
Introduction to Optimization

Introduction to Optimization

Valentina Cacchiani

Department of Electrical, Electronic and Information Engineering
“Guglielmo Marconi”,
University of Bologna,

Italy

July 2023

Introduction to Optimization

Table of contents

Introduction to Mixed Integer Linear Programming

MILP models: ideal and improved formulations

Dynamic Programming and Branch-and-Bound

Heuristic, metaheuristic and matheuristic algorithms

Robust optimization

Seminar: models and heuristic algorithms for real-life
applications

Introduction to Optimization

Introduction to Mixed Integer Linear Programming

Introduction to Mixed Integer Linear
Programming

Introduction to Optimization

Introduction to Mixed Integer Linear Programming

Optimization Problems

Optimization problem: find the best solution out of all feasible
solutions of a decision-making problem

Three main elements:

variables: decisions to be made in the problem
an objective: the goal to be achieved
constraints: given restrictions on the decisions.

Introduction to Optimization

Introduction to Mixed Integer Linear Programming

Classification

Deterministic versus with-uncertainty (stochastic, robust)

Continuous versus Discrete

Single versus Multiple objectives

Non-Linear, Convex, Linear functions to define the objective
and the constraints

min f (x)

x ∈ F

x : decision variables

f (x): objective function

F : feasible set

Introduction to Optimization

Introduction to Mixed Integer Linear Programming

Mixed Integer Linear Programming

min cT x

Ax ≥ b

x ∈ F

where F = Zp
+ × Rn−p

+

Introduction to Optimization

Introduction to Mixed Integer Linear Programming

Mixed Integer Linear Programming

min cT x

Ax ≥ b

x ∈ F

min cT x = min c1x1 + c2x2 + . . .+ cnxn

a11x1 + a12x2 + . . .+ a1nxn ≥ b1

a21x1 + a22x2 + . . .+ a2nxn ≥ b2

. . .

am1x1 + am2x2 + . . .+ amnxn ≥ bm

x1, x2, . . . , xp ≥ 0, integer

xp+1, xp+2, . . . xn ≥ 0.

Introduction to Optimization

Introduction to Mixed Integer Linear Programming

Linear Programming

min cT x

Ax ≥ b

x ∈ F

min cT x = min c1x1 + c2x2 + . . .+ cnxn

a11x1 + a12x2 + . . .+ a1nxn ≥ b1

a21x1 + a22x2 + . . .+ a2nxn ≥ b2

. . .

am1x1 + am2x2 + . . .+ amnxn ≥ bm

x1, x2, . . . , xn ≥ 0

Introduction to Optimization

Introduction to Mixed Integer Linear Programming

Computational complexity

Computational Complexity of problem P: complexity of the
best algorithm for solving any instance of P in the worst case

Complexity of an Algorithm for P: measure of the time, as a
function of the instance size, it takes, in the worst case, to
solve any instance of P

Size of a Problem P: number of input values that define an
instance of P

Introduction to Optimization

Introduction to Mixed Integer Linear Programming

Computational complexity

Class P (Polynomial problems): problem P is polynomial if
there exists at least one algorithm that can solve P, in the
worst case, within a computing time that grows according to a
polynomial function of the size of P

Class NP (Nondeterministic Polynomial): problems that can
be solved in polynomial time through a non deterministic
Turing Machine (an ideal “lucky” algorithm that always
makes the correct choice in a decision tree).

Introduction to Optimization

Introduction to Mixed Integer Linear Programming

Computational complexity

NP-Complete Problems: problem P is NP-Complete if both
conditions hold:

P belongs to class NP
There exists an NP-Complete Problem T which is reducible
to P (T ∝ P), i.e.:

for any instance t of T , it is possible to define, in polynomial
time in the size of t, an instance p of P such that, if the
solution of p has been determined, then the solution of t can
be obtained in polynomial time in the size of t.

Introduction to Optimization

Introduction to Mixed Integer Linear Programming

Computational complexity

NP-Hard problems

These problems are not necessarily in NP (are as hard as
NP-Complete problems)

These problems P∗ have the characteristic that P1 ∝ P∗ for
all P1 ∈ NP
Hence the existence of a polynomial algorithm for P∗ would
imply that P = NP.

The optimization version of NP-complete problems belongs
to the class of NP-hard problems.

Introduction to Optimization

Introduction to Mixed Integer Linear Programming

Computational complexity

LP and ILP

LP: there exist algorithm that are polynomial

ILP: it is NP-complete

Introduction to Optimization

Introduction to Mixed Integer Linear Programming

Exact versus Heuristic Algorithms

Exact algorithms are designed to find an optimal solution to
the problem and prove it is optimal

If the problem is in class P, we must derive a polynomial time
algorithm to solve it

When the problem is NP-Hard and/or the size of the
instance is large-scale, it might be not possible to compute an
optimal solution in reasonable computing time

In this case, it is appropriate to define a heuristic algorithm
that should obtain good quality solutions in possibly short
computing time.

Introduction to Optimization

Introduction to Mixed Integer Linear Programming

LP: Simplex Algorithm

LP problems can be solved efficiently by the Simplex
Algorithm (although it is not polynomial)

Theorem: Given an LP problem (F , φ) with non empty and
bounded (from below for minimization problems) feasible set
F and objective function φ, there always exists an optimal
vertex of F

Introduction to Optimization

Introduction to Mixed Integer Linear Programming

LP: Feasible region

Introduction to Optimization

Introduction to Mixed Integer Linear Programming

LP: Graphical solution

Introduction to Optimization

Introduction to Mixed Integer Linear Programming

Modelling

Given a real-world system, determine the system variables,
system constraints, and objective(s) for operating the system

Translate variables and constraints into the form of a
mathematical optimization problem: the formulation

Simplifications: the mathematical optimization problem
should be tractable

Introduction to Optimization

Introduction to Mixed Integer Linear Programming

A real-life example: Bus Scheduling Optimization

The problem integrates Timetabling and Vehicle Scheduling for a
bus company operating in a transport network with electric vehicles

The problem was proposed by M.A.I.O.R. Company as a challenge
of the EU MINOA Project (Mixed Integer Non-linear Optimization:
Algorithms and Applications)

Introduction to Optimization

Introduction to Mixed Integer Linear Programming

Timetabling

Determine the bus timetable at each terminal for each line and
direction of the transport network.

This corresponds to selecting a set of trips for each line and
direction (each trip corresponds to a line and a direction and has
fixed departure and arrival times)

Desired bus frequency varies along the day.

Day partitioned into K time windows.

Introduction to Optimization

Introduction to Mixed Integer Linear Programming

Timetabling Constraints

For each time window: respect minimum headway and maximum headway

headway

Introduction to Optimization

Introduction to Mixed Integer Linear Programming

Timetabling Constraints

For each time window: respect minimum headway and maximum headway

For each line and direction: select at least one initial and one final trip in
given sets

Introduction to Optimization

Introduction to Mixed Integer Linear Programming

Timetabling Objective

Quality of service to the passengers

For each time window: the ideal headway is given

Minimize the sum, over all consecutive trip pairs, of the
relative headway deviation from the ideal one, penalized by a
quadratic function.

The objective function can be linearized!

Introduction to Optimization

Introduction to Mixed Integer Linear Programming

Vehicle Scheduling

Determine the sequence of trips (vehicle block) that have to
be executed by each vehicle starting and ending at the depot.

Each vehicle always performs:

a pull-in trip (from the depot to the start-terminal of a trip)
a pull-out trip (from the end-terminal of a trip to the depot)

The fleet includes traditional Internal Combustion Engine
(ICE) vehicles and electric vehicles.

Introduction to Optimization

Introduction to Mixed Integer Linear Programming

Vehicle Scheduling Constraints

Minimum and maximum stop time at each terminal

Trips in sequence for a bus:

In-line: enough time (min/max stop) between the two trips

Out-line: change terminal only through the depot

Introduction to Optimization

Introduction to Mixed Integer Linear Programming

Vehicle Scheduling Constraints

Electric vehicles: maximum number of available buses

Partial recharges are allowed but with duration at least a given
minimum recharging time and respecting the maximum battery level

Fast and slow recharge requiring different recharge time

Introduction to Optimization

Introduction to Mixed Integer Linear Programming

Vehicle Scheduling Constraints

Parking/charging constraints: maximum number of parking and
charging slots available

ICE vehicles can park in a charging slot.

Electric vehicles can park without charging.

Moving from a charging to a parking slot and vice versa is allowed
but no split of charge

Introduction to Optimization

Introduction to Mixed Integer Linear Programming

Vehicle Scheduling Constraints

Parking/charging constraints: maximum number of parking and
charging slots available

ICE vehicles can park in a charging slot.

Electric vehicles can park without charging.

Moving from a charging to a parking slot and vice versa is allowed
but no split of charge

Introduction to Optimization

Introduction to Mixed Integer Linear Programming

Vehicle Scheduling Objective

Bus Company costs

Minimize the total cost given by the sum of:

fixed cost (higher for ICE vehicles)
cost proportional to the additional stopping time of the vehicle
at a terminal but no cost is paid during a recharge
cost proportional to the sum of deadhead trip times (pull-in
and pull-out trips)
a cost for CO2 emissions proportional to the total driving time
(zero for electric vehicles)

Introduction to Optimization

MILP models: ideal and improved formulations

MILP models: ideal and improved
formulations

Introduction to Optimization

MILP models: ideal and improved formulations

Modelling

Let F be the set of feasible solutions to the problem

F ⊆ Zp
+ × Rn−p

+

A formulation may have auxiliary variables that are not
directly required in the problem

A formulation
S = {(x , y) ∈
(Zp

+ × Rn−p
+)× (Zt

+ × Rn−t
+) such that Ax + Gy ≥ b}

is valid if F = projx(S)

There may be more than one valid formulation

Different formulations yield different performance of the
solution methods

Finding a good formulation is crucial

Introduction to Optimization

MILP models: ideal and improved formulations

Formulation Strength and Ideal Formulations

Consider two formulations A and B for the same ILP.

Denote the feasible regions corresponding to their LP
relaxations as PA and PB.

Formulation A is said to be at least as strong as formulation B
if PA ⊆ PB.

If the inclusion is strict, then A is stronger than B.

If S is the set of all feasible integer solutions for the ILP, then
conv(S) ⊆ PA.

A is ideal if conv(S) = PA

Introduction to Optimization

MILP models: ideal and improved formulations

Different formulations

Example: Knapsack Problem

Given N items, each with profit pj and weight wj (j ∈ N), and
the knapsack capacity W , find the maximum profit subset of
items whose total weight does not exceed the capacity.

A formulation:

max
∑
j∈N

pjxj∑
j∈N

wjxj ≤W

xj ∈ {0, 1} j ∈ N

Introduction to Optimization

MILP models: ideal and improved formulations

Different formulations

Example: Knapsack Problem - an alternative formulation

Consider a subset of items C ⊆ N such that
∑

j∈C wj >W .
This set C is called a cover.

A cover C is minimal if
∑

j∈C\{i} wj ≤W for all i ∈ C .

An alternative formulation:

max
∑
j∈N

pjxj∑
j∈C

xj ≤ |C | − 1 ∀ minimal covers C

xj ∈ {0, 1} j ∈ N

This formulation has an exponential number of inequalities

They can be added on the fly: constraint separation

Introduction to Optimization

MILP models: ideal and improved formulations

Different formulations

The previous formulation can be further improved by
considering the extension of a minimal cover C :
E (C) = C ∪ {k ∈ N \ C : wk ≥ wj ∀j ∈ C}
Then, the following inequalities are valid:∑

j∈E(C) xj ≤ |C | − 1 ∀ minimal covers C

Introduction to Optimization

Dynamic Programming and Branch-and-Bound

Dynamic Programming and
Branch-and-Bound

Introduction to Optimization

Dynamic Programming and Branch-and-Bound

Dynamic programming

Is an approach that transforms a complex problem into a
sequence of easier problems

It has the essential feature of dividing an optimization
problem into multiple stages, which are solved sequentially
(one stage at a time)

Each stage has an associated state: the state contains the
information needed to make the future decisions

It can be used to solve an optimization problem or to solve a
problem appearing as a subproblem of a more complex one

Introduction to Optimization

Dynamic Programming and Branch-and-Bound

Dynamic programming

Introduced by R. Bellman. Quoting from his report at RAND
Corporation (RAND from “research and development”):

The theory was created to treat the mathematical problems
arising from the study of various multi-stage decision processes

We have a physical system whose state at any time is
determined by a set of quantities called state variables

At certain times, we are called upon to make decisions which
will affect the state of the system

These decisions are equivalent to transformations of the state
variables

The outcome of the preceding decisions is to be used to guide
the choice of the future ones, with the purpose of the whole
process that of maximizing some function of the parameters
describing the final state

A sequence of decisions will be called a policy

Introduction to Optimization

Dynamic Programming and Branch-and-Bound

Dynamic programming

A classical approach to these mathematical problems would be
to consider the set of all possible sequences of decisions (all
feasible policies), compute the return for each such policy, and
then maximize the return over the set of all feasible policies

It is often not practical

How much information is actually required to carry-out a
multi-stage decision process?

It is sufficient to furnish a general prescription which
determines at any stage the decision to be made in terms of
the current state of the system

Introduction to Optimization

Dynamic Programming and Branch-and-Bound

Dynamic programming

Principle of Optimality: An optimal policy has the property
that, whatever the initial state and initial decisions are, the
remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decisions.

System described at any time by vector p = (p1, p2, . . . , pM)
with p constrained to lie in finite region D.

Consider an N-stage process to be carried out to maximize
the N-stage return R(p) of the final state.

Let T = {Tk} be a set of transformations such that
p ∈ D → Tk(p) ∈ D ∀k.

Introduction to Optimization

Dynamic Programming and Branch-and-Bound

Dynamic programming

A policy consists of a selection of N transformations
TR = (T1,T2, . . . ,TN) yielding successively states
p1 = T1(p)
p2 = T2(p1)
. . .
pN = TN(pN−1).

A optimal policy leads to the maximum value of the N-stage
return R(pN) determined as a function of the initial vector
and the number of stages: fN(p) = maxTR R(pN).

Introduction to Optimization

Dynamic Programming and Branch-and-Bound

Dynamic programming

We apply the principle of optimality.

Let p be the initial state and suppose we apply transformation
Tk thus obtaining state Tk(p).

The maximum return from the following N − 1 stages is
fN−1(Tk(p))

Hence transformation Tk must be chosen such that
fN(p) = maxk fN−1(Tk(p)) for N = 2, 3, . . .

Introduction to Optimization

Dynamic Programming and Branch-and-Bound

Dynamic programming - Knapsack Problem

The solution of a problem can be broken down into a
sequence of decisions, each associated with a subproblem.

The original problem solution is divided into stages, and a
recurrence relation is found which leads from one stage to the
previous one.

Example: Knapsack Problem: J set of n items, π profit
vector, w weight vector, C capacity

max
∑
j∈J

πjxj∑
j∈J

wjxj ≤ C

xj ∈ {0, 1} j ∈ J

Introduction to Optimization

Dynamic Programming and Branch-and-Bound

Dynamic programming - Knapsack Problem

Let z be the residual capacity (0 ≤ z ≤ C) and m an integer
representing the number of items (1 ≤ m ≤ n).

fm(z) = max{
∑m

i=1 πixi :
∑m

i=1 wixi ≤ z , xi = 0 or 1, ∀i =
1, . . . ,m}
We start by solving for one item:

f1(z) = 0 if 0 ≤ z < w1

f1(z) = π1 if w1 ≤ z ≤ C .

The recursive equations for the mth stage (m = 2, . . . , n) are:

fm(z) =

{
fm−1(z) if 0 ≤ z < wm

max{πm + fm−1(z − wm), fm−1(z)} if wm ≤ z ≤ C

Introduction to Optimization

Dynamic Programming and Branch-and-Bound

Branch and Bound

Introduction to Optimization

Dynamic Programming and Branch-and-Bound

Branch and Bound

It is a recursive and divide-and-conquer approach proposed by
Land and Doig.

Let S be the feasible set for the MILP maxx∈S c
T x

Consider a partition of S into subsets S1, . . . ,Sk
Then: maxx∈S c

T x = max{1≤i≤k}{maxx∈Si c
T x} (solve the

smaller subproblems recursively)

Branching: divide the original problem into smaller
subproblems.

Bounding: obtain a bound on the optimal solution value of a
subproblem maxx∈Si c

T x

Introduction to Optimization

Dynamic Programming and Branch-and-Bound

Branch and Bound

Solving the bounding problem → x∗ can achieve two goals:

If the solution x∗ of the bounding problem is feasible (x∗ ∈ S),
then it is a valid lower bound
If the upper bound cT x∗ is worse than the best lower bound,
we can prune the subproblem

The easiest way to construct a bounding problem is by
considering the Linear Programming relaxation of Si
The most frequent branching method is by variable
disjunction: select a fractional variable with value x∗h in the
LP solution and create two subproblems by imposing
constraints xh ≤ bx∗hc and xh ≥ dx∗he

Introduction to Optimization

Dynamic Programming and Branch-and-Bound

Branch and Bound

The efficiency of the algorithm strongly depends on some
algorithmic choices

The bounding methods: which relaxation to solve? how much
effort to compute a good bound on the subproblem?

The method of branching

The method of selecting the next candidate subproblem to
process (e.g., best first): how much effort to choose a good
candidate?

Two of the most crucial decisions are:

variable selection (which fractional variable to branch on)
node selection (which of the currently open nodes to process
next).

Preprocessing and heuristics to compute lower bounds

Introduction to Optimization

Dynamic Programming and Branch-and-Bound

Bounding

By computing stronger bounds, we can achieve a reduction in
tree size but more computing time is required in processing
each subproblem.

To compute a bound, we can apply a relaxation: relax some
of the constraints and solve the resulting problem.

MILP: max{cT x such that x ∈ S}
S = P ∩ (Zp

+ × Rn−p
+) with

P = {x ∈ Rn such that Ax ≤ b}
A relaxation zR = max{zR(x) such that x ∈ SR} has the
properties:

S ⊆ SR
zR(x) ≥ cT x , for all x ∈ S

Introduction to Optimization

Dynamic Programming and Branch-and-Bound

Bounding

A relaxation has to be much easier to solve than the original
problem and has to provide a good bound

The easiest way to obtain relaxations is to drop some of the
constraints defining the feasible set S.

A common relaxation is the LP-relaxation.

Introduction to Optimization

Dynamic Programming and Branch-and-Bound

LP-relaxation

min cT x min cT x
(P) Ax ≤ b (LP) Ax ≤ b

x ∈ Zn
+ x ∈ Rn

+

Introduction to Optimization

Dynamic Programming and Branch-and-Bound

Branch and Bound - Searching the branching tree

In the branch and bound process, we want to:

quickly find a good integer feasible solution to also prune
useless subproblems

prove that the current solution is optimal

Many heuristic rules for searching the branching tree have been
proposed, but no single heuristic dominates the others, and their
performance very likely depends on the class of considered
problems.

Introduction to Optimization

Dynamic Programming and Branch-and-Bound

Branch and Bound - Node selection

It is important to decide how to explore the branching tree:

best-first strategy: in which one always considers the most
promising node

depth-first strategy: in which one goes deeper and deeper in
the tree and starts backtracking only once a node is fathomed

hybrid methods combining the two strategies above (e.g.,
two-phase methods that alternate depth-first and best-first)

estimate-based methods that exploit the notion of estimating
the value of the best feasible solution that can be derived in a
certain subtree

Machine Learning based branching: for example, learning an
efficient approximation of strong branching by supervised
learning techniques.

Introduction to Optimization

Dynamic Programming and Branch-and-Bound

An example

Solve by branch and bound problem P0:

max z = x1 + 4x2

2x1 − x2 ≥ 0

x1 + 3x2 ≤ 9

x1, x2 ≥ 0, integer

Select the fractional variable with minimum index

Explore first the node generated by ≤ condition in depth-first
strategy

Solve the LP-relaxation in a graphical way

Introduction to Optimization

Heuristic, metaheuristic and matheuristic algorithms

Heuristic, metaheuristic and matheuristic
algorithms

Introduction to Optimization

Heuristic, metaheuristic and matheuristic algorithms

Heuristic Algorithms

In many practical cases, having a “good” solution is enough

Even when we aim at finding an optimal solution, a heuristic
algorithm can help reduce the computing time

To evaluate the performance of a heuristic algorithm we
should consider:

time required to terminate (running time, computational
complexity, worst-case performance)
required memory
quality of the solution found (optimality gap)

Introduction to Optimization

Heuristic, metaheuristic and matheuristic algorithms

Heuristic Algorithms

Heuristics can be used as a stand-alone method or in
combination with an exact method (e.g., branch and bound)

They can be divided into solution-based or model-based

Heuristics can also be classified as follows:

greedy, constructive
local search
metaheuristic
based on relaxations
matheuristic

Introduction to Optimization

Heuristic, metaheuristic and matheuristic algorithms

Solution-based Algorithms

Introduction to Optimization

Heuristic, metaheuristic and matheuristic algorithms

Heuristic Algorithms - Greedy, Constructive

The solution is constructed step by step starting from an
empty solution

Iteratively, the best element that is feasible is chosen and
added to the partial solution

The choices made cannot be changed

The best element can be chosen based on scores associated to
all elements

The relevant features are the structure of the solution, its
feasibility and the scores

Introduction to Optimization

Heuristic, metaheuristic and matheuristic algorithms

Heuristic Algorithms - Local Search

It consists of starting from a feasible solution and applying
some changes (moves) to try to improve it

It constructs a set of feasible solutions

The changes are applied based on the definition of some
neighborhood: a set of feasible solutions close to the current
one

A new solution is selected in the neighborhood of the current
one if the former improves the latter: for example, one can
choose the first improving solution or the best improving one

If no solution improves the current one, the procedure is
terminated

The local search can terminate in a local optimum

A relevant feature is the size of the neighborhood

Introduction to Optimization

Heuristic, metaheuristic and matheuristic algorithms

Heuristic Algorithms - Randomized algorithms

Randomization is a way to achieve diversification

Multi-start greedy: start from different initial elements and
apply a greedy algorithm

Multi-start combined with local search

Greedy Randomized Adaptive Search Procedure (GRASP):
combines greedy and local search. At each step in the greedy
algorithm, instead of selecting the best element, consider the
set of k best candidates, and randomly select one of them.
Local search is then applied to the computed feasible solution.
The process can be iterated to obtain several feasible
solutions.
The greedy is adaptive since the scores of the elements are
updated based on the previous iterations.

Introduction to Optimization

Heuristic, metaheuristic and matheuristic algorithms

Heuristic Algorithms - Metaheuristic algorithms

The main drawback of local search algorithms is that they obtain a
local minimum.
Metaheuristic algorithms try to overcome this issue:

Very Large Neighborhood Search (VLNS)

Simulated Annealing

Iterated Local Search

Tabu Search

Population based heuristic

Introduction to Optimization

Heuristic, metaheuristic and matheuristic algorithms

Heuristic Algorithms - Very Large Neighborhood Search

A critical issue in Local Search is the choice of the
neighborhood
As a rule of thumb, if we consider a larger neighborhood we
can find a better solution
However, exploring a larger neighborhood requires more
computing time.
Thus it is not guaranteed to find a better solution by
exploring a larger neighborhood: it is important to explore it
in an efficient way
VLNS considers a neighborhood whose size is very large
(exponential) with respect to the size of the problem
The neighborhood can be (partially) explored in a heuristic
way (e.g., k-exchange neighborhood)
In this category, we can also have the search of the
neighborhood performed by network-flow algorithms or
dynamic programming algorithms (e.g., neighborhoods defined
by minimum cost cycles, shortest paths)
Another option is that the large neighborhood is induced by
restrictions of the original problem that can be solved in
polynomial time

Introduction to Optimization

Heuristic, metaheuristic and matheuristic algorithms

Heuristic Algorithms - Simulated Annealing

The main idea is to allow for occasional moves that produce
feasible solutions of higher cost

It is inspired by the annealing process of metals

Each solution has a neighborhood: suppose we are in solution
x , then we select at random a neighbor solution y

We compute the difference of the costs c(y)− c(x). If
c(y) ≤ c(x), we have an improved solution and we move to y

Introduction to Optimization

Heuristic, metaheuristic and matheuristic algorithms

Heuristic Algorithms - Simulated Annealing

If c(y) > c(x) then we move to y with probability given by:

e−
(c(y)−c(x))

T , where T is a positive constant called temperature.

If we do not move to y , another random neighbor solution is
selected.

When T is small, cost increase is unlikely. When the
difference c(y)− c(x) is large, the probability of accepting a
worsening is small.

The temperature is reduced during the iterations: Tk = αTk1,
with α ∈ [0, 1]

The final temperature is selected to that it is very unlikely to
select a worsening solution

Introduction to Optimization

Heuristic, metaheuristic and matheuristic algorithms

Heuristic Algorithms - Iterated Local Search

Consists of three main steps: perturbation, local search, and
acceptance criterion

Start from an initial solution and apply Local Search until
reaching a local optimum

Then, apply a “kick” by perturbation: this perturbation
usually consists in a move that was not considered in the
Local Search algorithm and allows moving farther from the
current solution (e.g., destroy and repair operators). It can
also be based on random changes

Acceptance criterion can be deterministic (e.g., number of
not-improving iterations) or based on a probability

ILS can also accept infeasible solutions in the perturbation
step, that can then be made feasible by local search

Introduction to Optimization

Heuristic, metaheuristic and matheuristic algorithms

Heuristic Algorithms - Tabu Search

The main idea is to accept worsening moves but store a tabu
list of moves to avoid cycling on the same solutions

Given a solution x , it moves to the best neighbor solution y
even if it is not improving, but without applying moves of the
tabu list

Then the tabu list is updated

To avoid that good solutions are discarded by tabu moves, if
the new solution is better than the best solution found, then it
is accepted (aspiration criteria)

There can also be softer aspiration criteria which consider how
far a non-improving solution is from the best solution found

A relevant feature is the size of the tabu list and the way of
storing the moves/attributes in the tabu list to efficiently
check it

Introduction to Optimization

Heuristic, metaheuristic and matheuristic algorithms

Heuristic Algorithms - Population based heuristic

The most common ones are the Genetic Algorithms

They consider a population of solutions (instead of a single
one)

The population evolves and part of the population is replaced
by new individuals

A fitness function is used to measure the quality of each
individual

Introduction to Optimization

Heuristic, metaheuristic and matheuristic algorithms

Heuristic Algorithms - Population based heuristic

GA starts by creating an initial population

Then, three main steps are applied:

selection: a subset of the individuals are selected and used to
generate new solutions (random selection, higher probability
for better individuals)
crossover: this is the recombination step, in which subsets of
two or more individuals are combined to generate new ones
mutation: is applied to a single individual to generate a similar
one

The population usually keeps the same size, hence often the
new population includes the best individual of the previous one

Introduction to Optimization

Heuristic, metaheuristic and matheuristic algorithms

Model-based Algorithms

Introduction to Optimization

Heuristic, metaheuristic and matheuristic algorithms

Heuristic Algorithms - Matheuristic algorithms

Heuristic algorithms based on Mathematical Programming

Exploit the mathematical formulation of the problem

Combine an exact solution approach with the definition of
neighborhoods

Relaxation-based algorithms

Introduction to Optimization

Heuristic, metaheuristic and matheuristic algorithms

Heuristic Algorithms based on Relaxations

LP-based heuristic:

iterative rounding of the variables based on the LP-solution
values (also called diving): choice of which variables to fix,
how many variables
rounding of all variables at once
rounding with option of backtracking
randomized rounding for 0-1 problems (interpret the value of a
variable as the probability to chose it in the solution)

Introduction to Optimization

Heuristic, metaheuristic and matheuristic algorithms

Heuristic Algorithms - LP-based Local Search

Local Branching:

Given a reference solution x̄ with S̄ = j ∈ B : x̄j = 1:

Explore the k-OPT neighborhood as the set of the feasible
solutions satisfying ∆(x , x̄) =

∑
j∈S̄(1− xj) +

∑
j∈B\S xj ≤ k

Introduction to Optimization

Heuristic, metaheuristic and matheuristic algorithms

LP-based Heuristic for Bus Scheduling

Introduction to Optimization

Heuristic, metaheuristic and matheuristic algorithms

Heuristic Solution Method

It is based on an Integer Linear Programming (ILP) model
formulated on two graphs:

timetabling graph
vehicle scheduling graph

It is not an exact model for the integrated problem:

parking/charging constraints are handled heuristically
For the electric vehicles:

moving from a parking slot to a charging slot and vice versa is
now allowed
the vehicle recharges always for the maximum available time
(up to the maximum battery level) starting its recharge at the
first available time instant

Introduction to Optimization

Heuristic, metaheuristic and matheuristic algorithms

Timetabling Graph

We adopt the same graph as in Carosi et al. (2019) for the timetabling
problem.

One graph for each line and direction.

In each graph:

one node for each trip (departure time from the terminal)
arcs correspond to consecutive trips (departure times) that
respect minimum and maximum headways

Cost linearization: cost of an arc corresponds to the difference between
the actual and the ideal headways.

Introduction to Optimization

Heuristic, metaheuristic and matheuristic algorithms

Vehicle Scheduling Graph

Nodes correspond to trips.

Arcs correspond to in-line or out-line compatibilities.

A path in the graph is a vehicle block.

Introduction to Optimization

Heuristic, metaheuristic and matheuristic algorithms

Vehicle Scheduling Graph

Nodes correspond to trips.

Arcs correspond to in-line or out-line compatibilities.

A path in the graph is a vehicle block.

Introduction to Optimization

Heuristic, metaheuristic and matheuristic algorithms

Vehicle Scheduling Graph

Nodes correspond to trips.

Arcs correspond to in-line or out-line compatibilities.

A path in the graph is a vehicle block.

Introduction to Optimization

Heuristic, metaheuristic and matheuristic algorithms

Heuristic Solution Method

LP-relaxation of the ILP model.

Generation of vehicle blocks by Dynamic Programming

It is executed for a given time limit (that depends on the
instance size)

One vehicle block at a time is fixed (variable with the highest
fractional value in the LP-solution)

The corresponding parking/charging slots are occupied.

The trips incompatible with the selected ones are removed.

New vehicle blocks are generated but taking into account only
the available slots and trips.

The fixing process is iterated until all timetabling headways
are respected and hence we have a feasible solution.

	Introduction to Mixed Integer Linear Programming
	MILP models: ideal and improved formulations
	Dynamic Programming and Branch-and-Bound
	Heuristic, metaheuristic and matheuristic algorithms

