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Data Uncertainty

m Uncertainty of data is common in practice

m A solution that is optimal for a given input may even be
infeasible for different data

m As a consequence, the planned solution has to be changed in
real-time, leading to costs and inconvenience

m On the contrary, if in planning we can account for “some”
uncertainties, then the solution may still be optimal or at least
feasible during operations

m Robustness deals with the decision of accounting for
uncertainties in planning so that the plan reamins feasible
during operations



Introduction to Optimization

L Robust optimization

Efficiency and Robustness

m To avoid replanning during operations, an option could be to
make a conservative choice that takes into account all bad
situations that may occur

m In this way, operations will run smoothly

m However, this is in contrast with providing an efficient
solution: goals of the nominal problem

m Hence, a trade-off between the nominal and the robust
problems must be achieved:
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An example: Train Timetable Robustness

m The aim of robustness is to determine timetables that perform
well under disturbances

m A common way to obtain robust timetables is to introduce in
the planning phase buffer times that can absorb possible
delays occurring at an operational level

m Buffer times correspond to empty time slots used to mitigate
delay propagation

m Robust Train Timetabling calls for determining where the
buffer times should be inserted and how long they should be
to guarantee a good trade-off between the nominal efficiency
and the delay resistance
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Soyster (1973)

The seminal work by Soyster (1973): strict robustness
later extended in Ben-Tal and Nemirovski (1998)

deals with the uncertain data present in a mathematical model

Determine a solution that is feasible for all the considered
scenarios, with the goal of minimizing the worst-case
performance of a solution

m These methods tend to be overconservative
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Bertsimas and Sim (2003,2004)

m Bertsimas and Sim (2003,2004): uncertainties of data are
represented by letting each coefficient assume a value in an
interval centered in its nominal value

m The number of coefficients that can simultaneously take their
worst-case value is limited

m Define a robust model such that its optimal solution is feasible
for every change of at most I'; coefficients in each row / of the
constraint matrix

m These robust solutions can be considerably worse w.r.t
efficiency than the nominal ones, even if few coefficients are
allowed to change in each row
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Bertsimas and Sim (2003,2004)

min{chxj- : Za;jxj- <bieM, x>0, jeN}
JEN JEN
Robust counterpart:
D apxi+B(x.Ti)< b ieM
JEN
where

B(x,F;) = max Z?a,-jxj
JES

SCN:|S|<T;
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Recent Robustness Paradigms

m Recoverable Robustness

m Light Robustness
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Recoverable Robustness

m Liebchen, Liilbbecke, M&hring, and Stiller (2009)

m Integrates the notion of robustness and recoverability (delay
management)

m An optimization problem which in a limited set of scenarios
can be made feasible, or recovered, by a limited effort

m Recovery actions can be used to make a plan feasible through
limited changes in every likely scenario

m Typical recovery actions: delaying events, cancelling
connections, cancelling train services or rerouting trains



Introduction to Optimization

L Robust optimization

Recoverable Robustness

m Given on input: a set of likely scenarios, the nominal plan, and
a set of recovery algorithms

m A solution is recovery-robust if, in all the considered scenarios,
one can recover the solution by means of one of the given
recovery algorithms

m For practical purposes, one must impose sensible limits on the
recovery algorithms

m Two-stage approach
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An example: Recoverable Robustness for Train Timetabling

A set S of delay scenarios (small disturbances)
Nominal plan: v; (i € E) event times of the planned timetable

Recovery actions: delaying events

Vis (i € E, s € S): event times of the realized timetable in
scenario s

m Constraints to respect the minimum process times when
scenario s € S occurs:

Vjs - Vis > /ljs ((’a./) € A,S € 5)
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An example: Recoverable Robustness for Train Timetabling

m Constraints to model the recovery action of event delaying:

= An event in scenario s € S cannot take place before its
planned time:
Vis > v; (I € Eys€ 5)

= limit the weighted sum of the delays of all the arrival events
(w; number of passengers of event i)

Z w;i(Vis — vi) < M

i€E,
m limit the delay for each arrival event separately
Vis —v; < >\27 i€ Ea-

m \; and A2: minimized in the objective function
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An example: Recoverable Robustness for Train Timetabling

m Advantages: combines robustness and recoverability, thus
overcoming the drawbacks of strict robustness

m Disadvantages: the recovery algorithms have to be included in
the optimization model, hence only limited recovery actions
can be taken into account
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Light Robustness

m Fischetti and Monaci (2009)
m Single stage approach (without scenarios)

m A protection level (e.g., buffer time) is required for each
activity but slack variables are introduced to compensate for
the missing protection

m Goal: to minimize the sum of the slack variables, while
imposing a limit on the worsening of the nominal efficiency
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Light Robustness

m ;: slack variable
m (3(x,T;): to decide the protection level

m J: to decide the maximum worsening compared to the
nominal efficiency

®m z*: nominal solution value
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Light Robustness

minz Wi (].)

ieM
E:%&+5kiﬂ—wébfieM (2)
Jjen
Zainiji ieM (3)
jen
> g < (1+0)z @)
JEN
x>0 jeN (5)

>0 ieM (6)
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An example: Light Robustness for Train Timetabling

vi (with i € V): time instant of event i

li (with (i,j) € A): minimum time difference between the two
consecutive events i and j

~ii: slack variables
m Aj: required protection level parameters

m 0: maximum worsening of the objective w.r.t the nominal efficiency F*

min E Yij

(i,j)EA
vi—vi > Iy (i, j) € A
Vi— Vit > i+ Ay, V(ij)eA
F(v) < (1+0)F"
Y5 >0 V(i,j) €A
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Light Robustness

m Advantages: faster than stochastic programming approaches
and accurate in terms of quality of the robust solutions
obtained

m Disadvantages: a posteriori evaluation of the delay scenarios
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RENEIS

m Robustness can help reduce issues related to data uncertainty

m Efficiency has to be taken into account

m Two-stage methods directly include scenarios but require
significant computational effort

m Single-stage methods are faster but require a posteriori
evaluation of the scenarios (e.g., validation tool)
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