x, y) ∈ Ω at time t ∈ R≥0. The evolution of the temperature u(t, x, y) in time and space is

governed by the heat equation
∂u

∂t
= c∆u, (7.4)

where c > 0 is the thermal diffusivity (which we assume constant) and the Laplacian differential operator is

∆u(t, x, y) =
∂2u

∂x2
(t, x, y) +

∂2u

∂y2
(t, x, y).

To approximately solve this PDE, we introduce a finite-difference approximation of (7.4). First, we discretize the

spatial domain Ω through a mesh graph (i.e., a subgraph of a two-dimensional grid graph) with discrete coordinates

indexed by (i, j) and where neighboring mesh points are a distance h > 0 apart. Second, we approximate the

Laplacian operator via the finite-difference approximation:

∆u(t, xi, yj)

≈ u(t, xi−1, yj) + u(t, xi+1, yj) + u(t, xi, yj−1) + u(t, xi, yj+1)− 4u(t, xi, yj)

h2
.

(Note: This is the correct expansion for an interior point; similar approximations can be written for boundary

points, assuming the boundary conditions are free.)

Now, the key observation is that the finite-difference approximation renders the heat equation to a Laplacian

flow. Specifically, if udiscrete denotes the vector of values of u at the nodes, then one can see that equation (7.4) is

approximately rewritten as:

d

dt
udiscrete = − c

h2
Ludiscrete,

where L is the Laplacian matrix of the unweighted mesh graph.

Another standard PDE involving the Laplacian operator is the wave equation

∂2u

∂t2
= s2∆u, (7.5)

modeling the displacement u(t, x, y) of an elastic surface on Ω with wave propagation speed s > 0. In this case, a

finite-difference approximation gives rise a second-order Laplacian flow

d2

dt2
udiscrete = − s2

h2
Ludiscrete. (7.6)

We study Laplacian flows in this chapter and (general) second-order Laplacian flows in the next chapter.
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7.2 Continuous-time linear systems and their convergence properties

In Section 2.1 we presented discrete-time linear systems and their convergence properties; here we present their

continuous-time analogous.

A continuous-time linear system is

ẋ(t) = Ax(t). (7.7)

Its solution t 7→ x(t), t ∈ R≥0 from an initial condition x(0) satisfies x(t) = exp(At)x(0), where the matrix
exponential of a square matrix A is defined by

exp(A) =
∞∑

k=0

1

k!
Ak.

The matrix exponential generalizes the usual exponential function x 7→ ex =
∑∞

k=0 x
k/k!. This remarkable

operation enjoys numerous properties, some of which are reviewed in Exercise E7.1. A matrix A ∈ Rn×n is

(i) continuous-time semi-convergent if limt→+∞ exp(At) exists, and
(ii) Hurwitz, or for consistency continuous-time convergent, if limt→+∞ exp(At) = 0n×n.

The spectral abscissa of a square matrix A is the maximum of the real parts of the eigenvalues of A, that is,

α(A) = max{ℜ(λ) | λ ∈ spec(A)}.

Theorem 7.1 (Convergence and spectral abscissa). For a square matrix A, the following statements hold:
(i) A is continuous-time convergent (Hurwitz) if and only if α(A) < 0,
(ii) A is continuous-time semi-convergent and not convergent if and only if

a) 0 is an eigenvalue,
b) 0 is a semisimple eigenvalue, and
c) all other eigenvalues have negative real part.

We leave the proof of this theorem to the reader and mention that most required steps are similar to the

discussion in Section 2.1 and are discussed later in this chapter.

7.3 The Laplacian flow

Let G be a weighted directed graph with n nodes and Laplacian matrix L. The Laplacian flow on Rn is the

dynamical system

ẋ = −Lx, (7.8)

or, equivalently in components,

ẋi =
n∑

j=1

aij(xj − xi) =
∑

j∈N out(i)

aij(xj − xi).

7.3.1 Matrix exponential of a Laplacian matrix

Before analyzing the Laplacian flow, we provide some results on the matrix exponential of (minus) a Laplacian

matrix. We show how such an exponential matrix is row-stochastic and has properties analogous to those for

adjacency matrices studied in Section 4.2.
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Theorem 7.2 (The matrix exponential of a Laplacian matrix). Let L ∈ Rn×n be a Laplacian matrix with
associated weighted digraph G and with maximum diagonal entry ℓmax = max{ℓ11, . . . , ℓnn}. Then
(i) exp(−L) ≥ e−ℓmax In ≥ 0n×n,
(ii) exp(−L)1n = 1n,
(iii) 1T

n exp(−L) = 1T
n , if and only if G is weight-balanced (i.e., 1T

nL = 0T
n ),

(iv) exp(−L)ej > 0, if and only if the j-th node is globally reachable in G, and
(v) exp(−L) > 0, if and only if G is strongly connected (i.e., L is irreducible).

Note that properties (i) and (ii) together imply that exp(−L) is row-stochastic.
Proof. From the equality L1n = 0n and the definition of matrix exponential, we compute

exp(−L)1n =
(
In +

∞∑

k=1

(−1)k

k!
Lk
)

1n = 1n.

This calculation establishes statements (ii). Similarly, if 1T
nL = 0T

n , we compute

1T
n exp(−L) = 1T

n

(
In +

∞∑

k=1

(−1)k

k!
Lk
)
= 1T

n .

Next, we assume 1T
n exp(−L) = 1T

n and prove 1T
nL = 0T

n . Define f(t) = exp(−LTt), for t ∈ [0, 1]. Note f(0)1n =
f(1)1n = 1n. From Exercise E7.1(iv) we know

d
dt exp(−LTt) = −L exp(−LTt) so that ddt exp(−LTt)1n = −L1n.

Finally, the fundamental theorem of calculus implies

0n = f(1)1n − f(0)1n =

∫ 1

0

d

dt
f(t)dt = −L1n.

This completes the proof of statement (iii).

Next, we define a non-negative matrix AL by

AL = −L+ ℓmaxIn ⇐⇒ −L = −ℓmaxIn +AL.

Because ALIn = InAL, we know

exp(−L) = exp(−ℓmaxIn) exp(AL) = e−ℓmax exp(AL). (7.9)

Here we used the following properties of the matrix exponential operation: exp(A + B) = exp(A) exp(B) if
AB = BA and exp(aIn) = ea In. Next, because AL ≥ 0, we know that exp(AL) =

∑∞
k=0A

k
L/k! is lower

bounded by the first n− 1 terms of the series so that

exp(−L) = e−ℓmax exp(AL) ≥ e−ℓmax

n−1∑

k=0

1

k!
AkL. (7.10)

Next, we derive two useful lower bounds on exp(−L) based on the inequality (7.10). First, by keeping just the first

term, we establish statement (i):

exp(−L) ≥ e−ℓmax In ≥ 0.

Second, we lower bound the coefficients 1/k! and write:

exp(−L) ≥ e−ℓmax

n−1∑

k=0

1

k!
AkL ≥ e−ℓmax

(n− 1)!

n−1∑

k=0

AkL. (7.11)
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Notice now that the digraph G associated to L is the same as that associated to AL (we do not need to worry

about self-loops here). Recall now Lemma 4.4: node j is globally reachable in G if and only if the jth column of∑n−1
k=0 A

k
L is positive. But ineequality 7.11 implies that, if j is globally reachable, then the jth column of exp(−L)

is positive. This establishes the “if” part of statement (iv).

Next, by equality 7.9, if the j-th column of exp(−L) is positive, so is the jth column of exp(AL). Since AL is

non-negative, an application of the Caley-Hamilton Theorem shows that the j-th column of

∑n−1
k=0 A

k
L must be

positive. Therefore, by Lemma 4.4 node j is globally reachable. This concludes the proof of statement (iv). Finally,

statement (v) is an immediate consequence of statement (iv). ■

7.3.2 Equilibria and convergence of the Laplacian flow

We can now focus on the Laplacian flow dynamics.

Lemma 7.3 (Equilibrium points). If G contains a globally reachable node, then the set of equilibrium points of the
Laplacian flow (7.8) is span{1n} = {β1n | β ∈ R}.

Proof. A point x is an equilibrium for the Laplacian flow if Lx = 0n. Hence, any point in the kernel of the matrix

L is an equilibrium. From Theorem 6.6, if G contains a globally reachable node, then rank(L) = n− 1. Hence, the
dimension of the kernel space is 1. The lemma follows by recalling that L1n = 0n. ■

We are now interested in characterizing the solution of the Laplacian flow (7.8). To build some intuition, we

first consider an undirected graph G and write the modal decomposition of the solution as in Remark 2.3 for a

discrete-time linear system. We proceed in two steps. First, becauseG is undirected, the matrix L is symmetric and

has real eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λn with corresponding orthonormal (i.e., orthogonal and unit-length)

eigenvectors v1, . . . , vn. Define yi(t) = vTi x(t) and left-multiply ẋ = −Lx by vi:

d

dt
yi(t) = −λiyi(t), yi(0) = vTi x(0).

These n decoupled ordinary differential equations are immediately solved to give

x(t) = y1(t)v1 + y2(t)v2 + . . .+ yn(t)vn

= e−λ1t(vT1 x(0))v1 + e−λ2t(vT2 x(0))v2 + . . .+ e−λnt(vTnx(0))vn.

Second, recall that λ1 = 0 and v1 = 1n/
√
n because L is a symmetric Laplacian matrix (L1n = 0n). Therefore,

we compute (vT1 x(0))v1 = average(x(0))1n and substitute

x(t) = average(x(0))1n + e−λ2t(vT2 x(0))v2 + . . .+ e−λnt(vTnx(0))vn.

Now, let us assume that G is connected so that its second smallest eigenvalue λ2 is strictly positive. In this case,

we can infer that

lim
t→∞

x(t) = average(x(0))1n,

or, defining a disagreement vector δ(t) = x(t)− average(x(0))1n as in Section 5.3, we infer

δ(t) = e−λ2t(vT2 x(0))v2 + . . .+ e−λnt(vTnx(0))vn.

In summary, we discovered that, for a connected undirected graph, the disagreement vector converges to zero

with an exponential rate λ2. In what follows, we state a more general convergence to consensus result for the

continuous-time Laplacian flow. This result is parallel to Theorem 5.1.
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Theorem 7.4 (Consensus for Laplacian matrices with a globally reachable node). Let L be a Laplacian
matrix and let G be its associated digraph. The following statements are equivalent:

(AL1) the eigenvalue 0 of −L is simple and all other eigenvalues of −L have negative real part;
(AL2) −L is continuous-time semi-convergent and limt→∞ exp(−Lt) = 1nwT, where w ∈ Rn satisfies w ≥ 0,

1T
nw = 1, and wTL = 0T; and

(AL3) G contains a globally reachable node.
If any, and therefore all, of the previous conditions are satisfied, then
(i) w ≥ 0 is the left dominant eigenvector of −L and wi > 0 if and only if node i is globally reachable;
(ii) the solution to d

dtx(t) = −Lx(t) satisfies

lim
t→∞

x(t) =
(
wTx(0)

)
1n,

(iii) if additionally G is weight-balanced, then G is strongly connected, 1T
nL = 0T

n , w = 1
n1n, and

lim
t→∞

x(t) =
1T
nx(0)

n
1n = average

(
x(0)

)
1n.

Note: Theorem 7.4 is the continuous-time version of Theorem 5.1 about discrete-time averaging systems. The

only notable difference is that, in continuous time, it is not necessary to require the subgraph of globally reachable

nodes to be aperiodic. Also note that it is possible to write a continuous-time version of Theorem 5.2; we leave this

task to the reader.

Proof. We start by noting that there are twoways to prove the theorem. Either onemimicks the proof of Theorem 5.1

or one transcribes Theorem 5.1. We take the second approach and leave the first to the interested reader. As in

Exercise E6.1, pick ε < 1
dmax

, where dmax is the maximum out-degree, and define

AL, ε = In − εL. (7.12)

First, note that property (A1) in Theorem 5.1 holds forAL, ε if and only if property (AL1) holds for L. Indeed, AL, ε

has a simple strictly-dominating eigenvalue 1 if and only if L has a simple strictly-dominating eigenvalue 0 by
property E6.1(v).

Second, we ask the reader to prove in Exercise E7.4 that property (A2) in Theorem 5.1 holds for AL, ε if and

only if property (AL2) holds for L, that is, limk→∞Ak
L, ε = 1nwT

if and only if limt→∞ exp(−Lt) = 1nwT
.

Third, note that property (A3) in Theorem 5.1 holds for AL, ε if and only if property (AL3) holds for L. Indeed,
AL, ε has a strictly positive diagonal and the same pattern of zero/positive off-diagonal entries as L.

We have now established that properties (AL1), (AL2) and (AL3) are equivalent and that the consequences (i), (ii)

and (iii) in Theorem 5.1 hold for the matrix AL, ε. It is easy to see that these consequences, in turn, imply

properties (i), (ii) and (iii) for L. ■

7.4 Appendix: Design of weight-balanced digraphs

Recall from Section 5.4.2 that, given a connected undirected graph, the Metropolis–Hastings algorithm computes

edge weights and self-loop weights that render the resulting weighted adjacency matrix symmetric and doubly

stochastic. Note that the corresponding Laplacian matrix is weight-balanced.

Problem: Given a strongly-connected weighted digraph G with adjacency matrix A, how do we rescale the

weights on each edge of G such that the resulting adjacency matrix A is doubly stochastic and the resulting

Laplacian matrix L is weight balanced?
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Note: A solution to this problem ensures that both the discrete time and continuous time averaging systems

associated to A and L converge to average consensus. Because we assume G is directed, the Metropolis–Hastings

algorithm is not applicable.

Answer: Here’s an algorithmic solution. Since G is strongly connected, Theorem 7.4 establishes that its left

dominant eigenvector w is positive. For ℓmax = max{ℓ11, . . . , ℓnn}, define

L =
1

ℓmax

diag(w)L,

A = In − L.

This eigenvector rescaling algorithm has the following properties:

(i) L has the same zero/negative/positive pattern as L and since L has zero row sum, it is immediate to see that

also L has zero row sum. Therefore, L is a Laplacian matrix and its associated weighted digraph G has the

same topology as G and has weights aij = wiaij/ℓmax. In other words, the weight of each out-edge of node i
is rescaled by wi/ℓmax.

(ii) The column sums of L are zero, since:

1T
nL = 1T

n diag(w)L/ℓmax = wTL/ℓmax = 0T
n .

(iii) Finally, one can show that each diagonal entry of L is less than 1 and, therefore, the matrix A is non-negative.

The facts that A has unit row and column sums are trivial.

7.5 Historical notes and further reading

Section 7.1.1 “Example #1: Continuous-time opinion dynamics” presents the continuous-time averaging model

by (Abelson, 1964) and its relationship with the discrete-time averaging model by (French Jr., 1956; Harary, 1959;

DeGroot, 1974). Abelson’s work is one of the earliest on what we now call the Laplacian flow.

Regarding Example #2: “Flocking behavior for a group of animals” in Section 1.3, a classic early reference on

this topic is (Reynolds, 1987). In that model, flocking behavior is controlled by three simple rules: Separation -

avoid crowding neighbors (short range repulsion) Alignment - steer towards average heading of neighbors, and

Cohesion - steer towards average position of neighbors (long range attraction).

The RC circuit example in Section 7.1.2 is taken from (Mesbahi and Egerstedt, 2010; Ren et al., 2007).

An early reference to Theorem 7.4 is the work by Abelson (1964) in mathematical sociology; more recent

references with rigorous proofs in the control literature include (Lin et al., 2005; Ren and Beard, 2005).

A reference for the construction in Section 7.4 is (Ren et al., 2007).
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7.6 Exercises

E7.1 Properties of the matrix exponential. Recall the definition exp(A) =
∑∞
k=0

1
k!A

k
for any square matrix A.

Complete the following tasks:

(i) show that

∑∞
k=0

1
k!A

k
converges absolutely for all square matrices A,

Hint: Recall: a matrix series
∑∞
k=1Bk converges absolutely if

∑∞
k=1 ∥Bk∥ converges, where ∥ · ∥ is a matrix norm.

(ii) show that A = diag(a1, . . . , an) implies exp(A) = diag(ea1 , . . . ean),
(iii) show that AB = BA implies exp(A+B) = exp(A) exp(B),
(iv) show that

d
dt exp(At) = A exp(At) = exp(At)A,

(v) show that exp(TAT−1) = T exp(A)T−1
for any invertible T , and

(vi) λ ∈ spec(A) implies eλ ∈ spec(exp(A)), and ρ(exp(A)) = eα(A)
, as illustrated in Figure E7.1.

<latexit sha1_base64="a9R9FbEGtYO7YTR5fE06qqsvg64=">AAACK3icbZDPSgMxEMaz/q31X9Wjl8UiVJCyK6K9CBUvHivYKnRrmU2nbTC7CUlWWpZ9Fd/At/CqF09Kr76Hae1BqwOBH983w2S+UHKmjee9O3PzC4tLy7mV/Ora+sZmYWu7oUWiKNap4ELdhqCRsxjrhhmOt1IhRCHHm/D+YuzfPKDSTMTXZiixFUEvZl1GwVipXagEqi9KgZCowAgVQ4QpDmRWOj84OJuRs7s0AC77YM2sXSh6ZW9S7l/wp1Ak06q1C6OgI2gSYWwoB62bvidNKwVlGOWY5YNEowR6Dz1sWhyv1If6oTeBVjqY3Jq5+9bruF2h7IuNO1F/zqYQaT2MQtsZgenrWW8s/uc1E9OttFIWy8RgTL8XdRPuGuGOg3M7TCE1fGgBqGL21y7tgwJqbLx5G4c/e/xfaByV/ZPy8dVxsVqZBpMju2SPlIhPTkmVXJIaqRNKHskzeSGvzpPz5nw4o+/WOWc6s0N+lfP5BY+pqKE=</latexit>

⇢(exp(A)) = e↵(A)
<latexit sha1_base64="csaMDoVHaDwZqhhRjH60DetGPDA=">AAAB+nicbZDLSsNAFIYnXmu9VV26GSxCBSmJFO2y4sZlBXuRNpST6aQdOpmEmUmxxD6FW924E7e+jODDOE2z0NYDAx//fw7nzO9FnClt21/Wyura+sZmbiu/vbO7t184OGyqMJaENkjIQ9n2QFHOBG1opjltR5JC4HHa8kY3M781plKxUNzrSUTdAAaC+YyANtJDF3g0hNL1Wa9QtMt2WngZnAyKKKt6r/Dd7YckDqjQhINSHceOtJuA1IxwOs13Y0UjICMY0I5BAQFV52o8SMFNHtPTp/jUeH3sh9I8oXGq/p5NIFBqEnimMwA9VIveTPzP68Tar7oJE1GsqSDzRX7MsQ7xLAfcZ5ISzScGgEhmrsZkCBKINmnlTRzO4ueXoXlRdi7LlbtKsVbNgsmhY3SCSshBV6iGblEdNRBBAXpGL+jVerLerHfrY966YmUzR+hPWZ8/GPOUCw==</latexit>

↵(A)

Figure E7.1: Spetrum of A and of its matrix exponential

▶ E7.2 Continuous-time affine systems. Given A ∈ Rn×n and b ∈ Rn, consider the continuous-time affine systems

ẋ(t) = Ax(t) + b.

Assume A is Hurwitz and, similarly to Exercise E2.9, show that

(i) the matrix A is invertible,

(ii) the only equilibrium point of the system is −A−1b, and
(iii) limt→∞ x(t) = −A−1b for all initial conditions x(0) ∈ Rn.

E7.3 Semi-convergence of rank-one matrices. Given vectors v, w ∈ Rn, consider the rank-one matrix vwT ∈ Rn×n.
Show

(i) trace(vwT) = vTw and spec(vwT) = {0, . . . , 0, vTw},
(ii) if vTw ̸= 0, then Pv =

1
vTw

vwT
and Pw⊥ = In − Pv are (oblique) projection matrices,

(iii) if vTw < 0, then

a) vwT
is continuous-time semi-convergent,

b) exp(vwTt) = Pw⊥ + e(v
Tw)t Pv and lim

t→+∞
exp(vwTt) = Pw⊥ , and

c) each solution to ẋ = (vwT)x satisfies x(t) = Pw⊥x(0) + e(v
Tw)t Pvx(0) and x(t) → Pw⊥x(0) as t→ +∞.

E7.4 Equivalent convergence properties. In this exercise we complete the proof of Theorem 7.4 about consensus for

Laplacian matrices with a globally reachable node. Let L be a Laplacian matrix and let G be its associated digraph. As

in Exercise E6.1, pick ε < 1
dmax

, where dmax is the maximum out-degree, and define AL, ε = In − εL. Let w ∈ Rn,
w ≥ 0, and 1T

nw = 1 satisfy wTL = 0T
n and, as in Exercise E5.9, define PL = 1nwT

. Prove that the following

statements are equivalent:

(i) limk→∞ Ak
L, ε = PL,

(ii) limk→∞(AL, ε − PL)
k = 0n×n,

(iii) ρ(AL, ε − PL) < 1,
(iv) α(−L− PL) < 0,
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(v) limt→∞ exp((−L− PL)t) = 0n×n,
(vi) limt→∞ exp(−Lt) = PL.

Hint: Recall the properties of PL established in Exercise E5.9.

▶ E7.5 Laplacian average consensus in directed networks. Consider the directed network in figure below with arbitrary

positive weights and its associated Laplacian flow ẋ(t) = −L(x(t).
124

3

(i) Can the network reach consensus, that is, as t→ ∞ does x(t) converge to a limiting point in span{1n}?
(ii) Does x(t) achieve average consensus, that is, limt→∞ x(t) = average(x0)1n?
(iii) Will your answers change if you smartly add one directed edge and adapt the weights?

E7.6 Convergence of discrete-time and continuous-time averaging. Consider the following two weighted digraphs

and their associated non-negative adjacency matricesA and Laplacian matrices L of appropriate dimensions. Consider

the associated discrete-time iterations x(k + 1) = Ax(k) and continuous-time Laplacian flows ẋ(t) = −Lx(t). For
each of these two digraphs, argue about whether the discrete and/or continuous-time systems converge as time goes

to infinity. If they converge, what value do they converge to?

1

2

3

4

0.34

0.66

0.32

0.32

0.68

0.68

1

2
3

4
0.34

0.66

0.31

0.32
0.56

0.68

0.05
5

0.05

0.9

6

0.07

0.34

0.68

0.95

7
8

0.05

0.95

0.95

0.05
0.05

9

0.32
0.03

10
0.63

0.05

0.99

0.01

0.01

Digraph 1 Digraph 2

Figure E7.2: Two example weighted digraphs

E7.7 Doubly-stochastic matrices on strongly-connected digraphs. Given a strongly-connected unweighted digraph

G, design weights along the edges of G (and possibly add self-loops) so that the weighted adjacency matrix is

doubly-stochastic.

E7.8 The Lyapunov inequality for the Laplacian matrix of a strongly-connected digraph. Let L be the Laplacian

matrix of a strongly-connected weighted digraph. Find P = PT ≻ 0 such that

(i) PL+ LTP ⪰ 0, and
(ii) (PL+ LTP )1n = 0n.

Hint: Recall Section 7.4 and Exercise E6.4.

E7.9 Delayed Laplacian flow. Define the delayed Laplacian flow dynamics over a connected, weighted, and graph G by:

ẋi(t) =
∑

j∈N
aij(xj(t− τ)− xi(t− τ)), i ∈ {1, . . . , n},

where aij > 0 is the weight on the edge {i, j} ∈ E, and τ > 0 is a positive scalar delay term. The Laplace domain
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representation of the system is X(s) = G(s)x(0) where G(s) is associated transfer function

G(s) = (sIn + e−sτL)−1,

and L = LT ∈ Rn×n is the network Laplacian matrix. Show that the transfer function G(s) admits poles on the

imaginary axis if the following resonance condition is true for an eigenvalue λi, i ∈ {1, . . . , n}, of the Laplacian
matrix:

τ =
π

2λi
.

E7.10 Robotic coordination: deployment, centering, and geometric optimization on the real line. Consider n ≥ 3
robots with dynamics ṗi = ui, where i ∈ {1, . . . , n} is an index labeling each robot, pi ∈ R is the position of robot i,
and ui ∈ R is a steering control input. For simplicity, assume that the robots are indexed according to their initial

position: p1(0) ≤ p2(0) ≤ · · · ≤ pn(0). We consider the following distributed control laws to achieve some geometric

configuration:

(i) Move towards the centroid of your neighbors: Each robot i ∈ {2, . . . , n− 1} (having two neighbors) moves to the

centroid of the local subset {pi−1, pi, pi+1}:

ṗi =
1

3
(pi−1 + pi + pi+1)− pi , i ∈ {2, . . . , n− 1} . (E7.1)

The robots {1, n} (each having one neighbor) move to the centroid of the local subsets {p1, p2} and {pn−1, pn},
respectively:

ṗ1 =
1

2
(p1 + p2)− p1 and ṗn =

1

2
(pn−1 + pn)− pn . (E7.2)

Show that, by using the coordination laws (E7.1) and (E7.2), the robots asymptotically rendezvous.

(ii) Move towards the centroid of your neighbors or walls: Consider two walls at the positions p0 ≤ p1 and pn+1 ≥ pn so

that all robots are contained between the walls. The walls are stationary, that is, ṗ0 = 0 and ṗn+1 = 0. Again, the
robots i ∈ {2, . . . , n− 1} (each having two neighbors) move to the centroid of the local subset {pi−1, pi, pi+1}.
The robots {1, n} (each having one robotic neighbor and one neighboring wall) move to the centroid of the local

subsets {p0, p1, p2} and {pn−1, pn, pn+1}, respectively. Hence, the closed-loop robot dynamics are

ṗi =
1

3
(pi−1 + pi + pi+1)− pi , i ∈ {1, . . . , n} . (E7.3)

Show that, by using coordination law (E7.3), the robots become uniformly spaced on the interval [p0, pn+1].
(iii) Move away from the centroid of your neighbors or walls: Again consider two stationary walls at p0 ≤ p1 and

pn+1 ≥ pn containing the positions of all robots. We partition the interval [p0, pn+1] into regions of interest,

whereby each robot is assigned the territory containing all points closer to itself than to other robots. In otherwords,

robot i ∈ {2, . . . , n−1} (having two neighbors) is assigned the region Vi = [(pi+pi−1)/2, (pi+1+pi)/2], robot
1 is assigned the region V1 = [p0, (p1 + p2)/2], and robot n is assigned the region Vn = [(pn−1 + pn)/2, pn+1].
We aim to design a distributed algorithm such that the robots are assigned asymptotically equal-sized regions.

(This territory partition is called a Voronoi partition; see (Martínez et al., 2007) for further detail.) We consider the

following simple coordination law, where each robot i heads for the midpoint ci(Vi(p)) of its partition Vi:

ṗi = ci(Vi(p))− pi . (E7.4)

Show that, by using the coordination law (E7.4), the robots’ assigned regions asymptotically become equally large.

E7.11 Robotic coordination and affine Laplacian flow. Consider a group of n = 4 vehicles moving in the plane. Each

vehicle i ∈ {1, . . . , 4} is described by its kinematics ẋi = ui, where xi ∈ C is the vehicle’s position in the complex

plane and ui ∈ C is a steering command. The vehicle initial position in the complex plane is a square formation:

x(0) =
[
1 i −1 −i

]T
, where i is the imaginary unit. We aim to move the vehicles to a given final configuration.

Specifically, we aim to achieve

lim
t→∞

x(t) = xfinal =
[
0.5 + 0.5i −0.5 + 0.5i −0.5− 0.5i 0.5− 0.5i

]T
. (E7.5)
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132 Chapter 7. Continuous-time Averaging Systems

To achieve this goal, we propose the complex affine averaging control law

ẋ(t) = u(t) = −L(αx(t) + β) , (E7.6)

where α > 0 is a constant scalar gain, β ∈ Cn is a constant vector offset, and L is a Laplacian matrix of a strongly

connected and weight-balanced digraph. Your tasks are the following:

(i) Show that the affine Laplacian flow (E7.6) converges for any choice of α > 0 and β ∈ Cn.
(ii) Characterize all the values of α > 0 and β ∈ Cn such that the desired final configuration xfinal is achieved by the

affine Laplacian flow (E7.6).
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Chapter8

Diffusively-Coupled Linear Systems

In this chapter we study diffusive interconnection among identical linear systems and linear control systems. As

example system, we study the so-called second-order Laplacian flow. The results in this chapter provide a first

generalization of the consensus problem to more general classes of systems.

8.1 Diffusively-coupled linear systems

In this chapter, we consider an agent to be a continuous-time linear single-input single-output (SISO) dynamical

systems with d-dimensional state, described by the matrices A ∈ Rd×d, B ∈ Rd×1
, and C ∈ R1×d

. The dynamics

of the ith agent, for i ∈ {1, . . . , n}, are

ẋi(t) = A xi(t) + Bui(t),

yi(t) = Cxi(t).
(8.1)

Here, xi : R≥0 → Rd, ui : R≥0 → R, and yi : R≥0 → R are the state, input and output trajectories respectively.

The agents are interconnected through a weighted undirected graphGwith edge weights {aij}ij and Laplacian
matrix L; we will often assume L is symmetric. We assume that the input to each system is based on information

received from only its immediate neighbors in G. Specifically, we consider the output-dependent diffusive coupling
law

ui(t) =
n∑

j=1

aij
(
yj(t)− yi(t)

)
. (8.2)

Note: in control theory terms, this interconnection law amounts to a static output feedback controller or, in this

particular case, a proportional controller. We illustrate this interconnection in Figure 8.1. The closed-loop equations

read

ẋi(t) = A xi(t) + BC
n∑

j=1

aij
(
xj(t)− xi(t)

)
.

Definition 8.1. A network of diffusively-coupled identical linear systems is composed by n identical continuous-time
linear SISO systems (A ,B,C ) and a Laplacian matrix L.

For such interconnected systems we introduce a notion of asymptotic behavior that generalizes the asymptotic

consensus achieved by the Laplacian flow, as studied in the previous chapter.
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ẋi(t) = A xi(t) + Bui(t)

yi(t) = C xi(t)
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aij(yj � yi)
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Figure 8.1: The output-dependent diffusive coupling law (8.2)

Definition 8.2. A network of diffusively-coupled identical linear systems described by the triplet (A ,B,C ) and
the Laplacian L achieves asymptotic synchronization if, for all agents i, j ∈ {1, . . . , n} and all initial conditions, the
solutions of (8.1) under feedback (8.2) satisfy

lim
t→∞

∥xi(t)− xj(t)∥2 = 0. (8.3)

We note that, under mild connectivity assumptions, asymptotic synchronization is equivalent to the following

property: there exists a trajectory x0 : R≥0 → Rd such that, for all i,

lim
t→∞

∥xi(t)− x0(t)∥2 = 0. (8.4)

When this trajectory is known, we say that the system achieves asymptotic synchronization on x0.

8.1.1 Second-order Laplacian flows

In this section we introduce an example of diffusively-coupled linear systems. We assume each node of the network

is a so-called double-integrator (also referred to as second-order dynamic):

q̈i = ūi, or, in first-order equivalent form,

{
q̇i = vi,

v̇i = ūi,
(8.5)

where ūi is an appropriate control input signal to be designed.

We assume a weighted undirected graph describes the sensing and/or communication interactions among

the agents with adjacency matrix A and Laplacian L. We also introduce constants kp, kd ≥ 0 describing so-

called spring and damping coefficients respectively, as well as constants γp, γd ≥ 0 describing position-averaging
and velocity-averaging coefficients. In summary, we consider the proportional, derivative, position-averaging, and
velocity-averaging control law

ūi = −kpqi − kdq̇i +

n∑

j=1

aij
(
γp(qj − qi) + γd(q̇j − q̇i)

)
. (8.6)

A physical realization of this system as a spring/damper network is illustrated in Figure 8.2.

It is useful to rewrite the systems (8.5) interconnected via the law (8.6) in two useful manners. First, simply

stacking each component into a vector, the corresponding closed-loop systems, called the second-order Laplacian
flow, is

q̈(t) + (kdIn + γdL)q̇(t) + (kpIn + γpL)q(t) = 0n. (8.7)
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Figure 8.2: A network of unit-mass carts subject to spring and dampers gives rise to the second-order Laplacian

flow (8.7). For illustration purposes, the springs and dampers connecting each cart to the left wall are drawn

schematically, in light gray, as if they were overlapping and on a separate plane.

Second, we can rewrite ūi = −kpqi − kdẋi + ui, where ui =
∑n

j=1 aij
(
γp(qj − qi) + γd(q̇j − q̇i)

)
and define

the matrices

Amsd =

[
0 1

−kp −kd

]
,Bmsd =

[
0
1

]
, and Cmsd =

[
γp γd

]
. (8.8)

With these definitions one can see that the systems (8.5) interconnected via the law (8.6) is equivalent to:

d

dt

[
qi
vi

]
= Amsd

[
qi
vi

]
+ Bmsdui,

yi = Cmsd

[
qi
vi

]
, ui(t) =

n∑

j=1

aij
(
yj(t)− yi(t)

)
.

In other words, the matrices in equation (8.8) describe the second-order Laplacian system as a network of diffusively-

coupled identical linear systems.

In Table 8.1 we catalog some interesting special cases and we illustrate in Figure 8.3 the behavior of the systems

corresponding to the first three rows of Table 8.1. The next sections in this chapter focus on establishing rigorously

the collective emerging behavior observed in these simulations.

8.2 Modeling via Kronecker products

In this section we obtain a compact expression for the state matrix of a diffusively-coupled network of linear

systems.

8.2.1 The Kronecker product

We start by introducing a useful tool. The Kronecker product of A ∈ Rn×m and B ∈ Rq×r is the nq ×mr matrix

A⊗B given by

A⊗B =



a11B . . . a1mB
.
.
.

.
.
.

.

.

.

an1B
.
.
. anmB


 . (8.9)

As simple example, we write

In⊗B =



B . . . 0
.
.
.

.
.
.

.

.

.

0 .
.
. B


 ∈ Rnq×nr and A⊗ Iq =



a11Iq . . . a1mIq
.
.
.

.
.
.

.

.

.

an1Iq
.
.
. anmIq


 ∈ Rnq×mq. (8.10)
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Name Dynamics Asymptotic behavior

Second-order averaging protocol kp = kd = 0, γd = 1, γp > 0
=⇒
q̈(t) + Lq̇(t) + γpLq(t) = 0n

synchronization on a ramp

Example: car platooning

Ref: Theorem 8.7(i)

Harmonic oscillators with velocity averag-

ing

kd = γp = 0, γd = 1, kp > 0
=⇒
q̈(t) + Lq̇(t) + kpq(t) = 0n

synchronization on harmonic os-

cillations

Example E8.5: resonant inductor/-

capacitor circuits

Ref: Theorem 8.7(ii)

Position-averaging with absolute velocity

damping

kp = γd = 0, γp = 1, kd > 0
=⇒
q̈(t) + kdq̇(t) + Lq(t) = 0n

synchronization on constant posi-

tions

Example: rendezvous in multi-

robot systems

Example: swing dynamics in

power networks

Ref: Theorem 8.7(iii)

Laplacian oscillators kp = kd = γd = 0, γp = 1
=⇒
q̈(t) + Lq(t) = 0n

superposition of ramp and har-

monics

Example 7.1.3: discretized wave

equation

Ref: Exercise E8.6

Table 8.1: Classification of second-order Laplacian flows arising from the general model in equation (8.7). Note:

each of the first three examples satisfies kp + γp > 0 and kd + γd > 0.

Additionally, for v, w ∈ Rn, we have v⊗w =



v1w
.
.
.

vnw


 ∈ Rn2

.

The Kronecker product enjoys numerous properties, including for example

the bilinearity property: (αA+ βB)⊗(γC + δD) = αγA⊗C + αδA⊗D

+ βγB⊗C + βδB⊗D, (8.11a)

the associativity property: (A⊗B)⊗C = A⊗(B⊗C), (8.11b)

the transpose property: (A⊗B)T = AT⊗BT, (8.11c)

the mixed product property: (A⊗B)(C ⊗D) = (AC)⊗(BD), (8.11d)

where the A,B,C,D matrices have appropriate compatible dimensions.

The remarkable mixed product property (8.11d) leads to many useful consequences. As first example, if

Av = λv and Bw = µw, then property (8.11d) implies

(A⊗B)(v⊗w) = (Av)⊗(Bw) = (λv)⊗(µw) = λµ(v⊗w).
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t

q(t)
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Second-order averaging protocol

q̈(t) + Lq̇(t) + �pLq(t) = 0
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1 2 3 4

�4

�2

0

2

4

(a) asymptotic synchronization on a ramp signal

Harmonic oscillators with velocity averaging

q̈(t) + Lq̇(t) + kpq(t) = 0
<latexit sha1_base64="eY9EwJT1VqaMuweqAhZuGHZA6co="></latexit>
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(b) asymptotic synchronization on an harmonic signal

Position-averaging with absolute velocity damping

q̈(t) + kdq̇(t) + Lq(t) = 0
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(c) asymptotic synchronization on constant weighted average

Figure 8.3: Representative trajectories of the second-order Laplacian flow (8.7) for a randomly-generated undirected

graph with n = 20 nodes, random initial conditions, and the three choices of gains as cataloged in Table 8.1.

Therefore, we know

the eigenpair property: Av = λv,Bw = µw =⇒ (A⊗B)(v⊗w) = λµ(v⊗w), (8.12)

the spectrum property: spec(A⊗B) = {λµ | λ ∈ spec(A), µ ∈ spec(B)}. (8.13)

A second consequence of property (8.11d) is that, for square matrices A and B, A⊗B is invertible if and only if

both A and B are invertible, in which case

the inverse property: (A⊗B)−1 = A−1⊗B−1 . (8.14)

We ask the reader to prove these properties and establish other ones in Exercises E8.1 and E8.2.

8.2.2 The state matrix for a diffusively coupled system

We are now ready to provide a concise closed-form expression for the state matrix of the network.

Theorem 8.3 (Transcription of diffusively-coupled linear systems). Consider a network of diffusively-coupled
identical linear systems described by the system (A ,B,C ) and the symmetric Laplacian matrix L. Then the following
statements hold:
(i) the open-loop system, output equation, and diffusive coupling law are, respectively,

ẋ(t) = (In⊗A )x(t) + (In⊗B)u(t),

y(t) = (In⊗C )x(t),

u(t) = −Ly(t),
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(ii) the closed-loop system is

ẋ(t) = (In⊗A − L⊗BC )x(t), (8.15)

where we adopt the notation x =
[
xT1 , . . . , x

T
n

]T ∈ Rnd, u =
[
u1, . . . , un

]T ∈ Rn, and y =
[
y1, . . . , yn

]T ∈ Rn.

Proof. Wewrite the n coupled systems in a single vector-valued equation on the state spaceRdn using the Kronecker
product. As in equation (8.10), we stack the n dynamical systems to write

ẋ =




A . . . 0
.
.
.

.
.
.

.

.

.

0 .
.
. A


x+




B . . . 0
.
.
.

.
.
.

.

.

.

0 .
.
. B


u = (In⊗A )x+ (In⊗B)u.

Similarly we obtain y = (In⊗C )x. Next, recalling the definition of Laplacian, we write the output-dependent

diffusive coupling law (8.2) as u = −Ly. Moreover, plugging in the output equation leads to

ẋ = (In⊗A )x− (In⊗B)L(In⊗C )x.

From the mixed product property in equation (8.11d), we obtain

(In⊗B)L(In⊗C ) = (In⊗B)(L⊗ 1)(In⊗C ) = (L⊗BC )

and, in turn, the closed loop (8.15). Note that L ∈ Rn×n, B ∈ Rd×1
, and C ∈ R1×d

together imply that BC
has dimensions d× d and that L⊗BC has dimensions nd× nd, the same as In⊗A . Hence, equation (8.15) is

dimensionally correct. This concludes the proof. ■

8.3 The synchronization theorem

In this section we present the main result of this chapter. Define the state average xave : R≥0 → Rd by

ẋave(t) = A xave(t), xave(0) =
1

n

n∑

j=1

xj(0),

and note that xave(t) = exp(A t)xave(0). The following theorem characterizes when diffusively-coupled linear

systems achieve asymptotic synchronization as in equation (8.3), that is,

lim
t→∞

∥xi(t)− xj(t)∥2 = 0, for all i, j ∈ {1, . . . , n}

and, more specifically, asymptotic synchronization on xave as in equation (8.4), that is,

lim
t→∞

∥xi(t)− xave(t)∥2 = 0, for all i ∈ {1, . . . , n}.

Theorem 8.4 (Synchronization of output-dependent diffusively-coupled linear systems). Consider a
network of diffusively-coupled identical linear systems described by the system (A ,B,C ), the symmetric Laplacian
L, and the closed-loop dynamics (8.15). Let 0 = λ1 ≤ λ2 ≤ · · · ≤ λn denote the eigenvalues of L. The following
statements hold:
(i) the system achieves asymptotic synchronization on xave if and only if each matrix A − λiBC , i ∈ {2, . . . , n},

is Hurwitz;
(ii) the system is exponentially stable if and only if each matrix A − λiBC , i ∈ {1, . . . , n}, is Hurwitz.
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It is useful now to offer some comments and consider a special case.

Remark 8.5. (i) If G is connected (i.e., λ2 > 0), then it is possible for each matrix A − λiBC , i ∈ {2, . . . , n}, to
be Hurwitz while A is not. Therefore, it is possible for a system to synchronize and not be exponentially stable.

(ii) If G is disconnected, then synchronization and exponential stability are equivalent and imply that A is Hurwitz.
(iii) In other words, if A is not Hurwitz, then synchronization is possible if and only if the graph is connected. •

Corollary 8.6 (State-dependent diffusive coupling). Consider the state-dependent diffusive-coupling case:

ẋi = A xi +
n∑

j=1

aij(xj − xi),

that is, assume BC = Id in the setup of Theorem 8.4. Let α(A ) denote the spectral abscissa of A . Then the following
statements are equivalent
(i) the system achieves asymptotic synchronization on the state average,
(ii) each A − λiId, i ∈ {2, . . . , n}, is Hurwitz, that is, A − λ2Id is Hurwitz, and
(iii) the algebraic connectivity of L dominates the spectral abscissa of A , that is, α(A ) < λ2.

Proof of Theorem 8.4. Let L = UΛUT
be the eigen-decomposition of L, where U is an orthonormal matrix and

Λ = diag(λ1, . . . , λn). Consider the change of variable z = (UT ⊗ Id)x and note (UT ⊗ Id)(U ⊗ Id) = Ind.
Compute:

ż = (UT ⊗ Id)(In⊗A − L⊗BC )(U ⊗ Id)z

=
(
(UTInU)⊗(IdA Id)− (UTLU)⊗(IdBC Id)

)
z

= (In⊗A − Λ⊗BC )z.

Now, note that the matrix (In⊗A − Λ⊗BC ) is block diagonal because

In⊗A =




A
.
.
.

A


 , and Λ⊗BC =



λ1BC

.
.
.

λnBC


 .

This block diagonal form immediately implies statement (ii).

Next, recalling that λ1 = 0 and that e1 is the first element of the canonical basis of Rn, we write the matrix

exponential of the block-diagonal matrix (In⊗A − Λ⊗BC ) to obtain:

z(t) =




exp(A t)
exp
(
(A − λ2BC )t

)
.
.
.

exp
(
(A − λnBC )t

)


 z(0)

=




exp(A t)z1(0)
0d
.
.
.

0d


+




0d×d
exp
(
(A − λ2BC )t

)
.
.
.

exp
(
(A − λnBC )t

)


 z(0)

=
(
(e1e

T
1 )⊗ exp(A t)

)
z(0) + ztransient(t).

Here the vector-valued function ztransient : R≥0 → Rnd contains all terms of the form exp
(
(A − λiBC )t

)
zi(0),

for i ∈ {2, . . . , n}. We note that ztransient is exponentially vanishing as t→ ∞ for all initial conditions z(0) if and
only if each matrix A − λiBC , i ∈ {2, . . . , n} is Hurwitz.
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Next, we compute

(U ⊗ Id)
(
(e1e

T
1 )⊗ exp(A t)

)
z(0) = (U ⊗ Id)

(
(e1e

T
1 )⊗ exp(A t)

)
(UT⊗ Id)x(0)

=
(
(Ue1e

T
1U

T)⊗ exp(A t)
)
x(0).

From the eigen-decomposition we know that the first column of U is the first eigenvector of L normalized to

have unit 2-norm. Since the first (i.e., smallest) eigenvalue 0 of L has eigenvector 1n (or any multiple thereof),

we know that Ue1 = 1n/
√
n and also that eT1U

T = 1T
n/

√
n. In summary, with xtransient(t) = (U ⊗ Id)ztransient(t),

we obtain

x(t) =
1

n

(
(1n1T

n)⊗ exp(A t)
)
x(0) + xtransient(t)

=
1

n

(
In⊗ exp(A t)

)(
(1n1T

n)⊗ Id

)
x(0) + xtransient(t)

=
1

n



exp(A t)

.
.
.

exp(A t)






Id . . . Id
.
.
.

.
.
.

.

.

.

Id . . . Id






x1(0)

.

.

.

xn(0)


+ xtransient(t),

so that the solution to each system i satisfies

xi(t) = exp(A t)
( 1
n

n∑

j=1

xj(0)
)
+ hi(t).

Finally, we recall that ztransient, and therefore xtransient, is exponentially vanishing for all initial conditions z(0),
and therefore x(0), if and only if each matrix A − λiBC , i ∈ {2, . . . , n} is Hurwitz. This concludes the proof of

statement (i). ■

8.3.1 Synchronization in second-order Laplacian systems

Wenow apply to second-order Laplacian systems the theoretical results obtained in the synchronization Theorem 8.4.

Unlike for the general case, it is possible to obtain quite explicit results.

First, recall that second-order Laplacian systems are diffusively-coupled linear systemswithmatrices (Amsd,Bmsd,Cmsd)
and with Laplacian interconnection matrix L. As before, let 0 = λ1 ≤ λ2 ≤ · · · ≤ λn denote the eigenvalues of L.
We compute:

Amsd − λiBmsdCmsd =

[
0 1

−kp −kd

]
− λi

[
0
1

] [
γp γd

]

=

[
0 1

−(kp + λiγp) −(kd + λiγd)

]
.

In other words, the i-th subsystem Amsd − λiBmsdCmsd is a spring/damper system with effective spring coefficient

kp + λiγp and effective damper coefficient kd + λiγd. Based on a well known result, it is easy to see that

Amsd − λiBmsdCmsd is Hurwitz ⇐⇒ kp + λiγp > 0 and kd + λiγd > 0.

Next, as state average system, we define the average mass/spring/damper system by

d

dt

[
qave(t)
q̇ave(t)

]
=

[
0 1

−kp −kd

] [
qave(t)
q̇ave(t)

]
, (8.16)

where we set qave(0) =
∑n

j=1 qj(0) and q̇ave(0) =
∑n

j=1 q̇j(0).
These observations lead to the main synchronization result for second-order Laplacian flows.
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Theorem 8.7 (Synchronization of second-order Laplacian flows). Consider the second-order Laplacian
flow (8.7). Assume that the undirected graph associated to L is connected. If kp + γp > 0 and kd + γd > 0,
then

(i) the system (8.7) achieves asymptotic synchronization in the sense that

lim
t→∞

∥qi(t)− qj(t)∥2 = lim
t→∞

∥q̇i(t)− q̇j(t)∥2 = 0, for all i, j ∈ {1, . . . , n};

(ii) each trajectory asymptotically converges to the state average trajectory in the sense that

lim
t→∞

∥qi(t)− qave(t)∥2 = 0, for all i ∈ {1, . . . , n}.

Specifically:

(i) the second-order averaging protocol (kp = kd = 0, γd = 1, γp > 0, first row Table 8.1), achieves asymptotic
consensus on a ramp signal, that is, as t→ ∞,

q(t) →
(
qave(0) + q̇ave(0)t

)
1n;

(ii) the harmonic oscillators with velocity averaging (kd = γp = 0, γd = 1, kp > 0, second row Table 8.1), achieve
asymptotic consensus on an harmonic signal, that is, as t→ ∞,

q(t) →
(
qave(0) cos(

√
kpt) +

1√
kp
q̇ave(0) sin(

√
kpt)

)
1n;

(iii) the position-averaging flow with absolute velocity damping (kp = γd = 0, γp = 1, kd > 0, third row Table 8.1),
achieves asymptotic consensus on a weighted average value, that is, as t→ ∞

q(t) →
(
qave(0) + q̇ave(0)/kd

)
1n.

The asymptotic behavior of the dynamical systems as classified in the three scenarios of this theorem and

defined in the first three rows of Table 8.1 is consistent with the empirical observations in Figure 8.3.

8.4 Control design for synchronization

We now generalize the study of diffusively-coupled systems in three ways: (1) we assume the interconnection

graph is directed, (2) we consider a multi-input multi-output (MIMO) interconnection, and, most importantly, (3)

we consider a control design problem, instead of a stability analysis problem.

For simplicity, we consider the setting of state feedback. While the transcription and stability analysis method

is very similar to that in the previous sections, the method of proof for digraph interconnections relies upon a

transcription into Jordan normal form instead of a diagonalization procedure. We also review various stabilizability

notions from linear control theory.
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8.4.1 Problem statement

In this section, we consider an agent to be a continuous-time linear control systems with d-dimensional state and

p-dimensional input, described by the matrices A ∈ Rd×d and B ∈ Rd×p. The dynamics of the ith agent, for

i ∈ {1, . . . , n}, are

ẋi = A xi + Bui, (8.17)

where xi ∈ Rd is the state and ui ∈ Rp is the control input.
The agents communicate along the edges of a weighted directed graph G with edge weights {aij}ij and

Laplacian matrix L. We assume each agent regulates its own control signal based on information received from

only its immediate in-neighbors in G.
The problem statement is as follows: design a control law that, based only on the information obtained through

communication, achieves asymptotic synchronization in the sense of equation (8.3), that is, for all agents i and j
and all initial conditions,

lim
t→∞

∥xi(t)− xj(t)∥2 = 0.

Consider the (state-dependent) diffusive coupling law:

ui(t) = cK
n∑

j=1

aij
(
xj(t)− xi(t)

)
, for i ∈ {1, . . . , n}, (8.18)

where the scalar c > 0 is a coupling gain andK ∈ Rp×d is a control gain matrix. Note that this interconnection

law amounts to a static feedback controller.

Before solving this problem we generalize the transcription and synchronization Theorems 8.3 and 8.4 to this

setting. The instructive proof of the following result is postponed to Section 8.4.5.

Theorem 8.8 (Transcription and synchronization of MIMO systems over digraphs). Consider n identical
continuous-time linear control systems described by the couple (A ,B) and a digraph with Laplacian L and with
eigenvalues 0 = λ1, λ2, . . . , λn. Let w denote the dominant left eigenvector of L satisfying 1T

nw = 1 and define the
weighted state average xave,w : R≥0 → Rd by

xave,w(t) = exp(A t)
( n∑

j=1

wjxj(0)
)
. (8.19)

The following statements hold:
(i) the open-loop system and the diffusive coupling law are, respectively,

ẋ(t) = (In⊗A )x(t) + (In⊗B)u(t),

u(t) = −c(In⊗K)(L⊗ Id)x(t),

and the closed-loop system is

ẋ =
(
(In⊗A )− c(L⊗BK)

)
x; (8.20)

where we adopt the notation x =
[
xT1 , . . . , x

T
n

]T ∈ Rnd and u =
[
uT1 , . . . , u

T
n

]T ∈ Rnp;
(ii) the closed-loop system (8.20) achieves asymptotic synchronization on xave,w if and only if each (possibly complex)

matrix A − cλiBK , i ∈ {2, . . . , n}, is Hurwitz.

Note: Assume thatG contains a globally reachable node. Then one can show the following converse result: if x
achieves asymptotic consensus for all initial conditions, then each matrix A − cλiBK , i ∈ {2, . . . , n}, is Hurwitz.
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8.4.2 Stabilizability of linear control systems

We now review from linear control theory the notion of stabilizability and stabilizing feedback gain design.

Given matrices A ∈ Rd×d and B ∈ Rd×p, a continuous-time linear control systems with d-dimensional state

and p-dimensional input is

ẋ = A x+ Bu, (8.21)

where xi ∈ Rd is the state and ui ∈ Rp is the control input.
Given a feedback gain matrixK ∈ Rd×n, the feedback control signal u = −Kx gives rise to the closed-loop

linear system

ẋ = A x+ B(−Kx) = (A − BK)x.

Definition 8.9. The linear control system (A ,B) is stabilizable if there exists a matrixK such that A − BK is
Hurwitz.

In other words, the closed-loop system is exponentially stable.

Theorem 8.10 (Stabilizability of linear control systems). Given matrices A ∈ Rd×d and B ∈ Rd×p, the
following statements are equivalent
(i) the linear control system (8.21) is stabilizable,
(ii) there exists a d× d matrix P ≻ 0 solving the (stabilizability) Lyapunov inequality

A P + PA T − 2BBT ≺ 0. (8.22)

Moreover, for any P ≻ 0 satisfying the inequality (8.22), a stabilizing feedback gain matrix isK = BTP−1.

We refer for example to (Hespanha, 2009) for a complete treatment of linear systems theory, including a detailed

discussion of stabilizability. We recall that the Lyapunov matrix inequality can be solved easily as a linear matrix
inequality (LMI) (LMI) problem. We refer to (Boyd et al., 1994) for a detailed treatment of control problems solved

via linear matrix inequalities.

8.4.3 High-gain LMI design

Consider now the following algorithm to design the control gain matrix K and the coupling gain c. Recall the
Lyapunov matrix equation (8.22) and the fact that it can be solved via an LMI solver.

High-gain LMI design

Input: the stabilizable pair (A ,B)
Output: a control gain matrixK and coupling gain c

1: set P := any solution to the linear matrix equality A P + PA T − 2BBT ≺ 0
2: setK := BTP−1

3: set c := 1/min{ℜ(λi) | i ∈ {2, . . . , n}}

Note: the design ofK depends upon only the dynamics of each agent and the design of c depends upon only

the communication graph.

Theorem8.11 (High-gain LMI design for stabilizable linear control systems). Considern identical continuous-
time linear control systems described by the couple (A ,B) and a digraph G with Laplacian L and with complex
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eigenvalues 0 = λ1, λ2, . . . , λn. If the pair (A ,B) is stabilizable and the digraph G contains a globally reachable
node, then
(i) the high-gain LMI design algorithm is well posed in the sense that a solution matrix P exists positive definite and

the scalar c is well defined, and
(ii) the resulting pair (K, c) ensures that each (possibly complex) matrix A − cλiBK , i ∈ {2, . . . , n}, is Hurwitz.

Note: the last two theorems reduce the problem of analyzing a dynamical system of dimension nd to the

analysis of objects of dimensions n (the Laplacian L) and d (the linear matrix equality in P ).

Proof. Fact (i) is a direct consequence of Theorem 8.10 about the stabilizability of linear control systems.

Regarding fact (ii), let P be the positive definite matrix computed in the high-gain LMI design algorithm. Given

a square complex matrix A ∈ Cn×n, recall that (i) AH
denotes the conjugate transpose of A, and (ii) the Lyapunov

inequality ensuring that A is Hurwitz is AP + PAH ≺ 0. With these concepts, the Lyapunov equation for the ith
complex subsystem, i ∈ {2, . . . , n}, is:

(A − cλiBK)P + P (A − cλiBK)H

= A P + PA T − c
(
λiBKP + λiPK

TBT
)

≺ 2BBT − c
(
λiB(BTP−1)P + λiP (B

TP−1)TBT
)
,

where we used two statements from the high-gain LMI design: A P + PA T − 2BBT ≺ 0 and K = BTP−1
.

Performing all simplifications, we obtain

(A − cλiBK)P + P (A − cλiBK)H ≺ 2BBT − 2cℜ(λi)BBT

≺ 2
(
1− cℜ(λi)

)
BBT.

For any c ≥ 1/min{ℜ(λi) | i ∈ {2, . . . , n}}, we know that cℜ(λi) ≥ 1 and therefore 1−cℜ(λi) ≤ 0. In summary

we have proved that

(A − cλiBK)P + P (A − cλiBK)H ≺ 0.

Therefore the (complex) linear system ẋ = (A − cλiBK)x is exponentially stable. ■

8.4.4 Extension to output feedback design

We now present the basic concepts about the problem of output feedback synchronization. As in equation (8.1),

the agent is now an input/output control system described by

ẋi(t) = A xi(t) + Bui(t),

yi(t) = Cxi(t).
(8.23)

Here xi ∈ Rd is the state, ui ∈ Rp is the control input, and yi ∈ Rq is the output signal. Each agent receives the

signal

ζi = c

n∑

j=1

aij(yi − yj), (8.24)

and executes the following observer-based diffusive coupling law

v̇i = (A − BK)vi + F
(
c
∑n

j=1
aijC (vi − vj)− ζi

)
,

ui = −Kvi.
(8.25)
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Here c is a coupling gain, vi is the protocol state, and K and F are control and observer gain matrices to be

designed.

One can show the following generalization of Theorem 8.8: if each matrix A − BK and A − cλiFC ,

i ∈ {2, . . . , n}, is Hurwitz, then the n input/output control systems (8.23) in closed loop with the observer-based

diffusive coupling law (8.24)-(8.25) achieve asymptotic synchronization in the state and protocol state variables.

We refer the interested reader to (Li et al., 2010; Li and Duan, 2014) for design methods to compute appropriate

gain parameters c,K and F .

8.4.5 Proof of synchronization over directed graphs

Proof of Theorem 8.8. To prove statement (i), we proceed as in the proof of Theorem 8.3(i). We stack the n dynamical

systems (8.17) to obtain ẋ = (In⊗A )x+ (In⊗B)u. We write the diffusive coupling law (8.18) as

u(t) = −c(In⊗K)z(t), where zi(t) =
n∑

j=1

aij
(
xi(t)− xj(t)

)
=

n∑

j=1

ℓijxj(t). (8.26)

where ℓij is the (ij) entry of the Laplacian L. The last equality is equivalent to z(t) = (L⊗ Id)x(t), so that

u(t) = −c(In⊗K)(L⊗ Id)x(t). Finally, the mixed product property (8.11d) implies

ẋ = (In⊗A )x− (In⊗B)c(In⊗K)(L⊗ Id)x =
(
(In⊗A )− c(L⊗BK)

)
x. (8.27)

Note that L ∈ Rn×n, B ∈ Rd×p andK ∈ Rp×d together imply that BK has dimensions d× d and that L⊗BK
has dimensions nd× nd so that equation (8.27) is dimensionally correct. This concludes the proof of statement (i).

To prove statement (ii), let Πn = In − 1nwT
denote a projection matrix on the subspace of zero-average

vectors; note that Π2
n = Πn and wTΠn = 0T

n . As in Exercise E5.9(iii) (where A is row-stochastic), one can easily

see

ΠnL = LΠn = L. (8.28)

Define the consensus error e ∈ Rnd by
e = (Πn⊗ Id)x. (8.29)

Note that e = 0nd if and only if x1 = · · · = xn. Using the mixed product property and the fact that L and Πn
commute, we compute

ė = (Πn⊗ Id)
(
(In⊗A )− c(L⊗BK)

)
x

=
(
(In⊗A )− c(L⊗BK)

)
(Πn⊗ Id)x =

(
(In⊗A )− c(L⊗BK)

)
e.

Let J be the Jordan normal form of L and let T satisfy L = TJT−1
. Recall that the first column of T is 1n

and the first row of T−1
is w. We define the transformed consensus error ẽ = (T−1⊗ Id)e ∈ Rnd and, noting

(T−1⊗ Id)
−1 = (T ⊗ Id), we compute

˙̃e = (T−1⊗ Id)
(
(In⊗A )− c(L⊗BK)

)
(T ⊗ Id)ẽ

=
(
(In⊗A )− c(J ⊗BK)

)
ẽ. (8.30)

The first d entries of the vector ẽ(t) are identically zero at all times t, because one can show ẽ1(t) = (wT⊗ Id)e(t) =
0d. Next, since the Jordan normal form J is block diagonal, say with blocks J1, . . . , Jm (with J1 = 0), we can write

the dynamics (8.30) as decoupled equations. If Ji corresponds to a simple eigenvalue λi and is a one dimensional

block, then we have

˙̃ei = (A − cλiBK)ẽi.
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One can show that, for arbitrary dimensional Jordan blocks corresponding to eigenvalues λi, i ∈ {2, . . . , n}, the
asymptotic stability condition is that A − cλiBK is Hurwitz. In other words, each matrix is Hurwitz if and

only if ẽ(t) and e(t) vanish asymptotically so that x achieves asymptotic consensus. This concludes the proof of

statement (ii). ■

8.5 Historical notes and further reading

Excellent reviews of the Kronecker product are given for example by (Horn and Johnson, 1994, Chapter 4), (Van Loan,

2000), and (Laub, 2005, Chapter 13).

The Kronecker formalism is related to the early work (Wu and Chua, 1995) and the textbook (Wu, 2007).

Theorems 8.8 and 8.11 and the abbreviated treatment in Section 8.4.4 are due to (Li et al., 2010), see also (Xia and

Scardovi, 2016, Theorem 1), (Li and Duan, 2014, Theorem 1). An early reference on the observability problem

is (Tuna, 2012). A comprehensive treatment is in the text (Li and Duan, 2014).

Second-order Laplacian flows are widely studied. Early references are the works by Chow (1982) and Chow and

Kokotović (1985) on slow coherency and area aggregation of power networks, modeled as first and second-order

Laplacian flows; see also (Avramovic et al., 1980; Chow et al., 1984; Saksena et al., 1984) among others.

In the consensus literature, an early reference to second-order Laplacian flows is (Ren and Atkins, 2005).

Relevant references include (Ren, 2008a,b; Zhu et al., 2009; Zhang and Tian, 2009; Yu et al., 2010); see also (Ren and

Atkins, 2005; Ren, 2008b). We refer to (Zhu et al., 2009) for convergence results for general digraphs and gains with

arbitrary signs, and to (Zhang and Tian, 2009) for the discrete-time setting.

(Montenbruck et al., 2015; van Waarde et al., 2017) discuss when diffusive coupling is necessary for optimal

synchronization problems among identical linear systems with quadratic costs.
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8.6 Exercises

E8.1 Properties of the Kronecker product. Prove properties (8.11a)–(8.11d), (8.12), (8.13) and (8.14) of the Kronecker

product.

Note: Additionally, for any A ∈ Rn×m, B ∈ Rq×r , and p ≥ 1, one can show ∥A⊗B∥p = ∥A∥p∥B∥p, see (Lancaster
and Farahat, 1972) and (Wu et al., 2022, Proposition 5).

▶ E8.2 The vectorization operator, the Kronecker product, and the Sylvester equation. Given a matrix X ∈ Rn×m,
the vectorization of X is the vector of dimensionmn obtained by stacking all columns of X , that is,

vec(X) = [x11, . . . , xn1, x12, . . . , xn2, . . . , x1m, . . . , xnm]T ∈ Rmn. (E8.1)

Show that

(i) any x ∈ Rn and y ∈ Rm satisfy vec(xyT) = y⊗x;
(ii) for any X,Y ∈ Rn×m, recall their Frobenius inner product defined by ⟨⟨X,Y ⟩⟩ = trace(XTY ) and show

⟨⟨X,Y ⟩⟩ = vec(X)T vec(Y );
(iii) any matrices A, B and C , for which the product ABC is well defined, satisfy

vec(ABC) = (CT ⊗A) vec(B);

(iv) for any matrix function A : Rn → Rn×n, the Jacobian of the vector field A(x)x satisfies

∂A(x)x

∂x
= (xT ⊗ In)

∂ vec(A(x))

∂x
+A(x).

Next, for A ∈ Rn×n, B ∈ Rm×m
, and C ∈ Rn×m, consider the Sylvester equation

AX +XB = C

in the matrix variable X ∈ Rn×m. Show that the Sylvester equation

(v) can be rewritten as {
(Im⊗A) + (BT ⊗ In)

}
vec(X) = vec(C);

(vi) has a unique solution for all C if and only if A and −B have no common eigenvalues.

E8.3 Second-order Laplacianmatrices. Given a LaplacianmatrixL = LT
and non-negative coefficients kp, kd, γp, γd ∈ R,

define the second-order Laplacian matrix L ∈ R2n×2n
by

L =

[
0n×n In

−kpIn − γpL −kdIn − γdL

]
, (E8.2)

and write the second-order Laplacian system (8.7) in first-order form as

[
q̇(t)
v̇(t)

]
= L

[
q(t)
v(t)

]
. Show that

(i) the characteristic polynomial of L is

det(ηI2n − L) = det
(
η2In + η(kdIn + γdL) + (kpIn + γpL)

)
;

(ii) given the real eigenvalues λ1, . . . , λn, of L, the 2n eigenvalues η1,+, η1,−, . . . , ηn,+, ηn,− of L are solutions to

η2 + (kd + γdλi)η + (kp + γpλi) = 0, i ∈ {1, . . . , n}, (E8.3)

that is, η1,± =
−kd±

√
k2
d
−4kp

2 corresponding to λ1 = 0 and, for i ∈ {2, . . . , n},

ηi,± =
−(kd + γdλi)±

√
(kd + γdλi)2 − 4(kp + γpλi)

2
;

(iii) if the undirected graph associated to L is connected and if kp + γp > 0 and kd + γd > 0, then each eigenvalue

ηi,±, i ∈ {2, . . . , n}, has negative real part;
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(iv) L is similar to the Kronecker product expression (8.15) in Theorem 8.3 with a permutation similarity transform

(i.e., a simple reordering of rows and columns).

E8.4 Eigenvectors of the second-order Laplacianmatrix. Consider a LaplacianmatrixL, scalar coefficients kp, kd, γp, γd ∈
R and the induced second-order Laplacian matrix L (as in (E8.2)). Let vl,i and vr,i be the left and right eigenvectors of

L corresponding to the eigenvalue λi, show that

(i) the right eigenvectors of L corresponding to the eigenvalues ηi,± are

[
vr,i

ηi,±vr,i

]
,

(ii) for kp > 0, the left eigenvectors of L corresponding to the eigenvalues ηi,± are




vl,i
−ηi,±

kp + γpλi
vl,i


 .

E8.5 Synchronization of inductors/capacitors circuits. Consider a circuit composed of n identical resonant inductor/-

capacitor storage nodes (i.e., a parallel interconnection of a capacitor and an inductor) coupled through a connected

and undirected graph whose edges are identical resistors; see Figure E8.1. The parameters ℓ, c, r take identical values
on each inductor, capacitor and resistors, respectively.

` c

r

` c ` c

` cr

r

r

Figure E8.1: A circuit of identical inductor/capacitor storage nodes coupled through identical resistors.

(i) Write a state-space model of the resistively-coupled inductor/capacitor storage nodes in terms of the time constant

τ = 1/rc, the resonant frequency ω0 = 1/
√
ℓc, and the unweighted Laplacian matrix L of the resistive network.

(ii) Characterize the asymptotic behavior of this system.

▶ E8.6 Laplacian oscillators. Given the Laplacian matrix L = LT ∈ Rn×n of an undirected, weighted, and connected graph

with edge weights aij , i, j ∈ {1, . . . , n}, define the Laplacian oscillator flow by

ẍ(t) + Lx(t) = 0n. (E8.4)

Recall that this equation arises for example as the discretization of the wave equation in Example 7.1.3. This flow is

written as first-order differential equation as

[
ẋ(t)
ż(t)

]
=

[
0n×n In
−L 0n×n

] [
x(t)
z(t)

]
=: L

[
x(t)
z(t)

]
.

(i) Write the second-order Laplacian flow in components.

(ii) Write the characteristic polynomial of the matrix L using only the determinant of an n× n matrix.
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(iii) Given the eigenvalues λ1 = 0, λ2, . . . , λn of L, show that the eigenvalues η1, . . . , η2n of L satisfy

η1 = η2 = 0, η2i,2i−1 = ±
√
λii, for i ∈ {2, . . . , n},

where i is the imaginary unit.

(iv) Show that the solution is the superposition of a ramp signal and of n− 1 harmonics, that is,

x(t) =
(
average(x(0)) + average(ẋ(0))t

)
1n +

n∑

i=2

ai sin(
√
λit+ ϕi)vi,

where {1n/
√
n, v2, . . . , vn} are the orthonormal eigenvectors of L and where the amplitudes ai and phases ϕi

are determined by the initial conditions

(
x(0), ẋ(0)

)
.

Exercises with solution

E8.7 The Cartesian product of graphs. The Cartesian product F□H of two graph F = (VF , EF ) and H = (VH , EH) is
a graph with vertex set VF × VH and an edge between nodes (f1, h1) and (f2, h2) if and only if either (f1 = f2 and
{h1, h2} ∈ EH ) or ({f1, f2} ∈ EF and h1 = h2). Clearly, if |VF | = m and |VH | = n, then the number of edges in

F□H ismn; moreover, the number of edges in F□H ism|EH |+n|EF |. In other words, the graph F□H is obtained

from F by (i) replacing each of its vertices with a copy ofH and (ii) each of its edges with n = |VH | edges connecting
corresponding vertices of H in the two copies; as illustrated in Figure E8.1.
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Figure E8.1: An example Cartesian product.

Let L(F ) and L(G) denote the Laplacian matrices of F and G, respectively, with eigenvalues λ1 ≤ . . . ≤ λm and

µ1 ≤ . . . ≤ µn, respectively. It is known that

L(F□H) = L(F )⊗ In + Im⊗L(H). (E8.1)

Show that

(i) if (λi, vi) is an eigenpair for L(F ) and (µj , uj) is an eigenpair for L(H), for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n},
then (λi + µj , vi⊗uj) is an eigenpair for L(F□H),

(ii) the second smallest eigenvalue of L(F□H) is min(λ2, µ2),
(iii) F□H is connected if and only if both F and H are connected, and

(iv) them× n grid graph Gm,n satisfies Gm,n = Pm□Pn, where Pn is the path graph of order n, and its Laplacian

spectrum is

4− 2 cos(πi/m)− 2 cos(πj/n), for i ∈ {0, . . . ,m− 1}, j ∈ {0, . . . ,m− 1}. (E8.2)

Hint: See the definitions in Example 3.1 and review Exercise E6.9.
Note: Cartesian products of graphs were introduced by Sabidussi (1960). The original work on statement (i) is by Fiedler
(1973).
Answer: Regarding statement (i), suppose that (λi, vi) is an eigenpair for L(F ) and (µj , uj) is an eigenpair for L(H)
for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Then

L(F□H)(vi ⊗ uj) = (L(F )⊗ Im + In ⊗ L(H))(vi ⊗ uj) = (L(F )vi)⊗ uj + vi ⊗ (L(H)uj)

= λivi ⊗ uj + vi ⊗ µjuj = (λi + µj)(vi ⊗ µj).
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150 Chapter 8. Diffusively-Coupled Linear Systems

Thus vi ⊗ uj is an eigenvector of L(F□H) with eigenvalue λi + µj .
Regarding statement (ii), the matrix L(F□H) has size mn so the set of eigenvalues of L(F□H) is precisely

{λi + µj | 1 ≤ i ≤ n, 1 ≤ j ≤ m}. Since λ1 = µ1 = 0, the smallest eigenvalue of L(F□H) is λ1 + µ1 = 0. The
second largest eigenvalue is then min(λ1 + µ2, λ2 + µ1) = min(λ2, µ2).

Regarding statement (iii), we note that F□H is connected if, and only if, its second smallest eigenvaluemin(λ2, µ2)
is greater than 0. But this is only true if, and only if, λ2 > 0 and µ2 > 0. But this happens if, and only if, F andH are

connected. This completes the argument.

Statement (iv) follows from recalling that the Laplacian spectrum of Pn is {2(1− cos(πi/n)) | i ∈ {0, . . . , n− 1}}.
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Chapter9

The Incidence Matrix and its Applications

After studying adjacency and Laplacian matrices, in this chapter we introduce one final matrix associated with

a graph: the incidence matrix. We study the properties of incidence matrices and their application to a class of

estimation problems with relative measurements and to the study of cycles and cutset spaces. For simplicity we

restrict our attention to undirected graphs.

9.1 The incidence matrix

Let G be an undirected unweighted graph with n nodes andm edges (and no self-loops, as by convention). Assign

to each edge of G a unique identifier e ∈ {1, . . . ,m} and an arbitrary direction. Given a directed edge e = (i, j),
we refer to node i as the head and node j as the tail of e. The (oriented) incidence matrix B ∈ Rn×m of the graph

G is defined component-wise by

Bie =





+1, if node i is the head of edge e,

−1, if node i is the tail of edge e,

0, otherwise.

(9.1)

It is useful to consider the example graph depicted in Figure 9.1.

1 2

43

1 2

3 4

e1

e2
e3

e4

e5
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Figure 9.1: An arbitrary enumeration and orientation of the 5 edges of a graph with 4 nodes

As depicted on the right, we add an orientation to all edges, we order them and label them as follows: e1 = (1, 2),
e2 = (2, 3), e3 = (4, 2), e4 = (3, 4), and e5 = (1, 3). Accordingly, the incidence matrix is

B =




+1 0 0 0 +1
−1 +1 −1 0 0
0 −1 0 +1 −1
0 0 +1 −1 0


 ∈ R4×5. (9.2)
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Note: 1T
nB = 0T

m since each column of B contains precisely one element equal to +1, one element equal to

−1 and all other zeros.

The incidence matrix B can be regarded as a map from edge-based variables in Rm to node-based variables in

Rn. Specifically, given an edge-based variable f ∈ Rm and a node i ∈ {1, . . . , n},

(Bf)i =
∑

e : i is the head of e

fe −
∑

e : i is the tail of e

fe. (9.3)

When the edge-based variables f are flows along edges, then (Bf)i is the algebraic sum of the flows outgoing from

node i. Similarly, the transpose of the incidence matrixBT
maps node-based variables inRn to edge-based variables

in Rm. Specifically, given a node-based variable x ∈ Rn and an edge e ∈ {1, . . . ,m} of the form e = (i, j),

(BTx)e = xi − xj . (9.4)

When the node-based variables x are potential variables, then (BTx)e is the difference of potential across the
edge e.

9.2 Properties of the incidence matrix

Given an undirected weighted graph G with edge set {1, . . . ,m} and adjacency matrix A, recall

L = D −A, where D is the degree matrix.

Lemma 9.1 (From the incidence to the Laplacian matrix). Let G be an undirected graph with n nodes, m
edges, and incidence matrix B. Define the weight matrix A ∈ Rm×m to be the diagonal matrix of edge weights
A = diag({ae}e∈{1,. . .,m}). Then

L = BABT.

Note: In the right-hand side, the matrix dimensions are (n×m)× (m×m)× (m× n) = n× n. Also note

that, while the incidence matrix B depends upon the selected direction and numbering of each edge, the Laplacian

matrix is independent of that.

Proof. Recall that, for matrices O, P and Q of appropriate dimensions, we have (OPQ)ij =
∑

k,hOikPkhQhj .
Moreover, if the matrix P is diagonal, then (OPQ)ij =

∑
k OikPkkQkj .

For i ̸= j, we compute

(BABT)ij =
∑m

e=1
Bieae(B

T)ej

=
∑m

e=1
BieBjeae (e-th term = 0 unless e is oriented {i, j})

= (+1) · (−1) · aij = ℓij ,

where L = {ℓij}i,j∈{1,. . .,n}, and along the diagonal of B we compute

(BABT)ii =
∑m

e=1
B2
ieae =

m∑

e=1, e=(i,∗) or e=(∗,i)

ae =
n∑

j=1,j ̸=i
aij ,

where, in the last equality, we counted each edge precisely once and we noted that self-loops are not allowed. ■

Lemma 9.2 (Rank of the incidence matrix). Let G be an undirected graph with n nodes,m edges, and incidence
matrix B. Let ncc be the number of connected components of G. Then

rank(B) = n− ncc.

Lectures on Network Systems, F. Bullo, edition 1.6 – Jan 1, 2022. Tablet PDF version. Copyright © 2012-22.



9.3. Applications of the incidence matrix 153

Proof. We prove this result for a connected graph with ncc = 1, but the proof strategy extends to ncc > 1. Recall
that the rank of the Laplacian matrix L equals n − ncc = n − 1. Since the Laplacian matrix can be factorized

as L = BABT
, where A has full rank m (and m ≥ n − 1 due to connectivity), we have that necessarily

rank(B) ≥ n− 1. On the other hand rank(B) ≤ n− 1 since BT1n = 0n. It follows that B has rank n− 1. ■
Here are two examples:

• if G is a tree (m = n− 1 and ncc = 1), we know B ∈ Rn×(n−1)
, rank(B) = n− 1 (that is, B is full rank and

has linearly independent columns), kernel(B) = {0n−1} and image(BT) = Rn−1
.

• if G is connected, then rank(B) = n − 1 (that is, B is full rank), image(BT) = Rn−1
, and kernel(B) has

dimensionm− n+ 1.

9.3 Applications of the incidence matrix

The Laplacian flow as a closed-loop control system The factorization of the Laplacian matrix as L = BABT

plays an important role in relative sensing networks. For example, we can decompose the Laplacian flow ẋ = −Lx
into

open-loop plant: ẋi = ui , i ∈ {1, . . . , n} , or ẋ = u ,

measurements: yij = xi − xj , {i, j} ∈ E , or y = BTx ,

control gains: zij = aijyij , {i, j} ∈ E , or z = Ay ,
control inputs: ui = −

∑

{i,j}∈E

zij , i ∈ {1, . . . , n} , or u = −Bz .

In other words we can write

ẋ = u = −Bz = −BAy = −BABTx = −Lx.

Indeed, this control structure, illustrated as a block-diagram in Figure 9.2, is required to implement flocking-type

behavior as in Example 1.3. The control structure in Figure 9.2 has emerged as a canonical control structure in

many relative sensing and flow network problems also for more complicated open-loop dynamics and possibly

nonlinear control gains; e.g., see (Bai et al., 2011).

B B>

d
dtxi = ui
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Figure 9.2: Illustration of the canonical control structure for a relative sensing network.
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Kirchhoff’s and Ohm’s laws We here revisit the electrical resistor network from Section 6.1.2, and re-derive

its governing equations; we refer to (Dörfler et al., 2018) for a more detailed treatment.

First, we let B ∈ Rn×m denote the oriented incidence matrix of electrical network (after introducing an

arbitrary numbering and orientation for each edge). To each node i ∈ {1, . . . , n} we associate an external current

injection cinjected at i. To each oriented edge (i, j) ∈ E we associate a positive conductance (i.e., the inverse of the

resistance) aij > 0, a current flow ci→j , and a voltage drop uij .
The Kirchhoff’s voltage law (KVL) states that the sum of all voltage drops around each cycle must be zero.

It is well-known and easy to see that KVL implies the existence of potential variables vi at each node such that

uij = vi− vj , for each oriented edge (i, j). In other words, recalling the equality (9.4), uij = (BT
v)ij . In summary,

given voltage drops u ∈ Rm along the edges KVL states that there exist potentials v ∈ Rn at the nodes such that

u = BT
v.

The Kirchhoff’s current law (KCL) states that the sum of all current injections at every node must be zero. In

other words, for each node i ∈ {1, . . . , n} in the network, we have that cinjected at i =
∑n

j=1 ci→j . Since all oriented

edges incident to node i are described by entries in the ith row bi ofB, we can write cinjected at i =
∑n

j=1 ci→j = bTi c.
In summary, KCL states that injected currents cinjected ∈ Rn at the nodes and current flows c ∈ Rm along the edges

satisfy

cinjected = Bc.

Finally, Ohm’s law states that the current cj→i and the voltage drop uij over a resistor with resistance 1/aij
are related as cj→i = aijuij . By combining Kirchhoff’s and Ohm’s laws, we arrive at

cinjected = Bc = BAu = BABT
v = Lv ,

where we used Lemma 9.1 to recover the conductance matrix L.

9.4 Appendix: Cuts and cycles

Given an undirected unweighted graph with n nodes andm edges, its oriented incidence matrix naturally defines

two useful vector subspaces of Rm. With the customary convention to refer to Rm as the edge space, the incidence
matrix induces a direct sum decomposition of the edge space based on the concepts of cycles and graph cuts. We

develop these concepts in what follows.

Definition 9.3 (Cutset orientation vectors and cutset space). Let G be an undirected graph with nodes
{1, . . . , n} and with an arbitrary enumeration and orientation of itsm edges.
(i) A cut χ of G is a strict non-empty subset of the nodes {1, . . . , n}. A cut and its complement χc define a partition

{χ, χc} of {1, . . . , n}, in the sense that χ ̸= ∅, χc ̸= ∅, χ∩χc = ∅, and {1, . . . , n} = χ∪χc.
(ii) Given a cut χ ⊂ {1, . . . , n} of G, the set of edges that have one endpoint in each subset of the partition is called

the cutset of χ. The cutset orientation vector vχ ∈ {−1, 0,+1}m of χ is defined component-wise, for each edge
e ∈ {1, . . . ,m},

(vχ)e =





+1, if e has its head in χ and tail in χc,

−1, if e has its head in χc and tail in χ,
0, otherwise.

Here the head (resp. tail) of a directed edge (i, j) is the node i (resp j).
(iii) The cutset space of G is the subspace of Rm spanned by the cutset orientation vectors corresponding to all cuts of

G, that is, span{vχ ∈ {−1, 0,+1}m | χ is a cut of G}.
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We illustrate these concepts in Figure 9.3.
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�c = {4, 5, 6}
A digraph with n = 6 nodes andm = 7 edges.
A cut χ = {1, 2, 3} and its complement χc = {4, 5, 6}.
The cutset of χ is {3, 4, 5, 6}.
The cutset orientation vector of χ is:

vχ =
[
0 0 +1 +1 +1 +1 0

]T
.

Figure 9.3: An undirected graph with arbitrary edge orientation. A cut with its cutset and cutset orientation vector.

Recall that, in an undirected graph, a walk is simple if no node appears more than once in it, except possibly for

the first and last. A cycle is a simple walk that starts and ends at the same node and has at least three distinct nodes.

Definition 9.4 (Signed walk vectors and cycle space). Let G be an undirected graph with n nodes,m edges, and
with an arbitrary enumeration and orientation of its edges. Let γ be a simple undirected walk in G.
(i) The signed walk vector wγ ∈ {−1, 0,+1}m of γ is defined component-wise, for each edge e ∈ {1, . . . ,m},

(wγ)e =





+1, if e is traversed positively by γ,
−1, if e is traversed negatively by γ,
0, otherwise.

(ii) The cycle space of G is the subspace of Rm spanned by the signed walk vectors corresponding to all cycles in G,
that is,

span{wγ ∈ {−1, 0,+1}m | γ is a cycle in G}.

We illustrate these concepts in Figure 9.4.
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The signed walk vector is:

wγ =
[
+1 −1 +1 0 −1 0 +1

]T
.

Figure 9.4: An undirected graph with arbitrary edge orientation. A directed cycle γ and its signed walk vector.

With these conventions we are now in a position to state the main result of this section.

Theorem 9.5 (Cycle and cutset spaces). Let G be an connected undirected graph with n nodes, m edges, and
incidence matrix B. The following statements hold:
(i) the cycle space is kernel(B) and has dimensionm− n+ 1,
(ii) the cutset space is image(BT) and has dimension n− 1, and
(iii) kernel(B) ⊥ image(BT) and kernel(B)⊕ image(BT) = Rm.
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Note that statement (iii) is known as a result in the fundamental theorem of linear algebra (Strang, 1993).

Additionally, statement (iii) is known in circuit theory as Tellegen’s Theorem (Oster and Desoer, 1971).

Proof of Theorem 9.5. The proof of statement (i) is given in Exercise E9.9.

Statement (ii) is proved as follows. For a cut χ, let eχ ∈ {0, 1}n be the cut indicator vector defined by (eχ)i = 1
if i ∈ χ and zero otherwise. Then, using the definitions, the cutset orientation vector for the cut χ is

vχ = BTeχ.

This equality implies that vχ ∈ image(BT) for all χ. Next, because G is connected, there are n− 1 independent
cutset orientation vectors corresponding to the cuts {{i} | i ∈ {1, . . . , n− 1}}. Hence these n− 1 vectors are a
basis of image(BT) and the statement is established.

Finally, statement (iii) is proved in two steps. First, for any subspace V ⊂ Rm, we have the direct sum

decomposition of orthogonal subspaces V ⊕ V ⊥ = Rm. Second, for any matrix B,

w ∈ kernel(B) ⇐⇒ ∀v ∈ Rm (Bw)Tv = 0

⇐⇒ ∀v ∈ Rm wT(BTv) = 0 ⇐⇒ w ∈ (image(BT)⊥.

Hence, we know kernel(B) = (image(BT)⊥ and the statement follows. ■
From the proof of the previous theorem and a bit more work, one can state the following result.

Lemma 9.6 (Bases for the cutset space and the cycle space). Let G = (V,E) be a connected unweighted
undirected graph with nodes {1, . . . , n} andm edges.

(i) For each node i ∈ {1, . . . , n−1}, let v{i} ∈ {−1, 0,+1}m denote the cutset orientation vector for the cut {i}, that
is, let v{i} be the transpose of the i-th row ofB. Then {v{1}, . . . , v{n−1}} is a basis of the cutset space image(BT).

(ii) Given a spanning tree T = (VT , ET ) of G = (V,E), for each edge e ∈ E \ ET , define the fundamental cycle
associated to T and e, denoted by γT,e, to be the cycle consisting of e and the walk on T connecting the endpoints
of e. Let wT,e be the associated signed walk vector. Then

a) the fundamental cycle of each edge e ∈ E \ ET exists unique and is simple, and
b) the set of signed walk vectors {wT,e | e ∈ E \ ET } is a basis of the cycle space kernel(B).

We illustrate this lemma with the digraph in Figure 9.3, which we reproduce here with its incidence matrix for

convenience.
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B =




+1 +1 0 0 0 0 0
−1 0 +1 0 0 0 0
0 −1 0 +1 +1 +1 0
0 0 −1 −1 0 0 +1
0 0 0 0 −1 0 −1
0 0 0 0 0 −1 0



.

Figure 9.5: The undirected graph with edge orientation from Figure 9.3 and its incidence matrix B ∈ R6×7
.

Regarding a basis for the cutset space image(BT), it is immediate to state that (the transpose of) any 5 of the 6

rows of B form a basis of image(BT). Indeed, since rank(B) = n− 1, any n− 1 columns of the matrix BT
form

a basis for the cutset space. Figure 9.6 illustrates the 5 cuts and a corresponding basis for the cutset space.
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+1 −1 0 0 0
+1 0 −1 0 0
0 +1 0 −1 0
0 0 +1 −1 0
0 0 +1 0 −1
0 0 +1 0 0
0 0 0 +1 −1




.

Figure 9.6: Five cuts, corresponding to nodes 1, . . . , 5, and their cutset orientation vectors generating image(BT).

In the proof of Theorem 9.5, we also stated that, for a cut χ, eχ ∈ {0, 1}n is the cut indicator vector defined by

(eχ)i = 1 if i ∈ χ and zero otherwise, and that the cutset orientation vector for χ is given by

vχ = BTeχ. (9.5)

Indeed, one can show the following statement for the example in Figure 9.6: the cut separating nodes {1, 2, 3}
from {4, 5, 6} has cut indicator vector

[
1 1 1 0 0 0

]T
and cutset vector v{1} + v{2} + v{3} is equal to the

sum of the first three columns of BT
.

Next, regarding a basis for the cycle space kernel(B), the spanning tree T composed of the edges {1, 2, 4, 5, 6}
and the two fundamental cycles associated to edges 3 and 7 are illustrated in Figure 9.7.
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Figure 9.7: Given a graph with 6 nodes, 7 edges, and hence 2 independent cycles, the left panel depicts a spanning

tree T (composed of 5 dark edges) and the right panel depicts the two resulting fundamental cycles.

The corresponding signed walk vectors are

wT,3 =




+1
−1
+1
−1
0
0
0




, wT,7 =




0
0
0
+1
−1
0
+1




, and kernel(B) = span{wT,3, wT,7}.

Note that the cycle traversing the edges (1, 3, 7, 5, 2) in counter-clockwise orientation has a signed walk vector

given by the linear combination wT,3 + wT,7.

9.5 Appendix: Distributed estimation from relative measurements

In Chapter 1 we considered estimation problems for wireless sensor networks in which each node measures a

scalar “absolute” quantity (expressing some environmental variable such as temperature, vibrations, etc). In this
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section, we consider a second class of examples in which measurements are “relative,” i.e., pairs of nodes measure

the difference between their corresponding variables. Estimation problems involving relative measurements are

numerous. For example, imagine a group of robots (or sensors) where no robot can sense its position in an absolute

reference frame, but a robot can measure other robot’s relative positions by means of on-board sensors. Similar

problems arise in study of clock synchronization in networks of processors.

9.5.1 Problem statement

The optimal estimation based on relative measurement problem is stated as follows. As illustrated in Figure 9.8, we

are given an undirected graph G = ({1, . . . , n}, E) with the following properties. First, each node i ∈ {1, . . . , n}
of the network is associated with an unknown scalar quantity xi (the x-coordinate of node i in figure). Second, the

xi

xj
xi � xj

absolute reference
frame

x

Figure 9.8: A wireless sensor network in which sensors can measure each other’s relative distance and bearing. We

assume that, for each link between node i and node j, the relative distance along the x-axis xi − xj is available,
where xi is the x-coordinate of node i.

m undirected edges are given an orientation and, for each edge e = (i, j), e ∈ E, the following scalar measurements

are available:

y(i,j) = xi − xj + v(i,j) = (BTx)e + v(i,j),

where B is the graph incidence matrix and the measurement noises v(i,j), (i, j) ∈ E, are independent jointly-
Gaussian variables with zero-mean E[v(i,j)] = 0 and variance E[v2(i,j)] = σ2(i,j) > 0. The joint matrix covariance

is the diagonal matrix Σ = diag({σ2(i,j)}(i,j)∈E) ∈ Rm×m
. (For later use, it is convenient to define also y(j,i) =

−y(j,i) = xj − xi − v(i,j).)

The optimal estimate x̂∗ of the unknown vector x ∈ Rn via the relative measurements y ∈ Rm is the solution

to

min
x̂

∥BTx̂− y∥2Σ−1 . (F1)

Since no absolute information is available about x, we add the additional constraint that the optimal estimate

should have zero mean and summarize this discussion as follows.

Definition 9.7 (Optimal estimation problem based on relative measurements). Given an incidence matrix
B, a set of relative measurements y with covariance Σ, find x̂ satisfying

min
x̂⊥1n

∥BTx̂− y∥2Σ−1 . (9.6)
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9.5.2 Optimal estimation via centralized computation

From the theory of least square estimation, the optimal solution to problem 9.6 is obtained as by differentiating the

quadratic cost function with respect to the unknown variable x̂ and setting the derivative to zero. Specifically:

0 =
∂

∂x̂
∥BTx̂− y∥2Σ−1 = 2BΣ−1BTx̂∗ − 2BΣ−1y, (F2)

or equivalently

BΣ−1BTx̂∗ = BΣ−1y ⇐⇒ Lx̂∗ = BΣ−1y, (9.7)

where the Laplacian matrix L is defined by L = BΣ−1BT
. This matrix is the Laplacian for the weighted graph

whose weights are the inverse noise covariances of the measurement edges.

We now note that equation (9.7) is a Laplacian system, as studied in Section 6.3.2. Recalling the notion of

pseudoinverse Laplacian matrix and the constraint x̂ ⊥ 1n, Lemma 6.12 in Section 6.3.2 leads to the following

result.

Lemma 9.8 (Unique optimal estimate). If the undirected graph G is connected, then there exists a unique solution
to the optimization problem (9.6) given by

x̂∗ = L†BΣ−1y. (F3)

9.5.3 Optimal estimation via decentralized computation

To compute x̂∗ in a distributed way, we propose the following distributed algorithm. Pick a small α > 0 and let

each node implement the affine averaging algorithm:

x̂i(k + 1) = x̂i(k)− α
∑

j∈N (i)

1

σ2(i,j)

(
x̂i(k)− x̂j(k)− y(i,j)

)
,

x̂i(0) = 0.

(9.8)

This algorithm is interpreted as follows: the estimate at node i is adjusted at each iteration as a function of edge

errors, each edge error (difference between estimated and measured edge difference) contributes to a weighted

small correction in the node value.

Lemma 9.9 (Convergence of the affine averaging algorithm). Given a graph G describing a relative measure-
ment problem for the unknown variables x ∈ Rn, with measurements y ∈ Rm, and measurement covariance matrix
Σ = diag({σ2(i,j)}(i,j)∈E) ∈ Rm×m. The following statements hold:
(i) the affine averaging algorithm can be written as

x̂(k + 1) = (In − αL)x̂(k) + αBΣ−1y,

x̂(0) = 0n;
(9.9)

(ii) if G is connected and if α < 1/dmax where dmax is the maximum weighted out-degree of G, then the solution
k 7→ x̂(k) of the affine averaging algorithm (9.8) converges to the unique solution x̂∗ of the optimization
problem (9.6).

Proof. To show fact (i), note that the algorithm can be written in vector form as

x̂(k + 1) = x̂(k)− αBΣ−1(BTx̂(k)− y),

and, using L = BΣ−1BT
, as equation (9.9).
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To show fact (ii), define the error signal η(k) = x̂∗ − x̂(k). Note that η(0) = x̂∗ and that average(η(0)) = 0
because 1T

n x̂
∗ = 0. Compute

η(k + 1) = (In − αL+ αL)x̂∗ − (In − αL)x̂(k)− αBΣ−1y

= (In − αL)η(k) + α(Lx̂∗ −BΣ−1y)

= (In − αL)η(k).

Now, according to Exercise E6.1, α is sufficiently small so that In − αL is non-negative. Moreover, (In − αL) is
doubly-stochastic and symmetric, and its corresponding undirected graph is connected and aperiodic. Therefore,

Theorem 5.1 implies that, as k diverges, η(k) → average(η(0))1n = 0n. ■

9.6 Historical notes and further reading

Standard references on incidence matrices include texts on algebraic graph theory such as (Biggs, 1994; Foulds,

1995; Godsil and Royle, 2001). An extensive discussion about algebraic potential theory on graphs is given by Biggs

(1997).

The algorithm in Section 9.5.3 is taken from (Bolognani et al., 2010). For the notion of edge Laplacian and

its properties, we refer to (Zelazo, 2009; Zelazo and Mesbahi, 2011; Zelazo et al., 2013). Additional references on

distributed estimation for relative sensing networks include (Barooah and Hespanha, 2007, 2008; Bolognani et al.,

2010; Piovan et al., 2013).

A comprehensive survey on cycle bases, their rich structure, and related algorithms is given by Kavitha et al.

(2009).
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9.7 Exercises

▶ E9.1 Relations between incidence and Laplacian matrix. LetG be a weighted undirected graph with n nodes and edge

weights {ae}e∈{1,. . .,m}. Select an enumeration and orientation for the edges. Let L, B and A denote, respectively,

the Laplacian matrix, incidence matrix, and the weight matrix of G. Show that

(i) for any x and y ∈ Rn,

yTLx = (BTy)TA(BTx) =
∑

{i,j}∈E
aij(xi − xj)(yi − yj); (E9.1)

(ii) for any x ∈ Rn, (as in equation (6.4))

xTLx = ∥BTx∥2A =
∑

{i,j}∈E
aij(xi − xj)

2; (E9.2)

(iii) any x ∈ Rn satisfies

sign(x)TLx ≥ 0, (E9.3)

and the inequality is strict if and only if there exists an edge {i, j} such that either xi and xj have opposite sign or

one is zero and the other is non-zero. (Here sign: Rn → {−1, 0,+1}n is the entry-wise sign function.)

E9.2 The edge Laplacian matrix (Zelazo and Mesbahi, 2011). For an unweighted undirected graph with n nodes and

m edges, introduce an arbitrary orientation for the edges. Recall the notions of incidence matrix B ∈ Rn×m and

Laplacian matrix L = BBT ∈ Rn×n and define the edge Laplacian matrix by

Ledge = BTB ∈ Rm×m.

(Note that, in general, the edge Laplacian matrix is not a Laplacian matrix.) Select an edge orientation and compute B,

L and Ledge for

(i) a line graph with three nodes, and

(ii) for the graph with four nodes in Figure 9.1.

Show that, for an arbitrary undirected graph,

(iii) kernel(Ledge) = kernel(B);
(iv) rank(L) = rank(Ledge);
(v) for an acyclic graph Ledge is nonsingular (do not assume G is connected); and

(vi) the non-zero eigenvalues of Ledge are equal to the non-zero eigenvalues of L.

E9.3 Evolution of the relative disagreement error (Zelazo andMesbahi, 2011). Consider the Laplacian flow ẋ = −Lx,
defined over an undirected, unweighted, and connected graphwith n nodes andm edges. Beside the usual disagreement

vector δ(t) = x(t) − average(x(t))1n ∈ Rn (defined in Section 5.3), we can also analyze the relative disagreement
vector eij(t) = xi(t)− xj(t), for every edge {i, j}.
(i) Write a differential equation for the relative disagreement errors t 7→ e(t) ∈ Rm.

(ii) Based on Exercise E9.2, show that the relative disagreement errors converge to zero with exponential convergence

rate given by the algebraic connectivity λ2(L).

E9.4 Out-incidence and in-incidence matrices for digraphs. Consider a weighted directed graph G with nodes

{1, . . . , n} and edges {1, . . . ,m}. As usual, let A, Dout, Din, and L denote the n× n adjacency, weighted out-degree,

weighted in-degree, and Laplacian matrix, respectively, and let A denote the m × m weight matrix. Define the

out-incidence matrix Bout ∈ {0, 1}n×m and in-incidence matrix Bin ∈ {0, 1}n×m by

(Bout)ie =

{
1, if node i is the head of edge e,

0, otherwise,
(E9.4)

(Bin)ie =

{
1, if node i is the tail of edge e,

0, otherwise,
(E9.5)
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Figure E9.1: For this example digraph, we compute the 4× 5 matrices

Bout =




1 0 0 0 1
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0


 and Bin =




0 0 0 0 0
1 0 1 0 0
0 1 0 0 1
0 0 0 1 0


. For comparison’s

sake, if we regard the edges of G as the oriented edges of an undirected graph

G′
, then the oriented incidence matrix B of G′

satisfies B = Bout −Bin; see

equation (9.2).

for each node i ∈ {1, . . . , n} and edge e ∈ {1, . . . ,m}.
Show that

(i) for each x ∈ Rn and each edge e of the form e = (i, j),

(BT
out
x)e = xi, and (BT

in
x)e = xj , (E9.6)

(ii) the following relationships hold:

Dout = BoutABT
out
, Din = BinABT

in
, (E9.7)

A = BoutABT
in
, L = BoutA(Bout −Bin)

T, (E9.8)

(iii) ∥BT
out
∥∞ = ∥BT

in
∥∞ = 1 and ∥Bout∥∞ and ∥Bin∥∞ are the maximum topological out-degree and in-degree of G,

respectively.

Note: Balbuena et al. (2003) use these incidence matrices to study the line digraph.

E9.5 Unoriented incidence matrix and signless Laplacian. Consider a weighted undirected graph G with nodes

{1, . . . , n}, edges {1, . . . ,m}, adjacency matrix A and degree matrix D = diag(A1n). Define the signless Laplacian
matrix Q ∈ Rn×n≥0 by

Q = A+D (E9.9)

and the unoriented incidence matrix K ∈ {0, 1}n×m by

Kie =

{
1, if node i is incident to the undirected edge e,

0, otherwise.

(E9.10)

Show that

(i) the degree of node i is equal to (A1n)i = (KA1m)i,
(ii) Q = KAKT ⪰ 0, where A ∈ Rm×m

denotes the weight matrix of G,
(iii) xTQx = 1

2

∑n
i,j=1 aij(xi + xj)

2
for any x ∈ Rn, and

(iv) Q has an eigenvalue equal to 0 if and only if G consists of isolated vertices and bipartite connected components.

Note: We refer to (Desai and Rao, 1994; Cvetković and Simić, 2009) for early references.

▶ E9.6 Averaging with distributed integral control. Consider a Laplacian flow implemented as a relative sensing network

over a connected and undirected graph with n nodes,m edges, incidence matrix B ∈ Rn×m, and weights aij > 0 for

(i, j) ∈ E, and subject to a constant disturbance term η ∈ Rm, as shown in Figure E9.2.
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Figure E9.2: A relative sensing network with a constant disturbance input η ∈ Rm.

(i) Derive the dynamic closed-loop equations describing the model in Figure E9.2.

(ii) Show that the state x(t) converges asymptotically to a vector x∗ ∈ Rn that depends on the value of the disturbance

η and that is not necessarily a consensus state.

Consider the system in Figure E9.2 with a distributed integral controller forcing convergence to consensus, as shown
in Figure E9.3.

B B>

d
dtxi = ui
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Figure E9.3: Relative sensing network with a disturbance η ∈ Rm and distributed integral action.

(iii) Derive the dynamic closed-loop equations describing the model in Figure E9.3.

(iv) Show that the distributed integral controller in Figure E9.3 asymptotically stabilizes the set of steady states (x∗, p∗),
with x∗ ∈ span{1n} corresponding to consensus.

Hint: Study the properties of saddle point matrices in Exercise E9.13.

E9.7 Incidence matrix, cutset and cycle spaces for a triangle. Consider an undirected triangle with nodes {1, 2, 3}. Let
γ = (1, 2, 3) be the only simple cycle (i.e., closed walk with three or more nodes). Select the number and orientation

of the three edges as well as three possible cuts as in Figure E9.4. Perform the following steps:

(i) compute the incidence matrix B, the cutset orientation vector v{i} for each cut {i}, and the signed walk vector for

γ,
(ii) show v{1} + v{2} + v{3} = 03 and span{v{1}, v{2}, v{3}} ⊥ span{wγ}, and
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Figure E9.4: Three cuts and a cycle in a triangle.

(iii) verify the equality (9.5) between incidence matrix and cutset orientation vectors.

E9.8 Incidencematrix, cutset and cycle spaces for basic graphs. Recall Examples 3.1 and 4.1, and consider the following

unweighted undirected graphs with node set {1, . . . , 4}:

(i) the path graph P4;

(ii) the cycle graph C4;

(iii) the star graph S4; and

(iv) the complete graphK4.

For each graph, select an arbitrary orientation of the edges, compute the incidence matrix, compute a basis for the

cutset space, and compute a basis for the cycle space.

E9.9 Incidence matrix and signed walk vectors. Given an undirected graph G, consider an arbitrary orientation of its

edges, its incidence matrix B ∈ Rn×m, and a simple walk γ with distinct initial and final nodes described by a signed

walk vector wγ ∈ Rm.

(i) Show that the vector y = Bwγ ∈ Rn has components

yi =





+1, if node i is the initial node of γ,

−1, if node i is the final node of γ,

0, otherwise.

(ii) Prove statement (i) in Theorem 9.5.

E9.10 Properties of signed walk vectors. Let G be an undirected unweighted graph and let χ and ψ be two cuts on G.
Show that:

(i) vχc = −vχ,
(ii) if χ∩ψ = ∅, then vχ + vψ = vχ∪ψ , and
(iii) if G has d connected components, then there exist n− d independent cutset orientation vectors.

E9.11 The orthogonal projection onto the cutset space (Jafarpour and Bullo, 2019). Recall the following well-known

facts from linear algebra: a square matrix P ∈ Rm×m
is an orthogonal projection if P = PT

and P 2 = P ; given a

full-rank matrixX ∈ Rm×n
, n < m, the matrix P = X(XTX)−1XT

is the orthogonal projection onto the image(X).
Prove that

(i) if X is not full rank (i.e., it has a trivial kernel), the matrix P = X(XTX)†XT
is the orthogonal projection onto

image(X), where (XTX)† is the pseudoinverse of XTX , as defined in Exercise E2.20.

Given an unweighted undirected graph with an oriented incidence matrix B, Laplacian matrix L = BBT
, and

pseudoinverse Laplacian matrix L†
, recall that Rm = image(BT)⊕ kernel(B) is the orthogonal decomposition into

cutset space and cycle space. Show that

(ii) P = BTL†B is an orthogonal projection matrix, and

(iii) P = BTL†B is the orthogonal projection onto the cutset space image(BT).
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E9.12 Sensitivity of Laplacian eigenvalues. Consider an unweighted undirected graph G = (V,E) with incidence matrix

B ∈ Rn×m, and Laplacian matrix L = BBT ∈ Rn×n. Define a undirected graph G′
by adding one unweighted edge

e /∈ E to G, that is, G′ = (V,E ∪ e). Show that

λmax(LG) ≤ λmax(LG′) ≤ λmax(LG) + 2.

Hint: Use the edge Laplacian matrix Ledge = BTB ∈ Rm×m in Exercise E9.2 and Cauchy’s Interlacing Theorem (e.g., see
(Horn and Johnson, 1985, Theorem 4.3.17)): LetA denote a symmetric matrix with ordered eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn
and B denote a principal submatrix of A with ordered eigenvalues µ1 ≤ µ2 ≤ . . . ≤ µn−1; then the eigenvalues of A
and B interlace, that is, λ1 ≤ µ1 ≤ λ2 ≤ . . . ≤ µn−1 ≤ λn.

E9.13 Spectrum of saddle point matrices. Given a positive semidefinite matrix S = ST ⪰ 0 in Rn×n and a matrix C in

Rm×n
, define the saddle point matrix Asp ∈ R(n+m)×(n+m)

by

Asp =

[
S CT

−C 0m×m

]
.

Then each eigenvalue λ of Asp satisfies

(i) ℜ(λ) ≥ 0,
(ii) if kernel(S)∩ image(CT) = {0n}, then either ℜ(λ) > 0 or λ = 0; moreover, if λ = 0, then λ is semisimple, and

(iii) if S is positive definite and kernel(CT) = {0m}, then ℜ(λ) > 0.

Note: Statements (i) and (iii) are (Benzi et al., 2005, Theorem 3.6). Statement (ii) is (Cherukuri et al., 2017, Lemma 5.3).
Additional results on saddle point matrices are given in (Dörfler et al., 2018, Proposition 5.13).

E9.14 Monotonicity of the Laplacian as a positive semidefinite matrix. As in Lemma 6.9, consider a weighted

undirected graph with symmetric adjacency matrix A and symmetric Laplacian matrix L. Show that

A ≤ A′ =⇒ L ⪯ L′,

where A′
is a symmetric adjacency matrix with corresponding Laplacian L′

and where L ⪯ L′
means that L− L′

is

negative semidefinite.

E9.15 The pseudoinverse of the incidence matrix of a spanning tree. Let T be a spanning tree of the complete graph

Kn and H be a subgraph ofKn with h edges. Given an edge enumeration and orientation, let BT ∈ Rn×(n−1)
and

BH ∈ Rn×h denote the incidence matrices of T and H , respectively. Let B†
T ∈ R(n−1)×n

denote the pseudoinverse

of BT . Show

(i) B†
TBT = In−1 and BTB

†
T = In − 1

n1n1T
n,

(ii) for any x ∈ Rn with xave = 1T
nx/n and with the notation fT = BT

Tx ∈ Rn−1
and fH = BT

Hx ∈ Rh,

(B†
T )

TfT = x− xave1n, and fH = BT
H(B†

T )
TfT .

Note: Bapat (1997) gives further properties of the pseudoinverse of the incidence matrix of a tree.
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Chapter10

Metzler Matrices and Dynamical Flow

Systems

In this chapter we study positive systems, that is, dynamical systems with state variables that are typically

non-negative, and dynamical flow systems (also called compartmental systems), that is, dynamical processes

characterized by conservation laws (e.g., mass, fluid, energy) and by the flow of commodities between units

known as compartments. For simplicity we focus on continuous-time models, though a comparable theory exists

for discrete-time systems. Example dynamical flow systems are transportation networks, queueing networks,

communication networks, epidemic propagation models in social contact networks, as well as ecological and

biological networks. Linear dynamical flow systems and positive systems in continuous time are described by

so-called Metzler matrices; we define and study such matrices in this chapter.

10.1 Example systems

In this section we review some examples of dynamical flow systems.

Ecological and environmental systems The flow of energy and nutrients (water, nitrates, phosphates, etc) in

ecosystems is typically studied using compartmental modeling. For example, Figure 10.1 illustrates a widely-cited

water flow model for a desert ecosystem (Noy-Meir, 1973). Other classic ecological network systems include models

for dissolved oxygen in stream, nutrient flow in forest growth and biomass flow in fisheries (Walter and Contreras,

1999).

herbivory

uptake

drinking

precipitation

evaporation

soil

animals

plants

evaporation, drainage, runo↵

transpiration

Figure 10.1: Water flow model for a desert ecosystem. The black dashed line denotes an inflow from the outside

environment. The light-gray dashed lines denote outflows into the outside environment.
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168 Chapter 10. Metzler Matrices and Dynamical Flow Systems

Epidemiology of infectious diseases To study the propagation of infectious diseases, the population at risk is

typically divided into compartments consisting of individuals who are susceptible (S), infected (I), and, possibly,

recovered and no longer susceptible (R). As illustrated in Figure 10.2, the three basic epidemiological models

are (Hethcote, 2000) called SI, SIS, SIR, depending upon how the disease spreads. For a review article in the spirit

of these lecture notes, we refer the interested reader to (Mei et al., 2017).

Susceptible Infected Susceptible Infected

Susceptible Infected Recovered

Figure 10.2: The three basic models SI, SIS and SIR for the propagation of an infectious disease

Drug and chemical kinetics in biomedical systems Compartmental model are also widely adopted to

characterize the kinetics of drugs and chemicals in biomedical systems. Here is a classic example (Charkes et al.,

1978) from nuclear medicine: bone scintigraphy (also called bone scan) is a medical test in which the patient is

injected with a small amount of radioactive material and then scanned with an appropriate radiation camera.

radioactive
material

blood kidneys
urine

bonebone ECF

rest of the body

Figure 10.3: The kinetics of a radioactive isotope through the human body (ECF = extra-cellular fluid).

10.2 Metzler matrices and positive systems

We start by introducing a new class of matrices.

Definition 10.1 (Metzler matrix). For a matrixM ∈ Rn×n, n ≥ 2,

(i) M is Metzler if all its off-diagonal elements are non-negative;
(ii) ifM is Metzler, its associated digraph is a weighted digraph defined as follows: {1, . . . , n} are the nodes, there

are no self-loops, (i, j), i ̸= j is an edge with weightmij if and only ifMij > 0; and
(iii) if A is Metzler, A is irreducible if its associated digraph is strongly connected.
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∗ + + +
+ ∗ + +
+ + ∗ +
+ + + ∗




Figure 10.4: The sign pattern of a Metzler matrix: +
stands for non-negative and ∗ stands for arbitrary.

The sign pattern of a Metzler matrix is illustrated in Fig-

ure 10.4. Metzler matrices are sometimes also referred to

as quasi-positive or essentially non-negative.
Note: M is Metzler if and only if there exists a scalar

γ > 0 such thatM + γIn is non-negative.

Note: if L is a Laplacian matrix, then −L is a Metzler

matrix with zero row-sums.

Metzler matrices have numerous properties. We start by writing a version of Perron–Frobenius Theorem 2.12

and illustrating it in Figure 10.5.

Theorem 10.2 (Perron–Frobenius Theorem for Metzler matrices). IfM ∈ Rn×n, n ≥ 2, is Metzler, then
(i) there exists a real eigenvalue λ such that λ ≥ ℜ(µ) for all other eigenvalues µ, and
(ii) the right and left eigenvectors of λ can be selected non-negative.
If additionallyM is irreducible, then
(iii) there exists a real simple eigenvalue λ such that λ > ℜ(µ) for all other eigenvalues µ, and
(iv) the right and left eigenvectors of λ are unique and positive (up to rescaling).

�+ �
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spec(M + �In)
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Figure 10.5: Illustrating the Perron–Frobenius Theorem 10.2 for a Metzler matrixM . Left image: for sufficiently

large γ,M + γIn is non-negative and λ+ γ is its dominant Perron eigenvalue. Right image: the spectrum ofM is

equal to that ofM + γIn translated by −γ; λ is dominant in the sense that λ ≥ ℜ(µ) for all other eigenvalues µ;
it is not determined whether λ < 0 (the imaginary axis is to the right of λ) or λ > 0 (the imaginary axis is to the

left of λ).

Note: As in the case of non-negative matrices, we refer to λ as to the dominant eigenvalue. For a Metzler

matrixM , the dominant eigenvalue is equal to the spectral abscissa α(M) (whereas the dominant eigenvalue of a

non-negative matrix A is its spectral radius ρ(A)). We invite the reader to work out the details of the proof in

Exercise E10.2.

Note: this theorem is consistent with and generalizes the treatment of Laplacian matrices. Specifically we

know that, if L is a Laplacian, the Metzler matrix −L has dominant eigenvalue λ = 0.

Next, we give necessary and sufficient conditions for the dominant eigenvalue of a Metzler matrix to be strictly

negative.

Theorem 10.3 (Metzler Hurwitz Theorem). For a Metzler matrixM , the following statements are equivalent:
(i) M is Hurwitz,
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170 Chapter 10. Metzler Matrices and Dynamical Flow Systems

(ii) M is invertible and −M−1 ≥ 0, and
(iii) for all b ≥ 0n, there exists a unique x∗ ≥ 0n solvingMx∗ + b = 0n.

Moreover, ifM is Metzler, Hurwitz and irreducible, then −M−1 > 0.

Proof. We start by showing that (i) implies (ii). Clearly, ifM is Hurwitz, then it is also invertible. So it suffices

to show that −M−1
is non-negative. As in Exercise E6.1 and in the proof of Theorem 7.4, pick ε > 0 and define

AM, ε = In + εM , that is, (−εM) = (In −AM, ε). BecauseM is Metzler, ε can be selected small enough so that

AM, ε ≥ 0. Moreover, because the spectrum ofM is strictly in the left half plane, one can verify that, for ε small

enough, spec(εM) is inside the disk of unit radius centered at the point −1; as illustrated in Figure 10.6. In turn,

�1

Figure 10.6: For any λ ∈ C with strictly negative real part, there exists ε such that the segment from the origin to

ελ is inside the disk of unit radius centered at the point −1.

this last property implies that spec(In + εM) is strictly inside the disk of unit radius centered at the origin, that is,

ρ(AM, ε) < 1. We now adopt the Neumann series as defined in Exercise E2.11: because ρ(AM, ε) < 1, we know
that (In −AM, ε) = (−εM) is invertible and that

(−εM)−1 = (In −AM, ε)
−1 =

∞∑

k=0

Ak
M, ε. (10.1)

Note now that the right-hand side is non-negative because it is the sum of non-negative matrices. In summary, we

have shown thatM is invertible and that −M−1 ≥ 0. This statement proves that (i) implies (ii).

Next we show that (ii) implies (i). We knowM is Metzler, invertible and satisfies −M−1 ≥ 0. By the Perron–

Frobenius Theorem 10.2 for Metzler matrices, we know there exists v ≥ 0n, v ̸= 0n, satisfyingMv = λMetzler(M)v,
where λMetzler(M) = α(M) = max{ℜ(λ) | λ ∈ spec(M)}. Clearly,M invertible implies λMetzler(M) ̸= 0 and,

moreover, v = λMetzler(M)M−1v. Now, we know v is non-negative andM−1v is non-positive. Hence, λMetzler(M)
must be negative and, in turn,M is Hurwitz. This statement establishes the equivalence between (ii) implies (i)

Finally, regarding the equivalence between statement (ii) and statement (iii), note that, if −M−1 ≥ 0 and

b ≥ 0n, then clearly x∗ = −M−1b ≥ 0n is unique and solvesMx∗+ b = 0n. This proves that (ii) implies (iii). Vice

versa, if statement (iii) holds, then let x∗i be the non-negative solution ofMx∗i = −ei and letX be the non-negative

matrix with columns x∗1, . . . , x
∗
n. Therefore, we knowMX = −In so thatM is invertible, −X is its inverse, and

−M−1 = −(−X) = X is non-negative. This statement proves that (iii) implies (ii).

Finally, the statement that−M−1 > 0 for each Metzler, Hurwitz and irreducible matrixM is proved as follows.

BecauseM is irreducible, the matrix AM, ε = In + εM is non-negative (for ε sufficiently small) and primitive.

Therefore, the right-hand side of equation (10.1) is strictly positive. ■

Remark 10.4 (Hurwitz Metzler andM -matrices). The following notion is often adopted in the literature, e.g.,
see (Horn and Johnson, 1994, Section 2.5). A matrix U ∈ Rn×n is anM -matrix if uii > 0, uij ≤ 0 for all i ̸= j, U is
invertible, and U−1 ≥ 0. It is easy to see that U is anM -matrix if and only if −U is Hurwitz Metzler.
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10.2.1 Continuous-time positive systems

Motivated by the examples of dynamical flow systems in the previous section and by the treatment of Metzler

matrices, we are now ready to introduce the class of positive systems.

Definition 10.5 (Positive systems in continuous time). A dynamical system ẋ(t) = f(x(t), t), x ∈ Rn, is
positive if x(0) ≥ 0n implies x(t) ≥ 0n for all t ∈ R≥0.

We are especially interested in linear and affine systems, described by

ẋ(t) =Mx(t), and ẋ(t) =Mx(t) + b,

whereM ∈ Rn×n. The following theorem characterizes the importance of Metzler matrices for continuous-time

positive systems and extends the results in Exercise E7.2 about convergence of affine systems.

Theorem 10.6 (Positive affine systems and Metzler matrices). For the affine system ẋ(t) =Mx(t) + b, the
following statements are equivalent:
(i) the system is positive, that is, x(t) ≥ 0n for all t ∈ R≥0 and all x(0) ≥ 0n,
(ii) M is Metzler and b ≥ 0n.
Moreover, if the matrixM is Metzler and Hurwitz, then
(iii) the system has a unique non-negative equilibrium point x∗ ∈ Rn≥0, to which all trajectories converge asymptotically.

Proof. We start by showing that statement (i) implies statement (ii). If x(0) = 0n, then ẋ cannot have any negative

components, hence b ≥ 0n. If any off-diagonal entry (i, j), i ̸= j, of M is strictly negative, then consider an

initial condition x(0) with all zero entries except for x(j) > bi/|Mij |. It is easy to see that ẋi(0) < 0 which is a

contradiction.

Next, we show that statement (ii) implies statement (i). It suffices to note that, anytime there exists i such that

xi(t) = 0, the conditions x(t) ≥ 0n,M Metzler and b ≥ 0n together imply ẋi(t) =
∑

i ̸=jMijxj(t) + bi ≥ 0.
Statement (iii) follows from the Metzler Hurwitz Theorem 10.3 and Exercise E7.2. ■

10.2.2 Table of correspondences between non-negative and Metzler matrices

We conclude this section by highlighting the correspondences between non-negative and Metzler matrices in

Table 10.1.

10.3 Dynamical flow systems

In this section, motivated by the examples in Section 10.1 and by the treatment in Section 1.4, we study an important

class of positive affine systems.

A dynamical flow system is a dynamical system in which material is stored at individual locations and is

transferred along the edges of directed graph, called the compartmental digraph; see Figure 10.7b. Dynamical flow

systems are also referred to as compartmental systems. The “storage” nodes are referred to as compartments;
each compartment contains a time-varying quantity qi(t). Each directed arc (i, j) represents a mass flow (or flux),
denoted Fi→j , from compartment i to compartment j. The dynamical flow system interacts with its surrounding

environment via inputs and output flows, denoted in figure by black dashed and light-gray solid arcs respectively:

the inflow from the environment into compartment i is denoted by ui and the outflow from compartment i into
the environment is denoted by Fi→0.

In summary, a (nonlinear) dynamical flow system is described by an unweighted digraph, by maps Fi→j for

all edges (i, j) of the digraph, and by inflow and outflow maps. (The compartmental digraph has no self-loops.)
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172 Chapter 10. Metzler Matrices and Dynamical Flow Systems

Non-negative matrices Metzler matrices

Exercise E10.1: M Metzler ⇐⇒ exp(tM) ≥ 0 for all

t ≥ 0

Perron-Frobenius Theorem 2.12: (reducible and irre-

ducible) non-negative matrix A has dominant eigenpair

Perron-Frobenius Theorem 10.2: (reducible and irre-

ducible) Metzler matrixM has dominant eigenpair

Exercise E10.3: A is non-negative and convergent

(ρ(A) < 1) ⇐⇒ (In−A) invertible and (In−A)−1 ≥ 0
Theorem 10.3: M is Metzler and Hurwitz (α(M) < 0)
⇐⇒ M invertible and −M−1 ≥ 0

Exercise E10.4: A is non-negative ⇐⇒ x(k + 1) =
Ax(k) is positive

Theorem 10.6: M is Metzler ⇐⇒ ẋ(t) = Mx(t) is
positive

Lemmas 4.9 and 4.10: Bounds and monotonicity of ρ(A)
for non-negative A

Exercise E10.5: Bounds and monotonicity of α(M) for
MetzlerM

Table 10.1: Table of correspondences between non-negative and Metzler matrices

Fj!i
Fi!j

ui Fi!0qi

(a) A compartment with inflow ui, outflow Fi→0,

and inter-compartmental flows Fi→j

F1!2

F2!4

F3!2

F4!3

F2!3
u1

u3

F2!0

F4!0

q1

q3

q2

q4

(b) A compartmental system with two inflows and two outflows

Figure 10.7: Example of a single compartment and of a dynamical flow system

The dynamic equations of the dynamical flow system are obtained by the instantaneous flow balance at each
compartment. In other words, asking that the rate of accumulation at each compartment equals the net inflow rate

we obtain:

q̇i(t) =

n∑

j=1,j ̸=i
(Fj→i − Fi→j)− Fi→0 + ui. (10.2)

In general, the flow along (i, j) is a function of the entire system state so that Fi→j = Fi→j(q).

Remarks 10.7 (Basic properties of dynamical flow systems). (i) The mass in each of the compartments as
well as the mass flowing along each of the edges must be non-negative at all times (recall we assume ui ≥ 0).
Specifically, we require the mass flow functions to satisfy

Fi→j(q) ≥ 0 for all (q), and Fi→j(q) = 0 for all (q) such that qi = 0. (10.3)

Under these conditions, if at some time t0 one of the compartments has nomass, that is, qi(t0) = 0 and q(t0) ∈ Rn≥0,
it follows that q̇i(t0) =

∑n
j=1,j ̸=i Fj→i(q(t0)) + ui ≥ 0 so that qi does not become negative. The dynamical flow

system (10.2) is therefore a positive system, as introduced in Definition 10.5.
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(ii) Let Fflows : Rn≥0 → Rn×n≥0 denote the compartment-to-compartment flow matrix with entries (Fflows)ij(q) =
Fi→j(q) (and zero diagonal) and Foutflows : Rn≥0 → Rn≥0 denote the outflow vector. Then the equation (10.2) is
written in vector form as

q̇ = Fflows(q)
T1n − Fflows(q)1n − Foutflows(q) + u.

(iii) IfM(q) =
∑n

i=1 qi = 1T
nq denotes the total mass in the system, then along the solutions of (10.2)

d

dt
M(q(t)) = −

∑n

i=1
Fi→0(q(t))

︸ ︷︷ ︸
outflow into environment

+
∑n

i=1
ui

︸ ︷︷ ︸
inflow from environment

. (10.4)

This equality implies that the total mass t 7→M(q(t)) is constant in systems without inflows and outflows. •

Linear dynamical flow systems

Loosely speaking, a dynamical flow system is linear if (i) all flows depend linearly upon the mass in the originating

compartment, except (ii) the inflow from the environment is constant and non-negative. In other words, we assume

that in a linear dynamical flow system,

Fi→j(q) = fijqi, for j ∈ {1, . . . , n},
Fi→0(q) = fi0qi, and

ui(q) = ui,

where the fij and fi0 coefficients are called flow rates. Indeed, this model is also referred to as donor-controlled
flow. Note that this model satisfies the physically-meaningful constraints (10.3). We illustrate these assumptions in

Figure 10.8.

F1!2

F2!4
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Figure 10.8: In a linear dynamical flow system the flows among the compartments and onto the environment are

linear functions of the donor compartment. The compartmental digraph has weights on the edges given by the

corresponding flow rates and, accordingly, its adjacency matrix is called the flow rate matrix.

Definition 10.8 (Linear dynamical flow systems). A linear dynamical flow system with n compartments is a
triplet (F, f0, u) consisting of
(i) a non-negative n× n matrix F = (fij)i,j∈{1,. . .,n} with zero diagonal, called the flow rate matrix,
(ii) a vector f0 ≥ 0n, called the outflow rates vector, and
(iii) a vector u ≥ 0n, called the inflow vector.
For a linear dynamical flow system, it is customary to regard the flow rate matrix F as the adjacency matrix of the
compartmental digraph (which is now therefore a weighted digraph without self-loops) and denote the compartmental
digraph by GF .
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174 Chapter 10. Metzler Matrices and Dynamical Flow Systems

With the notion of compartmental matrix, the dynamics of the linear dynamical flow system are

q̇i(t) = −
(
fi0 +

n∑

j=1,j ̸=i
fij

)
qi(t) +

n∑

j=1,j ̸=i
fjiqj(t) + ui, (10.5)

or, in vector notation,

q̇(t) = Cq(t) + u, (10.6)

where the compartmental matrix C = (cij)i,j∈{1,. . .,n} of a dynamical flow system (F, f0, u) is defined by

cij =

{
fji, if i ̸= j,

−fi0 −
∑n

h=1,h ̸=i fih, if i = j.

Note that here the components of the vector f0 are (f0)i = fi0, for consistency with the notation above. Equiva-

lently, if LF = diag(F1n)− F is the Laplacian matrix of the compartmental digraph, then the compartmental

matrix satisfies

C = −LT
F − diag(f0) = FT − diag(F1n + f0). (10.7)

Note: since LF1n = 0n, we know 1T
nC = −fT0 and, consistently with equation (10.4), we know

d
dtM(q(t)) =

−fT0 q(t) + 1T
nu.

In what follows it is convenient to introduce the following definition.

Definition 10.9 (Compartmental matrices). A matrix C ∈ Rn×n is compartmental if
(i) the off-diagonal entries are non-negative: cij ≥ 0, for i ̸= j, (i.e., C is Metzler)
(ii) the column sums are non-positive:

∑n
i=1 cij ≤ 0, for all j ∈ {1, . . . , n}.

In equivalent words, a compartmental matrix C is Metzler, has non-positive diagonal entries, and is weakly
column diagonally dominant in the sense that |cjj | ≥

∑n
i=1,i ̸=j cij , for all columns j ∈ {1, . . . , n}.

Remark 10.10 (Symmetric flows). The donor-controlled model entails a flow fijqi from i to j and a flow fjiqj
from j to i. If the flow rates are equal fij = fji, then the resultant flow as measured from i to j is fij(qi − qj), i.e.,
proportional to the difference in stored quantities. The flow rate matrix F is often symmetric in physical networks. •

Algebraic and graphical properties of linear dynamical flow systems

In this section we study the algebraic and spectral graph theory of present useful properties of compartmental

matrices. We start with some useful graph-theoretical notions, illustrated in Figure 10.9. In the compartmental

digraph, a set of compartments S is

(i) outflow-connected if there exists a directed walk from every compartment in S to the environment, that is, to a

compartment j with a positive flow rate constant f0j > 0,

(ii) inflow-connected if there exists a directed walk from the environment to every compartment in S, that is, from
a compartment i with a positive inflow ui > 0,

(iii) a trap if there is no directed walk from any of the compartments in S to the environment or to any compartment

outside S, and

(iv) a simple trap is a trap that has no traps inside it.

It is immediate to realize the following equivalence: the system is outflow connected (i.e., all compartments are

outflow-connected) if and only if the system contains no trap.
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(a) An example dynamical flow system and its strongly connected components: this

system is outflow-connected because its two sinks in the condensation digraph are

outflow-connected.

(b) This dynamical flow system is not

outflow-connected because one of its sink

strongly-connected components is a trap.

Figure 10.9: Outflow-connectivity and traps in dynamical flow system

Theorem 10.11 (Algebraic graph theory of dynamical flow systems). Consider the linear dynamical flow
system (F, f0, u) with compartmental matrix C and condensation of the compartmental digraph C(GF ). Then
(i) each eigenvalue of C either is equal to 0 or has negative real part;
(ii) the following statements are equivalent:

a) C is Hurwitz,
b) there are no traps, that is, the system is outflow-connected, and
c) each sink of C(GF ) is outflow-connected;

(iii) if C is not Hurwitz, then 0 is semisimple with multiplicity equal to the number of simple traps (that is, the number
of sinks of C(GF ) that are not outflow-connected).

Proof. The fact that each eigenvalue is either 0 or has strictly negative real part is similar to the result in Lemma 6.5

and can be proved by an application of the Geršgorin Disks Theorem 2.8. We invite the reader to fill out the details

in Exercise E10.7.

The equivalence between statements (ii)b and (ii)c is immediate. To establish the equivalence between (ii)c

and (ii)a, we first consider the case in which GF is strongly connected and at least one compartment has a strictly

positive outflow rate. Therefore, the compartmental matrix C = −LT
F −diag(f0) is irreducible. As in Exercise E6.1

and in the proof of Theorems 7.4 and 10.3, pick 0 < ε < 1/maxi |cii|, and define the non-negative irreducible

AC, ε = In + εCT
. The row-sums of AC, ε are:

AC, ε1n = 1n + ε(−LF − diag(f0))1n = 1n − εf0.

Therefore, AC, ε is row-substochastic and, because AC, ε is irreducible, Corollary 4.13 implies that ρ(A) < 1. Now,
let λ1, . . . , λn denote the eigenvalues of AC, ε and recall from Exercise E6.1 that the eigenvalues η1, . . . , ηn of C
satisfy λi = 1+ εηi so thatmaxiℜ(λi) = 1+ εmaxiℜ(ηi). Finally, ρ(AC, ε) < 1 impliesmaxiℜ(λi) < 1 so that

max
i

ℜ(ηi) =
1

ε

(
max
i

ℜ(λi)− 1
)
< 0.

This concludes the proof that if G is strongly connected, then C has eigenvalues with strictly negative real part.

The converse is easy to prove by contradiction: if f0 = 0n, then the matrix C has zero column-sums, but this is a

contradiction with the assumption that C is invertible.

Next, to prove the equivalence between (ii)c and (ii)a for a graph GF whose condensation digraph has an

arbitrary number of sinks, we proceed as in the proof of Theorem 6.6 and, more precisely, Theorem 5.2: we reorder
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the compartments as described in Exercise E3.2 so that the Laplacian matrix LF is block lower-triangular. We then

consider the matrix AC, ε = In + εCT
and proceed as above. We leave the remaining details to the reader. ■

Remark 10.12 (Augmenting the compartmental digraph). An alternative clever proof strategy for the equiva-
lence between (ii)c and (ii)a is given as follows. Define the matrix

Caugmented =

[
C 0n
fT0 0

]
∈ R(n+1)×(n+1) ,

and consider the augmented linear system ẋ = Caugmentedx with x ∈ Rn+1. Note that Laugmented = −CT
augmented

is
the Laplacian matrix of the augmented graph Gaugmented, whose nodes {1, . . . , n, n+ 1} include the n compartments
and the environment as (n+ 1)st node, and whose edges are the edges of the compartmental graph GF as well as the
outflow edges to the environment node. Note that the environment node n+ 1 in the digraph Gaugmented is the only
globally reachable node of Gaugmented if and only if the compartmental digraph GF is outflow connected. Assume now
that statement (ii)c is true. Then, Theorem 7.4 implies

lim
t→∞

e−Laugmentedt = 1n+1e
T
n+1,

which, taking a transpose operation, immediately implies limt→∞ eCaugmentedt = en+11T
n+1. We now can easily compute

lim
t→∞

[
q(t)

xn+1(t)

]
= en+11

T
n+1

[
q(0)

xn+1(0)

]

=⇒ lim
t→∞

q(t) = 0n lim
t→∞

xn+1(t) = 1T
nq(0) + xn+1(0).

In other words, all mass in the system reaches asymptotically the environment and the mass in all compartments
converge exponentially fast to zero. This occurs for all initial conditions if and only if the matrix C is Hurwitz. Hence
we have established that statement (ii)c implies statement (ii)a. We leave the converse to the reader.

Dynamic properties of linear dynamical flow systems

Consider a linear dynamical flow system (F, f0, u) with compartmental matrix C and compartmental digraph GF .
Assuming the system has at least one trap, we define the reduced compartmental system (Frd, f0,rd, urd) as follows:
remove all simple traps from GF and regard the edges into the removed compartments as outflow edges into the

environment, e.g., see Figure 10.10.

We now state our main result about the asymptotic behavior of linear dynamical flow systems.

Theorem 10.13 (Asymptotic behavior of dynamical flow systems). The linear dynamical flow system (F, f0, u)
with compartmental matrix C and compartmental digraph GF has the following possible asymptotic behaviors:
(i) if the system is outflow-connected, then the compartmental matrixC is invertible, every solution tends exponentially

to the unique equilibrium q∗ = −C−1u ≥ 0n, and in the ith compartment q∗i > 0 if and only if the ith
compartment is inflow-connected to a positive inflow;

(ii) if the system contains one or more simple traps, then:
a) the reduced compartmental system (Frd, f0,rd, urd) is outflow-connected and all its solutions converge exponen-

tially fast to the unique non-negative equilibrium −C−1
rd
urd, for Crd = FT

rd
− diag(Frd1n + f0,rd);

b) any simple trap H contains non-decreasing mass along time. If H is inflow-connected to a positive inflow, then
the mass inside H grows linearly with time. Otherwise, the mass inside H converges asymptotically to a scalar
multiple of the right eigenvector corresponding to the eigenvalue 0 of the compartmental submatrix for H .

Proof. Statement (i) is an immediate consequence of Theorem 10.6. We leave the proof of statement (ii) to the

reader. ■
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(a) A dynamical flow system that is not

outflow-connected

(b) The corresponding reduced dynamical

flow system

Figure 10.10: An example reduced dynamical flow system

Closed dynamical flow systems

Finally, we elaborate on the last case considered in Theorem 10.13. Specifically, we consider a closed dynamical

flow system, that is, a system without inflows and outflows. The governing equation of such a system is

q̇ = −LT
F q, q(0) ≥ 0. (10.8)

For example, these are the equations of a continuous-time Markov chain.

Clearly, the total mass of commodity is conserved in a closed system since the equality 1T
nL

T
F = 0T

n implies

that the function t 7→ 1T
nq(t) is constant.

If the compartmental digraph of a closed dynamical flow system contains a globally reachable node, then

Theorem 7.4 implies limt→∞ exp(−LF t) = 1nwT
and so

lim
t→∞

q(t) =
(
1T
nq(0)

)
w,

where w ≥ 0 is the left dominant eigenvector of L and wi > 0 if and only if i is globally reachable. In other words,

the commodity present in the system at initial time

(
1T
nq(0)

)
concentrates asymptotically in the globally reachable

nodes. For the continuous-time Markov chain case, the probability vector converges to asymptotic positive values

only at the so-called absorbing states.

10.4 Appendix: Metzler Hurwitz matrices

In this appendix we present various properties and additional characterization of Metzler Hurwitz matrices. These

selected results have found application for example in the study of epidemic, economic, and network control

problems. For convenience we start by reporting and extending the results in Metzler Hurwitz Theorem 10.3.

Theorem 10.14 (Metzler Hurwitz Theorem: Theorem 10.3 continued). For a Metzler matrixM ∈ Rn×n, the
following statements are equivalent:
(i) M is Hurwitz,
(ii) M is invertible and −M−1 ≥ 0,
(iii) for all b ≥ 0n, there exists a unique x∗ ≥ 0n solvingMx∗ + b = 0n,
(iv) there exists ξ ∈ Rn such that ξ > 0n andMξ < 0n,
(v) there exists η ∈ Rn such that η > 0n and ηTM < 0T

n ,
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(vi) there exists a diagonal matrix P ≻ 0 such thatMTP + PM ≺ 0, and
(vii) for any ζ ≥ 0n and ζ ̸= 0n, the vectorMζ has at least one negative entry.

Note: if the vectors ξ and η satisfy the conditions of statements (iv) and (v) respectively, then the matrix

P = diag(η1/ξ1, . . . , ηn/ξn) satisfies the conditions of statement (vi).

Note: a matrixM with a diagonal matrix P as in statement (vi) is said to be diagonally stable.
Note: condition (iv) is equivalently rewritten as aii < 0 and ξi|aii| >

∑n
j=1,j ̸=i ξj |aij |. The latter condition is

sometimes referred to (strict row) quasi diagonal dominance. Similar statements hold for condition (v).

Proof. The equivalence between statements (i), (ii), and (iii) is established in the Metzler Hurwitz Theorem 10.3.

We omit the proof of statement (vii) in the interest of brevity.

Statements (iv) and (v) are equivalent because of the following argument and its converse: if statement (iv)

holds with ξ = ξ(M), then statement (v) holds with η = ξ(MT).
We first prove that (ii) implies (iv). Set ξ = −M−11n. Because −M−1 ≥ 0 is invertible, it can have no row

identically equal to zero. Hence ξ = −M−11n > 0n. MoreoverMξ = −1n < 0n.
Next, we prove that (iv) implies (i). Let λ be an eigenvalue of M with eigenvector v. Define w ∈ Rn by

wi = vi/ξi, for i ∈ {1, . . . , n}, where ξ is as in statement (iv). We have therefore λξiwi =
∑n

j=1 aijξjwj . If ℓ is
the index satisfying |wℓ| = maxi |wi| > 0, then

λξℓ = aℓℓξℓ +

n∑

j=1,j ̸=ℓ
aℓjξj

wj
wℓ
,

which, in turn, implies

|λξℓ − aℓℓξℓ| ≤
n∑

j=1,j ̸=ℓ
aℓjξj

∣∣∣∣
wj
wℓ

∣∣∣∣ ≤
n∑

j=1,j ̸=ℓ
aℓjξj < −aℓℓξℓ,

where the last equality follows from the ℓ-th row of the inequalityMξ < 0n. Therefore, |λ− aℓℓ| < −aℓℓ. This
inequality implies that the eigenvalue λ must belong to an open disc in the complex plan with center aℓℓ < 0 and

radius |aℓℓ|. Hence, λ, together with all other eigenvalues ofM , must have negative real part.

We now prove that (iv) implies (vi). From statement (iv) applied toM andMT
, let ξ > 0n satisfyMξ < 0n and

η > 0n satisfyMTη < 0n. Define P = diag(η1/ξ1, . . . , ηn/ξn) and consider the symmetric matrixMTP + PM .

This matrix is Metzler and satisfies (MTP + PM)ξ = MTη + PMξ < 0n. Hence, MTP + PM is negative

diagonally dominant and, because (iv) =⇒ (i), Hurwitz. In summary,MTP + PM is symmetric and Hurwitz,

hence, it is negative definite.

Finally, the implication (vi) =⇒ (i) is established in Theorem 15.9. ■
Next, we present a result on matrix splitting that is useful for example to understand the concept of reproduction

number in epidemic models, e.g., see (den Driessche and Watmough, 2002). Additional results on matrix splitting

are given, e.g., in (Varga, 1962, Theorem 3.13), and (Dashkovskiy et al., 2011, Lemma 3.1).

Lemma 10.15 (Stability tests for Metzler matrices based on matrix splitting). LetM ∈ Rn×n be Metzler
irreducible and have negative diagonal entries. Define a nonnegative matrix A ∈ Rn×n≥0 with zero diagonal and a
diagonal nonnegative matrix Λ ∈ Rn×n≥0 in such a way thatM = −Λ +A. Then

(i) α(M) < 0 if and only if ρ(Λ−1A) < 1,
(ii) α(M) = 0 if and only if ρ(Λ−1A) = 1, and
(iii) α(M) > 0 if and only if ρ(Λ−1A) > 1.

Proof. First, we claim that is suffices to show that
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(F1) α(M) < 0 if ρ(Λ−1A) < 1,
(F2) α(M) = 0 if ρ(Λ−1A) = 1, and
(F3) α(M) > 0 if ρ(Λ−1A) > 1.

Indeed, assume for example that α(M) < 0 and ρ(Λ−1A) ≥ 1. But statement (F2) for ρ(Λ−1A) = 1 or state-

ment (F3) for ρ(Λ−1A) > 1 immediately lead to a contradiction.

Second, the Perron–Frobenius Theorem applied to the irreducible non-negative matrix Λ−1A implies the

existence of v ∈ Rn>0 such that vT(Λ−1A) = λvT, where λ = ρ(Λ−1A). We then compute

vT(Λ−1A) = λvT ⇐⇒ vT(Λ−1A) = (λ− 1)vT + vT

⇐⇒ vT(−In + Λ−1A) = (λ− 1)vT

⇐⇒ vTΛ−1(−Λ +A) = (λ− 1)vT.

In summary, there exists a positive vector v such that

(Λ−1v)TM =
(
ρ(Λ−1A)− 1

)
vT. (10.9)

Note that Λ−1v is also a positive vector.

Finally, we conclude the proof as follows:

(F1) if ρ(Λ−1A) < 1, then equation (10.9) implies (Λ−1v)TM < 0T
n or, equivalently, the inequalityMT(Λ−1v) <

0n. We then apply Exercise E10.5(iii) to the irreducible Metzler matrixMT
with a2 = 0 and x = (Λ−1v) to

obtain α(MT) = α(M) < 0;
(F2) if ρ(Λ−1A) = 1, then equation (10.9) implies (Λ−1v)TM = 0T

n . But then Exercise E2.4 on the “Uniqueness of

the non-negative eigenvector in irreducible non-negative matrices” implies α(M) = 0; and
(F3) if ρ(Λ−1A) > 1, then equation (10.9) implies (Λ−1v)TM > 0T

n or, equivalently, the inequalityMT(Λ−1v) >
0n. We then apply Exercise E10.5(iii) to the irreducible Metzler matrixMT

with a1 = 0 and x = (Λ−1v) to
obtain α(MT) = α(M) > 0.

■
The following properties are also relevant in epidemic problems and are extensions of (Berman and Plemmons,

1994, Exercise (5.2) at page 159), (Horn and Johnson, 1994, Exercise 6b at page 127), (den Driessche and Watmough,

2002, Lemma 5 and Theorem 2) and (Smith and Bullo, 2021).

Lemma 10.16 (More properties of Hurwitz Metzler matrices). LetM be Metzler and Hurwitz andH be Metzler.
Then
(i) if −HM−1 is Metzler, then H is Hurwitz if and only if −HM−1 is Hurwitz, and
(ii) if −M−1H is Metzler, then H is Hurwitz if and only if −M−1H is Hurwitz.
Next, let E ∈ Rn×n≥0 be a non-negative perturbation matrix. The following statements are equivalent:
(iii) M + E is Hurwitz,
(iv) ρ(−EM−1) < 1, and
(v) ρ(−M−1E) < 1.

Proof. SinceM is Metzler Hurwitz, Theorem 10.3(ii) implies −M−1 ≥ 0 and, moreover, no column and no row of

−M−1
can be zero (otherwiseM−1

would be singular). Regarding statement (i), we reason as follows

H is Hurwitz ⇐⇒ ∃η ∈ Rn>0 such that ηTH < 0 (10.10)

=⇒ ∃η ∈ Rn>0 such that ηTH(−M−1) < 0 (10.11)

⇐⇒ H(−M−1) is Hurwitz. (10.12)
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Additionally

H(−M−1) is Hurwitz ⇐⇒ ∃ξ ∈ Rn>0 such that H(−M−1)ξ < 0 (10.13)

=⇒ ∃ξ′ = (−M−1)ξ ∈ Rn>0 such that Hξ′ < 0 (10.14)

⇐⇒ H is Hurwitz. (10.15)

This proves the statement and (i). We leave statement (ii) to the reader.

Next, we show that statement (iii) is equivalent to (iv) and (v), define H ′ :=M + E and

A1 = −H ′M−1 = −(M + E)M−1 = −In − EM−1, (10.16)

A2 = −M−1H ′ = −M−1(M + E) = −In −M−1E. (10.17)

SinceM is Metzler Hurwitz, Theorem 10.3(ii) implies −M−1 ≥ 0 and so A1 = −In + (nonnegative matrix) and
A2 = −In + (nonnegative matrix) are Metzler. Then by the statements (i) and (ii), we know H ′ = M + E is

Hurwitz if and only if A1 is Hurwitz if and only if A2 is Hurwitz.

We proceed as follows. First, if ρ(−EM−1) < 1, then A1 is clearly Hurwitz. One the other hand, if

ρ(−EM−1) ≥ 1, then A1 cannot be Hurwitz. Indeed, since −EM−1 ≥ 0, the Perron-Frobenius Theorem

guarantees that its dominant eigenvalue is real and non-negative, so A1 = −In − EM−1
has an eigenvalue with

non-negative real part. This completes the proof of the equivalence (iii) ⇐⇒ (iv). We leave the equivalence

with (v) to the reader. ■
Next, we consider stability tests based upon Schur complements. The following lemma improves upon (Shorten

and Narendra, 2009, Theorem 4.1) and is a special case of (Ebihara et al., 2017, Lemma 2). We present the more

general treatment in Exercise E10.15.

Lemma 10.17 (Stability tests for Metzler matrices based on Schur complements). LetM ∈ Rn×n be Metzler
and decompose it in the block form

M =

[
A b
cT d

]
, where A ∈ R(n−1)×(n−1) is Metzler, b, c ∈ R(n−1)×1

≥0 , and d ∈ R. (10.18)

When d < 0, the Schur complement of the block A is the matrix A − dbcT ∈ R(n−1)×(n−1). It is easy to see that
A− dbcT is Metzler and satisfies:

[
A b
cT d

]
=

[
In−1 d−1b
0T
n−1 1

] [
A− dbcT 0n−1

0T
n−1 d

] [
In−1 0n−1

d−1cT 1

]
. (10.19)

The following statements are equivalent:
(i) M is Hurwitz,
(ii) d < 0 and A− dbcT is Hurwitz.

Proof. We start by rewriting (10.19) in two equivalent format:

[
In−1 −d−1b
0T
n−1 1

] [
A b
cT d

]
=

[
A− dbcT 0n−1

0T
n−1 d

] [
In−1 0n−1

d−1cT 1

]
, (10.20)

[
A b
cT d

] [
In−1 0n−1

−d−1cT 1

]
=

[
In−1 d−1b
0T
n−1 1

] [
A− dbcT 0n−1

0T
n−1 d

]
, (10.21)

and noting

[
In−1 −d−1b
0T
n−1 1

]
≥ 0 and

[
In−1 0n−1

−d−1cT 1

]
≥ 0.
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Regarding (ii) =⇒ (i), since the Metzler matrix A − dbcT is Hurwitz, there exists ξ ∈ Rn−1
>0 such that

(A− dbcT)ξ ≤ −1n−1. Pick 0 < ε such that εb < 1n−1 and define

ξ̄ =

[
In−1 0n−1

−d−1cT 1

] [
ξ
ε

]
≥
[
ξ
ε

]
> 0n. (10.22)

Using (10.21) we now compute:

Mξ̄ =

[
A b
cT d

] [
In−1 0n−1

−d−1cT 1

] [
ξ
ε

]

=

[
In−1 d−1b
0T
n−1 1

] [
A− dbcT 0n−1

0T
n−1 d

] [
ξ
ε

]
≤
[
In−1 d−1b
0T
n−1 1

] [
−1n−1

εd

]

=

[
−1n−1 + εb

εd

]
< 0n.

The Metzler Hurwitz Theorem 10.14(iv) now implies thatM is Hurwitz. This completes the proof of (ii) =⇒ (i).

The proof of the converse implication is analogous and left to the reader. ■
We conclude with the so-called Hicksian stability condition from the classic economics literature (Habibagahi

and Quirk, 1973); to understand the relationship with the nomenclature in the literature we recall that, in the

language of Remark 10.4, the matrix −M is an M-matrix. Also recall that the leading principal submatrices of a
matrix A ∈ Rn×n are the square submatrices Ai ∈ Ri×i, i ∈ {1, . . . , n}, containing the first i rows and i columns

of A. Also recall that the leading principal minors of A are the determinants of the leading principal submatrices.

Lemma 10.18 (Stability tests for Metzler matrices based on leading principal minors). Given a Metzler
matrixM , the following statements are equivalent:
(i) M is Hurwitz, and
(ii) each leading principal minor of −M is positive.

We omit the proof of Lemma 10.18 and refer the reader to (Berman and Plemmons, 1994, Chapter 6) and (Farina

and Rinaldi, 2000, Theorem 13).

10.5 Appendix: Examples of nonlinear flow systems

10.5.1 Symmetric physical flow systems

Many physical dynamical flow systems are described by symmetric flows that depend upon effort variables and

energy stored at nodes. For an insightful treatment of physical and port-Hamiltonian network systems we refer

to (van der Schaft, 2015; van der Schaft and Wei, 2012). We here present a brief introduction without outflows and

inflows, for simplicity.

Following (van der Schaft, 2015), we letG be an undirected graph with n nodes andm edges and with oriented

incidence matrix B ∈ Rn×m and proceed as follows:

(i) for an oriented edge (i, j), let uij denote the total flow from i to j (that is, uij = Fi→j − Fj→i) so that the

flow vector is u ∈ Rm. Given storage qi at each node i, mass conservation implies q̇ = Bu ∈ Rn; (if instead
the nodes have no storage, then mass conservation implies Bu = 0n, which is consistent with Kirchhoff’s

current law as stated in Section 9.3.)

(ii) typically, the flow through an edge uij is proportional to an “effort on the edge” eij , that is, uij = −cijeij , for
a “conductance constant” cij > 0. In vector form, u = −Ce ∈ Rm;
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(iii) typically, the edge effort eij is the difference between node effort variables, that is, e = BTenodes ∈ Rm, for
nodal effort variables enodes ∈ Rn;

(iv) finally, node efforts are determined by the storage variables according to:

enodes =
∂H

∂q
(q) ∈ Rn, (10.23)

where H(q) is the total stored energy. Typically, H(q) =
∑n

i=1Hi(qi), where Hi(qi) denotes the energy
stored at node i.

In summary, the symmetric physical dynamical flow system obeys

q̇ = Bu = −BCe = −BCBTenodes = −BCBT∂H

∂q
(q) = −L∂H

∂q
(q), (10.24)

where L is the conductance-weighted Laplacian matrix of the compartmental graph.

For example, consider a hydraulic flow network among n fluid reservoirs. The liquid stored at the reservoirs

is given by a vector q ∈ Rn≥0. Assume there exists an energy function Hi (possibly the same function at all

locations) such that
∂Hi
∂qi

(qi) is the pressure at reservoir i. Assume that the liquid flow along the pipe from head

reservoir i to tail reservoir j is proportional to the difference between the pressure at i and the pressure at j. Then
equation (10.24) describes the mass balance equation among the reservoirs.

10.5.2 A static nonlinear flow problem

In this appendix, we consider a static compartmental flow system, where a commodity (e.g., power or water) is

transported through a network (e.g., a power grid or a piping system). We model this scenario with an undirected

and connected graph with n nodes andm edges. With each node we associate an external supply/demand variable

(positive for a source and negative for a sink) yi and assume that the overall network is balanced:

∑n
i=1 yi = 0.

We also associate a potential variable xi with every node (e.g., voltage or pressure) and, for each undirected edge

{i, j}, we assume that the flow of commodity from node i to node j depends on the potential difference (xi − xj).
Specifically, we assume that the total flow from i to j satisfies

Fi→j(q)− Fj→i(q) = aijh(xi − xj),

where aij is akin to a conductance weight for the edge {i, j} and where the function h : R → R is odd, differentiable,

and satisfies h(0) = 0 and h′(0) = 1. For example, for piping systems and power grids the function h is given

by the empirical Hazen-Williams law and the trigonometric power flow equation, respectively. In both cases the

function h is monotone in the region of interest. By balancing the flow at each node (as we do for network with

nodal storage in equation (10.2)), we obtain at node i

yi =

n∑

j=1

aijh(xi − xj) , i ∈ {1, . . . , n}.

In vector notation, letting f denote the vector of all flows, the combined physical flow model and flow balance

equations read

y = Bf,

f = Ah
(
BTx

)
,

(10.25)

or, equivalently, y = BAh
(
BTx

)
.

In what follows, we are given the graph topology B, the edge conductances A, the nonlinearity h, and the

supply/demand vector y. With this information, we are interested in computing the solution equilibrium flows f
and potential variables x.
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Linear setting. We consider now the associated linear problem, where h(δ) = δ and y = BABTx = Lx, where
L is the network Laplacian matrix. In other words, the linearized problem is a Laplacian system, as studied in

Section 6.3.2. Letting L†
denote the pseudoinverse of L, the equilibrium potential variables and equilibrium flows

in the linear problem are, respectively,

x⋆ = L†y, f⋆ = ABTL†y.

(Recall from Lemma 6.12(ii) that the potential variable x⋆ = L†y is only one solution to Lx = y; for a connected
graph and a balanced supply/demand vector, all solutions are of the form x⋆ + β1n, for β ∈ R.)

Nonlinear acyclic setting. Next, we consider an acyclic network, i.e., the graph is a tree, and show that the

nonlinear equilibrium solution has similarities with the solution of the linear problem. We also assume, for

simplicity, that h is monotonic increasing and unbounded. We introduce the normalized flow variable v = h(BTx)
and rewrite the physical flow balance equation (10.25) as

y = BAv , (10.26a)

v = h
(
BTx

)
. (10.26b)

In the acyclic case, we know kernel(B) = {0n−1} and necessarily v ∈ image(BT) since image(BT) = Rn−1
. In

turn, there must exist w ∈ Rn such that or v = BTw. Thus, equation (10.26a) reads y = BAv = BABTw = Lw
and its solution is w∗ = L†y. Equation (10.26b) then reads h(BTx) = v = BTw = BTL†y, and its unique solution
(due to the monotonicity of h) is

BTx⋆ = h−1(BTL†y).

Left-multiplying byBA, we obtainBABTx⋆ = BAh−1(BTL†y). In summary, the equilibrium potential variables

and equilibrium flows in the nonlinear acyclic problem are, respectively,

x⋆ = L†BAh−1(BTL†y), f⋆ = ABTL†y.

10.6 Appendix: Tables of asymptotic behaviors for averaging and positive systems

We conclude this chapter with Tables 10.2 and 10.3 summarizing numerous results presented in this and previous

chapters.

10.7 Historical notes and further reading

Metzler matrices are widely studied. For a comprehensive treatment of M-matrices (i.e., minus Metzler Hurwitz

matrices), we refer to (Berman and Plemmons, 1994, Chapter 6) and (Horn and Johnson, 1994, Section 2.5). We refer

the interested readers to (Farina and Rinaldi, 2000; Kaczorek, 2001) for a detailed study of linear positive systems.

As example recent extensions, (Narendra and Shorten, 2010) studies an iterative method based on the Schur

complement to check the Hurwitzness of Metzler matrices and (Ebihara et al., 2017) provides a comprehensive

analysis of interconnected positive systems. Additionally, Blanchini et al. (2012) study switched Metzler systems

and convex combinations of Metzler Hurwitz matrices; see also in (Meng et al., 2017). Finally, Duan et al. (2021)

provide graph-theoretic stability conditions based on small-gain concepts.
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Dynamics Assumptions & Asymptotic Behavior References

averaging system

x(k + 1) = Ax(k)
A row-stochastic

the associated digraph has a globally reachable node

=⇒
limk→∞ x(k) = (wTx(0))1n where w ≥ 0 is the left eigen-
vector of A with eigenvalue 1 satisfying 1T

nw = 1

Convergence properties: Theo-

rem 5.1

Examples: opinion dynamics &

averaging in Chapter 1

affine system

x(k + 1) = Ax(k) + b
A convergent (that is, its spectral radius is less than 1)
=⇒ limk→∞ x(k) = (In −A)−1b

Convergence properties: Exer-

cise E2.9

Examples: Friedkin-Johnsen

system in Exercise E5.26

positive affine system

x(k + 1) = Ax(k) + b
A ≥ 0, b ≥ 0n

x(0) ≥ 0n =⇒ x(k) ≥ 0n for all k, and

A convergent (that is, |λ| < 1 for all λ ∈ spec(A))
=⇒ limk→∞ x(k) = (In −A)−1b ≥ 0n

Positivity properties: Exer-

cise E10.4

Examples: Leslie population

model in Exercise E4.19

Table 10.2: Discrete-time systems

Dynamics Assumptions & Asymptotic Behavior References

averaging system

ẋ(t) = −Lx(t)
L Laplacian matrix

the associated digraph has a globally reachable node

=⇒
limt→∞ x(t) = (wTx(0))1n where w ≥ 0 is the left eigen-
vector of L with eigenvalue 0 satisfying 1T

nw = 1

Convergence properties: Theo-

rem 7.4

Examples: Flocking system in

Section 1.3

affine system

ẋ(t) = Ax(t) + b
A Hurwitz (that is, its spectral abscissa is negative)

=⇒ limt→∞ x(t) = −A−1b
Convergence properties: Exer-

cise E7.2

positive affine system

ẋ(t) =Mx(t) + b
M Metzler, b ≥ 0n

x(0) ≥ 0n =⇒ x(t) ≥ 0n for all t, and

M Hurwitz (that is, ℜ(λ) < 0 for all λ ∈ spec(M))
=⇒ limt→∞ x(t) = −M−1b ≥ 0n

Positivity properties: Theo-

rem 10.6

Example: dynamical flow sys-

tems in Section 10.1

dynamical flow system

q̇(t) = Cq(t) + u
C compartmental,

u ≥ 0n

q(0) ≥ 0n =⇒ q(t) ≥ 0n for all t, and

system is outflow-connected

=⇒ limt→∞ q(t) = −C−1u ≥ 0n

Algebraic graph theory: Theo-

rem 10.11

Asymptotic behavior: Theo-

rem 10.13

Table 10.3: Continuous-time systems

The treatment of compartmental systems is inspired by the excellent text by Walter and Contreras (1999) and

the tutorial treatment by Jacquez and Simon (1993); see also the texts (Luenberger, 1979; Farina and Rinaldi, 2000;

Haddad et al., 2010).

For nonlinear extensions of the material in this chapter, including recent studies of traffic networks, we refer

to (Como et al., 2013; Coogan and Arcak, 2015). The survey by Sontag (2007) reviews theoretical results and

applications of interconnected monotone systems.
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10.8 Exercises

E10.1 The matrix exponential of a Metzler matrix. In this exercise we extend and adapt Theorem 7.2 about the matrix

exponential of a Laplacian matrix to the setting of Metzler matrices. LetM be an n×nMetzler matrix with minimum

diagonal entrymmin = min{m11, . . . ,mnn}. As usual, associate toM a digraph G without self-loops in the natural

way, that is, (i, j) is an edge if and only ifmij > 0. Prove that

(i) exp(M) ≥ emmin In ≥ 0, for any digraph G,
(ii) exp(M)ej > 0, for a digraph G whose j-th node is globally reachable,

(iii) exp(M) > 0, for a strongly connected digraph G (i.e., for an irreducibleM ).

Moreover, prove that, for any square matrix A,

(iv) exp(At) ≥ 0 for all t ≥ 0 if and only if A is Metzler.

▶ E10.2 Proof of the Perron–Frobenius Theorem for Metzler matrices. Prove Theorem 10.2.

E10.3 Non-negative convergent matrices and inverse positivity. This exercise is the discrete-time equivalent of

Metzler Hurwitz Theorem 10.3. For a non-negative matrix A, show that the following statements are equivalent:

(i) A is convergent (ρ(A) < 1),
(ii) (In −A) is invertible and (In −A)−1 ≥ 0, and
(iii) for all b ≥ 0n, there exists a unique x∗ ≥ 0n solving x∗ = Ax∗ + b.

Moreover, show that

(iv) if A is non-negative, convergent and irreducible, then (In −A)−1 > 0.

E10.4 Discrete-time positive affine systems and non-negative matrices. This exercise is the discrete-time equivalent

of Theorem 10.6. For the affine system x(k + 1) = Ax(t) + b, the following statements are equivalent:

(i) the system is positive, that is, x(k) ≥ 0n for all k ∈ N and all x(0) ≥ 0n,
(ii) A is non-negative and b ≥ 0n.

Moreover, if the matrix A is non-negative and convergent, then

(iii) the system has a unique non-negative equilibrium point x∗ ∈ Rn≥0, to which all trajectories converge asymptoti-

cally.

▶ E10.5 Bounds and monotonicity of the spectral abscissa of Metzler matrices. LetM ∈ Rn be Metzler. For a1, a2 > 0
and x ∈ Rn≥0, x ̸= 0n, show

(i) if a1x ≤Mx, then a1 ≤ α(M),
(ii) ifMx ≤ a2x and x ∈ Rn>0, then α(M) ≤ a2,
(iii) if a1x ≤Mx ≤ a2x, a1x ̸=Mx ̸= a2x, andM is irreducible, then a1 < α(M) < a2 and x ∈ Rn>0.

Moreover, letM ′
be a Metzler matrix of the same dimension asM . Show

(iv) ifM ≤M ′
, then α(M) ≤ α(M ′),

(v) if additionallyM ̸=M ′
andM ′

is irreducible, then α(M) < α(M ′).
Hint: Recall Lemmas 4.9 and 4.10 for non-negative matrices.

E10.6 Monotonicity properties of positive systems. Consider the two continuous-time positive affine system

ẋ =Mx+ b, and ẋ′ =M ′x′ + b′,
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whereM andM ′
are Metzler and b and b′ are non-negative. Let x(t) and x′(t) denote the solutions of the respective

systems from initial conditions x0 ∈ Rn≥0 and x
′
0 ∈ Rn≥0 at time 0. Assume both matrices are Hurwitz and let x∗ and

x′∗ denote the equilibrium points of the two systems. Show that

x0 ≤ x′0, M ≤M ′, and b ≤ b′

implies

x(t) ≤ x′(t), and x∗ ≤ x′∗.

E10.7 Establishing the spectral properties of compartmental matrices. Given a compartmental matrix C , show that

if λ ∈ spec(C), then either λ = 0 or ℜ(λ) < 0.

E10.8 Simple traps and strong connectivity. Show that a dynamical flow system that has no outflows and that is a

simple trap, is strongly connected.

E10.9 Decompositions of a Metzler matrix and sufficient conditions to be Hurwitz. Given a Metzler matrix

M ∈ Rn×n, n ≥ 2, show that

(i) there exists a unique Laplacian matrix Lr and a vector vr =M1n such thatM = −Lr + diag(vr),
(ii) there exists a unique Laplacian matrix Lc and a vector vc =MT1n such thatM = −LT

c
+ diag(vc),

(iii) ifM is irreducible and the vector vr =M1n satisfies vr ≤ 0n and vr ̸= 0n (or vc =MT1n satisfies vc ≤ 0n and

vc ̸= 0n), thenM is Hurwitz, and

(iv) ifM is an irreducible Metzler matrix withM1n = 0n, then, for any i ∈ {1, . . . , n} and ε > 0, all eigenvalues of
M − εeieTi are negative.

E10.10 On Metzler matrices and dynamical flow systems with growth and decay. LetM be an n × n symmetric

Metzler matrix. As in Exercise E10.9, decomposeM intoM = −L + diag(v), where v = M1n ∈ Rn and L is a

symmetric Laplacian matrix. Show that:

(i) ifM is Hurwitz, then 1T
nv < 0.

Next, assume n = 2 and assume v has both non-negative and non-positive entries. (If v is non-negative, lack of

stability can be established from statement (i); if v is non-positive, stability can be established via Theorem 10.11.)

Show that

(ii) there exist non-negative numbers f , d and g such that, modulo a permutation,M can be written in the form:

M = −f
[
1 −1
−1 1

]
+

[
g 0
0 −d

]
=

[
(g − f) f
f (−d− f)

]
,

(iii) M is Hurwitz if and only if

d > g and f >
gd

d− g
.

Note: The inequality d > g (for n = 2) is equivalent to the inequality 1T
nv < 0 in statement (i). In the interpretation

of dynamical flow systems with growth and decay rates, f is a flow rate, d is a decay rate and g is a growth rate.
Statement (iii) is then interpreted as follows: M is Hurwitz if and only if the decay rate is larger than the growth rate
and the flow rate is sufficiently large.

E10.11 Grounded Laplacian matrices. This exercises is a followup and generalization of Exercise E6.15 about grounded

spring networks. Let G be a weighted undirected graph with Laplacian L ∈ Rn×n. Select a set S of s ≥ 1 nodes
and call them grounded nodes. Given S, the grounded Laplacian matrix Lgrounded ∈ R(n−s)×(n−s)

is the principal

submatrix of L obtained by removing the s rows and columns corresponding to the grounded nodes. In other words,

if the grounded nodes are nodes {n− s+ 1, . . . , n} and L is partitioned in block matrix form

L =

[
L11 L12

LT
12 L22

]
, with L11 ∈ R(n−s)×(n−s)

and L22 ∈ Rs×s,

then Lgrounded = L11. Show the following statements:
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(i) If G is connected, then

a) Lgrounded is positive definite,

b) L−1
grounded

is non-negative, and

c) the eigenvector associated with the smallest eigenvalue of Lgrounded can be selected non-negative.

(ii) If additionally the graph obtained by removing fromG the nodes in S and all the corresponding edges is connected,

then

d) L−1
grounded

is positive, and

e) the eigenvector associated with the smallest eigenvalue of Lgrounded is unique and positive (up to rescaling).

Hint: Show that −Lgrounded is a compartmental matrix.

Note: For more information on grounded Laplacian matrices we refer to (Dörfler and Bullo, 2013; Pirani and Sundaram,
2016; Xia and Cao, 2017).

E10.12 Mean residence time for a particle in a dynamical flow system. Consider an outflow-connected dynamical

flow system with irreducible matrix C and spectral abscissa α(C) < 0. Let v is the dominant eigenvector of C , that

is, Cv = α(C)v, 1T
nv = 1, and v > 0.

Assume a tagged particle is randomly located inside the compartmental system at time 0 with probability mass

function v. The mean residence time (mrt) of the tagged particle is the expected time that the particle remains inside

the dynamical flow system. Using the definition of expectation, the mean residence time is

mrt =

∫ ∞

0

tP[particle leaves at time t] dt.

Let us also take for granted that: P[particle leaves at time t] = −
(
d
dtP[particle inside at time t]

)
. Show that

mrt = − 1

α(C)
.

E10.13 Resistive circuits as dynamical flow systems (Dörfler et al., 2018). Consider a resistive circuit with shunt

capacitors at each node as in figure below (see also in Section 7.1.2). Assume that the circuit is connected. Attach to

at least one node j ∈ {1, . . . , n} a current source generating an injected current cinjected at j > 0, and connect to at

least one node i ∈ {1, . . . , n} a positive resistor to ground.

(i) Model the resulting system as a dynamical flow system, i.e., identify the conserved quantity and write the

compartmental matrix, the inflow vector and the outflow rate vector, and

(ii) show that there exists a unique steady state that is positive and globally-asymptotically stable.

current
source

E10.14 Discretization of the Laplace partial differential equation (Luenberger, 1979, Chapter 6). The electric

potential V within a two-dimensional domain is governed by the partial differential equation known as the Laplace’s
equation:

∂2V

∂x2
+
∂2V

∂y2
= 0, (E10.1)
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combined with the value of V along the boundary of the enclosure; see the left image in Figure E10.1. (A similar

setup with a time-varying spatial quantity and free boundary conditions was described in Section 7.1.3.)

x

y

@2V

@x2
+
@2V

@y2
= 0

b10

b1 b2 b3 b4

b5

b6

b7

b8

b9 b11 b12

V1
<latexit sha1_base64="llRoNwlxJzXV70CUs/1ufkDo8Ho=">AAAB6nicdVDJSgNBEK2JW4xb1KOXxiB4GmaJJnoKePEY0SyQDKGn05M06Vno7hHCkE/w4kERr36RN//GTjKCij4oeLxXRVU9P+FMKsv6MAorq2vrG8XN0tb2zu5eef+gLeNUENoiMY9F18eSchbRlmKK024iKA59Tjv+5Grud+6pkCyO7tQ0oV6IRxELGMFKS7ftgTMoVyzTWgBZZtVxz5wLTequ7dZcZOdWBXI0B+X3/jAmaUgjRTiWsmdbifIyLBQjnM5K/VTSBJMJHtGephEOqfSyxakzdKKVIQpioStSaKF+n8hwKOU09HVniNVY/vbm4l9eL1VB3ctYlKSKRmS5KEg5UjGa/42GTFCi+FQTTATTtyIyxgITpdMp6RC+PkX/k7Zj2udm9aZaaVzmcRThCI7hFGyoQQOuoQktIDCCB3iCZ4Mbj8aL8bpsLRj5zCH8gPH2CSFijbI=</latexit>

V2 V3 V4

V5 V6 V7 V8

h

Figure E10.1: Laplace’s equation over a rectangular enclosure and a mesh graph.

For arbitrary enclosures and boundary conditions, it is impossible to solve the Laplace’s equation in closed form.

An approximate solution is computed by (i) introducing an appropriate mesh graph (i.e., a two-dimensional grid graph

without corner nodes) whose nodes are physical locations with spacing h, e.g., see the right image in Figure E10.1,

and (ii) approximating the second-order derivatives by second-order finite differences. Specifically, at node 2 of the

mesh, we have along the x direction

∂2V

∂x2
(V2) ≈

1

h2
(V3 − V2)−

1

h2
(V2 − V1) =

1

h2
(V3 + V1 − 2V2),

so that equation (E10.1) is approximated as follows:

0 =
∂2V

∂x2
(V2) +

∂2V

∂y2
(V2) ≈

1

h2
(V1 + V3 + V6 + b2 − 4V2)

=⇒ 4V2 = V1 + V3 + V6 + b2.

This approximation translates into the matrix equation:

4V = AmeshV + Cmesh-boundaryb, (E10.2)

where V ∈ Rn is the vector of unknown potentials, b ∈ Rm is the vector of boundary conditions, Amesh ∈ {0, 1}n×n
is the binary adjacency matrix of the (interior) mesh graph (that is, (Amesh)ij = 1 if and only if the interior nodes

i and j are connected by an edge), and Cmesh-boundary ∈ {0, 1}n×m is the connection matrix between interior and

boundary nodes (that is, (Cmesh-boundary)iα = 1 if and only if mesh interior node i is connected with boundary node

α). Show that

(i) Amesh is irreducible but not primitive,

(ii) ρ(Amesh) < 4,
Hint: Recall Theorem 4.11.

(iii) there exists a unique solution V ∗
to equation (E10.2),

(iv) the unique solution V ∗
satisfies V ∗ > 0n if b ≥ 0m and b ̸= 0m, and

(v) each solution to the following iteration converges to V ∗
:

4V (k + 1) = AmeshV (k) + Cmesh-boundaryb.

Note that, at each step of this iteration, the value of V at each node is updated to the average of the values at its

neighboring nodes.

E10.15 Stability tests for Metzler matrices based on Schur complements (Ebihara et al., 2017, Lemma 2). LetM

be Metzler and block partitioned asM =

[
M11 M12

M21 M22

]
. ClearlyM11 andM22 are Metzler andM12 andM21 are

nonnegative. Show that the following statements are equivalent:

(i) M is Hurwitz,
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(ii) the Metzler matricesM11 andM22 −M21M
−1
11 M12 are Hurwitz,

(iii) the Metzler matricesM22 andM11 −M12M
−1
22 M21 are Hurwitz.

E10.16 Stabilizing Metzler matrices via balancing (Ma et al., 2022). Consider an irreducible Metzler matrix A ∈ Rn×n,
a target spectral abscissa η ∈ R, and positive weights w ∈ Rn>0. Let d

∗ ∈ ∆̊n denote the balancing vector for the

matrix diag(w)A, as given in Theorem 4.14, and define

ℓ∗ = diag(d∗)−1Ad∗ − η1n ∈ Rn. (E10.3)

Show that

(i) the Metzler matrix A− diag(ℓ∗) has spectral abscissa η and right Perron eigenvector d∗,
(ii) ℓ∗ is the solution to the optimization problem

min
ℓ∈Rn

wTℓ,

s.t. α(A− diag(ℓ)) ≤ η
(E10.4)

(iii) if A− ηIn ≥ 0, then ℓ∗ ≥ 0.
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Chapter11

Convergence Rates, Scalability and

Optimization

In this chapter we discuss the convergence rate of averaging algorithms. We focus on discrete-time systems and

their convergence factors. The study of continuous-time systems is analogous. We also perform a scalability

analysis for an example system and discuss some interesting optimization problems.

Before proceeding, we recall a few basic facts from Chapter 2, Exercise E4.17 and Section 5.3. Given a square

matrix A,

(i) the spectral radius of A is ρ(A) = max{|λ| | λ ∈ spec(A)};
(ii) the p-induced norm of A, for p ∈ N∪{∞}, is

∥A∥p = max
{
∥Ax∥p | x ∈ Rn and ∥x∥p = 1

}
= max

x ̸=0n

∥Ax∥p
∥x∥p

,

and, specifically, the induced 2-norm of A is ∥A∥2 = max{
√
λ | λ ∈ spec(ATA)};

(iii) for any p, ρ(A) ≤ ∥A∥p;
(iv) if A = AT

, then ∥A∥2 = ρ(A); and

(v) the essential spectral radius of a row-stochastic matrix A is

ρess(A) =

{
0, if spec(A) = {1, . . . , 1},
max{|λ| | λ ∈ spec(A) \ {1}}, otherwise.

11.1 Some preliminary calculations and observations

The convergence factor for symmetric row-stochastic matrices To build some intuition about the general

case, we review the calculations perfomed in Section 5.3 on the quadratic disagreement error. We consider a

weighted undirected graphGwith symmetric adjacency matrixA that is row-stochastic and primitive. We consider

the corresponding discrete-time averaging algorithm

x(k + 1) = Ax(k).

Since A is symmetric, A has real eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn and corresponding orthonormal eigenvectors

v1, . . . , vn. Because A is row-stochastic, λ1 = 1 and v1 = 1n/
√
n. As discussed in Remark 2.3 and Section 5.3, the
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solution satisfies

x(k) = average(x(0))1n + λk2(v
T
2 x(0))v2 + . . .+ λkn(v

T
nx(0))vn.

Moreover, A being primitive implies thatmax{|λ2|, . . . , |λn|} < 1. Specifically, for a symmetric and primitive A,
we have ρess(A) = max{|λ2|, |λn|} < 1. Therefore, as predicted by Theorem 5.1

lim
k→∞

x(k) = 1n1T
nx(0)/n = average(x(0))1n.

To upper bound the error, since the vectors v1, . . . , vn are orthonormal, we compute

∥∥x(k)− average(x(0))1n
∥∥
2
=
∥∥

n∑

j=2

λkj (v
T
j x(0))vj

∥∥
2
=

√√√√
n∑

j=2

|λj |2k
∥∥(vTj x(0))vj

∥∥2
2

≤ ρess(A)
k

√√√√
n∑

j=2

∥∥(vTj x(0))vj
∥∥2
2
= ρess(A)

k
∥∥x(0)− average(x(0))1n

∥∥
2
, (11.1)

where the second and last equalities are Pythagoras Theorem.

In summary, we have learned that, for symmetric matrices, the essential spectral radius ρess(A) < 1 is the

convergence factor to average consensus, i.e., the factor determining the exponential convergence of the error to

zero. (The wording “convergence factor” is for discrete-time systems, whereas the wording “convergence rate” is

for continuous-time systems.)

Anote on convergence factors for asymmetricmatrices The behavior of asymmetric row-stochastic matrices

is more complex than of symmetric ones. For large even n, consider the asymmetric positive matrix

Alarge-gain =
1

2n
1n1T

n +
1

2

(
11:n/2e

T
1 + 1n/2:neTn

)
,

where 11:n/2 (resp. 1n/2:n) is the vector whose first (resp. second) n/2 entries are equal to 1 and whose second

(resp. first) n/2 entries are equal to 0. The digraph associated to 11:n/2e
T
1 + 1n/2:neTn is depicted in Figure 11.1.

1

2

34

5

6

11:3e
T
1 + 13:6e

T
6 =




1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1



.

Figure 11.1: The unweighted digraph associated to the matrix 11:n/2e
T
1 + 1n/2:neTn , for n = 6. This digraph is the

union of two disjoint stars. The weighted digraph associated to Alarge-gain is the superposition of these two stars

with a complete digraph.

The matrix Alarge-gain is row-stochastic because, given 1T
n1n = n and eTj 1n = 1 for all j, we compute

Alarge-gain1n =
1

2
1n +

1

2
(11:n/2 + 1n/2:n)1 = 1n.
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Therefore, Theorem 5.1 implies that every solution to x(k + 1) = Alarge-gainx(k) converges to consensus and

Exercise E1.1 implies that k 7→ Vmax-min(x(k)) is non-increasing. Nevertheless, the quadratic disagreement (that it,

the 2-norm of the disagreement vectors) can easily increase. For example, take x(0) = e1 − en and compute

x(1) = Alarge-gainx(0) =
1

2
11:n/2 −

1

2
1n/2:n.

Because average(x(0)) = average(x(1)) = 0, we compute

∥x(0)− average(x(0))1n∥2 =
√
2,

∥x(1)− average(x(1))1n∥2 =
1

2
∥11:n/2 − 1n/2:n∥2 =

1

2

√
n.

In other words, the quadratic disagreement (2-norm of x(k)−average(x(k))1n) along the averaging system defined

by Alarge-gain grows to be at least of order

√
n (starting from O(1));1 compare this behavior with equation (11.1)

for the symmetric case. The problem is that the eigenvalues (alone) of an asymmetric matrix do not fully describe

the state amplification that may take place during a transient period of time.

11.2 Convergence factors for row-stochastic matrices

Consider a discrete-time averaging algorithm (distributed linear averaging)

x(k + 1) = Ax(k),

where A is doubly-stochastic and not necessarily symmetric. If A is primitive (i.e., the associated digraph is

aperiodic and strongly connected), we know

lim
k→∞

x(k) = average(x(0))1n =
(
1n1T

n/n
)
x(0).

We now define two possible notions of convergence factors. The per-step convergence factor is

rstep(A) = sup
x(k)̸=xfinal

∥x(k + 1)− xfinal∥2
∥x(k)− xfinal∥2

,

where xfinal = average(x(0))1n = average(x(k))1n and where the supremum is taken over any possible sequence.

Moreover, the asymptotic convergence factor is

rasym(A) = sup
x(0)̸=xfinal

lim
k→∞

(
∥x(k)− xfinal∥2
∥x(0)− xfinal∥2

)1/k

.

Given these definitions and the preliminary calculations in the previous Section 11.1, we can now state our

main results.

Theorem 11.1 (Convergence factor and solution bounds). Let A be doubly-stochastic and primitive.
(i) The convergence factors of A satisfy

rstep(A) = ∥A− 1n1T
n/n∥2,

rasym(A) = ρess(A) = ρ(A− 1n1T
n/n) < 1.

(11.2)

Moreover, rstep(A) ≥ rasym(A), and rstep(A) = rasym(A) if A is symmetric.

1

Here and in what follows, O(x) is a scalar function upper bounded by a constant times x.
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(ii) For any initial condition x(0) with corresponding xfinal = average(x(0))1n,
∥∥x(k)− xfinal

∥∥
2
≤ rstep(A)

k
∥∥x(0)− xfinal

∥∥
2
, (11.3)

∥∥x(k)− xfinal
∥∥
2
≤ cε(rasym(A) + ε)k

∥∥x(0)− xfinal
∥∥
2
, (11.4)

where ε > 0 is an arbitrarily small constant and cε is a sufficiently large constant independent of x(0).

Note: A sufficient condition for rstep(A) < 1 is given in Exercise E11.1.

Before proving Theorem 11.1, we review the notion of disagreement vector and some relevant properties from

Section 5.3. For xfinal = average(x(0))1n, the disagreement vector is the error signal

δ(k) = x(k)− xfinal. (11.5)

The following lemma collects various useful properties; we do not include its proof since it only slightly generalizes

Lemma 5.3 in Section 5.3.

Lemma 11.2 (Convergence of disagreement vector). Given a doubly-stochastic matrix A, the disagreement
vector δ(k) satisfies
(i) δ(k) ⊥ 1n for all k,
(ii) δ(k + 1) =

(
A− 1n1T

n/n
)
δ(k),

(iii) the following properties are equivalent:
a) limk→∞Ak = 1n1T

n/n, (that is, the averaging algorithm achieves average consensus)
b) A is primitive, (that is, the digraph is aperiodic and strongly connected)
c) ρ(A− 1n1T

n/n) < 1. (that is, the error dynamics is convergent)

We are now ready to prove the main theorem in this section.

Proof of Theorem 11.1. Regarding the equalities (11.2), the formula for rstep is an consequence of the definition of

induced 2-norm:

rstep(A) = sup
x(k)̸=xfinal

∥x(k + 1)− xfinal∥2
∥x(k)− xfinal∥2

= sup
δ(k)⊥1n

∥δ(k + 1)∥2
∥δ(k)∥2

= sup
δ(k)⊥1n

∥(A− 1n1T
n/n)δ(k)∥2

∥δ(k)∥2
= sup

y ̸=0n

∥(A− 1n1T
n/n)y∥2

∥y∥2
,

where the last equality follows from (A− 1n1T
n/n)1n = 0n.

The equality rasym(A) = ρ(A− 1n1T
n/n) is a consequence of the error dynamics in Lemma 11.2, statement (ii),

and of Gelfand’s formula ρ(A) = limk→∞ ∥Ak∥1/k; see Exercise E4.17.
Next, note that ρ(A) = 1 is a simple eigenvalue and A is semi-convergent. Hence, by Exercise E2.2 on the

Jordan normal form of A, there exists a nonsingular T such that

A = T

[
1 0T

n−1

0n−1 B

]
T−1,

where B ∈ R(n−1)×(n−1)
is convergent, that is, ρ(B) < 1. Moreover we know ρess(A) = ρ(B).

Usual properties of similarity transformations imply

Ak = T

[
1 0T

n−1

0n−1 Bk

]
T−1, =⇒ lim

k→∞
Ak = T

[
1 0T

n−1

0n−1 0(n−1)×(n−1)

]
T−1.
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Because A is doubly-stochastic and primitive, we know limk→∞Ak = 1n1T
n/n so that A can be decomposed as

A = 1n1T
n/n+ T

[
0 0T

n−1

0n−1 B

]
T−1,

and conclude with ρess(A) = ρ(B) = ρ(A− 1n1T
n/n). This concludes the proof of the equalities (11.2).

The bound (11.3) is an immediate consequence of the definition of induced norm.

Finally, we leave to the reader the proof of the bound (11.4) in Exercise E5.10. Note that the arbitrarily-small

positive parameter ε is required because the eigenvalue corresponding to the essential spectral radius may have an

algebraic multiplicity strictly larger than its geometric multiplicity. ■

11.3 Cumulative quadratic disagreement for symmetric matrices

The previous convergence metrics (per-step convergence factor and asymptotic convergence factor) are worst-case
convergence metrics (both are defined with a supremum operation) that are achieved only for particular initial

conditions, e.g., the performance predicted by the asymptotic metric rasym(A) is achieved when x(0)− xfinal is
aligned with the eigenvector associated to ρess(A) = ρ(A− 1n1T

n/n).

In what follows we study an appropriate average transient performance. We consider an averaging algorithm

x(k + 1) = Ax(k),

defined by a row-stochastic matrix A and subject to random initial conditions x0 satisfying

E[x0] = 0n, and E[x0xT0 ] = In.

Recall the disagreement vector δ(k) defined in (11.5) and the associated disagreement dynamics

δ(k + 1) =
(
A− 1n1T

n/n
)
δ(k) ,

and observe that the initial conditions of the disagreement vector δ(0) satisfy

E[δ(0)] = 0n and E[δ(0)δ(0)T] = In − 1n1T
n/n .

To define an average transient and asymptotic performance of this averaging algorithm, we define the cumulative
quadratic disagreement of the matrix A by

Jcum(A) = lim
K→∞

1

n

K∑

k=0

E
[
∥δ(k)∥22

]
. (11.6)

Theorem 11.3 (Cumulative quadratic disagreement for symmetric matrices). The cumulative quadratic
disagreement (11.6) of a row-stochastic, primitive, and symmetric matrix A satisfies

Jcum(A) =
1

n

∑

λ∈spec(A)\{1}

1

1− λ2
.
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Proof. Pick a terminal timeK ∈ N and define JK(A) = 1
n

∑K
k=0 E

[
∥δ(k)∥22

]
. From the definition (11.6) and the

disagreement dynamics, we compute

JK(A) =
1

n

K∑

k=0

trace
(
E
[
δ(k)δ(k)T

])

=
1

n

K∑

k=0

trace
((

A− 1n1T
n/n

)k
E
[
δ(0)δ(0)T

]((
A− 1n1T

n/n
)k)T )

=
1

n

K∑

k=0

trace
((

A− 1n1T
n/n

)k ((
A− 1n1T

n/n
)k)T )

.

BecauseA is symmetric, also thematrixA−1n1T
n/n is symmetric and can be diagonalized asA−1n1T

n/n = QΛQT
,

whereQ is orthonormal andΛ is a diagonalmatrixwhose diagonal entries are the elements of spec
(
A− 1n1T

n/n
)
=

{0}∪ spec(A) \ {1}. It follows that

JK(A) =
1

n

K∑

k=0

trace
(
QΛkQT

(
QΛkQT

)T)

=
1

n

K∑

k=0

trace
(
Λk · Λk

)
(because trace(AB) = trace(BA))

=
1

n

K∑

k=0

∑

λ∈spec(A)\{1}

λ2k

=
1

n

∑

λ∈spec(A)\{1}

1− λ2(K−1)

1− λ2
. (because of the geometric series)

The formula for Jcum follows from taking the limit asK → ∞ and recalling that A primitive implies ρess(A) <
1. ■

Note: All eigenvalues of A appear in the computation of the cumulative quadratic disagreement (11.6), not

only the dominant eigenvalue as in the asymptotic convergence factor.

11.4 Circulant network examples and scalability analysis

In general it is difficult to compute explicitly the second largest eigenvalue magnitude for an arbitrary matrix.

There are some graphs with constant essential spectral radius, independent of the network size n. For example, a

complete graph with identical weights and doubly stochastic adjacency matrix A = 1n1T
n/n has ρess(A) = 0. In

this case, the associated averaging algorithm converges in a single step.

Next, we present an interesting family of examples where all eigenvalues are known. Recall the cyclic balancing

problem from Section 1.6, where each bug feels an attraction towards the closest counterclockwise and clockwise

neighbors, Exercise E4.3 on circulant matrices, and the results in Table 4.1. Given the angular distances between

bugs di = θi+1 − θi, for i ∈ {1, . . . , n} (with the usual convention that dn+1 = d1 and d0 = dn), the closed-loop
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11.4. Circulant network examples and scalability analysis 199

system is d(k + 1) = An,κd(k), where κ ∈ [0, 1/2[, and

An,κ =




1− 2κ κ 0 . . . 0 κ
κ 1− 2κ κ .

.
.

.
.
. 0

0 κ 1− 2κ .
.
.

.
.
.

.

.

.

.

.

.
.
.
.

.
.
.

.
.
.

.
.
. 0

0 .
.
.

.
.
. κ 1− 2κ κ

κ 0 . . . 0 κ 1− 2κ



.

This matrix is circulant, that is, each row-vector is equal to the preceding row-vector rotated one element to the

Figure 11.2: Digraph associated to the circulant matrix An,κ, for n = 6.

right. The associated digraph is illustrated in the Figure 11.2. From Exercise E4.3, the eigenvalues of An,κ can be

computed to be (not ordered in magnitude)

λi = 2κ cos
2π(i− 1)

n
+ (1− 2κ), for i ∈ {1, . . . , n}. (11.7)

An illustration is given in Figure 11.3. For n even (similar results hold for n odd), plotting the eigenvalues on the

0.2 0.4 0.6 0.8 1.0

1.0

0.5

0.0

-0.5

-1.0

 = .1

 = .2

 = .3

 = .4

 = .5

fk(x) = 2 cos(2⇡x) + (1 � 2)

x

0.2 0.4 0.6 0.8 1.0

 = .4

�i = f((i � 1)/n), i 2 {1, . . . , n}, n = 5
�1 = 1

�2 = �5

�3 = �4

Figure 11.3: The eigenvalues of An,κ as given in equation (11.7). The left figure includes the case of κ = .5, even if

that value is strictly outside the allowed range κ ∈ [0, .5[.

segment [−1, 1] shows that

ρess(An,κ) = max{|λ2|, |λn/2+1|},

where

λ2 = 2κ cos
2π

n
+ (1− 2κ), and λn/2+1 = 1− 4κ.
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If we fix κ ∈ ]0, 1/2[ and consider sufficiently large values of n, then |λ2| > |λn/2+1|. In the limit of large graphs

n→ ∞, the Taylor expansion cos(x) = 1− x2/2 +O(x4) leads to

ρess(An,κ) = 1− 4π2κ
1

n2
+O

( 1

n4

)
. (11.8)

Note that ρess(An,κ) < 1 for any n, but the separation from ρess(An,κ) to 1, called the spectral gap, shrinks with
1/n2.

In summary, this discussion leads to the broad statement that certain sparse large-scale graphs have slow

convergence factors.

11.5 Appendix: Accelerated averaging algorithm

The averaging algorithm x(k + 1) = Ax(k) may converge slowly as seen in Section 11.4 due to a large ρess(A). In
this section we propose a simple modification of averaging that is known to be faster. The accelerated averaging
algorithm is defined by

x(k + 1) = βAx(k) + (1− β)x(k − 1), for k ∈ Z≥0, (11.9)

where the initial conditions are x(0) = x(−1) := x0, the matrix A ∈ Rn×n is symmetric, primitive, and row-

stochastic, and β ∈ R is a parameter to be chosen.

This iteration has some basic properties. We define the iteration matrix

Tβ =

[
βA (1− β)In
In 0n×n

]
∈ R2n×2n.

One can show that Tβ12n = 12n for all β, and that Tβ is semi-convergent if and only if ρess(Tβ) < 1. Moreover,

similar to the result in (11.4) one can show that, for an appropriate value of β, the asymptotic convergence factor

for this accelerated iteration is equal to ρess(Tβ). Accordingly, in what follows, we optimize the convergence

speed of the algorithm by minimizing ρess(Tβ) with respect to β. We formally state these results and more in the

following theorem.

Theorem 11.4 (Convergence and optimization of the accelerated averaging algorithm). Consider the
accelerated averaging algorithm (11.9) with x(0) = x(−1) = x0, A ∈ Rn×n symmetric, primitive, and row-stochastic
matrix, and β ∈ R. The following statements hold:
(i) for all β ∈ R, the set of fixed points of Tβ is {α12n | α ∈ R} and, if limk→∞ x(k) exists, then it is equal to

average(x0)1n;
(ii) the following conditions are equivalent:

a) Tβ is semi-convergent,
b) ρess(Tβ) < 1, and
c) β ∈ (0, 2);

(iii) for β ∈ (0, 2), along the accelerated averaging iteration (11.9)

∥∥x(k)− average(x0)1n
∥∥
2
≤ cε(ρess(Tβ) + ε)k

∥∥x(0)− average(x0)1n
∥∥
2
,

where ε > 0 is an arbitrarily small constant and cε is a sufficiently large constant independent of x0;
(iv) the optimal convergence rate of the accelerated averaging algorithm is

min
β∈(0,2)

ρess(Tβ) =
ρess(A)

1 +
√
1− ρess(A)

2
, (11.10)
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which is obtained at

β∗ = argminβ∈(0,2) ρess(Tβ) =
2

1 +
√
1− ρess(A)

2
∈ (1, 2). (11.11)

Note: A key advantage of the accelerated averaging algorithm is it is faster than standard averaging in two

senses: First, it is immediate to see that ρess(Tβ∗) = ρess(A)

1+
√
1−ρess(A)2

< ρess(A). Second, Exercise E11.8 shows

that performance improves also in its asymptotic order; for example, for averaging algorithms over circulant

matrices, the spectral gap of order 1/n instead of order 1/n2. One important drawback of the accelerated averaging

algorithm is that computation of optimal gain requires knowledge of the essential spectral radius of A.

Proof of Theorem 11.4. Regarding statement (i), we let x⋆ = limk→∞ x(k) and take the limit in both left and right

hand side of the accelerated averaging algorithm (11.9) to obtain x∗ = βAx∗ + (1 − β)x∗, that is, after simple

manipulations x⋆ = Ax⋆. Under the given assumptions on the matrix A and by employing the Perron–Frobenius

Theorem, we obtain that x⋆ = α1n for some α ∈ R. Observe also that x(t) = α1n is a conserved quantity for the

accelerated averaging algorithm (11.9). Thus, when left-multiplying x(t) = α1n by 1T
n and evaluating the result

for t = 0, we obtain α = average(x0). This concludes the proof of statement (i).

Next, we prove statement (ii). We start by analyzing the matrix Tβ with methods similar to those adopted

for the second-order Laplacian flow in Section 8.1.1. The symmetric matrix A can be expressed as A = UΛUT
,

where U is a unitary matrix and Λ = diag({λi}ni=1) collects the eigenvalues of the matrix A. Because A is

row-stochastic, symmetric and primitive, we set λn = 1 and we know −1 < λi < 1, for i ∈ {1, . . . , n − 1}. A
similarity transformation with the matrix U leads us to

[
U 0
0 U

]T
Tβ

[
U 0
0 U

]
=

[
U 0
0 U

]T [
βA (1− β)In
In 0

] [
U 0
0 U

]
=

[
β Λ (1− β)In
In 0

]
.

By appropriately permuting the entries of this matrix, we arrive at

Γ =




Γ1 0 . . . 0
0 Γ2 . . . 0
.
.
.

.
.
.

.

.

.

0 0 . . . Γn


 , where Γi =

[
β λi 1− β
1 0

]
, i ∈ {1, . . . , n} .

Note that, after the similarity transformation via the matrix U and the permutation (which is itself a similarity

transformation), the spectra of Γ and Tβ remain identical. We can, hence, analyze the matrix Γ to investigate the

convergence rates. For a given index i ∈ {1, . . . , n}, the eigenvalues of Γi are the roots of

µ2i − (β λi)µi + β − 1 = 0 , (11.12)

which are given by

µ1,2;i =
β λi ±

√
β2 λ2i − 4β + 4

2
. (11.13)

For the system to converge to steady-state consensus, all eigenvalues µ1,2;i, i ∈ {1, . . . , n}, should lie within

the unit disc, with only one eigenvalue on the unit circle. For Γn with λn = 1, we note that the eigenvalues are
{1, β − 1}. Therefore, a necessary convergence condition for β ∈ R is

−1 < β − 1 < 1 or 0 < β < 2 . (11.14)

For the other block matrices Γi, i ∈ {1, . . . , n − 1}, the eigenvalues are given by equation (11.13) and we note

that: the sum of the roots is µ1;i + µ2;i = β λi, and the product of the roots is µ1;i · µ2;i = β − 1. We consider the

following cases:
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a) Assume Γi has real-valued roots: For the roots to lie within the unit circle, we require |µ1;i| < 1, |µ2;i| < 1,
and µ21;i + µ22;i < 2 for all i ∈ {1, . . . , n− 1}. Regarding the latter:

µi1;i + µ22;i = (µ1;i + µ2;i)
2 − 2 · µ1;i · µ2;i < 2

⇐⇒ β2λ2i − 2β + 2 < 2

⇐⇒ β2 − 2β < 0 (for arbitrary |λi| < 1)

⇐⇒ β(β − 2) < 0 or β ∈ (0, 2). (11.15)

We now verify |µ1;i| < 1, |µ2;i| < 1. For Γi, i ∈ {1, . . . , n− 1}, with |λi| < 1, it can be calculated explicitly

that |µ1;i| < 1, |µ2;i| < 1 if β ∈ (0, 2).
b) Assume Γi has complex conjugate roots: As the coefficients of equation (11.12) are all real (β is real and λi is

real as the matrix A is symmetric), the complex-conjugate roots have the same magnitude. We require the

magnitudes to be strictly less than 1:

|µ1;i| = |µ2;i| =
√
β − 1 < 1 =⇒ 0 < (β − 1) < 1 orβ ∈ (0, 2). (11.16)

Equations (11.14), (11.15), and (11.16) together imply that the iteration converges for values of β ∈ (0, 2). This
concludes the proof of statement (ii).

Regarding statement (iii), it is an immediate consequence of Exercise E5.10 and some ad-hoc bounds. We leave

it to the reader to fill out the details.

Finally, we prove statement (iv). In order to minimize the modulus of the eigenvalues of Γi, we choose β such

that the discriminant in the expression (11.13) becomes zero:

β2 λ2i − 4β + 4 = 0 . (11.17)

Let us keep the index i ∈ {1, . . . , n− 1} fixed. Two possible values of β arise from equation (11.17):

β ∈





2

1 +
√
1− λ2i

,
2

1−
√
1− λ2i



 ,

Because the second root may lead to a value of β outside the existence interval (0, 2), we restrict ourselves to the

optimal selection (for the index i) of the gain β as

β =
2

1 +
√
1− λ2i

.

Among all choices of the gain β for different i ∈ {1, . . . , n− 1}, we note that

β⋆ = 2/(1 +
√
1− ρess(A)2),

as in equation (11.11), is the optimal choice to minimize the maximum magnitude of |µ1,2;i| for i ∈ {1, . . . , n− 1}.
Furthermore, since 1 > ρess(A) ≥ 0, we have 2 > β⋆ ≥ 1, and thus the magnitudes of all eigenvalues of Γ is

strictly less than 1, except for the the eigenvalue at 1. The magnitudes of the other eigenvalues of Γ for β = β⋆ are

{
1, |β⋆ − 1|}︸ ︷︷ ︸

Γn

, {|
√
β⋆ − 1|, |

√
β⋆ − 1|}︸ ︷︷ ︸

Γn−1

,

{|µ1;n−2(β
⋆)|, |µ2;n−2(β

⋆)|︸ ︷︷ ︸
Γn−2

, . . . , {|µ1;1(β⋆)|, |µ2;1(β⋆)|︸ ︷︷ ︸
Γ1

}
.
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Furthermore, it can be verified that for β = β⋆ we have identical magnitudes |µ1;i(β⋆)| = |µ2;i(β⋆)| =
√
β⋆ − 1

for all i ∈ {1, . . . , n− 2}. Finally, note that√β⋆ − 1 ≥ |β⋆ − 1| = β⋆ − 1 so that

ρess(Tβ∗) = ρess(Γ) =
√
β⋆ − 1 =

ρess(A)

1 +
√
1− ρess(A)

2
< ρess(A).

■

11.6 Appendix: Design of fastest distributed averaging

We are interested in optimization problems of the form:

minimize rasym(A) or rstep(A)

subject to A compatible with a digraph G, doubly-stochastic and primitive

whereA is compatible withG if its only non-zero entries correspond to the edgesE of the graph. In other words, if

Eij = eieTj is the matrix with entry (i, j) equal to one and all other entries equal to zero, thenA =
∑

(i,j)∈E aijEij
for arbitrary weights aij ∈ R. We refer to such problems as fastest distributed averaging (FDAs) problems.

Note: In what follows, we remove the constraint A ≥ 0 to widen the set of matrices of interest. Accordingly,

we remove the constraint of A being primitive. Convergence to average consensus is guaranteed by (1) achieving

convergence factors less than 1, (2) subject to row-sums and column-sums equal to 1.

Problem 11.5 (Asymmetric FDA with asymptotic convergence factor).

minimize ρ
(
A− 1n1T

n/n
)

subject to A =
∑

(i,j)∈E

aijEij , A1n = 1n, 1T
nA = 1T

n

The asymmetric FDA is a hard optimization problem. Even though the constraints are linear, the objective function,

i.e., the spectral radius of a matrix, is not convex (and, additionally, not even Lipschitz continuous).

Problem 11.6 (Asymmetric FDA with per-step convergence factor).

minimize

∥∥A− 1n1T
n/n

∥∥
2

subject to A =
∑

(i,j)∈E

aijEij , A1n = 1n, 1T
nA = 1T

n

Problem 11.7 (Symmetric FDA problem).

minimize ρ
(
A− 1n1T

n/n
)

subject to A =
∑

(i,j)∈E

aijEij , A = AT, A1n = 1n

Recall here that A = AT
implies ρ(A) = ∥A∥2.

Both Problems 11.6 and 11.7 are convex and can be rewritten as so-called semidefinite programs (SDPs); see (Xiao
and Boyd, 2004). An SDP is an optimization problem where (1) the variable is a positive semidefinite matrix, (2) the

objective function is linear, and (3) the constraints are affine equations. SDPs can be efficiently solved by software

tools such as CVX; see (Grant and Boyd, 2014).
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11.7 Historical notes and further reading

The main ideas in Sections 11.1 and 11.2 are standard in the literature on row-stochastic matrices and Markov

chains. Example recent treatments in taken in the control literature include (Olshevsky and Tsitsiklis, 2009; Garin

and Schenato, 2010; Fagnani, 2014).

Recent work has focused on achieving finite-time or linear-time average consensus; we here mention only the

works by (Cortés, 2006; Wang and Xiao, 2010; Olshevsky, 2017).

The cumulative quadratic disagreement in Section 11.3 is taken from (Carli et al., 2009). Theorem 11.3 may be

extended to the setting of normal matrices, as opposed to symmetric, as illustrated in (Carli et al., 2009); it is not

known how to compute the cumulative quadratic disagreement for arbitrary doubly-stochastic primitive matrices.

Regarding Section 11.4, for more results on the study of circulant matrices and on the elegant settings of Cayley

graphs we refer to (Davis, 1979; Carli et al., 2008b).

The accelerated consensus algorithm (11.9) is rooted in momentum methods for optimization (Polyak, 1964),

and it has been applied to averaging algorithms for example in (Muthukrishnan et al., 1998; Bof et al., 2016).
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11.8 Exercises

E11.1 Induced norm of deflated doubly stochastic, primitive matrices with positive diagonal. Assume A is doubly

stochastic, primitive and has a strictly-positive diagonal. Show that

rstep(A) = ∥A− 1n1T
n/n∥2 < 1.

E11.2 Spectrum of deflated doubly-stochastic, primitive, and symmetric matrices. Consider a matrix A doubly

stochastic, primitive and symmetric. Let 1 = λ1 ≥ . . . ≥ λn denote its real eigenvalue with corresponding

orthonormal eigenvectors v1, . . . , vn. Show that the matrix A − 1n1T
n/n has eigenvalues 0, λ2 ≥ . . . ≥ λn with

eigenvectors v1, . . . , vn.

E11.3 Spectral gap of regular cycle graphs. A k-regular cycle graph is an undirected cycle graph with n-nodes each
connected to itself and its 2k nearest neighbors with a uniform weight equal to 1/(2k + 1). The associated doubly-

stochastic adjacency matrix An,k is a circulant matrix with first row given by

An,k(1, :) =
[

1
2k+1 . . . 1

2k+1 0 . . . 0 1
2k+1 . . . 1

2k+1

]
.

Using the results in Exercise E4.3, compute

(i) the eigenvalues of An,k as a function of n and k;
(ii) the limit of the spectral gap for fixed k as n→ ∞; and

(iii) the limit of the spectral gap for 2k = n− 1 as n→ ∞ .

E11.4 H2 performance of balanced averaging in continuous time (Young et al., 2010). Consider the continuous-time

averaging dynamics with disturbance

ẋ(t) = −Lx(t) + w(t),

where L = LT
is the Laplacian matrix of an undirected and connected graph and w(t) is an exogenous disturbance

input signal. Pick a matrix Q ∈ Rp×n satisfying Q1n = 0p and define the output signal y(t) = Qx(t) ∈ Rp as the
solution from zero initial conditions x(0) = 0n. Let ΣL,Q denote the input-output system from w to y and define its

H2 norm by

∥ΣL,Q∥2H2
= trace

(∫ ∞

0

H(t)TH(t)dt

)
, (E11.1)

where H(t) = Qe−Lt is the so-called impulse response matrix. Show that

(i) ∥ΣL,Q∥H2
=
√

trace(P ), where P is the solution to the Lyapunov equality

LP + PL = QTQ; (E11.2)

(ii) ∥ΣL,Q∥H2 =
√

trace (L†QTQ) /2, where L†
is the pseudoinverse of L; and

(iii) defining short-range and long-range output matrices Qsr and Qlr by Q
T
sr
Qsr = L and QT

lr
Qlr = In − 1

n1n1T
n,

respectively, we have

∥ΣL,Q∥2H2
=





n− 1, for Q = Qsr,
n∑

i=2

1

λi(L)
, for Q = Qlr.

Hint: The H2 norm has several interesting interpretations, including the total output signal energy in response to a unit
impulse input or the root mean square of the output signal in response to a white noise input with identity covariance.
You may find useful Theorem 7.4 and Exercise E6.10.

E11.5 Convergence rate for the Laplacian flow. Consider a weight-balanced, strongly connected digraph G with self-

loops, degree matrices Dout = Din = In, doubly-stochastic adjacency matrix A, and Laplacian matrix L. Consider
the associated Laplacian flow

ẋ(t) = −Lx(t).

For xave :=
1T
nx(0)
n , define the disagreement vector by δ(t) = x(t)− xave1n.
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(i) Show that the average t 7→ 1T
nx(t)
n is conserved and that, consequently, 1T

nδ(t) = 0 for all t ≥ 0.
(ii) Derive the matrix E describing the disagreeement dynamics

δ̇(t) = Eδ(t).

(iii) Describe the spectrum spec(E) of E as a function of the spectrum spec(A). Show that spec(E) has a simple

eigenvalue at λ = 0 with corresponding normalized eigenvector v1 := 1n/
√
n.

(iv) The Jordan form J of E can be described as follows

E = P




0 0 0 0
0 J2 0 0
0 0 .

.
. 0

0 0 0 Jm


P

−1 =:
[
c1 c̃

] [0 0

0 J̃

] [
r1
R̃

]
,

where c1 is the first column of P and r1 is the first row of P−1
. Show that

δ(t) = c̃ exp(J̃ t)R̃δ(0).

(v) Use statements (iii) and (iv) to show that, for all ε > 0, there exists cε > 0 satisfying

∥δ(t)∥ ≤ cε(e
µ + ε)t∥δ(0)∥,

where µ = max{ℜ(λ)− 1 | λ ∈ spec(A)\{1}} < 0. Show that, if A = AT
, then µ ≤ ρess(A)− 1.

Hint: Use arguments similar to those in Exercise E5.10 and in the proof of Theorem 7.4.

E11.6 Convergence factors in digraphs with equal out-degree. Consider the unweighted digraphs in the figure below

with their associated discrete-time averaging systems x(t+ 1) = A1x(t) and x(t+ 1) = A2x(t). For which digraph

is the worst-case discrete-time consensus protocol (i.e., the evolution starting from the worst-case initial condition)

guaranteed to converge faster? Assign to each edge the same weight equal to
1
3 .

1 2

34

(a) Digraph 1

1 2

34

(b) Digraph 2

E11.7 Convergence estimates. Consider a discrete-time averaging system with 4 agents, state variable x ∈ R4
, dynamics

x(k + 1) = Ax(k), and averaging matrix A =
∑3
i=1 αiviv

T
i ∈ R4×4

with

α1 = 1, α2 =
1

2
, α3 =

1

4
, v1 =

1

2




1
1
1
1


 , v2 =

1√
2




0
1
0
−1


 , v3 =

1√
2




1
0
−1
0


 .

(i) Verify A is row-stochastic, symmetric and primitive.

(ii) Suppose x(0) = [0, 8, 2, 2]T. It is possible that x(3) = [4, 3, 2, 3]T?

E11.8 Scalability of accelerated consensus.

(i) Prove the following series expansion around x = 0:

f(x) =
1− x

1 +
√

1− (1− x)2
= 1−

√
2
√
x+ o(x).
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Next, consider a sequence of row-stochastic matrices {An ∈ Rn×n}n∈N of increasing dimension, and the corre-

sponding accelerated consensus algorithms with sequence of optimal iteration matrices {Tβ∗,n ∈ R2n×2n}n∈N.

(ii) Prove that, if ρess(An) = 1 − g(n) with g(n) = o(n) as n → ∞, then the following series expansion holds as

n→ ∞:

ρess(Tβ∗,n) = 1−
√
2
√
g(n) + o(g(n)).

(iii) Show that, for circulant matrices {An}n with spectral radius given in equation (11.8) in Section 11.4, there exists

a constant c such that the accelerated consensus algorithm satisfies

ρess(Tβ∗,n) = 1− c
1

n
+O

( 1

n2

)
.
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Chapter12

Time-varying Averaging Algorithms

In this chapter we discuss time-varying averaging systems, that is, systems in which the row-stochastic matrix is

a function of time. We provide sufficient conditions on the sequence of digraphs associated to the sequence of

row-stochastic matrices for consensus to be achieved. We focus mainly on the discrete-time setting, but present

the main result also for continuous-time systems.

It is well known that, for time-varying systems, the analysis of eigenvalues is not appropriate anymore. In the

following example, two matrices with spectral radius equal to 1/2 are multiplied to obtain a spectral radius larger

than 1: [
1
2 1
0 0

] [
1
2 0
1 0

]
=

[
5
4 0
0 0

]
.

This example explains how it is not possible to predict the convergence of arbitrary products of matrices, just

based on their spectral radii. Convergence proofs in this chapter will be based upon ergodicity coefficients and

contraction inequalities.

12.1 Examples and models of time-varying discrete-time algorithms

In time-varying or time-varying algorithms the averaging row-stochastic matrix is not constant throughout

time, but instead changes values and, possibly, switches among a finite number of values. Here are examples of

discrete-time averaging algorithms with switching matrices.

Example 12.1 (Shared Communication Channel). We consider a shared communication digraph Gshared-comm

whereby, at each communication round, only one node can transmit to all its out-neighbors over a common bus

and every receiving node will implement a single averaging step. For example, if agent j receives the message

from agent i, then agent j will implement:

x+j :=
1

2
(xi + xj). (12.1)

Each node is allocated a communication slot in a periodic deterministic fashion, e.g., in a round-robin scheduling,
where the n agents are numbered and, for each i, agent i talks only at times i, n+ i, 2n+ i, . . . , kn+ i for k ∈ Z≥0.

For example, in Figure 12.1 we illustrate the communication digraph and in Figure 12.2 the resulting round-robin

communication protocol.
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1 2

43

Gshared-comm

Figure 12.1: Example communication digraph

1 2

43

1 2

43

1 2

43

1 2

43

time = 1, 5, 9, . . . time = 2, 6, 10, . . . time = 3, 7, 11, . . . time = 4, 8, 12, . . .

Figure 12.2: Round-robin communication protocol.

Formally, let Ai denote the averaging matrix corresponding to the transmission by agent i to its out-neighbors.

With round robin scheduling, we have

x(n+ 1) = AnAn−1 . . . A1x(1). •
Example 12.2 (Asynchronous Execution). Imagine each node has a different clock, so that there is no common

time schedule. Suppose that messages are safely delivered even if transmitting and receiving agents are not

synchronized. Each time an agent wakes up, the available information from its neighbors varies. At an iteration

instant for agent i, assuming agent i has new messages/information from agents i1, . . . , im, agent i will implement:

x+i :=
1

m+ 1
xi +

1

m+ 1
(xi1 + · · ·+ xim).

Given arbitrary clocks, one can consider the set of times at which one of the n agents performs an iteration.

Then the system is a discrete-time averaging algorithm. It is possible to carefully characterize all possible sequences

of events (who transmitted to agent i when it wakes up). •

12.2 Models of time-varying averaging algorithms

Consider a sequence of row-stochastic matrices {A(k)}k∈Z≥0
, or equivalently a time-varying row-stochastic matrix

k 7→ A(k). The associated time-varying averaging algorithm is the discrete-time dynamical system

x(k + 1) = A(k)x(k), k ∈ Z≥0. (12.2)

Let {G(k)}k∈Z≥0
be the sequence of weighted digraphs associated to {A(k)}k∈Z≥0

.

Note that (1, 1n) is an eigenpair for each matrix A(k). Hence, all points in the consensus set

{
α1n | α ∈ R

}

are equilibria for the algorithm. We aim to provide conditions under which each solution converges to consensus.

We start with a useful definition, for two digraphsG = (V,E) andG′ = (V ′, E′), union ofG andG′
is defined

by

G∪G′ = (V ∪V ′, E ∪E′).

In what follows, we will need to compute only the union of digraphs with the same set of nodes; in that case, the

graph union is essentially defined by the union of the edge sets. Some useful properties of the product of multiple

row-stochastic matrices and of the unions of multiple digraphs are presented in Exercise E12.1.
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12.3 Convergence over time-varying graphs connected at all times

Let us first consider the case where each A(k) is symmetric and induces an undirected digraph G(k) with possible

self-loops. (Recall that a digraph is undirected if (v, u) is an edge if and only if (u, v) is an edge.)

Theorem 12.3 (Convergence under connectivity at all times). Let {A(k)}k∈Z≥0
be a sequence of symmetric

and doubly-stochastic matrices with associated digraphs {G(k)}k∈Z≥0
so that

(AC1) each non-zero edge weight aij(k), including the self-loops weights aii(k), is larger than a constant ε > 0; and
(AC2) each digraph G(k) is strongly connected and aperiodic.

Then the solution to x(k + 1) = A(k)x(k) converges exponentially fast to average
(
x(0)

)
1n.

Note: In Assumption (AC2) strong connectivity is equivalent to connectivity of the undirected digraph G(k)
regarded as a graph (by removing any possible self-loop).

Note: Assumption (AC1) prevents the weights from becoming arbitrarily close to zero as k → ∞ and, as we

show below, ensures that ρess(A(k)) is upper bounded by a number strictly lower than 1 at every time k ∈ Z≥0.

To gain some intuition into what can go wrong, consider a sequence of symmetric and doubly-stochastic averaging

matrices {A(k)}k∈Z≥0
with entries given by

A(k) =

[
1− exp(−1/(k + 1)α) exp(−1/(k + 1)α)
exp(−1/(k + 1)α) 1− exp(−1/(k + 1)α)

]

for k ∈ Z≥0 and exponent α ≥ 1. These matrices fail to satisfy Assumption (AC1). For any α ≥ 1 and for k, we
know the ρess(A(k) < 1. For any α ≥ 1 and for k → ∞, this matrix converges to A∞ = [ 0 1

1 0 ] with spectrum

spec(A∞) = {−1,+1} and essential spectral radius ρess(A∞) = 1. One can show that,

(i) for α = 1, the convergence of A(k) to A∞ is so slow that {x(k)}k converges to average(x(0))1n,

(ii) for α > 1, the convergence of A(k) to A∞ is so fast that {x(k)}k oscillates indefinitely.1

Proof of Theorem 12.3. First, we reason as follows. At fixed n, there exist only a finite number of possible connected

unweighted graphs and, for each given graph, the set of matrices with edge weights in the interval [ε, 1] is compact.

It is known that the following maps are continuous: the function from a matrix to its eigenvalues, the function

from a complex number to its magnitude, and the function from n− 1 non-negative numbers to their maximum.

Hence, by composition, the essential spectral radius ρess is a continuous function of the matrix entries defined

over a compact set and, therefore, it attains its maximum value. Because each digraph is strongly connected and

aperiodic, each matrix is primitive. Because the essential spectral radius of each possible matrix is strictly less than

1, so is its maximum value. In summary, we now know that, under assumptions (AC1) and (AC2), there exists a

c ∈ [0, 1[ so that ρess(A(k)) ≤ c < 1 for all k ∈ Z≥0.

Second, From Section 5.3, we recall the notion of the disagreement vector δ(k) = x(k) − average(x(0))1n
and quadratic disagreement function V (δ) = ∥δ∥22. We also recall

τ2(A(k)) = max
∥y∥2=1,y⊥1n

∥A(k)y∥2 = ρess(A(k)) ≤ c < 1. (12.3)

Combining these two sets of ideas, it is immediate to compute

V (δ(k + 1)) = V (A(k)δ(k)) = ∥A(k)δ(k)∥22 ≤ ρess(A(k))
2∥δ(k)∥22 ≤ c2V (δ(k)).

It follows that V (δ(k)) ≤ c2kV (δ(0)) or ∥δ(k)∥2 ≤ ck∥δ(0)∥2, that is, δ(k) converges to zero exponentially fast.

Equivalently, as k → ∞, x(k) converges exponentially fast to average
(
x(0)

)
1n. ■

1

A simplified version of this example is the scalar iteration x(k + 1) = exp(−1/(k + 1)α)x(k) whose solution satisfies log(x(k)) =
−
∑k−1

κ=0
1

(κ+1)α
+ log(x0). For α = 1, limk→∞ log(x(k)) diverges to −∞, and limk→∞ x(k) converges to zero. Instead, for α > 1,

limk→∞ log(x(k)) exists finite, and thus limk→∞ x(k) does not converge to zero.

Lectures on Network Systems, F. Bullo, edition 1.6 – Jan 1, 2022. Tablet PDF version. Copyright © 2012-22.



212 Chapter 12. Time-varying Averaging Algorithms

This proof is based on a positive “energy function” that decreases along the system’s evolutions (we postpone

a careful discussion of Lyapunov theory to Chapter 15). The same quadratic function is useful also for sequences

of primitive row-stochastic matrices {A(k)}k∈Z≥0
with a common dominant left eigenvector, see Exercise E12.5.

More general cases require a different type (not quadratic) of “decreasing energy” functions.

12.4 Convergence over time-varying digraphs connected over time

We are now ready to state the main result in this chapter.

Theorem 12.4 (Consensus for time-varying algorithms). Let {A(k)}k∈Z≥0
be a sequence of row-stochastic

matrices with associated digraphs {G(k)}k∈Z≥0
. Assume that

(A1) each digraph G(k) has a self-loop at each node;
(A2) each non-zero edge weight aij(k), including the self-loops weights aii(k), is larger than a constant ε > 0; and
(A3) there exists a duration δ ∈ N such that, for all times k ∈ Z≥0, the union digraph G(k)∪ . . .∪G(k + δ − 1)

contains a globally reachable node.

Then

(i) there exists a non-negative vector w ∈ Rn normalized to w1 + · · ·+wn = 1 such that limk→∞A(k)·A(k − 1) ·
. . . ·A(0) = 1nwT;

(ii) the solution to x(k + 1) = A(k)x(k) converges exponentially fast to
(
wTx(0)

)
1n;

(iii) if additionally each matrix in the sequence is doubly-stochastic, then w = 1
n1n so that

lim
k→∞

x(k) = average
(
x(0)

)
1n.

Note: In a sequence with property (A2), edges can appear and disappear, but the weight of each edge (that

appears an infinite number of times) does not go to zero as k → ∞.

Note: This result is analogous to the time-invariant result that we saw in Chapter 5. The existence of a globally

reachable node is the connectivity requirement in both cases.

Note: Assumption (A3) is a uniform connectivity requirement, that is, any interval of length δ must have

the connectivity property. In equivalent words, the connectivity property holds for any contiguous interval of

duration δ.

Example 12.5 (Shared communication channel with round robin scheduling). Consider the shared commu-

nication channel model with round-robin scheduling. Assume the algorithm is implemented over a communication

graph Gshared-comm that is strongly connected.

Consider now the assumptions in Theorem 12.4. Assumption (A1) is satisfied because in equation (12.1) the

self-loop weight is equal to 1/2. Similarly, Assumption (A2) is satisfied because the edge weight is equal to 1/2.
Finally, Assumption (A3) is satisfied with duration δ selected equal to n, because after n rounds each node has

transmitted precisely once and so all edges of the communication graph Gshared-comm are present in the union

graph. Therefore, the algorithm converges to consensus. However, the algorithm does not converge to average

consensus since it is false that the averaging matrices are doubly-stochastic.

Note: round robin is not necessarily the only scheduling protocol with convergence guarantees. Indeed,

consensus is achieved so long as each node is guaranteed a transmission slot once every bounded period of time.•

Next, we provide a second theorem on convergence over time-varying averaging systems, whereby we assume

the matrix to be symmetric and the corresponding graphs to be connected over time.
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Theorem 12.6 (Consensus for symmetric time-varying algorithms). Let {A(k)}k∈Z≥0
be a sequence of

symmetric row-stochastic matrices with associated graphs {G(k)}k∈Z≥0
. Let the matrix sequence {A(k)}k∈Z≥0

satisfy Assumptions (A1) and (A2) in Theorem 12.4 as well as
(A4) for all k ∈ Z≥0, the graph ∪τ≥kG(τ) is connected.
Then
(i) limk→∞A(k)·A(k − 1) · . . . ·A(0) = 1

n1n1T
n ;

(ii) each solution to x(k + 1) = A(k)x(k) converges exponentially fast to average
(
x(0)

)
1n.

Note: this result is analogous to the time-invariant result that we saw in Chapter 5. For symmetric row-

stochastic matrices and undirected graphs, the connectivity of an appropriate graph is the requirement in both

cases.

Note: Assumption (A3) in Theorem 12.4 requires the existence of a finite time-interval of duration δ so that
the union graph ∪k≤τ≤k+δ−1G(τ) contains a globally reachable node for all times k ≥ 0. This assumption is

weakened in the symmetric case in Theorem 12.6 to Assumption (A4) requiring that the union graph ∪τ≥kG(τ) is
connected for all times k ≥ 0.

Finally, we conclude this section with an instructive example.

Example 12.7 (Uniform connectivity is required for non-symmetric matrices). We have learned that, for

asymmetric matrices, a uniform connectivity property (A3) is required, whereas for symmetric matrices, uniform

connectivity is not required (see (A4)). Here is a counter-example from (Hendrickx, 2008, Chapter 9) showing that

Assumption (A3) cannot be relaxed for asymmetric graphs. Initialize a group of n = 3 agents to

x1 < −1, x2 < −1, x3 > +1.

Step 1: Perform x+1 := (x1 + x3)/2, x
+
2 := x2, x

+
3 := x3 a number of times δ1 until

x1 > +1, x2 < −1, x3 > +1.

Step 2: Perform x+1 := x1, x
+
2 := x2, x

+
3 := (x2 + x3)/2 a number of times δ2 until

x1 > +1, x2 < −1, x3 < −1.

Step 3: Perform x+1 := x1, x
+
2 := (x1 + x2)/2, x

+
3 := x3 a number of times δ3 until

x1 > +1, x2 > +1, x3 < −1.

And repeat this process.

3

1

2

∪
3

1

2

∪
3

1

2

=
3

1

2

Step 1 Step 2 Step 3 union

By design, on steps 1, 4, 7, . . . , the variable x1 is changed to become larger than +1 by computing averages with

x3 > +1. However, note that, every time this happens, the variable x3 > +1 is increasingly smaller and closer to

+1. Hence, the durations of steps 1, 4, 7, . . . increase: δ1 < δ4 < δ7 < . . . , since more updates of x1 are required
for x1 to become larger than +1. Indeed, one can formally show the following:
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(i) The agents do not converge to consensus so that one of the assumptions of Theorem 12.4 must be violated.

(ii) It is easy to see that (A1) and (A2) are satisfied.

(iii) Regarding connectivity, note that, for all k ∈ Z≥0, the digraph ∪τ≥kG(τ) contains a globally reachable node.

However, this property is not quite equivalent to Assumption (A3).

(iv) Assumption (A3) in Theorem 12.4 must be violated: there does not exist a duration δ ∈ N such that, for all

k ∈ Z≥0, the digraph G(k)∪ . . .∪G(k + δ − 1) contains a globally reachable node.

(v) Indeed, one can show that limk→∞ δk = ∞ since, as we keep iterating steps 1, 2 and 3, their duration grows

unbounded. •

12.5 Appendix: Proofs

12.5.1 Connectivity over time

Before presenting the convergence to consensus proof for time-varying averaging systems, we provide one more

useful result. This result allows us to manipulate our assumption of connectivity over time.

Lemma 12.8 (Global reachability over time). Given a sequence of digraphs {G(k)}k∈Z≥0
such that each digraph

G(k) has a self-loop at each node, the following two properties are equivalent:
(i) there exists a duration δ ∈ N such that, for all times k ∈ Z≥0, the union digraph G(k)∪ . . .∪G(k + δ − 1)

contains a directed spanning tree;
(ii) there exists a duration ∆ ∈ N such that, for all times k ∈ Z≥0, there exists a node j = j(k) that reaches all

nodes i ∈ {1, . . . , n} over the interval {k, k +∆ − 1} in the following sense: there exists a sequence of nodes
{j, h1, . . . , h∆−1, i} such that (j, h1) is an edge at time k, (h1, h2) is an edge at time k + 1, . . . , (h∆−2, h∆−1)
is an edge at time k +∆− 2, and (h∆−1, i) is an edge at time k +∆− 1;

or, equivalently, for the reverse digraph,
(iii) there exists a duration δ ∈ N such that, for all times k ∈ Z≥0, the union digraph G(k)∪ . . .∪G(k + δ − 1)

contains a globally reachable node;
(iv) there exists a duration ∆ ∈ N such that, for all times k ∈ Z≥0, there exists a node j reachable from all

nodes i ∈ {1, . . . , n} over the interval {k, k +∆ − 1} in the following sense: there exists a sequence of nodes
{j, h1, . . . , h∆−1, i} such that (h1, j) is an edge at time k, (h2, h1) is an edge at time k + 1, . . . , (h∆−1, h∆−2)
is an edge at time k +∆− 2, and (i, h∆−1) is an edge at time k +∆− 1.

Note: It is sometimes easy to see if a sequence of digraphs satisfies properties (i) and (iii). Property (iv) is

directly useful in the analysis later in the chapter. Regarding the proof of the lemma, it is easy to check that (ii)

implies (i) and that (iv) implies (iii) with δ = ∆. The converse is left as Exercise E12.3.

12.5.2 Proof of Theorem 12.4: the max-min function is exponentially decreasing

We are finally ready to prove Theorem 12.4. We start by noting that Assumptions (A1) and (A3) imply property

Lemma 12.8(iv) about the existence of a duration∆ with certain properties. Next, without loss of generality, we

assume that at some time h∆, for some h ∈ N, the solution x(h∆) is not equal to a multiple of 1n and, therefore,

satisfies Vmax-min(x(h∆)) > 0. Clearly,

x((h+ 1)∆) = A((h+ 1)∆− 1) . . . A(h∆+ 1) ·A(h∆)x(h∆)

=: Ax(h∆).

By Assumption (A3), we know that there exists a node j reachable from all nodes i over the interval {h∆, (h+
1)∆−1} in the following sense: there exists a sequence of nodes {j, h1, . . . , h∆−1, i} such that all following edges
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exist in the sequence of digraphs: (h1, j) at time h∆, (h2, h1) at time h∆+ 1, . . . , (i, h∆−1) at time (h+ 1)∆− 1.
Therefore, Assumption (A2) implies

ah1,j
(
h∆
)
≥ ε, ah2,h1

(
h∆+ 1

)
≥ ε, . . . , ai,h∆−1

(
(h+ 1)∆− 1

)
≥ ε,

and therefore their product satisfies

ai,h∆−1

(
(h+ 1)∆− 1

)
· ah∆−1,h∆−2

(
(h+ 1)∆− 2

)
. . . ah2,h1

(
h∆+ 1

)
· ah1,j

(
h∆
)
≥ ε∆.

Remarkably, this product is one term in the (i, j) entry of the row-stochastic matrixA = A((h+1)∆−1) . . . A(h∆).
In summary, Assumption (A3) implies that there exists a node j such that, for all i, Aij ≥ ε∆ or, in other words,

the row-stochastic matrix A has a positive column lower bounded by ε∆1n.
We now invoke Lemma 5.5 from Section 5.3 to obtain that the row-stochastic matrix A is scrambling with

τ1(A) ≤ 1− ε∆ and that the max-min disagreement function decreases according to

Vmax-min

(
x((h+ 1)∆)

)
≤ (1− ε∆)Vmax-min

(
x(h∆)

)
.

This inequality proves exponential convergence of the cost function k 7→ Vmax-min(x(k)) to zero and, together

with the positive definiteness property of the Vmax-min function, convergence of x(k) to a multiple of 1n. We leave

the other statements in Theorem 12.4 to the reader and refer to (Moreau, 2005; Hendrickx, 2008) for further details.

12.6 Time-varying algorithms in continuous-time

We now briefly consider the continuous-time linear time-varying system

ẋ(t) = −L(t)x(t).

We associate a time-varying graphG(t) (without self loops) to the time-varying Laplacian L(t) in the usual manner.

For example, in Chapter 7, we discussed how the heading in some flocking models is described by the

continuous-time Laplacian flow:

θ̇ = −Lθ,
where each θ is the heading of a bird, and where L is the Laplacian of an appropriate weighted digraphG: each bird

is a node and each directed edge (i, j) has weight 1/dout(i). We discussed also the need to consider time-varying

graphs: birds average their heading only with other birds within sensing range, but this sensing relationship may

change with time.

Recall that the solution to a continuous-time time-varying system can be given in terms of the state transition

matrix:

x(t) = Φ(t, 0)x(0),

We refer to (Hespanha, 2009) for the proper definition and study of the state transition matrix.

Theorem 12.9 (Consensus for time-varying algorithms in continuous time). Let t 7→ A(t) be a time-varying
adjacency matrix with associated time-varying digraph t 7→ G(t), t ∈ R≥0. Assume

(A1) each non-zero edge weight aij(t) is larger than a constant ε > 0,
(A2) there exists a duration T > 0 such that, for all t ∈ R≥0, the digraph associated to the adjacency matrix

∫ t+T

t
L(τ)dτ

contains a globally reachable node.
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Then
(i) there exists a non-negative w ∈ Rn normalized to w1+ · · ·+wn = 1 such that the state transition matrix Φ(t, 0)

associated to −L(t) satisfies limt→∞Φ(t, 0) = 1nwT,
(ii) the solution to ẋ(t) = −L(t)x(t) converges exponentially fast to

(
wTx(0)

)
1n,

(iii) if additionally, the 1T
nL(t) = 0T

n for almost all times t (that is, the digraph is weight-balanced at all times, except
a set of measure zero), then w = 1

n1n so that

lim
t→∞

x(t) = average
(
x(0)

)
1n.

12.7 Historical notes and further reading

For historical notes on ergodicity coefficients we refer to Chapter 5.

The main result in this chapter, namely Theorem 12.4, appeared in the control literature in Moreau (2005).

Note that Theorem 12.4 provides only sufficient condition for consensus in time-varying averaging systems. For

results on necessary and sufficient conditions we refer the reader to the recent works (Blondel and Olshevsky,

2014; Xia and Cao, 2014) and references therein.

In the context of time-varying averaging systems, other relevant references on first and second order, discrete

and continuous time systems include (Tsitsiklis, 1984; Tsitsiklis et al., 1986; Hong et al., 2006, 2007; Cao et al., 2008;

Carli et al., 2008b).

For references on time-varying continuous-time averaging systems we refer to (Moreau, 2004; Lin et al., 2007;

Hendrickx and Tsitsiklis, 2013).
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12.8 Exercises

E12.1 On the product of stochastic matrices (Jadbabaie et al., 2003). For k ≥ 2, consider non-negative n× n matrices

A1, A2, . . . , Ak with positive diagonal entries. Let amin (resp. amax) be the smallest (resp. largest) diagonal entry of

A1, A2, . . . , Ak and let G1, . . . , Gk be the digraphs associated with A1, . . . , Ak .
Show that

(i) A1A2 . . . Ak ≥
(
a2
min

2amax

)k−1

(A1 +A2 + · · ·+Ak), and

(ii) if the digraph G1 ∪ . . .∪Gk is strongly connected, then the matrix A1 . . . Ak is irreducible.

Hint: Set Ai = aminIn +Bi for a non-negative Bi, and show statement (i) by induction on k.

E12.2 Products of primitive matrices with positive diagonal. LetA andA1, A2, . . . , An−1 be primitive n×nmatrices

with positive diagonal entries. Let x ∈ Rn≥0 be a non-negative vector with at least one zero entry. Show that

(i) the number of positive entries of Ax is strictly larger than the number of positive entries of x, and
(ii) A1A2 . . . An−1 > 0.

E12.3 A simple proof. Prove Lemma 12.8.

Hint: You will want to use Exercise E3.3.

E12.4 Alternative sufficient condition. As in Theorem 12.4, let {A(k)}k∈Z≥0
be a sequence of row-stochastic matrices

with associated digraphs {G(k)}k∈Z≥0
. Prove that the same asymptotic properties in Theorem 12.4 hold true under

the following Assumption (A5), instead of Assumptions (A1), (A2), and (A3):

(A5) there exists a node j such that, for all times k ∈ Z≥0, each edge weight aij(k), i ∈ {1, . . . , n}, is larger than a

constant ε > 0.

In other words, Assumption (A5) requires that all digraphs G(k) contain all edges aij(k), i ∈ {1, . . . , n}, and that

all these edges have weights larger than a strictly positive constant.

Hint: Modify the proof of Theorem 12.4.

E12.5 Convergence over digraphs strongly-connected at all times. Consider a sequence of row-stochastic matrices

{A(k)}k∈Z≥0
with associated digraphs {G(k)}k∈Z≥0

so that

(A1) each non-zero edge weight aij(k), including the self-loops weights aii(k), is larger than a constant ε > 0;
(A2) each digraph G(k) is strongly connected and aperiodic point-wise in time; and

(A3) there is a positive vector w ∈ Rn satisfying 1T
nw = 1 and wTA(k) = wT

for all k ∈ Z≥0.

Without relying on Theorem 12.4, show that

(i) the function δ 7→ V (δ) = δT diag(w)δ satisfies V (A(k)δ) < V (δ) for all k ∈ Z≥0 and δ ̸= 0n, and
(ii) the solution to x(k + 1) = A(k)x(k) satisfies to limk→∞ x(k) = (wTx(0))1n.

Hint: To establish (ii), adopt the following version of the Lyapunov Theorem: Let 0n be an equilibrium for the smooth
discrete-time system x(k + 1) = f(x(k)). Suppose there exists a continuous function V : Rn → R≥0 satisfying
V (0n) = 0, V (x) > 0 and V (f(x)) < V (x) for all x ̸= 0n. Then 0n is asymptotically stable (which also means that
every trajectory converges to 0n). A comprehensive discussions of Lyapunov theory is postponed to Chapter 15.
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Chapter13

Randomized Averaging Algorithms

In this chapter we discuss averaging algorithms defined by sequences of random stochastic matrices. In other words,

we imagine that at each discrete instant, the averaging matrix is selected randomly according to some stochastic

model. We refer to such algorithms as randomized averaging algorithms. Randomized averaging algorithms are

well behaved and easy to study in the sense that much information can be learned simply from the expectation of

the averaging matrix.

13.1 Examples of randomized averaging algorithms

Consider the following models of randomized averaging algorithms.

Uniform Symmetric Gossip. Given an undirected graph G, at each iteration, select uniformly likely one of the

graph edges, say agents i and j talk, and they both perform (1/2, 1/2) averaging, that is:

xi(k + 1) = xj(k + 1) :=
1

2

(
xi(k) + xj(k)

)
.

Packet Loss in Communication Network. Given a strongly connected and aperiodic digraph, at each com-

munication round, packets travel over directed edges and, with some likelihood, each edge may drop the

packet. (If information is not received, then the receiving node can either do no update whatsoever, or adjust

its averaging weights to compensate for the packet loss).

Broadcast Wireless Communication. Given a digraph, at each communication round, a randomly-selected

node transmits to all its out-neighbors. (Here we imagine that simultaneous transmissions are prohibited by

wireless interference.)

Opinion Dynamics with Stochastic Interactions and Prominent Agents. Given an undirected graph and a

probability 0 < p < 1, at each iteration, select uniformly likely one of the graph edges and perform: with

probability p both agents perform the (1/2, 1/2) update, and with probability (1− p) only one agent performs

the update and the “prominent agent” does not.

Note that, in the second, third and fourth example models, the row-stochastic matrices at each iteration are not

symmetric in general, even if the original digraph was undirected.

219
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13.2 A brief review of probability theory

We briefly review a few basic concepts from probability theory and refer the reader for example to (Breiman, 1992).

• Loosely speaking, a random variable X : Ω → E is a measurable function from the set of possible outcomes Ω
to some set E which is typically a subset of R.

• The probability of an event (i.e., a subset of possible outcomes) is the measure of the likelihood that the event

will occur. An event occurs almost surely if it occurs with probability equal to 1.

• The random variable X is called discrete if its image is finite or countably infinite. In this case, X is described

by a probability mass function assigning a probability to each value in the image of X .

Specifically, if X takes value in {x1, . . . , xM} ⊂ R, then the probability mass function p : {x1, . . . , xM} →
[0, 1] satisfies pX(xi) ≥ 0 and

∑n
i=1 pX(xi) = 1, and determines the probability of X being equal to xi by

P[X = xi] = pX(xi).

• The random variableX is called continuous if its image is uncountably infinite. IfX is an absolutely continuous

function,X is described by a probability density function assigning a probability to intervals in the image ofX .

Specifically, if X takes value in R, then the probability density function fX : R → R≥0 satisfies f(x) ≥ 0 and∫
R f(x)dx = 1, and determines the probability of X taking value in the interval [a, b] by P[a ≤ X ≤ b] =∫ b
a f(x)dx.

• The expected value of a discrete variable is E[X] =
∑M

i=1 xipX(xi).

The expected value of a continuous variable is E[X] =
∫∞
−∞ xfX(x)dx.

• A (finite or infinite) sequence of random variables is independent and identically distributed (i.i.d.) if each

random variable has the same probability mass/distribution as the others and all are mutually independent.

13.3 Randomized averaging algorithms

In this section we consider random sequences of row stochastic sequences. Accordingly, let A(k) be the row-
stochastic averaging matrix occurring randomly at time k and G(k) be its associated graph. We then consider the

randomized averaging algorithm
x(k + 1) = A(k)x(k).

We are now ready to present the main result of this chapter.

Theorem 13.1 (Consensus for randomized algorithms). Let {A(k)}k∈Z≥0
be a sequence of random row-

stochastic matrices with associated digraphs {G(k)}k∈Z≥0
. Assume

(A1) the sequence of variables {A(k)}k∈Z≥0
is i.i.d.,

(A2) at each time k, the random matrix A(k) has a strictly positive diagonal so that each digraph in the sequence
{G(k)}k∈Z≥0

has a self-loop at each node, and
(A3) the digraph associated to the expected matrix E[A(k)], for any k, has a globally reachable node.
Then the following statements hold almost surely:
(i) there exists a random non-negative vector w ∈ Rn with w1 + · · ·+ wn = 1 such that

lim
k→∞

A(k)·A(k − 1) · . . . ·A(0) = 1nw
T almost surely,

(ii) as k → ∞, each solution x(k) of x(k + 1) = A(k)x(k) satisfies

lim
k→∞

x(k) =
(
wTx(0)

)
1n almost surely,
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(iii) if additionally each random matrix is doubly-stochastic, then w = 1
n1n so that

lim
k→∞

x(k) = average
(
x(0)

)
1n.

Note: if each random matrix is doubly-stochastic, then E[A(k)] is doubly-stochastic. The converse is easily
seen to be false.

Note: Assumption (A1) is restrictive and more general conditions are sufficient; see the discussion below in

Section 13.4.

13.3.1 Additional results on uniform symmetric gossip algorithms

Recall: given undirected graph G, at each iteration, select uniformly likely one of the graph edges, say agents i and
j talk, and they both perform (1/2, 1/2) averaging, that is:

xi(k + 1) = xj(k + 1) :=
1

2

(
xi(k) + xj(k)

)
.

Corollary 13.2 (Convergence for uniform symmetric gossip). If the graph G is connected, then each solution
to the uniform symmetric gossip converges to average consensus with probability 1.

Proof based on Theorem 13.1. The corollary can be established by verifying that Assumptions (A1)–(A3) in Theo-

rem 13.1 are satisfied. Regarding (A3), note that the graph associated to the expected averaging matrix is G. ■
We provide also an alternative elegant proof.

Proof based on Theorem 12.6. For any time k0 ≥ 0 and any edge (i, j), consider the event “the edge (i, j) is not
selected for update at any time larger than k0.” Since the probability that (i, j) is not selected at any time k is

1− 1/m, wherem is the number of edges, the probability that (i, j) is not selected at any times after k0 is

lim
k→∞

(
1− 1

m

)k−k0
= 0.

With this fact one can verify that all assumptions in Theorem 12.6 are satisfied by the random sequence of

matrices almost surely. Hence, almost sure convergence follows. Finally, since each matrix is doubly stochastic,

average(x(k)) is preserved, and the solution converges to average(x(0))1n. ■

13.3.2 Additional results on the mean-square convergence factor

Given a sequence of stochastic averaging matrices {A(k)}k∈Z≥0
and corresponding solutions x(k) to x(k + 1) =

A(k)x(k), we define the mean-square convergence factor by

rmean-square

(
{A(k)}k∈Z≥0

)
= sup

x(0)̸=xfinal
lim sup
k→∞

(
E
[
∥x(k)− average(x(k))1n∥22

])1/k

.

We now present upper and lower bounds for the mean-square convergence factor.

Theorem 13.3 (Upper and lower bounds on the mean-square convergence factor). Under the same assump-
tions as in Theorem 13.1, the mean-square convergence factor satisfies

ρess
(
E[A(k)]

)2 ≤ rmean-square ≤ ρ
(
E
[
A(k)T(In − 1n1T

n/n)A(k)
])
.
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13.4 Historical notes and further reading

In this chapter we present results from (Fagnani and Zampieri, 2008; Tahbaz-Salehi and Jadbabaie, 2008; Garin and

Schenato, 2010) that build on classic references such as (Chatterjee and Seneta, 1977; Cogburn, 1984). Specifically,

references for the main Theorem 13.1 are (Tahbaz-Salehi and Jadbabaie, 2008) and (Fagnani and Zampieri, 2008).

Note that Assumption (A1) is restrictive and more general conditions are sufficient. For example, Tahbaz-Salehi

and Jadbabaie (2010) treat the case of a sequence of row-stochastic matrices generated by an ergodic and stationary

random process. Related analysis and modeling results are presented in (Hatano and Mesbahi, 2005; Bajović et al.,

2013; Matei et al., 2013; Touri and Nedić, 2014; Ravazzi et al., 2015).

For a comprehensive analysis of the mean-square convergence factor we refer to (Fagnani and Zampieri, 2008,

Proposition 4.4).

Frasca and Hendrickx (2013) provide an upper bound on the mean square deviation of the consensus value

from the initial average and show that, when the network size grows, the deviation tends to zero.

A detailed analysis of the uniform symmetric gossip model is given by Boyd et al. (2006). A detailed analysis

of the model with stochastic interactions and prominent agents is given by (Acemoglu and Ozdaglar, 2011); see

also (Acemoglu et al., 2013).

In this book we will not discuss averaging algorithms in the presence of quantization effects, we refer the

reader instead to (Kashyap et al., 2007; Nedić et al., 2009; Frasca et al., 2009). Similarly, regarding averaging in the

presence of noise, we refer to (Xiao et al., 2007; Bamieh et al., 2012; Lovisari et al., 2013; Jadbabaie and Olshevsky,

2019). Finally, regarding averaging in the presence of delays, we refer to (Olfati-Saber and Murray, 2004; Hu and

Hong, 2007; Lin and Jia, 2008).

13.5 Table of asymptotic behaviors for averaging systems
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Dynamics Assumptions & Asymptotic Behavior References

discrete-time:

x(k + 1) = Ax(k),
A row-stochastic adjacency matrix

of digraph G

G has a globally reachable node

subgraph of globally reachable nodes is aperiodic

=⇒
limk→∞ x(k) = (wTx(0))1n,

where w ≥ 0, wTA = wT
, and 1T

nw = 1

Thm 5.1

continuous-time:

ẋ(t) = −Lx(t),
L Laplacian matrix of digraph G

G has a globally reachable node

=⇒
limt→∞ x(t) = (wTx(0))1n,

where w ≥ 0, wTL = 0T
n , and 1T

nw = 1

Thm 7.4

time-varying discrete-time:

x(k + 1) = A(k)x(k),
A(k) row-stochastic adjacency
matrix of digraph G(k), k ∈ Z≥0

(i) at each time k, G(k) has self-loop at each node,

(ii) each aij(k) > 0 is larger than ε > 0,
(iii) there exists duration δ s.t., for all time k,
G(k)∪ . . .∪G(k + δ − 1) has a globally reachable node

=⇒
limk→∞ x(k) = (wTx(0))1n, where w ≥ 0, 1T

nw = 1

Thm 12.4

time-varying symmetric

discrete-time:

x(k + 1) = A(k)x(k),
A(k) symmetric stochastic

adjacency of G(k), k ∈ Z≥0

(i) at each time k, G(k) has self-loop at each node,

(ii) each aij(k) > 0 is larger than ε > 0,
(iii) for all time k, ∪τ≥kG(τ) is connected
=⇒
limk→∞ x(k) = average

(
x(0)

)
1n

Thm 12.6

time-varying continuous-time:

ẋ(t) = −L(t)x(t),
L(t) Laplacian matrix of

digraph G(t), t ∈ R≥0

(i) each aij(t) > 0 is larger than ε > 0,
(ii) there exists duration T s.t., for all time t,
digraph associated to

∫ t+T
t L(τ)dτ has a globally reachable node

=⇒
limt→∞ x(t) = (wTx(0))1n, where w ≥ 0, 1T

nw = 1

Thm 12.9

randomized discrete-time:

x(k + 1) = A(k)x(k),
A(k) random row-stochastic

adjacency matrix

of digraph G(k), k ∈ Z≥0

(i) {A(k)}k∈Z≥0
is i.i.d.,

(ii) each matrix has strictly positive diagonal,

(iii) digraph associated to E[A(k)] has a globally reachable node,

=⇒
limk→∞ x(k) =

(
wTx(0)

)
1n almost surely,

where w > 0 is random vector with 1T
nw = 1

Thm 13.1

Table 13.1: Averaging systems: definitions, assumptions, asymptotic behavior, and reference
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Chapter14

Motivating Problems and Systems

In this chapter we begin our study of nonlinear network systems by introducing some example models and

problems. Although the models presented are simple and their mathematical analysis is elementary, these models

provide the appropriate notation, concepts, and intuition required to consider more realistic and complex models.

14.1 Lotka-Volterra population models

The Lotka-Volterra population models are one the simplest and most widely adopted frameworks for modeling the

dynamics of interacting populations in mathematical ecology. These equations were originally developed in (Lotka,

1920; Volterra, 1928). In what follows we introduce various single-species and multi-species model of population

dynamics. We start with single-species models. We let x(t) denote the population number or its density at time t.
The ratio ẋ/x is the average contribution of an individual to the growth of the population.

Single-species constant growth model In a simplest model, one may assume ẋ/x is equal to a constant growth
rate r. This assumption however leads to exponential growth or decay x(t) = x(0) ert depending upon whether

r is positive or negative. Of course, exponential growth may be reasonable only for short periods of time and

violates a reasonable assumption of bounded resources for large times.

Single-species logistic growthmodel In large populations it is natural to assume that resources would diminish

with the growing size of the population. In a very simple model, one may assume ẋ/x = r(1− x/κ), where r > 0
is the intrinsic growth rate and κ > 0 is called the carrying capacity. This assumption leads to the so-called logistic
system

ẋ(t) = rx(t)
(
1− x(t)/κ

)
. (14.1)

This dynamical system has the following behavior:

(i) there are two equilibrium points 0 and κ,

(ii) the solution is

x(t) =
κx(0) ert

κ+ x(0)(ert−1)
,

(iii) all solutions with 0 < x(0) < κ are monotonically increasing and converge asymptotically to κ,

(iv) all solutions with κ < x(0) are monotonically decreasing and converge asymptotically to κ.

The reader is invited to show these facts and related ones in Exercise E14.1. The evolution of the logistic equation

from multiple initial values is illustrated in Figure 14.1.
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t



x(t) =
x(0)ert

+ x(0)(ert � 1)

1/r 2/r 3/r 4/r 5/r

Figure 14.1: Solutions to the logistic equations from 10 initial conditions

Multi-species Lotka-Volterra model with signed interactions Finally, we consider the case of n ≥ 2
interacting species. We assume logistic growth model for each species with an additional term due to the interaction

with the other species. Specifically, we write the growth rate for species i ∈ {1, . . . , n},

ẋi
xi

= ri + aiixi +
n∑

j=1,j ̸=i
aijxj , (14.2)

where the first two terms are the logistic equation (so that aii is typically negative because of bounded resources

and the carrying capacity is κi = −ri/aii), and the third term is the combined effect of the pairwise interactions

with all other species. The vector r is called the intrinsic growth rate, the matrix A = [aij ] is called the interaction
matrix, and the ordinary differential equations (14.2) are called the Lotka-Volterra model for n ≥ 2 interacting

species. For x ∈ Rn≥0, this model is written in vector form as

ẋ = diag(x)
(
Ax+ r

)
=: fLV(x). (14.3)

(a) Common clownfish (Amphiprion ocel-
laris) near magnificent sea anemones (Het-
eractis magnifica) on the Great Barrier Reef,
Australia. Clownfish and anemones pro-

vide an example of ecological mutualism

in that each species benefits from the activ-

ity of the other. Public domain image from

Wikipedia.

(b) The Canadian lynx (Lynx canadensis)
is a major predator of the snowshoe hare

(Lepus americanus). Historical records of
animals captures indicate that the lynx

and hare numbers rise and fall periodi-

cally; see (Odum, 1959). Public domain im-

age from Rudolfo’s Usenet Animal Pictures

Gallery (no longer in existence).

(c) Subadult male lion (Panthera Leo) and
spotted hyena (Crocuta Crocuta) compete

for the same resources in the Maasai Mara

National Reserve in Narok County, Kenya.

Picture "Hyänen und Löwe im Morgen-

licht" by lubye134, licensed under Creative

Commons Attribution 2.0 Generic (BY 2.0).

Figure 14.2: Mutualism, predation and competition in population dynamics
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As illustrated in Figure 14.2, for any two species i and j, the sign of aij and aji in the interaction matrix A is

determined by which of the following three possible types of interaction is being modeled:

(+, +) = mutualism: for aij > 0 and aji > 0, the two species are in symbiosis and cooperation. The presence of

species i has a positive effect on the growth of species j and vice versa.

(+,-) = predation: for aij > 0 and aji < 0, the species are in a predator-prey or host-parasite relationship. In

other words, the presence of a prey (or host) species j favors the growth of the predator (or parasite) species i,
wheres the presence of the predator species has a negative effect on the growth of the prey.

(-,-) = competition: for aij < 0 and aji < 0, the two species compete for a common resources of sorts and have

therefore a negative effect on each other.

Note: the typical availability of bounded resources suggests it is ecologically meaningful to assume that the

interaction matrix A is Hurwitz and that, to model the setting in which species live in isolation, the diagonal

entries aii are negative.

Scientific questions of interest include:

(i) Does the Lotka-Volterra system have equilibrium points? Are they stable?

(ii) How does the presence of mutualism, predation, and/or competition affect the dynamic behavior?

(iii) Does the model predict extinction or periodic evolution of species?

14.2 Kuramoto coupled-oscillator models

In this section we introduce network of coupled oscillators and, in particular, phase-coupled oscillators. We start

with two simple definitions. Given a connected, weighted, and undirected graph G = ({1, . . . , n}, E,A) and
angles θ1, . . . , θn associated to each node in the network, define the coupled oscillators model by

θ̇i = ωi −
n∑

j=1

aij sin(θi − θj), i ∈ {1, . . . , n}. (14.4)

A special case of this model is due to (Kuramoto, 1975); the Kuramoto coupled oscillators model is characterized by

a complete homogeneous graph, i.e., a graph with identical edge weights aij = K/n for all i, j ∈ {1, . . . , n} and

for some coupling strength K . The Kuramoto model is

θ̇i = ωi −
K

n

n∑

j=1

sin(θi − θj), i ∈ {1, . . . , n}. (14.5)

Note: for n = 2, adopting the notation ω = ω1 − ω2 and a = a12 + a21, the coupled oscillator model can be

written as a one-dimensional system in the difference variable θ = θ1 − θ2 as:

θ̇ = ω − a sin(θ). (14.6)

Coupled oscillator models arise naturally in many circumstances; in what follows we present three examples

taken from (Dörfler and Bullo, 2014).
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Example #1: A spring network on a ring We start by studying a system of n dynamic particles constrained to

rotate around a unit-radius circle and assumed to possibly overlap without ever colliding. Each particle is subject to

(1) a non-conservative torque τi, (2) a linear damping torque, and (3) a total elastic torque. This system is illustrated

in Figure 14.3.

We assume that pairs of interacting particles i and j are coupled through elastic springs with stiffness kij > 0;
we set kij = 0 if the particles are not interconnected. The elastic energy stored by the spring between particles at

angles θi and θj is

Uij(θi, θj) =
kij
2
distance

2 =
kij
2

(
(cos θi − cos θj)

2 + (sin θi − sin θj)
2
)

= kij
(
1− cos(θi) cos(θj)− sin(θi) sin(θj)

)
= kij

(
1− cos(θi − θj)

)
,

so that the elastic torque on particle i is

Ti(θi, θj) = − ∂

∂θi
Uij(θi, θj) = −kij sin(θi − θj).

Newton’s Law applied to this rotating system implies that this spring network obeys the dynamics

miθ̈i + diθ̇i = τi −
∑n

j=1
kij sin(θi − θj),

wheremi and di are inertia and damping coefficients. In the limit of small massesmi and uniformly-high viscous

damping d = di, that is,mi/d ≈ 0, the model simplifies to the coupled oscillator network (14.4)

θ̇i = ωi −
n∑

j=1

aij sin(θi − θj), i ∈ {1, . . . , n}.

with natural rotation frequencies ωi = τi/d and with coupling strengths aij = kij/d.

Example #2: The structure-preserving power network model As second example we consider an AC power

network, visualized in Figure 14.4, with n buses including generators and load buses. We present two simplified

models for this network, a static power-balance model and a dynamic continuous-time model.

The transmission network is described by an admittance matrix Y ∈ Cn×n that is symmetric and sparse with

line impedances Zij = Zji for each branch {i, j} ∈ E. The network admittance matrix is sparse matrix with

⌧1

⌧3

⌧2

k12

k24

⌧4
k34

k23

Figure 14.3: Mechanical analog of a coupled oscillator network
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14.2. Kuramoto coupled-oscillator models 231

nonzero off-diagonal entries Yij = −1/Zij for each branch {i, j} ∈ E; the diagonal elements Yii = −∑n
j=1,j ̸=i Yij

assure zero row-sums.

The static model is described by the following two concepts. Firstly, according to Kirchhoff’s current law, the

current injection at node i is balanced by the current flows from adjacent nodes:

Ii =

n∑

j=1

1

Zij
(Vi − Vj) =

n∑

j=1

YijVj .

Here, Ii and Vi are the phasor representations of the nodal current injections and nodal voltages, so that, for

example, Vi = |Vi| eiθi corresponds to the signal |Vi| cos(ω0t+θi). (Recall i =
√
−1.) The complex power injection

Si = Vi · Ii (where z denotes the complex conjugate of z ∈ C) then satisfies the power balance equation

Si = Vi ·
n∑

j=1

Y ijV j =
n∑

j=1

Y ij |Vi||Vj |ei(θi−θj) .

Secondly, for a lossless network the real part of the power balance equations at each node is

Pi︸︷︷︸
active power injection

=
n∑

j=1

aij · sin(θi − θj)︸ ︷︷ ︸
active power flow from i to j

, i ∈ {1, . . . , n}, (14.7)

where aij = |Vi||Vj ||Yij | denotes the maximum power transfer over the transmission line {i, j}, and Pi = ℜ(Si)
is the active power injection into the network at node i, which is positive for generators and negative for loads.

The systems of equations (14.7) are the active power flow equations at balance; see Figure 14.5.
Next, we discuss a simplified dynamic model. Many appropriate dynamic models have been proposed for

each network node: zeroth order (for so-called constant power loads), first-order models (for so-called frequency-

dependent loads and inverter-based generators), and second and higher order for generators; see (Bergen and Hill,

1981). For extreme simplicity, we here assume that every node is described by a first-order integrator with the

following intuition: node i speeds up (i.e., θi increases) when the power balance at node i is positive, and slows
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(a) Line diagram
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(b) Equivalent graph representation

Figure 14.4: A simplified aggregated model with 16 generators and 25 load busses of the Western North American

power grid, ofter referred to as the Western Interconnect. This model is often studied in the context of inter-area

oscillations (Trudnowski et al., 1991). In the equivalent graph representation, generators are represented by light

disks and load buses by dark boxes.
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fij
<latexit sha1_base64="WTNzHc9Xoqra4AzTSjaHSwxqr0w=">AAAB93icbZDNSgMxFIXv1L9a/6ou3QSL4EJKRgRdFty4rGBboR1KJs20aTOZIckUh6Hv4FY37sStjyP4MKbTWWjrhcDHOfdyb44fC64Nxl9OaW19Y3OrvF3Z2d3bP6geHrV1lCjKWjQSkXr0iWaCS9Yy3Aj2GCtGQl+wjj+5nfudKVOaR/LBpDHzQjKUPOCUGCu1g37Gx7N+tYbrOC+0Cm4BNSiq2a9+9wYRTUImDRVE666LY+NlRBlOBZtVeolmMaETMmRdi5KETF/o6TAHL3vK756hM+sNUBAp+6RBufp7NiOh1mno286QmJFe9ubif143McGNl3EZJ4ZJulgUJAKZCM1DQAOuGDUitUCo4vZqREdEEWpsVBUbh7v8+VVoX9ZdXHfvr2oNXARThhM4hXNw4RoacAdNaAGFMTzDC7w6qfPmvDsfi9aSU8wcw59yPn8AAbyTeA==</latexit><latexit sha1_base64="WTNzHc9Xoqra4AzTSjaHSwxqr0w=">AAAB93icbZDNSgMxFIXv1L9a/6ou3QSL4EJKRgRdFty4rGBboR1KJs20aTOZIckUh6Hv4FY37sStjyP4MKbTWWjrhcDHOfdyb44fC64Nxl9OaW19Y3OrvF3Z2d3bP6geHrV1lCjKWjQSkXr0iWaCS9Yy3Aj2GCtGQl+wjj+5nfudKVOaR/LBpDHzQjKUPOCUGCu1g37Gx7N+tYbrOC+0Cm4BNSiq2a9+9wYRTUImDRVE666LY+NlRBlOBZtVeolmMaETMmRdi5KETF/o6TAHL3vK756hM+sNUBAp+6RBufp7NiOh1mno286QmJFe9ubif143McGNl3EZJ4ZJulgUJAKZCM1DQAOuGDUitUCo4vZqREdEEWpsVBUbh7v8+VVoX9ZdXHfvr2oNXARThhM4hXNw4RoacAdNaAGFMTzDC7w6qfPmvDsfi9aSU8wcw59yPn8AAbyTeA==</latexit><latexit sha1_base64="WTNzHc9Xoqra4AzTSjaHSwxqr0w=">AAAB93icbZDNSgMxFIXv1L9a/6ou3QSL4EJKRgRdFty4rGBboR1KJs20aTOZIckUh6Hv4FY37sStjyP4MKbTWWjrhcDHOfdyb44fC64Nxl9OaW19Y3OrvF3Z2d3bP6geHrV1lCjKWjQSkXr0iWaCS9Yy3Aj2GCtGQl+wjj+5nfudKVOaR/LBpDHzQjKUPOCUGCu1g37Gx7N+tYbrOC+0Cm4BNSiq2a9+9wYRTUImDRVE666LY+NlRBlOBZtVeolmMaETMmRdi5KETF/o6TAHL3vK756hM+sNUBAp+6RBufp7NiOh1mno286QmJFe9ubif143McGNl3EZJ4ZJulgUJAKZCM1DQAOuGDUitUCo4vZqREdEEWpsVBUbh7v8+VVoX9ZdXHfvr2oNXARThhM4hXNw4RoacAdNaAGFMTzDC7w6qfPmvDsfi9aSU8wcw59yPn8AAbyTeA==</latexit><latexit sha1_base64="WTNzHc9Xoqra4AzTSjaHSwxqr0w=">AAAB93icbZDNSgMxFIXv1L9a/6ou3QSL4EJKRgRdFty4rGBboR1KJs20aTOZIckUh6Hv4FY37sStjyP4MKbTWWjrhcDHOfdyb44fC64Nxl9OaW19Y3OrvF3Z2d3bP6geHrV1lCjKWjQSkXr0iWaCS9Yy3Aj2GCtGQl+wjj+5nfudKVOaR/LBpDHzQjKUPOCUGCu1g37Gx7N+tYbrOC+0Cm4BNSiq2a9+9wYRTUImDRVE666LY+NlRBlOBZtVeolmMaETMmRdi5KETF/o6TAHL3vK756hM+sNUBAp+6RBufp7NiOh1mno286QmJFe9ubif143McGNl3EZJ4ZJulgUJAKZCM1DQAOuGDUitUCo4vZqREdEEWpsVBUbh7v8+VVoX9ZdXHfvr2oNXARThhM4hXNw4RoacAdNaAGFMTzDC7w6qfPmvDsfi9aSU8wcw59yPn8AAbyTeA==</latexit>Pi

<latexit sha1_base64="RvSbLDzE1wwTYBmY3t1iJSYOMaE=">AAAB9HicbZDLSgMxFIbP1Futt6pLN8EiuJAyI4IuC25cVrQXaIeSSTPT0CQzJJliGfoIbnXjTtz6PoIPYzqdhbYeCHz8/zmckz9IONPGdb+c0tr6xuZWebuys7u3f1A9PGrrOFWEtkjMY9UNsKacSdoyzHDaTRTFIuC0E4xv535nQpVmsXw004T6AkeShYxgY6WH5oANqjW37uaFVsEroAZFNQfV7/4wJqmg0hCOte55bmL8DCvDCKezSj/VNMFkjCPasyixoPpCT6Ic/OwpP3qGzqw3RGGs7JMG5erv2QwLracisJ0Cm5Fe9ubif14vNeGNnzGZpIZKslgUphyZGM0TQEOmKDF8agETxezViIywwsTYnCo2Dm/586vQvqx7lu+vag23CKYMJ3AK5+DBNTTgDprQAgIRPMMLvDoT5815dz4WrSWnmDmGP+V8/gBE/ZHi</latexit><latexit sha1_base64="RvSbLDzE1wwTYBmY3t1iJSYOMaE=">AAAB9HicbZDLSgMxFIbP1Futt6pLN8EiuJAyI4IuC25cVrQXaIeSSTPT0CQzJJliGfoIbnXjTtz6PoIPYzqdhbYeCHz8/zmckz9IONPGdb+c0tr6xuZWebuys7u3f1A9PGrrOFWEtkjMY9UNsKacSdoyzHDaTRTFIuC0E4xv535nQpVmsXw004T6AkeShYxgY6WH5oANqjW37uaFVsEroAZFNQfV7/4wJqmg0hCOte55bmL8DCvDCKezSj/VNMFkjCPasyixoPpCT6Ic/OwpP3qGzqw3RGGs7JMG5erv2QwLracisJ0Cm5Fe9ubif14vNeGNnzGZpIZKslgUphyZGM0TQEOmKDF8agETxezViIywwsTYnCo2Dm/586vQvqx7lu+vag23CKYMJ3AK5+DBNTTgDprQAgIRPMMLvDoT5815dz4WrSWnmDmGP+V8/gBE/ZHi</latexit><latexit sha1_base64="RvSbLDzE1wwTYBmY3t1iJSYOMaE=">AAAB9HicbZDLSgMxFIbP1Futt6pLN8EiuJAyI4IuC25cVrQXaIeSSTPT0CQzJJliGfoIbnXjTtz6PoIPYzqdhbYeCHz8/zmckz9IONPGdb+c0tr6xuZWebuys7u3f1A9PGrrOFWEtkjMY9UNsKacSdoyzHDaTRTFIuC0E4xv535nQpVmsXw004T6AkeShYxgY6WH5oANqjW37uaFVsEroAZFNQfV7/4wJqmg0hCOte55bmL8DCvDCKezSj/VNMFkjCPasyixoPpCT6Ic/OwpP3qGzqw3RGGs7JMG5erv2QwLracisJ0Cm5Fe9ubif14vNeGNnzGZpIZKslgUphyZGM0TQEOmKDF8agETxezViIywwsTYnCo2Dm/586vQvqx7lu+vag23CKYMJ3AK5+DBNTTgDprQAgIRPMMLvDoT5815dz4WrSWnmDmGP+V8/gBE/ZHi</latexit><latexit sha1_base64="RvSbLDzE1wwTYBmY3t1iJSYOMaE=">AAAB9HicbZDLSgMxFIbP1Futt6pLN8EiuJAyI4IuC25cVrQXaIeSSTPT0CQzJJliGfoIbnXjTtz6PoIPYzqdhbYeCHz8/zmckz9IONPGdb+c0tr6xuZWebuys7u3f1A9PGrrOFWEtkjMY9UNsKacSdoyzHDaTRTFIuC0E4xv535nQpVmsXw004T6AkeShYxgY6WH5oANqjW37uaFVsEroAZFNQfV7/4wJqmg0hCOte55bmL8DCvDCKezSj/VNMFkjCPasyixoPpCT6Ic/OwpP3qGzqw3RGGs7JMG5erv2QwLracisJ0Cm5Fe9ubif14vNeGNnzGZpIZKslgUphyZGM0TQEOmKDF8agETxezViIywwsTYnCo2Dm/586vQvqx7lu+vag23CKYMJ3AK5+DBNTTgDprQAgIRPMMLvDoT5815dz4WrSWnmDmGP+V8/gBE/ZHi</latexit>

(a) The active power satisfies a conserva-

tion law at each node: Pi =
∑n

j=1
fij

✓i � ✓j
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(b) Along each edge, the amount of active power

transfered is proportional to the power angle: fij =
aij sin(θi − θj)

Figure 14.5: Interpretation of the active power flow equations (14.7).

down (i.e., θi decreases) when the power balance at node i is negative. This assumption leads immediately to the

coupled-oscillators model (14.4) written as:

θ̇i = Pi −
n∑

j=1

aij sin(θi − θj). (14.8)

The systems of equations (14.8) are a first-order simplified version of the so-called coupled swing equations;

see (Bergen and Hill, 1981). A more realistic model of power network necessarily include higher-order dynamics

for the generators, uncertain load models, mixed resistive-inductive lines, and the modeling of reactive power.

Example #3: Flocking, schooling, and vehicle coordination As third example, we consider a set of n
kinematic particles in the plane R2

, which we identify with the complex plane C. Each particle i ∈ {1, . . . , n} is
characterized by its position ri ∈ C, its heading angle θi ∈ S1, and a steering control law ui(r, θ) depending on
the position and heading of itself and other vehicles, see Figure 14.6.(a). For simplicity, we assume that all particles

have unit speed. The particle kinematics are then given by

ṙi = eiθi ,

θ̇i = ui(r, θ) ,
(14.9)

for i ∈ {1, . . . , n}. If no control is applied, then particle i travels in a straight line with orientation θi(0), and if

ui = ωi ∈ R is a nonzero constant, then particle i traverses a circle with radius 1/|ωi|.
The interaction among the particles is modeled by a graph G = ({1, . . . , n}, E,A) determined by commu-

nication and sensing patterns. As shown by Vicsek et al. (1995), motion patterns emerge if the controllers use

only relative phase information between neighboring particles. As we will discuss later, we may adopt potential

gradient control strategies (i.e., a negative gradient flow) to coordinate the relative heading angles θi(t)− θj(t).
As shown in Example #1, an intuitive extension of the quadratic elastic spring potential to the circle is the function

Uij : S1 × S1 → R defined by

Uij(θi, θj) = aij(1− cos(θi − θj)),

for each edge {i, j} of the graph. Note that the potential Uij(θi, θj) achieves its unique minimum value if the

heading angles θi and θj are synchronized and its unique maximum when θi and θj are out of phase by an angle π.
These considerations motivate the affine gradient control law

θ̇i = ω0 −K
∂

∂θi

∑

{i,j}∈E

Uij(θi − θj) = ω0 −K
∑n

j=1
aij sin(θi − θj) , i ∈ {1, . . . , n} . (14.10)
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14.2. Kuramoto coupled-oscillator models 233

to synchronize the heading angles of the particles forK > 0 (gradient descent), respectively, to disperse the heading
angles forK < 0 (gradient ascent). The term ω0 can induce additional rotations (for ω0 ̸= 0) or translations (for
ω0 = 0). A few representative trajectories are illustrated in Figure 14.6.

The controlled phase dynamics (14.10) give rise to elegant and useful coordination patterns that mimic animal

flocking behavior (Leonard et al., 2012) and fish schools. Inspired by these biological phenomena, scientists

have studied the controlled phase dynamics (14.10) and their variations in the context of tracking and formation

controllers in swarms of autonomous vehicles (Paley et al., 2007).

(x, y)
θ

‖r‖ =

∥∥∥∥
[
x
y

]∥∥∥∥

θ

eiθi

(a) (b) (c) (d) (e)

Figure 14.6: Figure (a) illustrates the particle kinematics (14.9). Figures (b)-(e) illustrate the controlled dynam-

ics (14.9)-(14.10) with n = 6 particles, a complete interaction graph, and identical and constant natural frequencies:

ω0(t) = 0 in figures (b) and (c) and ω0(t) = 1 in figures (d) and (e). The values ofK areK = +1 in figures (b) and

(d) and K = −1 in figure (c) and (e). The arrows depict the orientation, the dashed curves show the long-term

position dynamics, and the solid curves show the initial transient position dynamics. As illustrated, the resulting

motion displays synchronized or dispersed heading angles for K = ±1, and translational motion for ω0 = 0,
respectively circular motion for ω0 = 1. Image reprinted from (Dörfler and Bullo, 2014) with permission from

Elsevier.

Scientific questions of interest for coupled oscillator model include:

(i) When do the oscillators asymptotically achieve frequency synchronization, that is, when do they asymptotically

reach an equal velocity?

(ii) When do they reach phase synchronization?

(iii) Are frequency (or phase) synchronized solutions stable and attractive in some sense?
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14.3 Exercises

E14.1 Logistic ordinary differential equation. Given a growth rate r > 0 and a carrying capacity κ > 0, consider the
logistic equation (14.1) defined by

ẋ = rx(1− x/κ),

with initial condition x(0) ∈ R≥0. Show that

(i) there are two equilibrium points 0 and κ,
(ii) the solution is

x(t) =
κx(0) ert

κ+ x(0)(ert−1)
, (E14.1)

and it takes value in R≥0,

(iii) all solutions with 0 < x(0) < κ are monotonically increasing and converge asymptotically to κ,
(iv) all solutions with κ < x(0) are monotonically decreasing and converge asymptotically to κ, and
(v) if x(0) < κ/2, then the solution x(t) has an inflection point when x(t) = κ/2.

E14.2 Simulating coupled oscillators. Simulate in your favorite programming language and software package the

coupled Kuramoto oscillators in equation (14.5). Set n = 10, define a vector ω ∈ R10
with entries deterministically

uniformly-spaced between −1 and 1. Select random initial phases.

(i) Simulate the resulting differential equations forK = 10 andK = 0.1.
(ii) Find the approximate value ofK at which the qualitative behavior of the system changes from asynchrony to

synchrony.

Turn in your code, a few printouts (as few as possible), and your written responses.
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Chapter15

Stability Theory for Dynamical Systems

In this chapter we provide a brief self-contained review of stability theory for nonlinear dynamical systems. We

review the key ideas and theorems in stability theory, including the Lyapunov Stability Criteria and the Krasovskiı̆-

LaSalle Invariance Principle. We then apply these theoretical tools to a number of example systems, including

linear and linearized systems, negative gradient systems, continuous-time averaging dynamics (i.e., the Laplacian

flow) and positive linear systems described by Metzler matrices.

This chapter is not meant to provide a comprehensive treatment, e.g., we leave out matters of existence and

uniqueness of solutions and we do not include proofs. Section 15.10 below provides numerous references for

further reading. We start the chapter by introducing a running example with three prototypical dynamical systems.

Example 15.1 (Gradient andmechanical systems). We start by introducing a differentiable functionV : R → R;
for example see Figure 15.1. Based on V and on two positive coefficientsm and d, we define three instructive and

x

V (x) Figure 15.1: A differentiable function V playing the role of a po-

tential energy function (i.e., a function describing the potential

energy stored) in a negative gradient system, a conservative me-

chanical systems or a dissipative mechanical systems. Specifically,

V (x) = −x e−x /(1 + e−x) + (x− 10)2/(1 + (x− 10)2).

prototypical dynamical systems:

negative gradient system: ẋ = −∂V
∂x

(x), (15.1)

conservative mechanical system: mẍ = −∂V
∂x

(x), (15.2)

dissipative mechanical system: mẍ = −∂V
∂x

(x)− dẋ. (15.3)

In the study of physical systems, the parameterm is an inertia, d is a damping coefficient, and the function V is

the potential energy function, describing the potential energy stored in the system.

These example are also know as a (first order, second order, or second order dissipative) particle on an energy

landscape, or the “rolling ball on a hill” examples. According to Newton’s law, the correct physical systems are

models (15.2) and (15.3), but we will also see interesting examples of first-order negative gradient systems (15.1).•
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15.1 On sets and functions

Before proceeding we review some basic general properties of sets and functions. First, we recall that a setW ⊂ Rn
is bounded if there exists a constantK that each w ∈W satisfies ∥w∥ ≤ K , closed if it contains its boundary (or,

equivalently, if it contains all its limit points), and compact if it is bounded and closed.

Second, given a differentiable function V : Rn → R, a critical point of V is a point x∗ ∈ Rn satisfying

∂V

∂x
(x∗) = 0n.

A critical point x∗ is a local minimum point (resp. local strict minimum point) of V if there exists a distance ε > 0
such that V (x∗) ≤ V (x) (resp. V (x∗) < V (x)) for all x ̸= x∗ within distance ε of x∗. The point x∗ is a global
minimum if V (x∗) < V (x) for all x ̸= x∗. Local and global maximum points are defined similarly.

Given a constant ℓ ∈ R, we define the ℓ-level set of V and the ℓ-sublevel set of V by

V −1(ℓ) = {y ∈ Rn | V (y) = ℓ}, and V −1
≤ (ℓ) = {y ∈ Rn | V (y) ≤ ℓ}.

These notions are illustrated in Figure 15.2.

x

`1

`2

`3

x1 x2 x3 x4 x5

V �1
 (`2) = {x | V (x)  `2}

Figure 15.2: A differentiable function, its sublevel set and its critical points. The sublevel set V −1
≤ (ℓ1) = {x | V (x) ≤

ℓ1} is unbounded. The sublevel set V −1
≤ (ℓ2) = [x1, x5] is compact and contains three critical points (x2 and x4

are local minima and x3 is a local maximum). Finally, the sublevel set V −1
≤ (ℓ3) is compact and contains a single

critical point, the global minimum x4.

Third, given a point x0 ∈ Rn, a function V : Rn → R is

(i) locally positive-definite (resp. positive-semidefinite) about x0 if V (x0) = 0 and if there exists a neighborhood U
of x0 such that V (x) > 0 (resp. V (x) ≥ 0) for all x ∈ U \ {x0},

(ii) globally positive-definite about x0 if V (x0) = 0 and V (x) > 0 for all x ∈ Rn \ {x0}, and
(iii) locally (resp. globally) negative-definite if−V is locally (resp. globally) positive-definite; and negative-semidefinite

if −V is positive-semidefinite.

Note: Assume a differentiable V is locally positive-definite about x0. Pick α > V (x0). One can show that the

sublevel set V −1
≤ (α) contains a neighborhood of x0. Indeed, in Figure 15.2, V is locally positive-definite about x4

and V −1
≤ (ℓ2) and V

−1
≤ (ℓ3) are both compact intervals containing x4.

Fourth and finally, a non-negative continuous function V : X → R≥0 is

(i) radially unbounded ifX = Rn and V (x) → ∞ along any trajectory such that ∥x∥ → ∞, that is, any sequence

{xn}n∈N with the property that limn→∞ ∥xn∥ = ∞ satisfies limn→∞ V (xn) = ∞, and
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15.2. Dynamical systems and stability notions 237

(ii) proper if, for all ℓ ∈ R, the ℓ-sublevel set of V is compact.

We illustrate these concepts in Figure 15.3 and state a useful equivalence without proof.

Lemma 15.2. A continuous function V : Rn → R≥0 is proper if and only if it is radially unbounded.

x

V (x) = �x
e�x

1 + e�x
+

(x � 10)2

1 + (x � 10)2

(a) This function V : R → R is not radially unbounded because

limx→+∞ V (x) = 1.

x

Vlog-lin(x) = x � 1 � log(x)

(b) The function Vlog-linR>0 → R is proper on X = R>0 since

each sublevel set is a compact interval.

Figure 15.3: Example proper and not proper functions

15.2 Dynamical systems and stability notions

Dynamical systems

A (continuous-time) dynamical system is a pair (X, f) where X , called the state space, is a subset of Rn and f ,
called the vector field, is a map from X to Rn. Given an initial state x0 ∈ X , the solution (also called trajectory or

evolution) of the dynamical system is a curve t 7→ x(t) ∈ X satisfying the differential equation

ẋ(t) = f(x(t)), x(0) = x0.

A dynamical system (X, f) is linear if x 7→ f(x) = Ax for some square matrix A.

Typically, the map f is assumed to have some continuity properties so that the solution exists and is unique

for at least small times. Moreover, some of our examples are defined on closed submanifolds of Rn (e.g., the

Lotka-Volterra model (14.3) is defined over the positive orthant Rn≥0), and the coupled oscillator model (14.4) is

defined over the set of n angles) and additional assumptions are required to ensure that the solution exists for all

times in X . We do not discuss these topics in great detail here, we simply assume the systems admit solutions

inside X for all time, and refer to the references in Section 15.10 below.

Equilibrium points and their stability

An equilibrium point for the dynamical systems (X, f) is a point x∗ ∈ X such that f(x∗) = 0n. If the initial state
is x(0) = x∗, then the solution exists unique for all time and is constant: x(t) = x∗ for all t ∈ R≥0.

An equilibrium point x∗ for the dynamical system (X, f) is

(i) stable (or Lyapunov stable) if, for each ε > 0, there exists δ = δ(ε) > 0 so that if ∥x(0) − x∗∥ < δ, then
∥x(t)− x∗∥ < ε for all t ≥ 0,

(ii) unstable if it is not stable, and

(iii) locally asymptotically stable if it is stable and if there exists δ > 0 so that limt→∞ x(t) = x∗ for all trajectories
satisfying ∥x(0)− x∗∥ < δ.
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238 Chapter 15. Stability Theory for Dynamical Systems

These three concepts are illustrated in Figure 15.4.

x⇤

"

�

(a) Stable equilibrium: for all ε, each solu-

tion starting inside a sufficiently small δ-
disk remains inside the ε-disk.

x⇤

(b) Unstable equilibrium: no matter how

small δ is, at least one solution starting in-

side the δ-disk diverges.

x⇤

(c) Asymptotically stable equilibrium: solu-

tions starting in a sufficiently small δ-disk
converge asymptotically to the equilibrium.

Figure 15.4: Illustrations of a stable, an unstable and an asymptotically stable equilibrium.

These first three notions are local in nature. To characterize global properties of a dynamical system (X, f),
we introduce the following notions. Given a locally asymptotically stable equilibrium point x∗,

(i) the set of initial conditions x0 ∈ X whose corresponding solution x(t) converges to x∗ is called the region of
attraction of x∗,

(ii) x∗ is said to be globally asymptotically stable if its region of attraction is the whole space X , and

(iii) x∗ is said to be globally (respectively, locally) exponentially stable if it is globally (respectively, locally) asymp-

totically stable and there exist positive constants c1 and c2 such that all trajectories starting in the region of

attraction satisfy

∥x(t)− x∗∥ ≤ c1∥x(0)− x∗∥ e−c2t .
Example 15.3 (Gradient and mechanical systems: Example 15.1 continued). It is instructive to report

some numerical simulations of the three dynamical systems and state some conjectures about their equilibria and

stability properties. These conjectures will be established in the next section.

•

15.3 The Lyapunov Stability Criteria

We are now ready to provide a critical tool in the study of the stability and convergence properties of a dynamical

system. Roughly speaking, Lyapunov’s idea is to use the concept of an energy function with a local/global minimum

that is non-increasing along the system’s solution.

Before proceeding, we require one final useful notion. The Lie derivative (also called the directional derivative)
of a differentiable function V : Rn → R with respect to a vector field f : Rn → Rn is the function LfV : Rn → R
defined by

LfV (x) =
∂V

∂x
(x)f(x) =

n∑

i=1

∂V

∂xi
(x)fi(x). (15.4)

Along the flow of a dynamical system (X, f), we have

d

dt
V (x(t)) = V̇ (x(t)) = LfV (x(t)). (15.5)
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15.3. The Lyapunov Stability Criteria 239

With this notation we note that V : Rn → R is non-increasing along every trajectory x : R≥0 → X of (X, f) if

V̇ (x(t)) = LfV (x(t)) ≤ 0,

or, equivalently, if each point x ∈ X satisfies LfV (x) ≤ 0. Because of this last inequality, when the vector field f
is clear from the context, it is customary to adopt a slight abuse of notation and write V̇ (x) = LfV (x).

We are now ready to present the main result of this section.

Theorem 15.4 (Lyapunov Stability Criteria). Consider a dynamical system (Rn, f) with differentiable vector
field f and with an equilibrium point x∗ ∈ Rn. The equilibrium point x∗ is

stable if there exists a continuously-differentiable function V : Rn → R, called a weak Lyapunov function, satisfying
(L1) V is locally positive-definite about x∗,
(L2) LfV is locally negative-semidefinite about x∗;

locally asymptotically stable if there exists a continuously-differentiable function V : Rn → R, called a local Lya-
punov function, satisfying Assumption (L1) and

(L3) LfV is locally negative-definite about x∗;
globally asymptotically stable if there exists a continuously-differentiable function V : Rn → R, called a global

Lyapunov function, satisfying
(L4) V is globally positive-definite about x∗,
(L5) LfV is globally negative-definite about x∗,
(L6) V is proper.

Note the immediate implications: (L4) =⇒ (L1) and (L5) =⇒ (L3) =⇒ (L2).

Note: Theorem 15.4 assumes the existence of a Lyapunov function with certain properties, but does not provide

constructive methods to design or compute one. In what follows we will see that Lyapunov functions can be

designed for certain classes of systems. But, in general, the design of Lyapunov function is challenging. A common

procedure is based on trial-and-error: one selects a so-called candidate Lyapunov function and verifies which, if

any, of the properties (L1)–(L6) is satisfied.

Example 15.5 (Gradient and mechanical systems: Example 15.3 continued). We now apply the Lyapunov

Stability Criteria in Theorem 15.4 to the example dynamical systems in Example 15.1. Based on the properties of

the function V in Figure 15.2 with local minimum points x2 and x4, we establish most of the conjectures from

Example 15.3. Note that the vector fields and the Lyapunov functions we adopt in what follows are all continuously

differentiable.

Negative gradient systems: For the dynamics ẋ = −∂V/∂x, we select the function V (x) − V (x2) as candidate
Lyapunov function about x2. We compute

V̇ (x) = −∥∂V/∂x∥2 ≤ 0.

Note that V − V (x2) is locally positive definite about x2 (Assumption (L1)) and V̇ is locally negative definite

about x2 (Assumption (L3)); hence V − V (x2) is a local Lyapunov function for the equilibrium point x2. An
identical argument applies to x4. Hence, both local minima x2 and x4 are locally asymptotically stable;

Conservative and dissipative mechanical systems: Given an inertia coefficient m > 0 and a damping coefficient

d ≥ 0, we write the conservative and the dissipative mechanical systems in first order form as:

ẋ = v, mv̇ = −dv − ∂V

∂x
(x),
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where (x, v) ∈ R2
are the position and velocity coordinates. As candidate Lyapunov function about the

equilibrium point (x2, 0), we consider the mechanical energy E : R× R → R≥0 given by the sum of kinetic

and potential energy:

E(x, v) =
1

2
mv2 + V (x).

We compute its derivative along trajectories of the considered mechanical system as follows:

Ė(x, v) = mvv̇ +
∂V

∂x
(x)ẋ = v

(
− dv − ∂V

∂x
(x)
)
+
∂V

∂x
(x)v = −dv2 ≤ 0 .

This calculation, and x2 being a local minimum of V , together establish that, for d ≥ 0, the function E−V (x2)
is locally positive definite about x2 (Assumption (L1)) and Ė is locally negative semidefinite about (x2, 0)
(Assumption (L2)). Hence, the function E − V (x2) is a weak Lyapunov function for the equilibrium point

(x2, 0) and, therefore, the point (x2, 0) is stable for both the conservative and the dissipative mechanical

system. An identical argument applies to the point (x4, 0).

Note that we obtain the correct properties, i.e., consistent with the simulations in the previous exercise, for

negative gradient system and for the conservative mechanical system. But more work is required to show that the

local minima are locally asymptotically stable for the dissipative mechanical system. •

Example 15.6 (The logistic equation). As second example, we consider the logistic equation (14.1):

ẋ(t) = rx(t)
(
1− x(t)

κ

)
=: flogistic(x),

with growth rate r and carrying capacity κ. We neglect the possible initial condition x(0) = 0 (with subsequent

equilibrium solution x(t) = 0 for all t ≥ 0) and restrict out attention to solutions in X = R>0.

For κ > 0, define the logarithmic-linear function Vlog-lin,κ : R>0 → R, illustrated in Figure 15.6, by

Vlog-lin,κ(x) = x− κ− κ log
(x
κ

)
.

In Exercise E15.1 we ask the reader to verify that

(i) Vlog-lin,κ is continuously differentiable with
d
dxVlog-lin,κ(x) = (x− κ)/x,

(ii) Vlog-lin,κ(x) ≥ 0 for all x > 0 and Vlog-lin,κ(x) = 0 if and only if x = κ, and
(iii) limx→0+ Vlog-lin,κ(x) = limx→∞ Vlog-lin,κ(x) = +∞.

Next we compute

LflogisticVlog-lin,κ(x) =
x− κ

x
· rx
(
1− x

κ

)
= − r

κ
(x− κ)2.

In summary, we have established that flogistic is a differentiable vector field, x
∗ = κ is an equilibrium point, Vlog-lin,κ

is globally positive definite about κ, LflogisticVlog-lin,κ is globally negative definite about κ, and Vlog-lin,κ is proper.
Hence, Vlog-lin,κ is a global Lyapunov function and x

∗ = κ is globally asymptotically stable. (This result is consistent

with the behavior characterized in Exercise E14.1.) •

15.4 The Krasovskiı̆-LaSalle Invariance Principle

While the Lyapunov Stability Criteria are very useful, it is sometimes difficult to find a Lyapunov function with a

negative-definite Lie derivative. To overcome this obstacle, in this section we introduce a powerful tool for the

convergence analysis, namely the Krasovskiı̆-LaSalle Invariance Principle.

Before stating the main result, we introduce two useful concepts:
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(i) A curve t 7→ x(t) approaches a set S ⊂ Rn as t→ +∞ if the distance
1
from x(t) to the set S converges to 0

as t→ +∞.

If the set S consists of a single point s and t 7→ x(t) approaches S, then t 7→ x(t) converges to s in the

usual sense: limt→+∞ x(t) = s. If the set S consists of multiple disconnected components and t 7→ x(t)
approaches S, then t 7→ x(t) must approach one of the disconnected components of S. Specifically, if the set
S is composed of a finite number of points, then t 7→ x(t) must converge to one of the points.

(ii) Given a dynamical system (X, f), a setW ⊂ X is invariant (or f -invariant) if each solution starting inW
remains inW , that is, if x(0) ∈W implies x(t) ∈W for all t ≥ 0.

For example, any sublevel set of a function is invariant for the corresponding negative gradient flow.

We are now ready to present the main result of this section.

Theorem 15.7 (Krasovskiı̆-LaSalle Invariance Principle). For a dynamical system (X, f) with differentiable f ,
assume that

(KL1) all trajectories of (X, f) are bounded,
(KL2) there exists a closed invariant setW ⊂ X , and
(KL3) there exists a continuously-differentiable function V : W → R satisfying LfV (x) ≤ 0 for all x ∈W .

Then for each solution t 7→ x(t) starting inW there exists c ∈ R such that x converges to the largest invariant set
contained in {

x ∈W | LfV (x) = 0
}
∩V −1(c).

Note: if the closed invariant set W ⊂ X in Assumption (KL2) is also bounded, then Assumption (KL1) is

automatically satisfied.

Note: unlike in the Lyapunov Stability Criteria, the Krasovskiı̆-LaSalle Invariance Principle does not require

the function V to be locally positive definite and establishes certain asymptotic convergence properties without

requiring the Lie derivative of V to be locally negative definite.

Note: in some examples it is sufficient for one’s purposes to show that x(t) →
{
x ∈W | LfV (x) = 0

}
. In

other cases, however, one really needs to analyze the largest invariant set inside

{
x ∈W | LfV (x) = 0

}
.

Note: If the largest invariant set is the union of multiple disjoint non-empty sets, then the solution to the

negative gradient flow must converge to one of these disjoint sets.

Example 15.8 (Gradient and mechanical systems: Example 15.5 continued). We continue the analysis of

the example dynamical systems in Examples 15.1 and 15.5. Specifically, we sharpen here our results about the

dissipative mechanical system about a local minimum point x2 (or x4) based on the Krasovskiı̆-LaSalle Invariance

Principle.

First, we note that the assumptions of the Krasovskiı̆-LaSalle Invariance Principle in Theorem 15.7 are satisfied:

(i) the function E and the vector field (the right-hand side of themechanical system) are continuously differentiable;

(ii) the derivative Ė is locally negative semidefinite; and

(iii) for any initial condition (x0, v0) ∈ R2
sufficiently close to (x2, 0) the sublevel set {(x, v) ∈ R2 | E(x, v) ≤

E(x0, v0)} is compact due to the local positive definiteness of V at x2.

It follows that (x(t), v(t)) converges to largest invariant set contained in

C = {(x, v) ∈ R2 | E(x, v) ≤ E(x0, v0), v = 0} = {(x, 0) ∈ R2 | E(x, 0) ≤ E(x0, v0)}.

A subset of C is invariant if any trajectory initiating in the subset remains in it. But this is only true if the

starting position x̄ satisfies
∂
∂xV (x̄) = 0, because otherwise the resulting trajectory would experience a strictly

1

Here we define the distance from a point y to a set Z to be infz∈Z ∥y − z∥.

Lectures on Network Systems, F. Bullo, edition 1.6 – Jan 1, 2022. Tablet PDF version. Copyright © 2012-22.



242 Chapter 15. Stability Theory for Dynamical Systems

non-zero v̇(0) and hence leave C . In other words, the largest invariant set inside C is {(x, 0) ∈ R2 | E(x, 0) ≤
E(x0, v0),

∂
∂xV (x) = 0}. But the local minimum point x2 is the unique critical point in the sublevel set and,

therefore,

lim
t→+∞

(x(t), v(t)) = (x2, 0). •

15.5 Application #1: Linear and linearized systems

It is interesting to study the convergence properties of a linear system. Recall that a symmetric matrix is positive

definite if all its eigenvalues are strictly positive.

Theorem 15.9 (Convergence of linear systems). For a matrix A ∈ Rn×n, the following properties are equivalent:
(i) each solution to the differential equation ẋ = Ax satisfies limt→+∞ x(t) = 0n,
(ii) A is Hurwitz, i.e., all the eigenvalues of A have strictly-negative real parts, and
(iii) for every positive-definite matrix Q, there exists a unique solution positive-definite matrix P to the so-called

Lyapunov matrix equation:
ATP + PA = −Q.

Note: one can show that statement (iii) implies statement (i) using the Lyapunov Stability Criteria with quadratic

Lyapunov function V (x) = xTPx, whose Lie derivative along the systems solutions is V̇ = xT(ATP + PA)x =
−xTQx ≤ 0.

Next, we show a very useful way to apply linear stability methods to analyze the local stability of a nonlinear

system.

The linearization at the equilibrium point x∗ of the dynamical system (X, f) is the linear dynamical system

defined by the differential equation ẏ = Ay, where

A =
∂f

∂x
(x∗).

Theorem 15.10 (Convergence of nonlinear systems via linearization). Consider a dynamical system (X, f)
with an equilibrium point x∗, with twice differentiable vector field f , and with linearization A at x∗. The following
statements hold:
(i) the equilibrium point x∗ is locally exponentially stable if all the eigenvalues of A have strictly-negative real parts;

and
(ii) the equilibrium point x∗ is unstable if at least one eigenvalue of A has strictly-positive real part.

Example 15.11 (Two coupled oscillators). For θ ∈ R, consider the dynamical system (14.6) arising from two

coupled oscillators:

θ̇ = f(θ) = ω − sin(θ).

If ω ∈ [0, 1[, then there are two equilibrium points inside the range θ ∈ [0, 2π[:

θ∗1 = arcsin(ω) ∈ [0, π/2[, and θ∗2 = π − arcsin(ω) ∈ ]π/2,+π].

Moreover, for θ ∈ R, the 2π-periodic set of equilibria are {θ∗1 + 2kπ | k ∈ Z} and {θ∗2 + 2kπ | k ∈ Z}. The
linearization matrix A(θ∗i ) =

∂f
∂θ (θ

∗
i ) = − cos(θ∗i ) for i ∈ {1, 2} shows that θ∗1 is locally exponentially stable and

θ∗2 is unstable. •

Example 15.12 (A third order scalar system). Pick a scalar c and, for x ∈ R, consider the dynamical system

ẋ = f(x) = c · x3.
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The linearization at the equilibrium x∗ = 0 is indefinite: A(x∗) = 0. Thus, Theorem 15.10 offers no conclusions

other than the equilibrium cannot be exponentially stable. On the other hand, the Krasovskiı̆-LaSalle Invariance

Principle shows that for c < 0 every trajectory converges to x∗ = 0. Here, a non-increasing and differentiable

function is given by V (x) = x2 with Lie derivative LfV (x) = −2cx4 ≤ 0. Since V (x(t)) is non-increasing
along the solution to the dynamical system, a compact invariant set is then readily given by any sublevel set

{x | V (x) ≤ ℓ} for ℓ ≥ 0. •

15.6 Application #2: Positive linear systems and Metzler matrices

In this short section we study the positive linear system ẋ =Mx, x ∈ Rn≥0, with equilibrium point 0n, and with

matrixM being Metzler matrix.

The following corollary is based upon Theorem 10.14 and illustrates how each of the conditions (iv), (v), and (vi)

corresponds to a Lyapunov function of a specific form for a Hurwitz Metzler system.

Corollary 15.13 (Lyapunov functions for positive linear systems). LetM be a Hurwitz Metzler matrix. The
positive linear system ẋ =Mx, x ∈ Rn≥0, with equilibrium point 0n, admits the following global Lyapunov functions:

V1(x) = maxi∈{1,. . .,n} xi/ξi, for ξ > 0n satisfyingMξ < 0n,

V2(x) = ηTx, for η > 0n satisfying ηTM < 0n, and

V3(x) = xTPx, for a diagonal matrix P ≻ 0 satisfyingMTP + PM ≺ 0.

We illustrate the level sets of these three global Lyapunov functions in Figure 15.7.

15.7 Application #3: Negative gradient systems

We now summarize and extend the analysis given in Example 15.3 of the stability properties of negative gradient

systems. Recall for convenience that, given a differentiable function V : Rn → R, the negative gradient flow defined

by V is the dynamical system

ẋ(t) = −∂V
∂x

(x(t)). (15.6)

We start by noting that, as in the Exercise, the Lie derivative of V along the negative gradient flow is

L− ∂V
∂x
V (x) = −

∥∥∥∥
∂V

∂x
(x)

∥∥∥∥
2

≤ 0,

and that, therefore, each sublevel set V −1
≤ (ℓ), for ℓ ∈ R is invariant (provided it is non-empty).

Given a twice differentiable function V : Rn → R and a point x ∈ Rn, the Hessian matrix of V , denoted

by HessV (x) ∈ Rn×n, is the symmetric matrix of second order partial derivatives at x: (HessV )ij(x) =
∂2V/∂xi∂xj(s). Given a critical point x∗ of V , if the Hessian matrix HessV (x∗) is positive definite, then x∗ is an
isolated local minimum point of V . The converse is not true; as a counterexample, consider the function V (x) = x4

and the critical point x∗ = 0.

Theorem 15.14 (Convergence of negative gradient flow). Let V : Rn → R be twice-differentiable and assume
its sublevel set V −1

≤ (ℓ) = {x ∈ Rn | V (x) ≤ ℓ} is compact for some ℓ ∈ R. Then the negative gradient flow (15.6)

has the following properties:
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(i) each solution t 7→ x(t) starting in V −1
≤ (ℓ) satisfies limt→+∞ V (x(t)) = c, for some c ≤ ℓ, and approaches the

set of critical points of V :
{
x ∈ Rn

∣∣ ∂V
∂x

(x) = 0n
}
,

(ii) each local minimum point x∗ is locally asymptotically stable and it is locally exponentially stable if and only if
HessV (x∗) is positive definite,

(iii) a critical point x∗ is unstable if at least one eigenvalue of HessV (x∗) is strictly negative,
(iv) if the function V is analytic, then every solution starting in a compact sublevel set has finite length (as a curve in

Rn) and converges to a single equilibrium point.

Proof. To show statement (i), we verify that the assumptions of the Krasovskiı̆-LaSalle Invariance Principle are

satisfied as follows. First, as set W we adopt the sublevel set V −1
≤ (ℓ) which is compact by assumption and is

invariant. Second we know the Lie derivative of V along the vector field is non-positive. Statement (i) is now an

immediate consequence of the Krasovskiı̆-LaSalle Invariance Principle.

The statements (ii) and (iii) follow from observing that the linearization of the negative gradient system at the

equilibrium x∗ is the negative Hessian matrix evaluated at x∗ and from applying Theorem 15.10.

Regarding statement (iv), we refer to the original source (Łojasiewicz, 1984) and to the review in (Absil et al.,

2005, Section 2). ■
Note: If the function V has isolated critical points, then the negative gradient flow evolving in a compact set

must converge to a single critical point.

15.8 Application #4: Continuous-time averaging systems and Laplacian matrices

In this section we revisit the continuous-time averaging system, i.e., the Laplacian flow,

ẋ = −Lx.

As in Section 12.5, we define the max-min function Vmax-min : Rn → R≥0 by

Vmax-min(x) = max
i∈{1,. . .,n}

xi − min
i∈{1,. . .,n}

xi,

and that Vmax-min(x) ≥ 0, and Vmax-min(x) = 0 if an only if x = α1n for some α ∈ R.

Lemma 15.15 (The max-min function along the Laplacian flow). Let L ∈ Rn×n be the Laplacian matrix of a
weighted digraph G. Let x(t) be the solution to the Laplacian flow ẋ = −Lx. Then
(i) t 7→ Vmax-min(x(t)) is non-increasing,
(ii) if G has a globally reachable node, then, for some α ∈ R,

lim
t→∞

Vmax-min(x(t)) = 0 and lim
t→∞

x(t) = α1n.

Numerous proofs for these results are possible (e.g., statement (ii) is established in Theorem 7.4). A second

approach is to use the properties of the row-stochastic matrix exp(−Lt), t ∈ R≥0, as established in Theorem 7.2.

Here we pursue a strategy based on adopting Vmax-min as a weak Lyapunov function and, because Vmax-min

is not continuously-differentiable, applying an appropriate generalization of the Krasovskiı̆-LaSalle Invariance

Principle in Theorem 15.7. For our purposes here, it suffices to present the following concepts.
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Definition 15.16. The upper right Dini derivative and upper left Dini derivative of a continuous function f : ]a, b[ → R
at a point t ∈ ]a, b[ are defined by, respectively,

D+f(t) = lim sup
∆t>0,∆t→0

f(t+∆t)− f(t)

∆t
, and D−f(t) = lim sup

∆t<0,∆t→0

f(t+∆t)− f(t)

∆t
.

Recall that the limit superior of a real sequence {an}n∈N is defined by

lim sup
n→∞

an = lim
n→∞

sup
m≥n

am.

Similarly, the limit superior of a function f : ]0, ε[→ R is defined by

lim sup
h→0,h>0

f(h) = inf
h>0

sup
x∈]0,ε[

f(x). (15.7)

Since the sup operator is always well defined (possibly equal to +∞), so are the Dini derivatives.

Lemma 15.17 (Properties of the upper Dini derivatives). Given a continuous function f : ]a, b[ → R,
(i) if f is differentiable at t ∈ ]a, b[, then D+f(t) = D−f(t) = d

dtf(t) is the usual derivative of f at t, and
(ii) if D+f(t) ≤ 0 or D−f(t) ≤ 0 for all t ∈ ]a, b[, then f is non-increasing on ]a, b[.
Morever, given differentiable functions f1, . . . , fm : ]a, b[ → R, the max function fmax(t) = max{fi(t) | i ∈
{1, . . . ,m}} satisfies
(iii) D+fmax(t) = max

{ d
dt
fi(t)

∣∣ i ∈ argmax(fmax(t))
}
,

D−fmax(t) = min
{ d
dt
fi(t)

∣∣ i ∈ argmax(fmax(t))
}
, and

(iv) if D+fmax(t) ≤ 0 for all t ∈ ]a, b[, then fmax is non-increasing on ]a, b[.

Note: statement (i) follows from the definition of derivative of a differentiable function. Statement (ii) is a

consequence of Theorem 1.14 in (Giorgi and Komlósi, 1992), to which we refer for all proofs. Statement (iii) is

known as Danskin’s Lemma.

Proof of Lemma 15.15. Define the quantitiesxmax(t) = max(x(t)) andxmin(t) = min(x(t)) aswell as argmax(x(t)) =
{i ∈ {1, . . . , n} | xi(t) = xmax(t)} and argmin(x(t)) = {i ∈ {1, . . . , n} | xi(t) = xmin(t)}. Along the Laplacian
flow ẋi =

∑n
j=1 aij(xj − xi), Lemma 15.17(iii) (Danskin’s Lemma) implies

D+Vmax-min(x(t)) = max{ẋi(t) | i ∈ argmax(x(t))} −min{ẋi(t) | i ∈ argmin(x(t))}

= max
{ n∑

j=1

aij(xj − xmax) | i ∈ argmax(x(t))
}

−min
{ n∑

j=1

aij(xj − xmin) | i ∈ argmin(x(t))
}
,

where we have used −min(x) = max(−x). Because xj − xmax ≤ 0 and xj − xmin ≥ 0 for all j ∈ {1, . . . , n},
we have established that D+Vmax-min(x(t)) is the sum of two non-positive terms. This property, combined with

Lemma 15.17(iv), implies that t 7→ Vmax-min(x(t)) is non-increasing, thereby completing the proof of statement (i).

To establish statement (ii) we invoke a generalized version of the Krasovskiı̆-LaSalle Invariance Principle 15.7.

First, we note that statement (i) implies that any solution is bounded inside [xmin(0), xmax(0)]
n
; this is a sufficient

property (in lieu of the compactness of the setW ). Second, we know the continuous function Vmax-min along the

Laplacian flow is non-increasing (in lieu of the same property for a Lie derivative of a continuously-differentiable
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function). Therefore, we now know that there exists c such that the solution starting from x(0) converges to the

largest invariant set C contained in

{
x ∈ [xmin(0), xmax(0)]

n | D+Vmax-min(x)
∣∣
ẋ=−Lx = 0

}
∩V −1

max-min
(c).

Because Vmax-min is non-negative, we know c ≥ 0. We now assume by absurd that c > 0, we let y(t) be a trajectory
originating in C , and we aim to show that Vmax-min(y(t)) decreases along time (which is a contradiction because C
is invariant).

Let k be a globally reachable node. Let i (resp. j) be an arbitrary index in argmax(y(0)) (resp. argmin(y(0)))
so that yi(0) − yj(0) = c > 0. Without loss of generality we assume yk(0) < yi(0). (Otherwise it would need

to be yk(0) > yj(0) and we would proceed similarly.) Recall we know ẏi(0) ≤ 0. We now note that, if ẏi(t) = 0
for all t ∈ (0, ε) for a positive ε, then the equation ẏi =

∑
j aij(yj − yi) and the property yi(0) = max y(0)

together imply that yj(t) = yi(t) for all t ∈ (0, ε) and for all j such that aij > 0. Iterating this argument along the

directed walk from i to k, we get the contradiction that yk(t) = yi(t) for all t ∈ (0, ε). Therefore, we know that

ẏi(t) < 0 for small times. Because i is an arbitrary index in argmax(y(0)), we have proved that t 7→ max y(t) is
strictly decreasing for small times. This establishes that C is not invariant if c > 0 and completes the proof of

statement (ii). ■

15.9 Application #5: Interconnected stable systems

We consider the interconnection of n dynamical systems

ẋi = fi(t, xi, x−i), for i ∈ {1, . . . , n}, (15.8)

where xi ∈ RNi
, N =

∑n
i=1Ni, and x−i ∈ RN−Ni

. We assume the origin is an equilibrium, that is,

fi(t,0Ni ,0N−Ni) = 0Ni , for all t. (15.9)

We assume that there exist positive definite and differentible functions Vi(t, xi) an positive definite functions

ϕi(xi), for i ∈ {1, . . . , n}, such that, for all t, xi ∈ RNi
and x−i ∈ RN−Ni

,

(A1)

∂Vi
∂t

(t, xi) +
∂Vi
∂xi

fi(t, xi,0N−Ni) ≤ −ciϕi(xi)2, for some ci > 0,

(A2)

∥∥∥∂Vi
∂xi

(t, xi)
∥∥∥ ≤ ϕi(xi) and ∥fi(t, xi, x−i)− fi(t, xi,0N−Ni)∥ ≤

n∑

j=1,j ̸=i
γijϕj(xj) for some γij ≥ 0.

Note that Assumption (A1) is a Lie derivative assumption and Assumption (A2) contains two Lipschitz boundedness

conditions.

Next, define the gain matrix

Γ =



−c1 . . . γ1n
.
.
.

.

.

.

γn1 . . . −cn


 .

Theorem 15.18 (Stability of interconnected stable system). Consider the interconnected system (15.8) satisfying
the equilibrium condition (15.9), as well as Assumptions (A1) and (A2). If the Metzler gain matrix Γ is Hurwitz, then
(i) V (t, x) =

∑n
i=1 piVi(t, xi) is a local Lyapunov function for any diag(p) ≻ 0 satisfying diag(p)Γ+ΓT diag(p) ≺

0,
(ii) the origin is locally asymptotically stable, and
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(iii) if additionally each Vi is proper, then V is a global Lyapunov function and the origin is globally asymptotically
stable.

Proof. Regarding statement (i), we start by noting that such diagonal matrices exist because Γ is Hurwitz Metzler

and Theorem 10.14(vi) applies. Define ϕ(x) =
[
ϕ1(x1) . . . ϕn(xn)

]T
and compute the Lie derivative of the

candidate Lyapunov function V (t, x) =
∑n

i=1 piVi(t, xi) as follows:

d

dt
V (t, x) =

n∑

i=1

pi

(∂Vi
∂t

(t, xi) +
∂Vi
∂xi

fi(t, xi, x−i)
)

=
n∑

i=1

pi

(∂Vi
∂t

(t, xi) +
∂Vi
∂xi

fi(t, xi, 0N−Ni)
)

+
n∑

i=1

pi
∂Vi
∂xi

(
fi(t, xi, x−i)− fi(t, xi,0N−Ni)

)

≤ −
n∑

i=1

piciϕi(xi)
2 +

n∑

i=1

pi

∥∥∥∂Vi
∂xi

∥∥∥
∥∥fi(t, xi, x−i)− fi(t, xi, 0N−Ni)

∥∥
(15.10)

≤ −
n∑

i=1

piciϕi(xi)
2 +

n∑

i=1

n∑

j=1,j ̸=i
piγijϕi(xi)ϕj(xj) (15.11)

= 1
2ϕ(x)

T
(
ΓTP + PΓ

)
ϕ(x) < 0,

for all x such that ϕ(x) ̸= 0n. In this derivation, inequality (15.10) follows from Assumption (A1) and inequal-

ity (15.11) follows from Assumption (A2). Statement (i)-(iii) now follow directly from the Lyapunov Stability

Criteria in Theorem 15.4. ■

Remark 15.19 (Conservativeness of stability test). Assumptions (A1)-(A2) are conservative because any inter-
connection is treated as a disturbance and its effect is upper bounded in a conservative way. For example, pick ε > 0
and define

d

dt

[
x1
x2

]
=

[
−ε 1
−1 −ε

] [
x1
x2

]
=: Aε

[
x1
x2

]
. (15.12)

The matrix Aε has eigenvalues −ε± i and so it is Hurwitz for all ε > 0. Treating the system as the interconnection

of two stable subsystems leads to the gain matrix
[
−ε 1
1 −ε

]
with eigenvalues −ε ± 1, which fails to be Hurwitz

whenever ε < 1. •

15.10 Historical notes and further reading

Classic historical works on stability properties of physical systems include (Lagrange, 1788; Maxwell, 1868; Thomson

and Tait, 1867). Modern stability theory started with the work by Lyapunov (1892), who proposed the key ideas

towards a general treatment of stability notions and tests for nonlinear dynamical systems. Lyapunov’s ideas were

extended by Barbashin and Krasovskiı̆ (1952); Krasovskiı̆ (1963) and LaSalle (1960, 1968, 1976) through their work

on invariance principles. Other influential works include (Chetaev, 1961; Hahn, 1967).

For comprehensive treatments, we refer the reader to the numerous excellent texts in this area, e.g., including

the classic control texts (Sontag, 1998; Khalil, 2002; Vidyasagar, 2002), the classic dynamical systems texts (Hirsch

and Smale, 1974; Arnol’d, 1992; Guckenheimer and Holmes, 1990), and the more recent works (Haddad and

Chellaboina, 2008; Goebel et al., 2012; Blanchini and Miani, 2015).
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This chapter has treated systems evolving in continuous time. Naturally, it is possible to develop a Lyapunov

theory for discrete-time systems, even though remarkably there are only few references on this topic; see (LaSalle,

1976, Chapter 1). For discrete-time Lyapunov functions for averaging systems we refer to Section 5.3.

Our treatment of Metzler matrices in Section 15.6 is standard, a recent discussion is given by (Rantzer, 2015).

We refer to (Clarke et al., 1998; Cortés, 2008) for a comprehensive review of stability theory for nonsmooth

systems and Lyapunov functions. Properties of the Dini derivatives are reviewed by Giorgi and Komlósi (1992).

The usefulness of Dini derivatives in continuous-time averaging systems is highlighted for example by Lin et al.

(2007); see also (Danskin, 1966) for Danskin’s Lemma.

The treatment of interconnected stable systems in Section 15.9 originates in the method of vector Lyapunov

functions developed by (Bellman, 1962; Matrosov, 1962). Classic references include are (Šiljak, 1978, 1991; Laksh-

mikantham et al., 1991).
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t

solutions to ẋ = �@V

@x
(x)

(a) Conjecture: each solution converges to one of the two local

minima.

x

trajectories converge to local minima

(b) Sketch of the motion on the potential energy surface.

solutions to mẍ = �@V

@x
(x)

t

(c) Conjecture: each solution oscillates around a local minimum

or diverge.

x

trajectories oscillate about local minima

(d) Sketch of the motion on the potential energy surface.

solutions to mẍ = �@V

@x
(x) � dẋ

t

(e) Conjecture: each solution converges to one of the two local

minima.

x

trajectories converge to local minima

(f) Sketch of the motion on the potential energy surface.

Figure 15.5: Numerically computed solutions (left) and graphical visualization of the solutions (right) for the three

example systems with potential energy function V . Parameters are x(0) ∈ {−2,−1, . . . , 14} andm = d = 1.
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x

Vlog-lin,(x)

 2 3 4

Figure 15.6: The function Vlog-lin,κ(x) = x− κ− κ log(x/κ), with κ > 0.

(a) Rectangular level set for global

Lyapunov function V1

(b) Linear level set for global Lya-

punov function V2

(c) Quadratic level set for global

Lyapunov function V3

Figure 15.7: Level sets of global Lyapunov functions for Hurwitz positive linear systems, as established in Corol-

lary 15.13
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15.11 Exercises

E15.1 The logarithmic-linear function. For κ > 0, define the function Vlog-lin,κ : R>0 → R by

Vlog-lin,κ(x) = x− κ− κ log
(x
κ

)
.

Show that

(i) Vlog-lin,κ is continuously differentiable and
d
dxVlog-lin,κ(x) = (x− κ)/x,

(ii) Vlog-lin,κ(x) ≥ 0 for all x > 0 and Vlog-lin,κ(x) = 0 if and only if x = κ, and
(iii) limx→0+ Vlog-lin,κ(x) = limx→∞ Vlog-lin,κ(x) = +∞.

E15.2 Grönwall-BellmanComparison Lemma. Given continuous functions of time t 7→ a(t) ∈ R and t 7→ gamma(t) ∈
R, assume the differentiable signal t 7→ x(t) satisfies the differential inequality

ż(t) ≤ a(t)z(t) + γ(t).

Show that, for all 0 ≤ s ≤ t ∈ R≥0, with the shorthand A(s, t) =
∫ t
s
a(τ)dτ ,

z(t) ≤ eA(0,t) z(0) +

∫ t

0

eA(τ,t) γ(τ)dτ. (E15.1)

In other words, z(t) is upper bounded by the solution to the corresponding differential equality.

E15.3 The negative gradient flow of a strictly convex function. Recall that a function f : Rn → R is convex if

f(αx+ βy) ≤ αf(x) + βf(y) for all x ̸= y in Rn and for all α, β ≥ 0 satisfying α+ β = 1. A function is strictly
convex if the previous inequality holds strictly.

Let f : Rn → R be strictly convex and twice differentiable. Show global convergence of the associated negative

gradient flow, ẋ = − ∂
∂xf(x), to the global minimizer x∗ of f using the Lyapunov function candidate V (x) =

(x− x∗)T(x− x∗) and the Krasovskiı̆-LaSalle Invariance Principle in Theorem 15.7.

Hint: Use the global underestimate property of a strictly convex function stated as follows: f(y)−f(x) > ∂
∂xf(x)(y−x)

for all distinct x and y in the domain of f .

E15.4 Region of attraction for an example nonlinear systems. Consider the nonlinear system

ẋ1 = −2x1 − 2x2 − 4x31x
2
2,

ẋ2 = −2x1 − 2x2 − 2x41x2.

Is the origin locally asymptotically stable? What is the region of attraction?

E15.5 A useful corollary by Barbashin and Krasovskiı̆ (1952). Consider a dynamical system (Rn, f)with differentiable

vector field f and with an equilibrium point x∗ ∈ Rn.
Assume the continuously-differentiable V : Rn → R is a weak Lyapunov function, but not a local Lyapunov

function (as defined in Theorem 15.4). In other words, assume V is locally positive-definite about x∗ (Assumption (L1))

and LfV is locally negative-semidefinite about x∗ (Assumption (L2)), but LfV is not locally negative-definite

about x∗ (Assumption (L3)). Then Lyapunov Theorem 15.4 implies that x∗ is stable but not necessarily locally

asymptotically stable.

Now, assume:

(L7) {x∗} is the only positively invariant set in {x ∈W | LfV (x) = 0}, whereW be a neighborhood of x∗ on which

V is positive-definite and LfV is negative-semidefinite.

Prove that Assumptions (L1), (L2) and (L7) imply the equilibrium point x∗ is locally asymptotically stable.

E15.6 Limit sets of dynamical systems. Consider the following nonlinear dynamical system

ẋ1 = 4x21x2 − f1(x1)(x
2
1 + 2x22 − 4), (E15.2a)

ẋ2 = −2x31 − f2(x2)(x
2
1 + 2x22 − 4), (E15.2b)
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where the differentiable functions f1(x), f2(x) have the same sign as their arguments, i.e., xifi(xi) > 0 if xi ̸= 0,
fi(0) = 0, and f ′i(0) > 0. This vector field exhibit some very unconventional limit sets. In what follows you will

investigate this vector field and show that each trajectory converge to an equilibrium, but that none of the equilibria

is Lyapunov stable.

(i) Show that E = {x ∈ R2 | x21 + 2x22 = 4} is an invariant set. Calculate the equilibria on the set E .
(ii) Show that all trajectories converge either to the invariant set E or to the origin (0, 0).
(iii) Determine the largest invariant set inside E , such that all trajectories originating in E converge to that set.

(iv) Show that the origin (0, 0) and all equilibria on E are unstable, i.e., not stable in the sense of Lyapunov. Sketch the

vector field.

E15.7 An invariant triangle. Consider the dynamical system

ẋ1 = −x2 + x1x2,

ẋ2 = x1 +
1

2
(x21 − x22).

Show that

(i) the equilibrium points A = (−2, 0), B = (1,−
√
3), and C = (1,

√
3) are unstable (note that A, B, and C are not

the only equilibrium points);

(ii) the triangle D defined by three points A,B,C is positively invariant, that is, trajectories starting in D do not

leave D; and

Hint: Show that trajectory cannot leave D through any of the line segments AB, BC , and CA.
(iii) the energy function

V (x1, x2) = −1

2
(x21 + x22) +

1

2

(
x1x

2
2 −

1

3
x31
)

is conserved along the trajectories of the dynamical system.

E15.8 The continuous-time Hopfield neural network (Hopfield, 1982). Consider the additive RC model of a neuron:

Ciẋi +
1

Ri
xi = Ii +

n∑

j=1

wijyj , (E15.3)

where the neuron internal voltage is xi and the neuron output voltage is

yi = g(xi). (E15.4)

Here (i) wij are conductances of the neural network; we assume the network is undirected and weighted, and (ii) as

monotonically-increasing activation function g, we adopt g(x) = tanh(x/2) and note its monotonically-increasing

inverse g−1(y) = − log((1− y)/(1 + y)).
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Figure E15.1: Additive model of neuron with current summing junction.
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Define the energy function of the network by

E(x1, . . . , xn) = −1

2

n∑

i,j=1

wijyiyj +

n∑

i=1

( 1

Ri

∫ yi

0

g−1(v)dv − Iixi

)
, (E15.5)

and perform the following steps:

(i) discuss the energy landscape with numerous minima,

(ii) characterize as best as possible the equilibria of the system,

(iii) will the trajectories of this system either converge to one of the equilibria, or oscillate or behave in some other

way?

Note: (Haykin, 2008, Chapter 13) reviews numerous neurodynamics results; e.g., see Section 13.7 on the Hopfield network.
A nice discussion can also be found at http: // www .scholarpedia .org/ article/ Hopfield _network

E15.9 Persidskii models (Persidskii, 1969; Kaszkurewicz and Bhaya, 1993). Given a matrix A ∈ Rn×n and a diagonal

continuous map Φ: Rn → Rn, define the Persidskii dynamical system

ẋ = AΦ(x) =: fPer(x). (E15.6)

By diagonal map we mean that Φ(x) =
[
ϕ1(x1) . . . ϕn(xn)

]T
. Assume there exists a positive vector p ∈ Rn>0

such that A satisfies the stability LMI

diag(p)A+AT diag(p) ≺ 0.

Such a matrix A is said to be diagonally stable. Define the function V : Rn → R by

V (x) =

n∑

i=1

pi

∫ xi

0

ϕi(z)dz. (E15.7)

Show that

(i) V is continuously differentiable and satisfies

LfPerV (x) = 1
2Φ(x)

T
(
diag(p)A+AT diag(p)

)
Φ(x); (E15.8)

(ii) if ϕi(0) = 0 and ϕi(y)y > 0 for each i ∈ {1, . . . , n} and for all y ∈ R \ {0}, then V is globally positive-definite

and LfPerV (x) is globally negative-definite about 0n. The equilibrium 0n is therefore locally asymptotically stable

for fPer, and
(iii) if additionally

∫ xi

0
ϕi(z)dz → ∞ as |xi| → ∞ for all i, then V is proper and 0n is globally asymptotically stable

for fPer.
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Chapter16

Lotka-Volterra Population Dynamics

In this chapter we study the behavior of the Lotka-Volterra population model, that was introduced in Section 14.1.

First we illustrate the behavior of the 2-dimensional model via simple phase portraits. Then, using Lyapunov

stability theory from Chapter 14 we provide sufficient conditions for the general n-dimensional model to have a

globally asymptotically stable point. As a special case, we study the case of cooperative models.

Recall that the Lotka-Volterra vector field for n ≥ 2 interacting species, as given in equation (14.3), is

ẋ = diag(x)
(
Ax+ r

)
=: fLV(x), (16.1)

where the matrix A = [aij ] is called the interaction matrix, and the vector r is called the intrinsic growth rate. In

components, ẋi = xi
∑n

j=1(aijxj + ri).

16.1 Two-species model and analysis

In this section we consider the two-species Lotka-Volterra system

ẋ1 = x1(r1 + a11x1 + a12x2),

ẋ2 = x2(r2 + a21x1 + a22x2),
(16.2)

with parameters (r1, r2) and (a11, a12, a21, a22). It is possible to fully characterize the dynamics behavior of this

system as a function of the six scalar parameters. As explained in Section 14.1, to model bounded resources, our

standing assumptions are:

ri > 0, and aii < 0, for i ∈ {1, 2}.
We study various cases depending upon the sign of a12 and a21.

To study the phase portrait of this two-dimensional system, we establish the following details:

(i) along the axis x2 = 0, there exists a unique non-trivial equilibrium point x∗1 = −r1/a11;
(ii) similarly, along the axis x1 = 0, there exists a unique non-trivial equilibrium point x∗2 = −r2/a22;
(iii) the x1-null-line is the set of points (x1, x2) where ẋ1 = 0, that is, the line in the (x1, x2) plane defined by

r1 + a11x1 + a12x2 = 0;

(iv) similarly, the x2-null-line is the (x1, x2) plane defined by r2 + a21x1 + a22x2 = 0.

Clearly, the x1-null-line (respectively the x2-null-line) passes through the equilibrium point x∗1 (respectively x
∗
2).

In what follows we study the cases of mutualistic interactions and competitive interactions. We refer to

Exercise E16.2 for a specially-interesting case of predator-prey interactions.
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16.1.1 Mutualism

Here we assume inter-species mutualism, that is, we assume both inter-species coefficients a12 and a21 are positive.
We identify two distinct parameter ranges corresponding to distinct dynamic behavior and illustrate them in

Figure 16.1.

Lemma 16.1 (Two-species mutualism). Consider the two-species Lotka-Volterra dynamical system (16.2) with
parameters (r1, r2) and (a11, a12, a21, a22). Assume the interaction is mutualistic, i.e., assume a12 > 0 and a21 > 0.
The following statements hold:

Case I: if a12a21 < a11a22, then there exists a unique positive equilibrium point (x∗1, x
∗
2), solution to

[
a11 a12
a21 a22

] [
x∗1
x∗2

]
= −

[
r1
r2

]
,

and all trajectories starting in R2
>0 converge to it;

Case II: otherwise, if a12a21 > a11a22, then there exists no positive equilibrium point and all trajectories starting in
R2
>0 diverge.

x⇤
1 = �r1/a11

x
⇤ 2

=
�

r 2
/a

2
2

x1-null-line

x2-null-line

Case I: a12 > 0, a21 > 0, a12a21 < a11a22. There exists a

unique positive equilibrium point. All trajectories starting in R2
>0

converge to the equilibrium point.

x⇤
1 = �r1/a11

x
⇤ 2

=
�

r 2
/a

2
2

x1-null-line

x2-null-line

Case II: a12 > 0, a21 > 0, a12a21 > a11a22. There exists no

positive equilibrium point. All trajectories starting inR2
>0 diverge.

Figure 16.1: Two possible cases of mutualism in the two-species Lotka-Volterra system

16.1.2 Competition

Here we assume inter-species competition, that is, we assume both inter-species coefficients a12 and a21 are

negative. We identify four (two sets of two) distinct parameter ranges corresponding to distinct dynamic behavior

and illustrate them in Figures 16.2 and 16.3.

Lemma 16.2 (Two-species competition with a positive equilibrium). Consider the two-species Lotka-Volterra
system (16.2) with parameters (r1, r2) and (a11, a12, a21, a22). Assume the interaction is competitive, i.e., assume
a12 < 0 and a21 < 0. The following statements hold:

Case III: if r2/|a22| < r1/|a12| and r1/|a11| < r2/|a21|, then there exists a unique positive equilibrium, which
attracts all trajectories starting in R2

>0;
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Case IV: if r1/|a12| < r2/|a22| and r2/|a21| < r1/|a11|, then the equilibrium in R2
>0 is unstable; all trajectories (ex-

cept the equilibrium solution) converge either to the equilibrium (−r1/a11, 0) or to the equilibrium (0,−r2/a22).

As for Case I, for Cases III and IV, it is easy to compute the unique positive equilibrium point (x∗1, x
∗
2) as the

solution to

[
a11 a12
a21 a22

] [
x∗1
x∗2

]
= −

[
r1
r2

]
.

�r2/a21

�
r 1

/
a
1
2

�r1/a11

�
r 2

/
a
2
2

x1-null-line

x2-null-line

Case III: a12 < 0, a21 < 0, r2/|a22| < r1/|a12|, and r1/|a11| <
r2/|a21|. There exists a unique positive equilibrium, which attracts

all trajectories starting in R2
>0.

�
r 1

/a
1
2

�
r 2

/a
2
2

�r2/a21 �r1/a11

x1-null-line

x2-null-line

Case IV: a12 < 0, a21 < 0, r1/|a12| < r2/|a22|, and r2/|a21| <
r1/|a11|. The equilibrium in R2

>0 is unstable; all trajectories (ex-

cept the equilibrium solution) converge either to the equilibrium

(−r1/a11, 0) or to the equilibrium (0,−r2/a22).

Figure 16.2: Two competition cases with an equilibrium in the two-species Lotka-Volterra system

Lemma 16.3 (Two-species competition without positive equilibria). Consider the two-species Lotka-Volterra
system (16.2) with parameters (r1, r2) and (a11, a12, a21, a22). Assume the interaction is competitive, i.e., assume
a12 < 0 and a21 < 0. The following statements hold:

Case V: if r2/|a22| < r1/|a12| and r2/|a21| < r1/|a11|, then there exists no equilibrium in R2
>0 and all trajectories

starting in R2
>0 converge to the equilibrium (−r1/a11, 0);

Case VI: if r1/|a12| < r2/|a22| and r1/|a11| < r2/|a21|, then there exists no equilibrium in R2
>0 and all trajectories

starting in R2
>0 converge to the equilibrium (0,−r2/a22).
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�r2/a21 �r1/a11
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x1-null-line

x2-null-line

Case V: a12 < 0, a21 < 0, r2/|a22| < r1/|a12|, and r2/|a21| <
r1/|a11|. There exists no equilibrium in R2

>0. All trajectories

starting in R2
>0 converge to the equilibrium (−r1/a11, 0).

x2-null-line

x1-null-line

�r2/a21�r1/a11

�
r 1

/a
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Case VI: a12 < 0, a21 < 0, r1/|a12| < r2/|a22|, and r1/|a11| <
r2/|a21|. There exists no equilibrium in R2

>0. All trajectories

starting in R2
>0 converge to the equilibrium (0,−r2/a22).

Figure 16.3: Two competition cases without equilibria in the two-species Lotka-Volterra system

16.2 General results for Lotka-Volterra models

We have seen some variety of behavior in the 2-species Lotka-Volterra model (16.2). Much richer dynamical

behavior is possible in the n-species Lotka-Volterra model (14.3), including persistence, extinction, equilibria,

periodic orbits, and chaotic evolution. In what follows we focus on sufficient conditions for the existence and

stability of equilibrium points.

Lemma 16.4 (Lotka-Volterra is a positive system). For n ≥ 2, the Lotka-Volterra system (16.1) is a positive
system, i.e., x(0) ≥ 0 implies x(t) ≥ 0 for all subsequent t. Moreover, if xi(0) = 0, then xi(t) = 0 for all subsequent
t.

Therefore, without loss of generality, we can assume that all initial conditions are positive vectors in Rn>0. In

other words, if a locally-asymptotically stable positive equilibrium exists, the best we can hope for is to establish

that its region of attraction is Rn>0. We are now ready to state the main result of this section.

Theorem 16.5 (Sufficient conditions for global asymptotic stability). For the Lotka-Volterra system (16.1)

with interaction matrix A and intrinsic growth rate r, assume

(A1) A is diagonally stable, i.e., there exists a positive vector p ∈ Rn>0 such that diag(p)A+AT diag(p) is negative
definite, and

(A2) the unique equilibrium point x∗ = −A−1r is positive.

Then x∗ is globally asymptotically stable on Rn>0.

Proof. Note that A diagonally stable implies A Hurwitz and invertible. For κ > 0, recall the logarithmic-linear
function Vlog-lin,κ : R>0 → R illustrated in Figure 15.6 and defined by

Vlog-lin,κ(x) = x− κ− κ log
(x
κ

)
.
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Assumption (A2) allows us to define V : Rn>0 → R≥0 by

V (x) =

n∑

i=1

piVlog-lin,x∗i (xi) =

n∑

i=1

pi
(
xi − x∗i − x∗i log(xi/x

∗
i )
)
.

From Exercise E15.1 we know that the function Vlog-lin,κ is continuously differentiable, takes non-negative values

and satisfies Vlog-lin,κ(xi) = 0 if and only if xi = κ. Moreover, this function is unbounded in the limits as xi → ∞
and xi → 0+. Therefore, V is globally positive-definite about x∗ and proper.

Next, we compute the Lie derivative ofV along the flow of the Lotka-Volterra vector field fLV(x) = diag(x)(Ax+
r). First, compute

d
dxi
Vlog-lin,x∗i (xi) = (xi − x∗i )/xi, so that

LfLVV (x) =

n∑

i=1

pi
xi − x∗i
xi

(fLV(x))i.

Because A is invertible and x∗ = −A−1r, we write Ax+ r = A(x− x∗) and obtain

LfLVV (x) =
n∑

i=1

pi(xi − x∗i )(A(x− x∗))i

= (x− x∗)TAT diag(p)(x− x∗)

=
1

2
(x− x∗)T(AT diag(p) + diag(p)A)(x− x∗).

where we use the equality yTBy = yT(B +BT)y/2 for all y ∈ Rn and B ∈ Rn×n. Assumption (A1) now implies

that LfLVV (x) ≤ 0 with equality if and only if x = x∗. Therefore, LfLVV is globally negative-definite about x∗.
According to the Lyapunov Stability Criteria in Theorem 15.4, x∗ is globally asymptotically stable on Rn>0. ■

Note: Assumption (A2) is not critical and, via a more complex treatment, a more general theorem can be

obtained. For example, under the diagonal stability Assumption (A1), (Takeuchi, 1996, Theorem 3.2.1) shows the

existence of a unique non-negative and globally stable equilibrium point for each r ∈ Rn; this existence and
uniqueness result is established via a linear complementarity problem.

16.3 Cooperative Lotka-Volterra models

In this section we focus on the case of Lotka-Volterra systems with only mutualistic interactions. In other words,

we consider systems whose interaction terms satisfy aij ≥ 0 for all i and j. For such systems, whenever i ̸= j we
know

∂

∂xj
(fLV)i(x) = xiaij ≥ 0,

so that the Jacobian matrix of such systems is Metzler everywhere in R≥0. Such systems are called cooperative.
We recall from Section 10.2 the properties of Metzler matrices. For example the Perron–Frobenius Theorem 10.2

for Metzler matrices establishes the existence of a dominant eigenvalue. Metzler matrices have so much structure

that we are able to provide the following fairly comprehensive characterization: (1) Metzler matrices with a

positive dominant eigenvalue have unbounded solutions of the Lotka-Volterra model (see Lemma 16.6 below),

and (2) Metzler matrices with a negative dominant eigenvalue (and positive intrinsic growth rate) have a globally

asymptotically-stable equilibrium point (see Theorem 16.7 below).

We start with a sufficient condition for unbounded evolutions.
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Lemma 16.6 (Unbounded evolutions for unstable Metzler matrices). Consider the Lotka-Volterra system (16.1)

with interaction matrix A and intrinsic growth rate r. If A is a Metzler matrix with a positive dominant eigenvalue,
then

(i) there exist solutions that diverge in finite time starting from R>0, and
(ii) if r > 0, then all solutions starting from R>0 diverge in finite time.

Proof. Let λ > 0 andw ≥ 0n with 1T
nw = 1 be the dominant eigenvalue and left eigenvector ofA, whose existence

and properties are established by the Perron–Frobenius Theorem 10.2 for Metzler matrices. DefineW : Rn>0 → R>0

as the following weighted geometric average:

W (x) = Πni=1x
wi
i .

Along the flow of the Lotka-Volterra system, simple calculations show

∂W (x)

∂xi
= wi

1

xi
W (x)

=⇒ LfLVW (x)

W (x)
=

n∑

i=1

wi
1

xi
(fLV(x))i = wT(Ax+ r) = wT(λx+ r).

Generalizing the classic inequality (a+ b)/2 ≥ (ab)1/2 for any a, b ∈ R>0, we recall from (Lohwater, 1982) the

weighted arithmetic-geometric mean inequality: wTx ≥ Πni=1x
wi
i for any x ∈ Rn>0 and w ∈ Rn>0 with 1T

nw = 1 .
Additionally, we note that the inequality holds also for non-negative vectors w. Therefore, we have

LfLVW (x)

W (x)
= wT(λx+ r) ≥ λΠni=1x

wi
i + wTr = λW (x) + wTr,

so that

LfLVW (x) ≥W (x)(λW (x) + wTr).

This inequality implies that, for any x(0) such thatW (x(0)) > −wTr/λ, the function t 7→W (x(t)) and, therefore
at least one of the entries of the state x(t), goes to infinity in finite time. This concludes the proof of statement (i).

Statement (ii) follows by noting that r > 0 impliesW (x(0)) > −wTr/λ for all x(0) ∈ Rn>0. ■
Note: this lemma is true for any interactionmatrixA that has a positive left eigenvector with positive eigenvalue.

We next provide a sufficient condition for global convergence to a unique equation* point.

Theorem 16.7 (Global convergence for cooperative Lotka-Volterra systems). For the Lotka-Volterra sys-
tem (16.1) with interaction matrix A and intrinsic growth rate r, assume

(A3) the interaction matrix A is Metzler and Hurwitz, and
(A4) the intrinsic growth rate is positive, r > 0.

Then there exists a unique interior equilibrium point x∗ and x∗ is globally attractive on Rn>0.

Proof. We leave it to the reader to verify that, based on Assumptions (A3) and (A4), the Assumptions (A1) and (A2)

of Theorem 16.5 are satisfied so that its consequences hold. ■

Note: In (Baigent, 2010, Chapter 4), Theorem 16.7 is established via the Lyapunov functionV (x) = maxi∈{1,. . .,n}
|xi−x∗i |
ξi

,

where x∗ is the equilibrium point and ξ = (ξ1, . . . , ξn) is the positive vector with respect to which the Metzler

Hurwitz matrix A has negative weighted row sums, as in the Metzler Hurwitz Theorem 10.14(iv).
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16.4 Historical notes and further reading

The Lotka-Volterra population models are one the simplest and most widely adopted frameworks for modeling the

dynamics of interacting populations in mathematical ecology. These equations were originally developed in (Lotka,

1920; Volterra, 1928).

An early reference for the analysis of the 2-species model is (Goh, 1976). Early references for the key stability

result in Theorem 16.5 are (Takeuchi et al., 1978; Goh, 1979).

Textbook treatment include (Goh, 1980; Takeuchi, 1996; Baigent, 2010). For a more complete treatment of the

n-special model, we refer the interested reader to (Takeuchi, 1996; Baigent, 2010). For example, Baigent (2010)

discusses conservative Lotka-Volterra models (Hamiltonian structure and existence of periodic orbits), competitive

and monotone models.

We refer to the texts (Hofbauer and Sigmund, 1998; Sandholm, 2010) for comprehensive discussions about the

connection with between Lotka-Volterra models and evolutionary game dynamics.
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16.5 Exercises

E16.1 Proofs for 2-species behavior. Provide proofs for Lemmas 16.1, 16.2, and 16.3.

E16.2 The 2-dimensional Lotka-Volterra predator/prey dynamics. In this exercise we study a 2-dimensional preda-

tor/prey model. We specialize the general Lotka-Volterra population model to the following set of equations:

ẋ(t) = αx(t)− βx(t)y(t),

ẏ(t) = −γy(t) + δx(t)y(t),
(E16.1)

where x is the non-negative number of preys, y is the non-negative number of predators individuals, and α, β, and γ
are fixed positive systems parameters.

(i) Compute the unique non-zero equilibrium point (x∗, y∗) of the system.

(ii) Determine, if possible, the stability properties of the equilibrium points (0, 0) and (x∗, y∗) via linearization

(Theorem 15.10).

(iii) Define the function V (x, y) = −δx− βy+ γ ln(x)+α ln(y) and note its level sets as illustrated in Figure (E16.1).

a) Compute the Lie derivative of V (x, y) with respect to the Lotka-Volterra vector field.

b) What can you say about the stability properties of (x∗, y∗)?
c) Sketch the trajectories of the system for some initial conditions in the x-y positive orthant.

x

(x⇤, y⇤)y

Figure E16.1: Level sets of the function V (x, y) for unit parameter values

E16.3 Unbounded evolutions caused by an unstable dominant eigenvalue. State and prove a version of Lemma for

matrices that are not necessarily Metzler, but that have a dominant eigenvalue and eigenvector (in a certain sense to

be specified).
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Chapter17

Networks of Kuramoto Coupled Oscillators

In this chapter we continue our discussion about coupled-oscillator models and their behavior. Starting from

the basic models discussed in Section 14.2, we here focus on characterizing synchronization and other dynamic

phenomena.

Recall the two main models. Given an undirected weighted graph with adjacency matrix A and with n nodes,

and given frequencies ω ∈ Rn, the coupled-oscillators model (14.4) is

θ̇i = ωi −
n∑

j=1

aij sin(θi − θj), i ∈ {1, . . . , n}. (17.1)

Moreover, given an undirected unweighted graph with n nodes, frequencies ω ∈ Rn, and coupling constantK ,

the Kuramoto model (14.5), is

θ̇i = ωi −
K

n

n∑

j=1

sin(θi − θj), i ∈ {1, . . . , n}. (17.2)

17.1 Preliminary notation and analysis

17.1.1 The geometry of the circle and the torus

Parametrization The unit circle is S1. The torus Tn is the set consisting of n-copies of the circle. We parametrize

the circle S1 by assuming (i) angles are measured counterclockwise, (ii) the 0 angle is the intersection of the unit

circle with the positive horizontal axis, and (iii) angles take value in [−π, π[.

Geodesic distance The clockwise arc length from θi to θj is the length of the clockwise arc from θi to θj . The
counterclockwise arc length is defined analogously. The geodesic distance between θi and θj is the minimum

between clockwise and counterclockwise arc lengths and is denoted by |θi − θj |. In the parametrization:

distcc(θ1, θ2) = mod((θ2 − θ1), 2π), distc(θ1, θ2) = mod((θ1 − θ2), 2π)

|θ1 − θ2| = min{distc(θ1, θ2),distcc(θ1, θ2)}.

Arc subset and cohesive subset of the n-torus Let G be an undirected weighted connected graph and let

γ ∈ [0, π).

263
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(i) The arc subset Γarc(γ) ⊂ Tn is the set of (θ1, . . . , θn) ∈ Tn such that there exists an arc of length γ in S1
containing all angles θ1, . . . , θn. The set Γ(γ) is the interior of Γarc(γ);

(ii) The cohesive subset ∆G(γ) ⊆ Tn is

∆G(γ) = {θ ∈ Tn | |θi − θj | ≤ γ, for all edges (i, j)}.

Note:

(i) For example, θ ∈ Γarc(π) implies all angles θ1, . . . , θn belong to a closed half circle.

(ii) Clearly, Γarc(γ) ⊂ ∆G(γ) for any graph G. The converse is not true in general. For example, {θ ∈ Tn | |θi −
θj | ≤ π for all i, j} is equal to the entire Tn. A weak converse statement is studied in Exercise E17.1.

(iii) If θ = (θ1, . . . , θn) ∈ Γarc(π), then average(θ) is well posed. (The average of n angles is ill-posed in general,

e.g., there is no reasonable definition of the average of two diametrically-opposed points.)

Rotations Given the angle α ∈ [−π, π[, the rotation of the n-tuple θ = (θ1, . . . , θn) ∈ Tn by α, denoted by

rotα(θ), is the counterclockwise rotation of each entry (θ1, . . . , θn) by α. For θ =∈ Tn, we also define its rotation
set to be

[θ] = {rotα(θ) ∈ Tn | α ∈ [−π, π[}.

The coupled oscillator model (17.1) is invariant under rotations, that is, given a solution θ : R≥0 → Tn to the

coupled oscillator model, a rotation of rotα(θ(t)) by any angle α is again a solution.

17.1.2 Synchronization notions

Consider the following notions of synchronization for a solution θ : R≥0 → Tn:

Frequency synchrony: A solution θ : R≥0 → Tn is frequency synchronized if θ̇i(t) = θ̇j(t) for all time t and for

all i and j.

Phase synchrony: A solution θ : R≥0 → Tn is phase synchronized if θi(t) = θj(t) for all time t and for all i and
j.

Phase cohesiveness: A solution θ : R≥0 → Tn is phase cohesive with respect to γ > 0 if one of the following

conditions holds for all time t:

(i) θ(t) ∈ Γarc(γ); or

(ii) θ(t) ∈ ∆G(γ), for a graph of interest G.

Asymptotic notions: We will also talk about solutions that asymptotically achieve certain synchronization

properties. For example, a solution θ : R≥0 → Tn achieves phase synchronization if limt→∞ |θi(t)− θj(t)| =
0. Analogous definitions can be given for asymptotic frequency synchronization and asymptotic phase

cohesiveness.

Finally, notice that phase synchrony is the extreme case of all phase cohesiveness notions with γ = 0.
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17.1.3 Preliminary results

We have the following result on the synchronization frequency.

Lemma 17.1 (Synchronization frequency). Consider the coupled oscillator model (17.1) with frequencies ω ∈ Rn
defined over a connected weighted undirected graph. If a solution achieves frequency synchronization, then it does so
with a constant synchronization frequency equal to

ωsync ≜
1

n

n∑

i=1

ωi = average(ω).

Proof. This fact is obtained by summing all equations (17.1) for i ∈ {1, . . . , n}. ■
Lemma 17.1 implies that, by expressing each angle with respect to a rotating frame with frequency ωsync and

by replacing ωi by ωi − ωsync, we obtain ωsync = 0 or, equivalently, ω ∈ 1⊥
n . In this rotating frame a frequency-

synchronized solution is an equilibrium. Due to the rotational invariance of the coupled oscillator model (17.1), it

follows that if θ∗ ∈ Tn is an equilibrium point, then every point in the rotation set

[θ∗] = {θ ∈ Tn | rotα(θ∗) , α ∈ [−π, π[}

is also an equilibrium. We refer to [θ∗] as an equilibrium set.
We have the following important result on local stability properties of equilibria.

Lemma 17.2 (Linearization and frequency synchronization). Consider the coupled oscillator model (17.1) with
frequencies ω ∈ 1⊥

n defined over a connected weighted undirected graph with incidence matrix B. The following
statements hold:
(i) (Jacobian:) the Jacobian of the coupled oscillator model at θ ∈ Tn is

J(θ) = −B diag({aij cos(θi − θj)}{i,j}∈E)BT;

(ii) (local stability:) if there exists an equilibrium θ∗ ∈ ∆G(γ), γ < π/2, then
a) −J(θ∗) is a Laplacian matrix; and
b) the equilibrium set [θ∗] is locally exponentially stable;

(iii) (frequency synchronization:) if a solution θ(t) is phase cohesive in the sense that θ(t) ∈ ∆G(γ), γ < π/2, for
all t ≥ 0, then there exists a phase cohesive equilibrium θ∗ ∈ ∆G(γ) and θ(t) achieves exponential frequency
synchronization converging to [θ∗].

Proof. We start with statements (i) and (ii)a. Given θ ∈ Tn, we define the undirected graph Gcosine(θ) with the

same nodes and edges as G and with edge weights aij cos(θi − θj). Next, we compute

∂

∂θi

(
ωi −

∑n

j=1
aij sin(θi − θj)

)
= −

∑n

j=1
aij cos(θi − θj),

∂

∂θj

(
ωi −

∑n

k=1
aik sin(θi − θk)

)
= aij cos(θi − θj).

Therefore, the Jacobian is equal to minus the Laplacian matrix of the (possibly negatively weighted) graphGcosine(θ)
and statement (i) follows from Lemma 9.1. Regarding statement (ii)a, if |θ∗i − θ∗j | < π/2 for all {i, j} ∈ E, then
cos(θ∗i − θ∗j ) > 0 for all {i, j} ∈ E, so that Gcosine(θ) has strictly non-negative weights and all usual properties of

Laplacian matrices hold.

To prove statement (ii)b notice that J(θ∗) is negative semidefinite with the nullspace 1n arising from the

rotational symmetry. All other eigenvectors are orthogonal to 1n and have negative eigenvalues. We now restrict
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our analysis to the orthogonal complement of 1n: we define a coordinate transformation matrix Q ∈ R(n−1)×n

with orthonormal rows orthogonal to 1n,

Q1n = 0n−1 and QQT = In−1,

and we note that QJ(θ∗)QT
has negative eigenvalues. Therefore, in the original coordinates, the zero eigenspace

1n is exponentially stable. Theorem 15.10 implies that the equilibrium set [θ∗] is locally exponentially stable.

Regarding statement (iii), define xi(t) = θ̇i(t). Then ẋ(t) = J(θ(t))x(t) is a time-varying averaging system.

The associated undirected graph has time-varying yet strictly positive weights aij cos(θi(t)−θj(t)) ≥ aij cos(γ) >
0 for each {i, j} ∈ E. Hence, the weighted graph is connected for each t ≥ 0. From the analysis of time-varying

averaging systems in Theorem 12.9, the exponential convergence of x(t) to average(x(0))1n follows. Equivalently,

the frequencies synchronize. By continuity, the limiting value of θ(t) must be an equilibrium. ■

17.1.4 The order parameter and the mean field model

An alternative synchronization measure (besides phase cohesiveness) is the magnitude of the order parameter

reiψ =
1

n

∑n

j=1
eiθj . (17.3)

The order parameter (17.3) is the centroid of all oscillators represented as points on the unit circle in C1
. The

magnitude r of the order parameter is a synchronization measure:

• if the oscillators are phase-synchronized, then r = 1;

• if the oscillators are spaced equally on the unit circle, then r = 0; and

• for r ∈ ]0, 1[ and oscillators contained in a semi-circle, the associated configuration of oscillators satisfy a

certain level of phase cohesiveness; see Exercise E17.2.

By means of the order parameter reiψ the all-to-all Kuramoto model (17.2) can be rewritten in the insightful

form

θ̇i = ωi −Kr sin(θi − ψ) , i ∈ {1, . . . , n} . (17.4)

(We ask the reader to establish this identity in Exercise E17.3.) Equation (17.4) gives the intuition that the oscillators

synchronize because of their coupling to a mean field represented by the order parameter reiψ , which itself is a

function of θ(t). Intuitively, for small coupling strengthK each oscillator rotates with its distinct natural frequency

ωi, whereas for large coupling strengthK all angles θi(t) will entrain to the mean field reiψ , and the oscillators

synchronize. The transition from incoherence to synchrony occurs at a critical threshold value of the coupling

strength, denoted byKcritical.

17.2 Synchronization of identical oscillators

We start our discussion with the following insightful lemma.

Lemma 17.3. Consider the coupled oscillator model (17.1). If ωi ̸= ωj for some distinct i, j ∈ {1, . . . , n}, then the
oscillators cannot achieve phase synchronization.

Proof. We prove the lemma by contradiction. Assume that all oscillators are in phase synchrony θi(t) = θj(t) for
t ≥ 0 and i, j ∈ {1, . . . , n}. Then equating the dynamics, θ̇i(t) = θ̇j(t), implies that ωi = ωj . ■
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We now consider oscillators with identical natural frequencies, ωi = ω ∈ R for all i ∈ {1, . . . , n}. By working

in a rotating frame with frequency ω, we have ω = 0. Thus, we consider the model

θ̇i = −
∑n

j=1
aij sin(θi − θj), i ∈ {1, . . . , n}. (17.5)

Notice that phase synchronization is an equilibrium of the this model. Conversely, phase synchronization cannot

be an equilibrium of the original coupled oscillator model (17.1) if ωi ̸= ωj .

17.2.1 An averaging-based approach

Let us first analyze the coupled oscillator model (17.5) with initial conditions restricted to an open semi-circle,

θ(0) ∈ Γarc(γ) for some γ ∈ [0, π[. In this case, the oscillators remain in a semi-circle at least for small times t > 0
and the two coordinate transformations

xi(t) = tan(θi(t)) (with xi ∈ R), and yi(t) = θi(t) (with yi ∈ R)

are well-defined and bijective (at least for small times).

In the xi-coordinates, the coupled oscillator model reads as the time-varying continuous-time averaging system

ẋi(t) = −
∑n

j=1
bij(t)(xi(t)− xj(t)), (17.6)

where bij(t) = aij
√

(1 + xi(t)2)/(1 + xj(t)2) and bij(t) ≥ aij cos(γ/2); see Exercise E17.7 for a derivation.

Similarly, in the yi-coordinates, the coupled oscillator model reads as

ẏi(t) = −
∑n

j=1
cij(t)(yi(t)− yj(t)), (17.7)

where cij(t) = aij sinc(yi(t)− yj(t)) and cij(t) ≥ aij sinc(γ). Notice that both averaging formulations (17.6) and

(17.7) are well-defined as long as the the oscillators remain in a semi-circle Γarc(γ) for some γ ∈ [0, π[.

Theorem 17.4 (Phase cohesiveness and synchronization in open semicircle). Consider the coupled oscillator
model (17.5) with identical frequencies defined over a connected weighted undirected graph with Laplacian matrix L.
Then
(i) (phase cohesiveness:) for each γ ∈ [0, π[ each solution originating in Γarc(γ) remains in Γarc(γ) for all times;
(ii) (asymptotic phase synchronization:) each trajectory originating in Γarc(γ) for γ ∈ [0, π[ achieves exponential

phase synchronization, that is,

∥θ(t)− average(θ(0))1n∥2 ≤ ∥θ(0)− average(θ(0))1n∥2eλpst , (17.8)

where λps = −λ2(L) cos(γ/2).

Proof. Consider the averaging formulations (17.6) and (17.7) with initial conditions θ(0) ∈ Γarc(γ) for some

γ ∈ [0, π[. By continuity, for small positive times t > 0, the oscillators remain in a semi-circle, the time-varying

weights bij(t) ≥ aij(cos(γ/2) and cij(t) ≥ aij sinc(γ) are strictly positive for each {i, j} ∈ E, the associated
time-dependent graph is connected. As one establishes in the proof of Theorem 12.9, the max-min function Vmax-min,

defined in equation (5.14), evaluated along the solutions to the time-varying consensus systems (17.6) and (17.7)

are strictly decreasing for until consensus is reached.

Thus, the oscillators remain in Γarc(γ) phase synchronization exponentially fast. Since the graph is undirected,

we can also conclude convergence to the average phase. Finally, the explicit convergence estimate (17.8) follows,

for example, by analyzing (17.6) with the disagreement Lyapunov function and using bij(t) ≥ aij cos(γ/2). ■
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17.2.2 The potential landscape, convergence and phase synchronization

The consensus analysis in Theorem 17.4 leads to a powerful result but is inherently restricted to a semi-circle.

To overcome this limitation, we use potential functions as an analysis tool. Inspired by Examples #1 and #3 in

Section 14.2, define the potential function U : Tn → R by

U(θ) =
∑

{i,j}∈E

aij
(
1− cos(θi − θj)

)
. (17.9)

Then the coupled oscillator model (17.1) (with all ωi = 0) is identical to the negative gradient flow

θ̇ = −∂U(θ)
∂θ

. (17.10)

Among the many critical points of the potential function U in equation (17.9), each point in the set of phase-

synchronized angles is a global minimum of U. This fact can be easily seen since each summand in (17.9) is bounded

in [0, 2aij ] and the lower bound is reached only if neighboring oscillators are phase-synchronized.

Theorem 17.5 (Phase synchronization). Consider the coupled oscillator model (17.5) with identical frequencies
defined over a connected weighted undirected graph. Then
(i) (global convergence:) for all initial conditions θ(0) ∈ Tn, the phases θi(t) converge to the set of critical points

{θ ∈ Tn | ∂U(θ)/∂θ = 0n}; and
(ii) (local stability:) phase synchronization is a locally exponentially stable equilibrium set.

Proof. Since the coupled oscillator model (17.1) is a negative gradient flow, we can apply Theorem 15.14. Note that U

is analytic and the state space is the compact manifold Tn. Specifically, statement (i) is statement Theorem 15.14(i).

Statement (ii) follows from the Jacobian result in Lemma 17.2 and Theorem 15.10. ■
Theorem 17.5 together with Theorem 17.4 gives a fairly complete picture of the local convergence and phase

synchronization properties of the coupled oscillator model (17.5). Regarding global properties, a stronger result

can be made in case of an all-to-all homogeneous coupling graph, that is, for the Kuramoto model (17.2).

Corollary 17.6 (Almost global phase synchronization for the Kuramoto model). Consider the Kuramoto
model (17.2) with identical natural frequencies ωi = ωj for all i, j ∈ {1, . . . , n}. Then for almost all initial conditions
in Tn, the oscillators achieve phase synchronization.

Proof. For identical natural frequencies, the Kuramoto model (17.2) can be put in rotating coordinates so that

ωi = 0 for all i ∈ {1, . . . , n}; see Section 17.2. The Kuramoto model reads in the order-parameter formulation

(17.4) as

θ̇i = −Kr sin(θi − ψ) , i ∈ {1, . . . , n} . (17.11)

The associated potential function reads as (see Exercise E17.5)

U(θ) =
∑

{i,j}∈E

aij
(
1− cos(θi − θj)

)
=
Kn

2
(1− r2) , (17.12)

and its unique global minimum is obtained for r = 1, that is, in the phase-synchronized state. By Theorem 17.5, all

angles converge to the set of equilibria which are from (17.11) either (i) r = 0, (ii) r > 0 and in-phase with the

order parameter θi = ψ, or (iii) r > 0 and out-of-phase with the order parameter θi = ψ + kπ for k ∈ Z \ {0}
for all i ∈ {1, . . . , n}. In the latter case, any infinitesimal deviation from an out-of-phase equilibrium causes the

potential (17.12) to decrease, that is, the out-of-phase equilibria are unstable. Likewise, the equilibria with r = 0
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17.3. Synchronization of heterogeneous oscillators 269

correspond to the global maxima of the potential (17.12), and any infinitesimal deviation from these equilibria

causes the potential (17.12) to decrease. It follows that, from almost all initial conditions
1
, the oscillators converge

to phase-synchronized equilibria θi = ψ for all i ∈ {1, . . . , n}. ■

17.2.3 Phase balancing

Applications in neuroscience, vehicle coordination, and central pattern generators for robotic locomotion motivate

the study of coherent behaviors with synchronized frequencies where the phases are not synchronized, but rather

dispersed in appropriate patterns. While the phase-synchronized state can be characterized by the order parameter

r achieving its maximal (unit) magnitude, we say that a solution θ : R≥0 → Tn to the coupled oscillator model (17.1)

achieves phase balancing if all phases θi asymptotically converge to the splay set
{
θ ∈ Tn | r(θ) =

∣∣∑n

j=1
eiθj/n

∣∣ = 0
}
,

that is, asymptotically the oscillators are uniformly distributed over the unit circle S1 so that their centroid

converges to the origin.

For a complete homogeneous graph with coupling strength aij = K/n, i.e., for the Kuramoto model (17.2), we

have a remarkable identity between the magnitude of the order parameter r and the potential function U(θ)

U(θ) =
Kn

2

(
1− r2

)
. (17.13)

(We ask the reader to establish this identity in Exercise E17.5.) For the complete graph, the correspondence (17.13)

shows that the global minimum of the potential function U(θ) = 0 (for r = 1) corresponds to phase-synchronization
and the global maximum U(θ) = Kn/2 (for r = 0) corresponds to phase balancing. This motivates the following

gradient ascent dynamics to reach phase balancing:

θ̇ = +
∂U(θ)

∂θ
, or, equivalently, θ̇i =

n∑

j=1

aij sin(θi − θj) . (17.14)

Theorem 17.7 (Phase balancing). Consider the coupled oscillator model (17.14) with a connected, undirected, and
weighted graph. Then
(i) (global convergence:) for all initial conditions θ(0) ∈ Tn, the phases θi(t) converge to the set of critical points

{θ ∈ Tn | ∂U(θ)/∂θ = 0n}; and
(ii) (local stability:) for a complete graph with uniform weights aij = K/n, phase balancing is the global maximizer

of the potential function (17.13) and is a locally asymptotically stable equilibrium set.

Proof. The proof statement (i) is analogous to the proof of statement (i) in Theorem 17.5.

To prove statement (ii), notice that, for a complete graph, the phase balanced set characterized by r = 0 achieves
the global maximum of the potential U(θ) = Kn

2

(
1− r2

)
. By Theorem 15.14, local maxima of the potential are

locally asymptotically stable for the gradient ascent dynamics (17.14). ■

17.3 Synchronization of heterogeneous oscillators

In this section we analyze non-identical oscillators with ωi ̸= ωj . As shown in Lemma 17.3, these oscillator

networks cannot achieve phase synchronization. On the other hand frequency synchronization with a certain

1

To be precise further analysis is needed. A linearization of the Kuramoto model (17.11) at the unstable out-of-phase equilibria yields

that these are exponentially unstable. The region of attraction (the so-called stable manifold) of such exponentially unstable equilibria is

known to be a zero measure set (Potrie and Monzón, 2009, Proposition 4.1).
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270 Chapter 17. Networks of Kuramoto Coupled Oscillators

degree of phase cohesiveness can be achieved provided that the natural frequencies satisfy certain bounds relative

to the network coupling. We start off with the following necessary conditions.

Lemma 17.8 (Necessary condition for synchronization). Consider the coupled oscillator model (17.1) with
graph with adjacency matrix A, frequencies ω ∈ 1⊥

n , and nodal degree di =
∑n

j=1 aij for each node i ∈ {1, . . . , n}.
If there exists a frequency-synchronized solution satisfying the phase cohesiveness |θi − θj | ≤ γ for all {i, j} ∈ E and
for some γ ∈ [0, π/2], then
(i) (absolute bound:) for each node i ∈ {1, . . . , n},

di sin(γ) ≥ |ωi| , (17.15)

(ii) (incremental bound:) for distinct i, j ∈ {1, . . . , n},

(di + dj) sin(γ) ≥ |ωi − ωj | . (17.16)

Proof. Statement (i) follows directly from the fact that synchronized solutions must satisfy the equilibrium equation

θ̇i = 0. Since the sinusoidal interaction terms in equation (17.1) are upper bounded by the nodal degree di =∑n
j=1 aij , condition (17.15) is necessary for the existence of an equilibrium.

Statement (ii) follows from the fact that frequency-synchronized solutions must satisfy θ̇i − θ̇j = 0. By
analogous arguments, we arrive at the necessary condition (17.16). ■

17.3.1 Synchronization of heterogeneous oscillators over complete homogeneous graphs

We now consider the Kuramoto model over a complete homogeneous graph in equation (17.2). As discussed in

Subsection 17.1.4, the Kuramoto model synchronizes provided that the coupling gainK is larger than some critical

valueKcritical. The necessary condition (17.16) delivers a lower bound forKcritical given by

K ≥ n

2(n− 1)

(
max
i
ωi −min

i
ωi

)
.

Here we evaluated the left-hand side of (17.16) for aij = K/n, for the maximum γ = π/2, and for all distinct

i, j ∈ {1, . . . , n}. Perhaps surprisingly, the lower necessary bound (17.3.1) is a factor 1/2 away from the upper

sufficient bound.

Theorem 17.9 (Synchronization test for all-to-all Kuramoto model). Consider the Kuramoto model (17.2)
with natural frequencies ω ∈ 1⊥

n and coupling strengthK . Assume

K > Kcritical ≜ max
i
ωi −min

i
ωi, (17.17)

and define the arc lengths γmin ∈ [0, π/2[ and γmax ∈ ]π/2, π] as the unique solutions to sin(γmin) = sin(γmax) =
Kcritical/K .

The following statements hold:
(i) (phase cohesiveness:) each solution starting in Γarc(γ), for γ ∈ [γmin, γmax], remains in Γarc(γ) for all times;
(ii) (asymptotic phase cohesiveness:) each solution starting in Γarc(γmax) asymptotically reaches the set Γarc(γmin);

and
(iii) (asymptotic frequency synchronization:) each solution starting in Γarc(γmax) achieves frequency synchronization.

Moreover, the following converse statement is true: Given an interval [ωmin, ωmax], the coupling strengthK satisfies
K > ωmax − ωmin if, for all frequencies ω supported on [ωmin, ωmax] and for the arc length γmax computed as above,
the set Γarc(γmax) is positively invariant.
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�min�max
Kcritical/K

�arc(�)

Figure 17.1: Illustrating the definitions of γmin, γmax, and Γarc(γ), for γ ∈ [γmin, γmax].

We illustrate the definitions of γmin, γmax, and Γarc(γ), for γ ∈ [γmin, γmax] in Figure 17.1.

Proof. We start with statement (i). Define the functionW : Γarc(π) → [0, π[ by

W (ψ) = max{|ψi − ψj | | i, j ∈ {1, . . . , n}}.

The arc containing all angles ψ has two boundary points: a counterclockwise maximum and a counterclockwise

minimum. If Umax(ψ) (resp. Umin(ψ)) denotes the set indices of the angles ψ1, . . . , ψn that are equal to the

counterclockwise maximum (resp. the counterclockwise minimum), then

W (ψ) = |ψm′ − ψk′ |, for allm′ ∈ Umax(ψ) and k
′ ∈ Umin(ψ).

We now assume θ(0) ∈ Γarc(γ), for γ ∈ [γmin, γmax], and aim to show that θ(t) ∈ Γarc(γ) for all times t > 0.
By continuity, Γarc(γ) is positively invariant if and only if W (θ(t)) does not increase at any time t such that

W (θ(t)) = γ.

In the next equation we compute the maximum possible amount of infinitesimal increase of t 7→ W (θ(t))
along system (17.2). Based on the notion of upper Dini derivative and the treatment in Section 15.8, we compute

D+W (θ(t)) := lim sup
∆t→0+

W (θ(t+∆t))−W (θ(t))

∆t
= θ̇m(t)− θ̇k(t),

where the indices m ∈ Umax(θ(t)) and k ∈ Umin(θ(t)) have the property that θ̇m(t) = max{θ̇m′(t) | m′ ∈
Umax(θ(t))} and θ̇k(t) = min{θ̇k′(t) | k′ ∈ Umin(θ(t))}. In components

D+W (θ(t)) = ωm − ωk −
K

n

n∑

j=1

(
sin(θm(t)− θj(t)) + sin(θj(t)− θk(t))

)
.

The trigonometric identity sin(x) + sin(y) = 2 sin(x+y2 ) cos(x−y2 ) leads to

D+W (θ(t)) = ωm − ωk

− K

n

n∑

i=1

(
2 sin

(
θm(t)− θk(t)

2

)
cos

(
θm(t)− θi(t)

2
− θi(t)− θk(t)

2

))
.

Measuring angles counterclockwise and modulo 2π, the equality W (θ(t)) = γ implies θm(t) − θk(t) = γ,
θm(t)− θi(t) ∈ [0, γ], and θi(t)− θk(t) ∈ [0, γ]. Moreover,

min
θ

cos

(
θm − θi

2
− θi − θk

2

)
= cos

(
max
θ

∣∣∣∣
θm − θi

2
− θi − θk

2

∣∣∣∣
)

= cos(γ/2),
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272 Chapter 17. Networks of Kuramoto Coupled Oscillators

so that

D+W (θ(t)) ≤ ωm − ωk −
K

n

n∑

i=1

(
2 sin

(γ
2

)
cos
(γ
2

))
.

Applying the reverse identity 2 sin(x) cos(y) = sin(x− y) + sin(x+ y), we obtain

D+W (θ(t)) ≤ ωm − ωk −
K

n

n∑

i=1

sin(γ) ≤ (max
i
ωi −min

i
ωi)−K sin(γ) .

Hence, theW (θ(t)) does not increase at all t such thatW (θ(t)) = γ ifK sin(γ) ≥ Kcritical = maxi ωi −mini ωi.
Given the structure of the level sets of γ 7→ K sin(γ), there exists an open interval of arc lengths γ ∈ [0, π]

satisfying K sin(γ) ≥ maxi ωi − mini ωi if and only if equation (17.17) is true with the strict equality sign at

γ∗ = π/2, that is, ifK > Kcritical. Additionally, ifK > Kcritical, there exists a unique γmin ∈ [0, π/2[ and a unique

γmax ∈ ]π/2, π] that satisfy equation (17.17) with the equality sign. In summary, for every γ ∈ [γmin, γmax], if
W (θ(t)) = γ, then the arc lengthW (θ(t)) is non-increasing. This concludes the proof of statement (i).

Moreover, pick ε≪ γmax − γmin. For all γ ∈ [γmin + ε, γmax − ε], there exists a positive δ(ε) with the property

that, ifW (θ(t)) = γ, then D+W (θ(t)) ≤ −δ(ε). Hence, each solution θ : R≥0 → Tn starting in Γarc(γmax − ε)
must satisfyW (θ(t)) ≤ γmin − ε after time at most (γmax − γmin)/δ(ε). This proves statement (ii).

Regarding statement (iii), we just proved that for every θ(0) ∈ Γarc(γmax) and for all γ ∈ ]γmin, γmax] there
exists a finite time T ≥ 0 such that θ(t) ∈ Γarc(γ) for all t ≥ T and for some γ < π/2. It follows that

|θi(t) − θj(t)| ≤ γ < π/2 for all {i, j} ∈ E and for all t ≥ T . We now invoke Lemma 17.2(iii) to conclude the

proof of statement (iii).

The converse statement can be established by noticing that all of the above inequalities and estimates are exact

for a bipolar distribution of natural frequencies ωi ∈ {ω, ω} for all i ∈ {1, . . . , n}. We refer the reader for these

details to the full proof in (Dörfler and Bullo, 2011). ■

17.3.2 Synchronization of heterogeneous oscillators over weighted undirected graphs

We here adopt the following notation:

∥∥ω
∥∥
2, pairs

=

√
1

2

∑n

i,j=1
(ωi − ωj)2, and

∥∥θ
∥∥
2, pairs

=

√
1

2

∑n

i,j=1
|θi − θj |2.

Theorem 17.10 (Synchronization test). Consider the coupled oscillator model (17.1) with frequencies ω ∈ 1⊥
n

defined over a connected weighted undirected graph with Laplacian matrix L. Assume

λ2(L) > λcritical ≜ ∥ω∥2, pairs, (17.18)

and define γmax ∈ ]π/2, π] and γmin ∈ [0, π/2[ as the solutions to (π/2) · sinc(γmax) = sin(γmin)=λcritical/λ2(L).
The following statements hold:
(i) (phase cohesiveness:) each solution starting in

{
θ ∈ Γarc(π) | ∥θ∥2, pairs ≤ γ

}
, for γ ∈ [γmin, γmax], remains in{

θ ∈ Γarc(π) | ∥θ∥2, pairs ≤ γ
}
for all times,

(ii) (asymptotic phase cohesiveness:) each solution starting in
{
θ ∈ Γarc(π) | ∥θ∥2, pairs < γmax

}
asymptotically

reaches the set
{
θ ∈ Γarc(π) | ∥θ∥2, pairs ≤ γmin

}
; and

(iii) (asymptotic frequency synchronization:) each solution starting in{
θ ∈ Γarc(π) | ∥θ∥2, pairs < γmax

}
achieves frequency synchronization.

The proof of Theorem 17.10 follows the reasoning of the proof of Theorem 17.9 using the quadratic Lyapunov

function

∥∥θ
∥∥2
2, pairs

. The full proof is in (Dörfler and Bullo, 2012, Appendix B).
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17.4 Historical notes and further reading

The scientific interest in synchronization of coupled oscillators can be traced back to the work by Huygens (1673)

on “an odd kind of sympathy” between coupled pendulum clocks. The model of coupled oscillator which we study

was originally proposed by Winfree (1967). For complete interaction graphs, this model is nowadays known as the

Kuramoto model due to the work by Kuramoto (1975, 1984). A detailed historical account is given by Strogatz

(2000).

The Kuramoto model and its variations appear in the study of biological synchronization phenomena such as

pacemaker cells in the heart (Michaels et al., 1987), circadian rhythms (Liu et al., 1997), neuroscience (Varela et al.,

2001; Brown et al., 2003; Crook et al., 1997), metabolic synchrony in yeast cell populations (Ghosh et al., 1971),

flashing fireflies (Buck, 1988), chirping crickets (Walker, 1969), and rhythmic applause (Néda et al., 2000), among

others. The Kuramoto model also appears in physics and chemistry in modeling and analysis of spin glass models

(Daido, 1992; Jongen et al., 2001), flavor evolutions of neutrinos (Pantaleone, 1998), and in the analysis of chemical

oscillations (Kiss et al., 2002). Some technological applications include deep brain stimulation (Tass, 2003), vehicle

coordination (Paley et al., 2007; Sepulchre et al., 2007; Klein et al., 2008), semiconductor lasers (Kozyreff et al., 2000;

Hoppensteadt and Izhikevich, 2000), microwave oscillators (York and Compton, 1991), clock synchronization in

wireless networks (Simeone et al., 2008), and droop-controlled inverters in microgrids (Simpson-Porco et al., 2013).

Our treatment borrows ideas from (Dörfler and Bullo, 2011, 2014). Recent surveys include (Strogatz, 2000;

Acebrón et al., 2005; Arenas et al., 2008; Mauroy et al., 2012; Dörfler and Bullo, 2014). We refer to (Mallada et al.,

2016; Gushchin et al., 2016) for a more general treatment with odd-coupling functions and with varying coupling

strengths.
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17.5 Exercises

E17.1 Phase cohesiveness and arc length. Pick γ < 2π/3 and n ≥ 3. Show the following statement: if θ ∈ Tn satisfies

|θi − θj | ≤ γ for all i, j ∈ {1, . . . , n}, then there exists an arc of length γ containing all angles, that is, θ ∈ Γarc(γ).

E17.2 Order parameter and arc length. Given n ≥ 2 and θ ∈ Tn, the shortest arc length γ(θ) is the length of the shortest

arc containing all angles, i.e., the smallest γ(θ) such that θ ∈ Γarc(γ(θ)). Given θ ∈ Tn, the order parameter is the
centroid of (θ1, . . . , θn) understood as points on the unit circle in the complex plane C:

r(θ) eψ(θ)i :=
1

n

n∑

j=1

eθj i .

where recall i =
√
−1. Show that

(i) if γ(θ) ∈ [0, π], then r(θ) ∈ [cos(γ(θ)/2), 1].

The order parameter magnitude r is known to measure synchronization. Show the following statements:

(iii) if all oscillators are phase-synchronized, then r = 1, and
(iv) if all oscillators are spaced equally on the unit circle (the so-called splay state), then r = 0.

E17.3 Order parameter and mean-field dynamics. Show that the Kuramoto model (17.2) is equivalent to the so-called

mean-field model (17.4) with the order parameter r defined in (17.3).

E17.4 Multiplicity of equilibria in the Kuramoto model. A common misconception in the literature is that the

Kuramoto model has a unique equilibrium set in the phase cohesive set {θ ∈ Tn | |θi− θj | < π/2 for all {i, j} ∈ E}.
Consider now the example of a Kuramoto oscillator network defined over a symmetric cycle graph with identical

unit weights and zero natural frequencies. The equilibria are determined by

0 = sin(θi − θi−1) + sin(θi − θi+1) ,

where i ∈ {1, . . . , n} and all indices are evaluated modulo n. Show that for n > 4 there are at least two disjoint

equilibrium sets in the phase cohesive set {θ ∈ Tn | |θi − θj | < π/2 for all {i, j} ∈ E}.
E17.5 Potential and order parameter. Recall U(θ) =

∑
{i,j}∈E aij

(
1− cos(θi − θj)

)
. Prove U(θ) = Kn

2 (1− r2) for a

complete homogeneous graph with coupling strength aij = K/n.

E17.6 Analysis of the two-node case. Present a complete analysis of a system of two coupled oscillators:

θ̇1 = ω1 − a12 sin(θ1 − θ2) ,

θ̇2 = ω2 − a21 sin(θ2 − θ1) ,

where a12 = a21 and ω1 + ω2 = 0. When do equilibria exist? What are their stability properties and their basins of

attraction?

E17.7 Averaging analysis of coupled oscillators in a semi-circle. Consider the coupled oscillator model (17.5) with

θ ∈ Γarc(γ) for some γ < π. Show that the coordinate transformations xi = tan(θi), with xi ∈ R, gives the
averaging system (17.6) with bij ≥ aij cos(γ/2).

E17.8 Phase synchronization in spring network. Consider the spring network from Example #1 in Section 14.2 with

identical oscillators, no external torques, and a connected, undirected, and weighted graph:

miθ̈i + diθ̇i +

n∑

j=1

aij sin(θi − θj) = 0 , i ∈ {1, . . . , n} .

Prove the phase synchronization result (in Theorem 17.5) for this spring network.
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E17.9 Synchronization on acyclic graphs. For frequencies
∑n
i=1 ωi = 0, consider the coupled oscillator model

θ̇i = −
∑n

j=1
aij sin(θi − θj).

Assume the adjacency matrix A with elements aij = aji ∈ {0, 1} is associated to an undirected, connected, and

acyclic graph. Show that the following statements are equivalent:

(i) there exists a locally stable frequency-synchronized solution in the set {θ ∈ Tn | |θi − θj | < π/2 for all {i, j} ∈
E},

(ii)

∥∥BTL†ω
∥∥
∞ < 1, where B and L are the network incidence and Laplacian matrices.

Hint: Follow the derivation in Appendix 10.5.2.

E17.10 Distributed averaging-based integral control for coupled oscillators. Consider a set of n controllable coupled

oscillators governed by the second-order dynamics

θ̇i =ωi, (E17.1a)

miω̇i = − diωi −
∑n

j=1
aij sin(θi − θj) + ui , (E17.1b)

where i ∈ {1, . . . , n} is the index set, each oscillator has the state (θi, ωi) ∈ T1 × R, ui ∈ R is a control input to

oscillator i, andmi > 0 and di > 0 are the inertia and damping coefficients. The oscillators are coupled through

an undirected, connected, and weighted graph G = (V,E,A) with node set V = {1, . . . , n}, edge set E ⊂ V × V ,

and adjacency matrix A = AT ∈ Rn×n. To reject disturbances affecting the oscillators, consider the distributed

averaging-based integral control law (see Exercise E6.18)

ui = − qi, (E17.2a)

q̇i =ωi −
∑n

j=1
bij(qi − qj) , (E17.2b)

where qi ∈ R is a controller state for each agent i ∈ {1, . . . , n}, and the matrix B with elements bij is the adjacency
matrix of an undirected and connected graph. Your tasks are as follows:

(i) characterize the set of equilibria (θ⋆, ω⋆, q⋆) of the closed-loop system (E17.1)-(E17.2),

(ii) show that all trajectories converge to the set of equilibria, and

(iii) show that the phase synchronization set {θ ∈ Tn | θi = θj for all i, j ∈ {1, . . . , n}} together with ω = q = 0n is

an equilibrium and that it is locally asymptotically stable.
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algebraic connectivity, 104

algorithm, see system
arc

clockwise arc length, 263

subset, 264

basic graphs, 39

adjacency matrices, 52

adjacency spectrum, 52

algebraic connectivity, 105

behavior

phase balancing, 269

synchronization

among double integrators, 141

in a network of clocks, 110

in inductors/capacitors circuits, 148

in Kuramoto oscillators, 264

centrality scores, 82

betweenness, 85

closeness, 85

degree, 82

eigenvector, 83

Katz, 83

PageRank, 84

Collatz–Wielandt formula, 38

compartmental digraph, 171

inflow connected, 174

outflow connected, 174

simple trap, 174

trap, 174

control law

averaging-based integral, 275

averaging-based proportional (discrete-time), 110

averaging-based proportional, integral, deriva-

tive, 118

averaging-based proportional, integral (discrete-

time), 111

complex affine averaging, 132

diffusive coupling, 142

diffusive coupling, 133

proportional, derivative, position- and velocity-

averaging, 134

robotic coordination

rendezvous, 37

robotic coordination

affine gradient, 232

centering, 131

cyclic balancing, 12

cyclic pursuit, 11

deployment, 131

rendezvous, 91, 131

convergence factor

asymptotic, 195

mean-square, 221

per-step, 195

convex combination, 27

coefficients, 27

cycle, see graph, cycle and digraph, cycle

digraph

acyclic, 41

aperiodic, 42

binary adjacency matrix of, 51

condensation digraph, 43

cycle, 41

directed walk, 41

node

299



300 SUBJECT INDEX

in-degree, 40

in-neighbor of, 40

out-degree, 40

out-neighbor of, 40

sink, 41

source, 41

periodic, 42

reverse, 42

strongly connected, 42

strongly connected component, 43

subgraph of, 40

induced, 40

spanning, 40

topological sort, 48

topologically balanced, 40

undirected, 39

walk

directed, see digraph, directed walk

weakly connected, 42

weighted, see weighted digraph

Dini derivatives, 245

disagreement

cumulative quadratic, 197

max-min, 78

quadratic, 77

relative, 161

vector, 76, 126, 196

dynamical flow system, 171

compartmental matrix, 174

flow rate matrix, 173

linear, 174

reduced, 176

effective resistence, 106

eigenpair, 21

eigenvalue, 21

algebraic multiplicity of, 23

dominant, 30

geometric multiplicity of, 23

semisimple, 23

simple, 23

eigenvector, 21

dominant, 30

equal-neighbor matrix, 79

Fiedler eigenpair, 104

function

convex and strictly convex, 251

critical point of, 236

Dini derivative of, 245

global minimum point of, 236

Hessian matrix of, 243

level and sublevel set of, 236

Lie derivative of, 238

local minimum point of, 236

positive definite or semidefinite, locally or glob-

ally, 236

proper, 237

radially unbounded, 237

Gelfand’s formula, 67

geodesic distance, 263

graph

acyclic, 41

adjacency spectrum, 52

connected, 41

connected component of, 41

cycle, 41

edge, 39

edge set of, 39

edge space, 154

incidence matrix, 151

neighbor, 39

node, 39

degree, 39

node set of, 39

undirected, 39

union, 210

walk, 41

simple, 41

group, 35

Hicksian stability condition, 181

Kron reduction, 116

Kronecker product, 135

Laplacian

flow, 6, 124

matrix, 102

potential function, 101

pseudoinverse, 106

second-order flow, 134

system, 106

leading principal minors, 181
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linear matrix inequality (LMI), 114, 115, 143

logarithmic-linear function, 240

Lyapunov function, 78

Lyapunov equalities and inequalities, 242

Lyapunov equalities and inequalities, 114, 115, 130,

143

Lyapunov function

candidate, 239

global, 239

local, 239

quadratic, 77, 242

weak, 239

matrix

adjacency, see weighted digraph, adjacency ma-

trix of

block triangular, 54

circulant, 64

continuous-time convergent or Hurwitz, 124

continuous-time semi-convergent, 124

convergent, 22

diagonally dominant

quasi, 178

strictly row, 37

weakly column, 174

exponential, 124

image of, 21

incidence, 151

Jordan normal form of, 23

kernel of, 21

Laplacian, 102

irreducible, 100

Metzler, 168

non-negative, 26

column-stochastic, 26

doubly-stochastic, 27

indecomposable, 71

irreducible, 28

primitive, 28

reducible, 28

row-stochastic, 4, 26

row-substochastic, 7, 59

permutation, 36, 54

projection, 90

rank of, 21

rotation, 36

semi-convergent, 22

spectral abscissa of, 124

spectral radius of, 26

spectrum of, 26

Toeplitz, 52

tridiagonal Toeplitz, 64

Metropolis–Hastings matrix, 81, 93

modal decomposition, 22

model, see system
monotonicity property

algebraic connectivity, 105

effective resistence (Rayleigh monotonicity prop-

erty), 107

Laplacian definiteness, 165

solutions of positive systems, 185

spectral abscissa of Metzler matrix, 185

spectral radius of non-negative matrix, 67

spectral radius of non-negative matrix, 58

negative gradient flow, 243

network system

electrical network, 101, 187

Noy-Meir water flow model, 7

network system

electrical network, 106, 122, 154

Krackhardt’s advice network, 72

Sampson monastery network, 73

spring network, 101, 106, 117, 230

Western North American power grid, 231

Neumann series, 35

order parameter, 266

phase balancing, 269

pseudoinverse, 38

incidence matrix, 165

Laplacian, 106

push sum algorithm, 91

set

bounded, closed, compact, 236

invariant, 241

level and sublevel of a function, 236

singular value decomposition, 38

sink, see digraph, node, sink
source, see digraph, node, source
spectral abscissa, 124

spectral gap, 200

spectral radius, 26
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essential, 193

subgraph, see digraph, subgraph of

Sylvester equation, 147

synchronization

frequency, 264

phase, 264

system

n-bugs, 11

averaging, 5

accelerated, 200

affine, 35

parallel, 90

randomized, 220

time-varying, 210

coupled oscillators, 229

double integrators, 134

dynamical flow, 171

linear, 174

dynamical flow system, 7, 8

French-Harary-DeGroot opinion dynamics, 4

Friedkin-Johnsen opinion dynamics, 96

heterogeneous clocks, 110

Kuramoto coupled oscillators, 229

Laplacian flow, 6, 124

Leslie population, 67

linear

continuous-time, 124

discrete-time, 22

linear control, 143

logistic, 227

Lotka-Volterra, 228

mechanical system, conservative and dissipative,

235

negative gradient, 235

positive, 171

Theorem

Krasovskiı̆-LaSalle Invariance, 241

Geršgorin Disks, 27

Jordan Normal Form, 23

Lyapunov Stability Criteria, 239

Metzler Hurwitz, 169, 177

Negative gradient flow, 244

Perron–Frobenius, 30

Perron–Frobenius for Metzler matrices, 169

Strongly connected and aperiodic digraphs and

primitive adjacency matrices, 56

Strongly connected digraphs and irreducible ad-

jacency matrices, 54

tree, 41

directed, 41

spanning, see tree, spanning
root of, 41

rooted, see tree, directed
spanning, 41

weighted digraph, 44

adjacency matrix of, 51

binary adjacency matrix of, 51

in-degree matrix of, 51

Laplacian matrix of, 99

node

in-degree, 46

out-degree, 46

out-degree matrix of, 51

undirected, 44

weight-balanced, 46
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