
Introduction to Optimization

Introduction to Optimization

Valentina Cacchiani

Department of Electrical, Electronic and Information Engineering
“Guglielmo Marconi”,
University of Bologna,

Italy

July 2023



Introduction to Optimization

Table of contents

Robust optimization

Seminar: models and heuristic algorithms for real-life
applications



Introduction to Optimization

Robust optimization

Robust optimization



Introduction to Optimization

Robust optimization

Data Uncertainty

Uncertainty of data is common in practice

A solution that is optimal for a given input may even be
infeasible for different data

As a consequence, the planned solution has to be changed in
real-time, leading to costs and inconvenience

On the contrary, if in planning we can account for “some”
uncertainties, then the solution may still be optimal or at least
feasible during operations

Robustness deals with the decision of accounting for
uncertainties in planning so that the plan reamins feasible
during operations
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Efficiency and Robustness

To avoid replanning during operations, an option could be to
make a conservative choice that takes into account all bad
situations that may occur

In this way, operations will run smoothly

However, this is in contrast with providing an efficient
solution: goals of the nominal problem

Hence, a trade-off between the nominal and the robust
problems must be achieved:
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An example: Train Timetable Robustness

The aim of robustness is to determine timetables that perform
well under disturbances

A common way to obtain robust timetables is to introduce in
the planning phase buffer times that can absorb possible
delays occurring at an operational level

Buffer times correspond to empty time slots used to mitigate
delay propagation

Robust Train Timetabling calls for determining where the
buffer times should be inserted and how long they should be
to guarantee a good trade-off between the nominal efficiency
and the delay resistance
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Two Classical Robustness Paradigms
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Soyster (1973)

The seminal work by Soyster (1973): strict robustness

later extended in Ben-Tal and Nemirovski (1998)

deals with the uncertain data present in a mathematical model

Determine a solution that is feasible for all the considered
scenarios, with the goal of minimizing the worst-case
performance of a solution

These methods tend to be overconservative
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Bertsimas and Sim (2003,2004)

Bertsimas and Sim (2003,2004): uncertainties of data are
represented by letting each coefficient assume a value in an
interval centered in its nominal value

The number of coefficients that can simultaneously take their
worst-case value is limited

Define a robust model such that its optimal solution is feasible
for every change of at most Γi coefficients in each row i of the
constraint matrix

These robust solutions can be considerably worse w.r.t
efficiency than the nominal ones, even if few coefficients are
allowed to change in each row
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Bertsimas and Sim (2003,2004)

min{
∑
j∈N

cjxj :
∑
j∈N

aijxj ≤ bi i ∈ M, xj ≥ 0, j ∈ N}

Robust counterpart:∑
j∈N

aijxj + β(x , Γi ) ≤ bi i ∈ M

where
β(x , Γi ) = max

S⊆N:|S |≤Γi

∑
j∈S

âijxj
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Recent Robustness Paradigms

Recoverable Robustness

Light Robustness
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Recoverable Robustness

Liebchen, Lübbecke, Möhring, and Stiller (2009)

Integrates the notion of robustness and recoverability (delay
management)

An optimization problem which in a limited set of scenarios
can be made feasible, or recovered, by a limited effort

Recovery actions can be used to make a plan feasible through
limited changes in every likely scenario

Typical recovery actions: delaying events, cancelling
connections, cancelling train services or rerouting trains
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Recoverable Robustness

Given on input: a set of likely scenarios, the nominal plan, and
a set of recovery algorithms

A solution is recovery-robust if, in all the considered scenarios,
one can recover the solution by means of one of the given
recovery algorithms

For practical purposes, one must impose sensible limits on the
recovery algorithms

Two-stage approach
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An example: Recoverable Robustness for Train Timetabling

A set S of delay scenarios (small disturbances)

Nominal plan: vi (i ∈ E ) event times of the planned timetable

Recovery actions: delaying events

ṽis (i ∈ E , s ∈ S): event times of the realized timetable in
scenario s

Constraints to respect the minimum process times when
scenario s ∈ S occurs:

ṽjs − ṽis ≥ lijs ((i , j) ∈ A, s ∈ S)
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An example: Recoverable Robustness for Train Timetabling

Constraints to model the recovery action of event delaying:

An event in scenario s ∈ S cannot take place before its
planned time:

ṽis ≥ vi (i ∈ Ed , s ∈ S)

limit the weighted sum of the delays of all the arrival events
(wi number of passengers of event i)∑

i∈Ea

wi (ṽis − vi ) ≤ λ1

limit the delay for each arrival event separately

ṽis − vi ≤ λ2, i ∈ Ea.

λ1 and λ2: minimized in the objective function
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An example: Recoverable Robustness for Train Timetabling

Advantages: combines robustness and recoverability, thus
overcoming the drawbacks of strict robustness

Disadvantages: the recovery algorithms have to be included in
the optimization model, hence only limited recovery actions
can be taken into account
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Light Robustness

Fischetti and Monaci (2009)

Single stage approach (without scenarios)

A protection level (e.g., buffer time) is required for each
activity but slack variables are introduced to compensate for
the missing protection

Goal: to minimize the sum of the slack variables, while
imposing a limit on the worsening of the nominal efficiency
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Light Robustness

γi : slack variable

β(x , Γi ): to decide the protection level

δ: to decide the maximum worsening compared to the
nominal efficiency

z∗: nominal solution value
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Light Robustness

min
∑
i∈M

wiγi (1)

∑
j∈N

aijxj + β(x , Γi )− γi ≤ bi i ∈ M (2)

∑
j∈N

aijxj ≤ bi i ∈ M (3)

∑
j∈N

cjxj ≤ (1 + δ)z∗ (4)

xj ≥ 0 j ∈ N (5)

γi ≥ 0 i ∈ M (6)
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An example: Light Robustness for Train Timetabling

vi (with i ∈ V ): time instant of event i

lij (with (i , j) ∈ A): minimum time difference between the two
consecutive events i and j

γij : slack variables

∆ij : required protection level parameters

δ: maximum worsening of the objective w.r.t the nominal efficiency F ∗

min
∑

(i,j)∈A

γij

vj − vi ≥ lij ∀(i , j) ∈ A

vj − vi + γij ≥ lij + ∆ij , ∀(i , j) ∈ A

F (v) ≤ (1 + δ)F ∗

γij ≥ 0 ∀(i , j) ∈ A
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Light Robustness

Advantages: faster than stochastic programming approaches
and accurate in terms of quality of the robust solutions
obtained

Disadvantages: a posteriori evaluation of the delay scenarios
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Remarks

Robustness can help reduce issues related to data uncertainty

Efficiency has to be taken into account

Two-stage methods directly include scenarios but require
significant computational effort

Single-stage methods are faster but require a posteriori
evaluation of the scenarios (e.g., validation tool)
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