Vehicle modeling

SIDRA Summer School, Bertinoro 2023

Paolo Falcone

Dipartimento di Ingegneria "Enzo Ferrari", Università di Modena e Reggio Emilia, Modena
UNIMORE

Lecture objectives

- Lateral and longitudinal vehicle modeling

Lecture objectives

- Lateral and longitudinal vehicle modeling
- Kinematic and dynamic models

Lecture objectives

- Lateral and longitudinal vehicle modeling
- Kinematic and dynamic models
- Formulation of control and simulation oriented models

Lecture objectives

- Lateral and longitudinal vehicle modeling
- Kinematic and dynamic models
- Formulation of control and simulation oriented models
- Analysis of the basic properties of the vehicle models

Kinematic model of the lateral motion

Objective. Calculating the position variables from the speed variables, without considering the forces generating them.

Kinematic model of the lateral motion

Objective. Calculating the position variables from the speed variables, without considering the forces generating them.

Assumptions
(ㅇ) The two wheels at each axle lumped into a single wheel

Kinematic model of the lateral motion

Objective. Calculating the position variables from the speed variables, without considering the forces generating them.

Assumptions
(1) The two wheels at each axle lumped into a single wheel
(2) Font and rear steered wheels

Kinematic model of the lateral motion

Objective. Calculating the position variables from the speed variables, without considering the forces generating them.

Assumptions
(1) The two wheels at each axle lumped into a single wheel
(2) Font and rear steered wheels

- Planar motion

Kinematic model of the lateral motion

Objective. Calculating the position variables from the speed variables, without considering the forces generating them.

Assumptions
(1) The two wheels at each axle lumped into a single wheel
(2) Font and rear steered wheels

- Planar motion
(Wheel velocity vectors aligned with wheels directions (zero slip angles)

Kinematic model of the lateral motion

Objective. Calculating the position variables from the speed variables, without considering the forces generating them.

Assumptions
(1) The two wheels at each axle lumped into a single wheel
(2) Font and rear steered wheels

- Planar motion
(- Wheel velocity vectors aligned with wheels directions (zero slip angles)

Notation
(1) δ_{f}, δ_{r} steering angles,

Kinematic model of the lateral motion

Objective. Calculating the position variables from the speed variables, without considering the forces generating them.

Assumptions
(1) The two wheels at each axle lumped into a single wheel
(2) Font and rear steered wheels

- Planar motion
(9) Wheel velocity vectors aligned with wheels directions (zero slip angles)

Notation
(1) δ_{f}, δ_{r} steering angles,
(2) l_{f}, l_{r} distances of CoG from axles,

Kinematic model of the lateral motion

Objective. Calculating the position variables from the speed variables, without considering the forces generating them.

Assumptions
(1) The two wheels at each axle lumped into a single wheel
(2) Font and rear steered wheels

- Planar motion
(9) Wheel velocity vectors aligned with wheels directions (zero slip angles)

Notation
(1) δ_{f}, δ_{r} steering angles,
(2) l_{f}, l_{r} distances of CoG from axles,
(X, Y, ψ longitudinal, lateral positions, heading in a global frame,

Kinematic model of the lateral motion

Objective. Calculating the position variables from the speed variables, without considering the forces generating them.

Assumptions

(1) The two wheels at each axle lumped into a single wheel
(2) Font and rear steered wheels

- Planar motion
(9) Wheel velocity vectors aligned with wheels directions (zero slip angles)

Notation
(1) δ_{f}, δ_{r} steering angles,
(2) l_{f}, l_{r} distances of CoG from axles,
(3) β vehicle slip angle,
(X, Y, ψ longitudinal, lateral positions, heading in a global frame,

Kinematic model of the lateral motion

Objective. Calculating the position variables from the speed variables, without considering the forces generating them.

Assumptions

(1) The two wheels at each axle lumped into a single wheel
(2) Font and rear steered wheels

- Planar motion
(9) Wheel velocity vectors aligned with wheels directions (zero slip angles)

Notation
(1) δ_{f}, δ_{r} steering angles,
(2) l_{f}, l_{r} distances of CoG from axles,

- β vehicle slip angle,
($\mathrm{X}, \mathrm{Y}, \psi$ longitudinal, lateral positions, heading in a global frame,

Kinematic model of the lateral motion

Remark about the assumption of zero slip angle.

Kinematic model of the lateral motion

Remark about the assumption of zero slip angle.
Sideways slipping (non-zero slip angle) occurs at high lateral forces (higher
than tire forces) $\frac{m V^{2}}{R}$

Kinematic model of the lateral motion

Remark about the assumption of zero slip angle.
Sideways slipping (non-zero slip angle) occurs at high lateral forces (higher than tire forces) $\frac{m V^{2}}{R}$

Hence, assuming zero slip angle is legit at low vehicle speed (e.g., urban dirving).

Kinematic model of the lateral motion

Remark about the assumption of zero slip angle.
Sideways slipping (non-zero slip angle) occurs at high lateral forces (higher than tire forces) $\frac{m V^{2}}{R}$

Hence, assuming zero slip angle is legit at low vehicle speed (e.g., urban dirving).

The vehicle motion is described by the following ODEs system

$$
\begin{aligned}
\dot{X} & =V \cos (\psi+\beta) \\
\dot{Y} & =V \sin (\psi+\beta) \\
\dot{\psi} & =\frac{V \cos \beta}{l_{f}+l_{r}}\left(\tan \delta_{f}-\tan \delta_{r}\right), \\
\beta & =\tan ^{-1}\left(\frac{l_{f} \tan \delta_{r}+l_{r} \tan \delta_{f}}{l_{f}+l_{r}}\right) .
\end{aligned}
$$

Kinematic model of the lateral motion

Remark about the assumption of zero slip angle.
Sideways slipping (non-zero slip angle) occurs at high lateral forces (higher than tire forces) $\frac{m V^{2}}{R}$

Hence, assuming zero slip angle is legit at low vehicle speed (e.g., urban dirving).

The vehicle motion is described by the following ODEs system

$$
\begin{aligned}
\dot{X} & =V \cos (\psi+\beta) \\
\dot{Y} & =V \sin (\psi+\beta) \\
\dot{\psi} & =\frac{V \cos \beta}{l_{f}+l_{r}}\left(\tan \delta_{f}-\tan \delta_{r}\right) \\
\beta & =\tan ^{-1}\left(\frac{l_{f} \tan \delta_{r}+l_{r} \tan \delta_{f}}{l_{f}+l_{r}}\right) .
\end{aligned}
$$

A nonlinear model in the state space

$$
\dot{x}=f(x, u),
$$

can be obtained by setting

$$
x=\left[\begin{array}{c}
X \\
Y \\
\psi
\end{array}\right], u=\left[\begin{array}{c}
V \\
\delta_{f} \\
\delta_{r}
\end{array}\right]
$$

Lateral vehicle dynamics

Write the Newton's law along the y axis

$$
m \ddot{y}=-\underbrace{V_{x} \dot{\psi}}_{\text {centripetal acceleration }}+F_{y f}+F_{y r} .
$$

Lateral vehicle dynamics

Write the Newton's law along the y axis

$$
m \ddot{y}=-\underbrace{V_{x} \dot{\psi}}_{\text {centripetal acceleration }}+F_{y f}+F_{y r}
$$

Moment balance about the z-axis

$$
I_{z} \ddot{\psi}=l_{f} F_{y f}-l_{r} F_{y r} .
$$

Lateral vehicle dynamics

Write the Newton's law along the y axis

$$
m \ddot{y}=-\underbrace{V_{x} \dot{\psi}}_{\text {centripetal acceleration }}+F_{y f}+F_{y r} .
$$

Moment balance about the z-axis

$$
I_{z} \ddot{\psi}=l_{f} F_{y f}-l_{r} F_{y r} .
$$

Write the lateral tire forces as

$$
\begin{aligned}
& F_{y f}=2 C_{\alpha f}\left(\delta-\theta_{V f}\right), \\
& F_{y r}=-2 C_{\alpha r} \theta_{V r},
\end{aligned}
$$

Lateral vehicle dynamics

Write the Newton's law along the y axis

$$
m \ddot{y}=-\underbrace{V_{x} \dot{\psi}}_{\text {centripetal acceleration }}+F_{y f}+F_{y r} .
$$

Moment balance about the z-axis

$$
I_{z} \ddot{\psi}=l_{f} F_{y f}-l_{r} F_{y r} .
$$

Write the lateral tire forces as

$$
\begin{aligned}
& F_{y f}=2 C_{a f}\left(\delta-\theta_{V f}\right), \\
& F_{y r}=-2 C_{\alpha r} \theta_{V r},
\end{aligned}
$$

where (small) tire slip angles can approximated as

$$
\theta_{V f}=\frac{\dot{y}+l_{f} \dot{\psi}}{V_{x}}, \quad \theta_{V r}=\frac{\dot{y}-l_{r} \dot{\psi}}{V_{x}} .
$$

Lateral vehicle dynamics

The resulting, speed (V_{x}) dependent state space model is

$$
\left[\begin{array}{c}
\ddot{y} \\
\dot{\psi} \\
\ddot{\psi}
\end{array}\right]=\left[\begin{array}{cccc}
0 & -\frac{2 C_{a f}+2 C_{\alpha r}}{m V_{x}} & 0 & -V_{x}-\frac{2 C_{a f} l_{f}-2 C_{\alpha r} l_{r}}{m V_{x}} \\
0 & 0 & 0 & 1 \\
0 & -\frac{2 C_{a f} l_{f}-2 C_{\alpha r} l_{r}}{I_{z} V_{x}} & 0 & -\frac{2 C_{\alpha f} l_{f}^{2}+2 C_{\alpha r} l_{r}^{2}}{I_{z} V_{x}}
\end{array}\right]\left[\begin{array}{c}
\dot{y} \\
\psi \\
\dot{\psi}
\end{array}\right]+\left[\begin{array}{c}
\frac{2 C_{\alpha f}}{m} \\
0 \\
\frac{2 l_{f} C_{\alpha f}}{I_{z}}
\end{array}\right] \delta
$$

Lateral vehicle dynamics

The resulting, speed (V_{x}) dependent state space model is

$$
\left[\begin{array}{c}
\ddot{y} \\
\dot{\psi} \\
\ddot{\psi}
\end{array}\right]=\left[\begin{array}{cccc}
0 & -\frac{2 C_{a f}+2 C_{\alpha r}}{m V_{x}} & 0 & -V_{x}-\frac{2 C_{a f} l_{f}-2 C_{\alpha r} l_{r}}{m V_{x}} \\
0 & 0 & 0 & 1 \\
0 & -\frac{2 C_{a f} l_{f}-2 C_{\alpha r} l_{r}}{I_{z} V_{x}} & 0 & -\frac{2 C_{\alpha f} l_{f}^{2}+2 C_{\alpha r} l_{r}^{2}}{I_{z} V_{x}}
\end{array}\right]\left[\begin{array}{c}
\dot{y} \\
\psi \\
\dot{\psi}
\end{array}\right]+\left[\begin{array}{c}
\frac{2 C_{\alpha f}}{m} \\
0 \\
\frac{2 l_{f} C_{\alpha f}}{I_{z}}
\end{array}\right] \delta
$$

By setting $x=\left[\begin{array}{l}\dot{y} \\ \psi \\ \dot{\psi}\end{array}\right], u=\delta$,

Lateral vehicle dynamics

The resulting, speed (V_{x}) dependent state space model is

$$
\left[\begin{array}{c}
\ddot{y} \\
\dot{\psi} \\
\ddot{\psi}
\end{array}\right]=\left[\begin{array}{cccc}
0 & -\frac{2 C_{a f}+2 C_{\alpha r}}{m V_{x}} & 0 & -V_{x}-\frac{2 C_{a f} l_{f}-2 C_{\alpha r} l_{r}}{m V_{x}} \\
0 & 0 & 0 & 1 \\
0 & -\frac{2 C_{a f} l_{f}-2 C_{\alpha r} l_{r}}{I_{z} V_{x}} & 0 & -\frac{2 C_{\alpha f} l_{f}^{2}+2 C_{\alpha r} l_{r}^{2}}{I_{z} V_{x}}
\end{array}\right]\left[\begin{array}{c}
\dot{y} \\
\psi \\
\dot{\psi}
\end{array}\right]+\left[\begin{array}{c}
\frac{2 C_{\alpha f}}{m} \\
0 \\
\frac{2 l_{f} C_{\alpha f}}{I_{z}}
\end{array}\right] \delta
$$

By setting $x=\left[\begin{array}{l}\dot{y} \\ \psi \\ \dot{\psi}\end{array}\right], u=\delta$, the model can be compactly rewritten as

$$
\dot{x}=A\left(V_{x}\right) x+B\left(V_{x}\right) u .
$$

Lateral vehicle dynamics

The resulting, speed (V_{x}) dependent state space model is

$$
\left[\begin{array}{c}
\ddot{y} \\
\dot{\psi} \\
\ddot{\psi}
\end{array}\right]=\left[\begin{array}{cccc}
0 & -\frac{2 C_{a f}+2 C_{a r}}{m V_{x}} & 0 & -V_{x}-\frac{2 C_{a f} f_{f}-2 C_{a r} l_{r}}{m V_{x}} \\
0 & 0 & 0 & 1 \\
0 & -\frac{2 C_{a f f} f_{f}-2 C_{a r} r_{r}}{I_{z} V_{x}} & 0 & -\frac{2 C_{a f} f_{f}^{2}+2 C_{a r} l_{r}^{2}}{I_{z} V_{x}}
\end{array}\right]\left[\begin{array}{c}
\dot{y} \\
\psi \\
\dot{\psi}
\end{array}\right]+\left[\begin{array}{c}
\frac{2 C_{a f}}{m} \\
0 \\
\frac{2 l_{f} C_{a f}}{I_{z}}
\end{array}\right] \delta
$$

By setting $x=\left[\begin{array}{l}\dot{y} \\ \psi \\ \dot{\psi}\end{array}\right], u=\delta$, the model can be compactly rewritten as

$$
\dot{x}=A\left(V_{x}\right) x+B\left(V_{x}\right) u .
$$

Remark. The model has been derived under the assumption of linear tire forces. This assumption holds for small tire slip angles. More accurate tire forces reveals tire force saturations for large slip angles.

Lateral vehicle dynamics with road-aligned reference frame

Assume to know the road geometry (curvature radius).

Lateral vehicle dynamics with road-aligned reference frame

Assume to know the road geometry (curvature radius). In this case the rate of change of the desired vehicle orientation while traveling at the speed V_{x} is

$$
\dot{\psi}=\frac{V_{x}}{R} .
$$

Lateral vehicle dynamics with road-aligned reference frame

Assume to know the road geometry (curvature radius). In this case the rate of change of the desired vehicle orientation while traveling at the speed V_{x} is

$$
\dot{\psi}=\frac{V_{x}}{R} .
$$

The resulting desired acceleration is $\frac{V_{x}^{2}}{R}=V_{x} \dot{\psi}_{\text {des }}$.

Lateral vehicle dynamics with road-aligned reference frame

Assume to know the road geometry (curvature radius). In this case the rate of change of the desired vehicle orientation while traveling at the speed V_{x} is

$$
\dot{\psi}=\frac{V_{x}}{R} .
$$

The resulting desired acceleration is $\frac{V_{x}^{2}}{R}=V_{x} \dot{\psi}_{\text {des }}$.
By introducing

Lateral vehicle dynamics with road-aligned reference frame

Assume to know the road geometry (curvature radius). In this case the rate of change of the desired vehicle orientation while traveling at the speed V_{x} is

$$
\dot{\psi}=\frac{V_{x}}{R} .
$$

The resulting desired acceleration is $\frac{V_{x}^{2}}{R}=V_{x} \dot{\psi}_{\text {des }}$.
By introducing
(1) e_{1} lateral deviation fo the vehicle CoG from the lane centerline (or path),

Lateral vehicle dynamics with road-aligned reference frame

Assume to know the road geometry (curvature radius). In this case the rate of change of the desired vehicle orientation while traveling at the speed V_{x} is

$$
\dot{\psi}=\frac{V_{x}}{R} .
$$

The resulting desired acceleration is $\frac{V_{x}^{2}}{R}=V_{x} \dot{\psi}_{\text {des }}$.
By introducing
(1) e_{1} lateral deviation fo the vehicle CoG from the lane centerline (or path),
(2) e_{2} orientation error w.r.t. to the road (desired path),

Lateral vehicle dynamics with road-aligned reference frame

Assume to know the road geometry (curvature radius). In this case the rate of change of the desired vehicle orientation while traveling at the speed V_{x} is

$$
\dot{\psi}=\frac{V_{x}}{R} .
$$

The resulting desired acceleration is $\frac{V_{x}^{2}}{R}=V_{x} \dot{\psi}_{\text {des }}$.
By introducing
(1) e_{1} lateral deviation fo the vehicle CoG from the lane centerline (or path),
(2) e_{2} orientation error w.r.t. to the road (desired path), the relative lateral acceleration w.r.t. road is

$$
\ddot{e}_{1}=\left(\ddot{y}+V_{x} \dot{\psi}\right)-\frac{V_{x}^{2}}{R}=\ddot{y}+V_{x} \underbrace{\left(\dot{\psi}-\dot{\psi}_{d e s}\right)}_{\dot{e}_{2}} .
$$

Lateral vehicle dynamics with road-aligned reference frame

Assume to know the road geometry (curvature radius). In this case the rate of change of the desired vehicle orientation while traveling at the speed V_{x} is

$$
\dot{\psi}=\frac{V_{x}}{R} .
$$

The resulting desired acceleration is $\frac{V_{x}^{2}}{R}=V_{x} \dot{\psi}_{\text {des }}$.
By introducing
(1) e_{1} lateral deviation fo the vehicle CoG from the lane centerline (or path),
(2) e_{2} orientation error w.r.t. to the road (desired path), the relative lateral acceleration w.r.t. road is

$$
\ddot{e}_{1}=\left(\ddot{y}+V_{x} \dot{\psi}\right)-\frac{V_{x}^{2}}{R}=\ddot{y}+V_{x} \underbrace{\left(\dot{\psi}-\dot{\psi}_{d e s}\right)}_{\dot{e}_{2}} \text {. }
$$

By combining with the Newton's law....

Lateral vehicle dynamics with road-aligned reference frame

$$
\begin{array}{r}
{\left[\begin{array}{l}
\dot{e}_{1} \\
\ddot{e}_{1} \\
\dot{e}_{2} \\
\ddot{e}_{2}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & -\frac{2 C_{a f}+2 C_{\alpha r}}{m V_{x}} & \frac{2 C_{\alpha f}+2 C_{\alpha r}}{m} & \frac{-2 C_{a f} l_{f}-2 C_{\alpha r} l_{r}}{m V_{x}} \\
0 & 0 & 0 & 1 \\
0 & -\frac{2 C_{a f} l_{f}-2 C_{\alpha r} l_{r}}{I_{z} V_{x}} & \frac{2 C_{a f} l_{f}-2 C_{\alpha r} l_{r}}{I_{z}} & -\frac{2 C_{a f} l_{f}^{2}+2 C_{\alpha r} l_{r}^{2}}{I_{z} V_{x}}
\end{array}\right]\left[\begin{array}{c}
e_{1} \\
\dot{e}_{1} \\
e_{2} \\
\dot{e}_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\frac{2 C_{a f}}{m} \\
0 \\
\frac{2 l_{f} C_{a f}}{I_{z}}
\end{array}\right] \delta} \\
+\left[\begin{array}{c}
0 \\
-\frac{2 C_{\alpha f} l_{f}-2 C_{\alpha r} l_{r}}{m V_{x}}-V_{x} \\
0 \\
-\frac{2 C_{\alpha f} l_{f}^{2}+2 C_{\alpha r} l_{r}^{2}}{I_{z} V_{x}}
\end{array}\right] \dot{\psi}_{d e s}
\end{array}
$$

Lateral vehicle dynamics with road-aligned reference frame

$$
\begin{array}{r}
{\left[\begin{array}{l}
\dot{e}_{1} \\
\ddot{e}_{1} \\
\dot{e}_{2} \\
\ddot{e}_{2}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & -\frac{2 C_{a f}+2 C_{\alpha r}}{m V_{x}} & \frac{2 C_{\alpha f}+2 C_{\alpha r}}{m} & \frac{-2 C_{a f} l_{f}-2 C_{\alpha r} l_{r}}{m V_{x}} \\
0 & 0 & 0 & 1 \\
0 & -\frac{2 C_{a f l_{f}-2 C_{\alpha r} l_{r}}^{I_{z} V_{x}}}{} & \frac{2 C_{a f} l_{f}-2 C_{\alpha r} l_{r}}{I_{z}} & -\frac{2 C_{a f} l_{f}^{2}+2 C_{\alpha r} l_{r}^{2}}{I_{z} V_{x}}
\end{array}\right]\left[\begin{array}{c}
e_{1} \\
\dot{e}_{1} \\
e_{2} \\
\dot{e}_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\frac{2 C_{a f}}{m} \\
0 \\
\frac{2 l_{f} C_{a f}}{I_{z}}
\end{array}\right] \delta} \\
+\left[\begin{array}{c}
0 \\
-\frac{2 C_{\alpha f} l_{f}-2 C_{\alpha r} l_{r}}{m V_{x}}-V_{x} \\
0 \\
-\frac{2 C_{\alpha f} l_{f}^{2}+2 C_{\alpha r} l_{r}^{2}}{I_{z} V_{x}}
\end{array}\right] \dot{\psi}_{d e s}
\end{array}
$$

By setting $x=\left[\begin{array}{c}e_{1} \\ \dot{e}_{1} \\ e_{2} \\ \dot{e}_{2}\end{array}\right], u=\delta, d=\dot{\psi}_{\text {des }}$

Lateral vehicle dynamics with road-aligned reference frame

$$
\begin{array}{r}
{\left[\begin{array}{l}
\dot{e}_{1} \\
\ddot{e}_{1} \\
\dot{e}_{2} \\
\ddot{e}_{2}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & -\frac{2 C_{a f}+2 C_{a r}}{m V_{x}} & \frac{2 C_{a f}+2 C_{\alpha r}}{m} & \frac{-2 C_{a f} l_{f}-2 C_{a r} l_{r}}{m V_{x}} \\
0 & 0 & 0 & 1 \\
0 & -\frac{2 C_{a f} l_{f}-2 C_{a r} l_{r}}{I_{z} V_{x}} & \frac{2 C_{a f} l_{f}-2 C_{\alpha r} l_{r}}{I_{z}} & -\frac{2 C_{a f} l_{f}^{2}+2 C_{\alpha r} l_{r}^{2}}{I_{z} V_{x}}
\end{array}\right]\left[\begin{array}{c}
e_{1} \\
\dot{e}_{1} \\
e_{2} \\
\dot{e}_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\frac{2 C_{a f}}{m} \\
0 \\
\frac{2 l_{f} C_{a f}}{I_{z}}
\end{array}\right] \delta} \\
+\left[\begin{array}{c}
0 \\
-\frac{2 C_{a f} l_{f}-2 C_{a r} l_{r}}{m V_{x}}-V_{x} \\
0 \\
-\frac{2 C_{a f} l_{f}^{2}+2 C_{a r} l_{r}^{2}}{I_{z} V_{x}}
\end{array}\right] \dot{\psi}_{d e s}
\end{array}
$$

By setting $x=\left[\begin{array}{c}e_{1} \\ \dot{e}_{1} \\ e_{2} \\ \dot{e}_{2}\end{array}\right], u=\delta, d=\dot{\psi}_{\text {des }}$ the model can be compactly rewritten as

$$
\dot{x}=A\left(V_{x}\right) x+B\left(V_{x}\right) u+B_{d}\left(V_{x}\right) d .
$$

Transformation into global coordinates

Objective. Calculating the global coordinates X, Y from e_{1}, e_{2}.

Transformation into global coordinates

Objective. Calculating the global coordinates X, Y from e_{1}, e_{2}.

The global coordinates are calculated from the coordinates of the desired path and the lateral deviation e_{1}

$$
\begin{aligned}
& X=X_{\text {des }}-e_{1} \sin \psi_{\text {des }} \\
& Y=Y_{\text {des }}+e_{1} \cos \psi_{\text {des }}
\end{aligned}
$$

Transformation into global coordinates

Objective. Calculating the global coordinates X, Y from e_{1}, e_{2}.

The global coordinates are calculated from the coordinates of the desired path and the lateral deviation e_{1}

$$
\begin{aligned}
& X=X_{\text {des }}-e_{1} \sin \psi_{\text {des }}, \\
& Y=Y_{\text {des }}+e_{1} \cos \psi_{\text {des }}
\end{aligned}
$$

Using

$$
\begin{aligned}
X_{d e s} & =\int_{0}^{t} V \cos \psi_{d e s} d t, \\
Y_{d e s} & =\int_{0}^{t} V \sin \psi_{d e s} d t, \\
\psi & =e_{2}+\psi_{d e s}
\end{aligned}
$$

Transformation into global coordinates

Objective. Calculating the global coordinates X, Y from e_{1}, e_{2}.

The global coordinates are calculated from the coordinates of the desired path and the lateral deviation e_{1}

$$
\begin{aligned}
& X=X_{d e s}-e_{1} \sin \psi_{d e s} \\
& Y=Y_{d e s}+e_{1} \cos \psi_{d e s}
\end{aligned}
$$

Using

$$
\begin{aligned}
X_{d e s} & =\int_{0}^{t} V \cos \psi_{d e s} d t, \\
Y_{\text {des }} & =\int_{0}^{t} V \sin \psi_{\text {des }} d t, \\
\psi & =e_{2}+\psi_{\text {des }}
\end{aligned}
$$

the global coordinates are written as

$$
\begin{aligned}
& X=\int_{0}^{t} V \cos \psi_{\text {des }} d t-e_{1} \sin \left(e_{2}+\psi_{\text {des }}\right) \\
& Y=\int_{0}^{t} V \sin \psi_{\text {des }} d t+e_{1} \cos \left(e_{2}+\psi_{\text {des }}\right)
\end{aligned}
$$

Longitudinal vehicle dynamics

Longitudinal vehicle dynamics

Notation

(1) $F_{x f}, F_{x r}$ front and rear longitudinal tire forces,

Longitudinal vehicle dynamics

Notation

(1) $F_{x f}, F_{x r}$ front and rear longitudinal tire forces,
(2) $F_{\text {aero }}$ air drag force,

Longitudinal vehicle dynamics

Notation

(1) $F_{x f}, F_{x r}$ front and rear longitudinal tire forces,
(2) $F_{\text {aero }}$ air drag force,
(3) $R_{x f}, R_{x r}$ rolling resistance forces,

Longitudinal vehicle dynamics

Notation

(1) $F_{x f}, F_{x r}$ front and rear longitudinal tire forces,
(2) $F_{\text {aero }}$ air drag force,
(3) $R_{x f}, R_{x r}$ rolling resistance forces,
(9) m vehicle mass,

Longitudinal vehicle dynamics

Notation

(1) $F_{x f}, F_{x r}$ front and rear longitudinal tire forces,
(2) $F_{\text {aero }}$ air drag force,
(3) $R_{x f}, R_{x r}$ rolling resistance forces,
(9) m vehicle mass,
© g gravitational acceleration,

Longitudinal vehicle dynamics

Notation

(1) $F_{x f}, F_{x r}$ front and rear longitudinal tire forces,
(2) $F_{\text {aero }}$ air drag force,
(3) $R_{x f}, R_{x r}$ rolling resistance forces,
(9) m vehicle mass,
(5) g gravitational acceleration,
(6) θ road grade.

Longitudinal vehicle dynamics

Notation

(1) $F_{x f}, F_{x r}$ front and rear longitudinal tire forces,
(2) $F_{\text {aero }}$ air drag force,
(3) $R_{x f}, R_{x r}$ rolling resistance forces,
(9) m vehicle mass,
(5) g gravitational acceleration,
(6) θ road grade.

Write the Newton's law along the vehicle longitudinal axis

$$
m \ddot{x}=F_{x f}+F_{x r}-F_{a e r o}-R_{x f}-R_{x r}-m g \sin \theta
$$

Longitudinal vehicle dynamics

Notation

(1) $F_{x f}, F_{x r}$ front and rear longitudinal tire forces,
(2) $F_{\text {aero }}$ air drag force,
(3) $R_{x f}, R_{x r}$ rolling resistance forces,
(9) m vehicle mass,
(3) gravitational acceleration,
(0) θ road grade.

Write the Newton's law along the vehicle longitudinal axis

$$
m \ddot{x}=F_{x f}+F_{x r}-F_{\text {aero }}-R_{x f}-R_{x r}-m g \sin \theta .
$$

Air drag force

$$
\begin{aligned}
F_{\text {aero }} & =\frac{1}{2} \rho C_{d} A_{F}\left(V_{x}+V_{\text {wind }}\right)^{2}, \\
A_{F} & =1.6+0.00056(m-765), \\
& m \in[800-2000] K g
\end{aligned}
$$

Longitudinal vehicle dynamics

Notation

(1) $F_{x f}, F_{x r}$ front and rear longitudinal tire forces,
(2) $F_{\text {aero }}$ air drag force,
(3) $R_{x f}, R_{x r}$ rolling resistance forces,
(9) m vehicle mass,
(3) gravitational acceleration,
(0) θ road grade.

Write the Newton's law along the vehicle longitudinal axis

$$
m \ddot{x}=F_{x f}+F_{x r}-F_{\text {aero }}-R_{x f}-R_{x r}-m g \sin \theta .
$$

Air drag force

$$
\begin{aligned}
F_{\text {aero }}=\frac{1}{2} \rho C_{d} A_{F}\left(V_{x}+V_{w i n d}\right)^{2}, & F_{x \star}=C_{\sigma \star} \sigma_{x \star} \\
A_{F}=1.6+0.00056(m-765), & \sigma_{x \star}=\frac{r_{w} \omega_{w \star}-V_{x}}{r_{w} \omega_{w \star}}, \star \in\{f, r\} \\
m \in[800-2000] K g &
\end{aligned}
$$

Tire forces

The interaction between the tire contact patch and the road generates a number of forces and moments

Tire forces

The interaction between the tire contact patch and the road generates a number of forces and moments

In this course we are interested in modeling the forces F_{x}, F_{y}, as function of the vehicle states and control input.

$$
\begin{aligned}
& F_{x_{\star}}=f_{x}\left(\alpha_{\star}, \sigma_{\star}, \mu_{\star}, F_{z_{\star}}\right) \\
& F_{y_{\star}}=f_{y}\left(\alpha_{\star}, \sigma_{\star}, \mu_{\star}, F_{z_{\star}}\right) .
\end{aligned}
$$

Tire forces

Longitudinal tire forces

$$
\begin{aligned}
F_{x \star} & =C_{\sigma \star} \sigma_{x \star} \\
\sigma_{x \star} & =\frac{r_{w} \omega_{w \star}-V_{x}}{r_{w} \omega_{w \star}}, \star \in\{f, r\}
\end{aligned}
$$

Tire forces

Longitudinal tire forces

$$
\begin{aligned}
F_{x \star} & =C_{\sigma \star} \sigma_{x \star} \\
\sigma_{x \star} & =\frac{r_{w} \omega_{w \star}-V_{x}}{r_{w} \omega_{w \star}}, \star \in\{f, r\}
\end{aligned}
$$

The forces have been plotted for a constant normal force F_{z} and varying friction coefficient μ.

Tire forces

Longitudinal tire forces

$$
\begin{aligned}
& F_{x \star}=C_{\sigma \star} \sigma_{x \star} \\
& \sigma_{x \star}=\frac{r_{w} \omega_{w \star}-V_{x}}{r_{w} \omega_{w \star}}, \star \in\{f, r\}
\end{aligned}
$$

The forces have been plotted for a constant normal force F_{z} and varying friction coefficient μ.

These are static tire forces characteristics. Indeed, tire dynamics are fast and can be neglected in our applications.

Tire forces
 Longitudinal tire forces

$$
\begin{aligned}
& F_{x \star}=C_{\sigma \star} \sigma_{x \star} \\
& \sigma_{x \star}=\frac{r_{w} \omega_{w \star}-V_{x}}{r_{w} \omega_{w \star}}, \star \in\{f, r\}
\end{aligned}
$$

Tire Longitudinal Force

Lateral tire forces

$$
\begin{aligned}
F_{y \star} & =C_{\alpha \star} \alpha_{\star} \\
\alpha_{f} & =\delta-\theta_{V f}, \alpha_{r}=-\theta_{V r}
\end{aligned}
$$

The forces have been plotted for a constant normal force F_{z} and varying friction coefficient μ.

These are static tire forces characteristics. Indeed, tire dynamics are fast and can be neglected in our applications.

Tire forces
 Longitudinal tire forces

$$
\begin{aligned}
& F_{x \star}=C_{\sigma \star} \sigma_{x \star} \\
& \sigma_{x \star}=\frac{r_{w} \omega_{w \star}-V_{x}}{r_{w} \omega_{w \star}}, \star \in\{f, r\}
\end{aligned}
$$

Lateral tire forces

$$
\begin{aligned}
F_{y \star} & =C_{\alpha \star} \alpha_{\star \prime} \\
\alpha_{f} & =\delta-\theta_{V f}, \alpha_{r}=-\theta_{V r} .
\end{aligned}
$$

Tire Lateral Force

The forces have been plotted for a constant normal force F_{z} and varying friction coefficient μ.

These are static tire forces characteristics. Indeed, tire dynamics are fast and can be neglected in our applications.

Tire forces

The characteristics seen so far show the tire forces in pure braking/driving and cornering.

Tire forces

The characteristics seen so far show the tire forces in pure braking/driving and cornering. In combined braking/driving and cornering maneuvres,

Tire forces

The characteristics seen so far show the tire forces in pure braking/driving and cornering. In combined braking/driving and cornering maneuvres,

Tire forces

The characteristics seen so far show the tire forces in pure braking/driving and cornering. In combined braking/driving and cornering maneuvres,

Physical modeling of the tire forces can be very much involving.
Although useful physical tire models exist (Brush model, LuGre friction model, Dugoff's model), the semi-empirical Pacejka's model is the most widespread.

The magic formula

The Pacejka's tire model relies on functions, which are "shaped" to resemble the tire forces.

$$
Y(X)=D \sin (C \arctan (B \Phi(X)))+S_{v}
$$

The magic formula

The Pacejka's tire model relies on functions, which are "shaped" to resemble the tire forces.

$$
Y(X)=D \sin (C \arctan (B \Phi(X)))+S_{v}
$$

- Y is either the longitudinal or lateral generated force,

The magic formula

The Pacejka's tire model relies on functions, which are "shaped" to resemble the tire forces.

$$
Y(X)=D \sin (C \arctan (B \Phi(X)))+S_{v}
$$

- Y is either the longitudinal or lateral generated force,
- X is either the slip ratio or the tire slip angle,

The magic formula

The Pacejka's tire model relies on functions, which are "shaped" to resemble the tire forces.

$$
Y(X)=D \sin (C \arctan (B \Phi(X)))+S_{v}
$$

- Y is either the longitudinal or lateral generated force,
- X is either the slip ratio or the tire slip angle,
- D is the peak factor,

The magic formula

The Pacejka's tire model relies on functions, which are "shaped" to resemble the tire forces.

$$
Y(X)=D \sin (C \arctan (B \Phi(X)))+S_{v}
$$

- Y is either the longitudinal or lateral generated force,
- X is either the slip ratio or the tire slip angle,
- D is the peak factor,
- C is the shape factor,

The magic formula

The Pacejka's tire model relies on functions, which are "shaped" to resemble the tire forces.

$$
Y(X)=D \sin (C \arctan (B \Phi(X)))+S_{v}
$$

- Y is either the longitudinal or lateral generated force,
- X is either the slip ratio or the tire slip angle,
- D is the peak factor,
- C is the shape factor,
- B is the stiffness factor,

The magic formula

The Pacejka's tire model relies on functions, which are "shaped" to resemble the tire forces.

$$
Y(X)=D \sin (C \arctan (B \Phi(X)))+S_{v}
$$

- Y is either the longitudinal or lateral generated force,
- X is either the slip ratio or the tire slip angle,
- D is the peak factor,
- C is the shape factor,
- B is the stiffness factor,
- S_{v} is the vertical shift,

The magic formula

The Pacejka's tire model relies on functions, which are "shaped" to resemble the tire forces.

$$
Y(X)=D \sin (C \arctan (B \Phi(X)))+S_{v}
$$

- Y is either the longitudinal or lateral generated force,
- X is either the slip ratio or the tire slip angle,
- D is the peak factor,
- C is the shape factor,
- B is the stiffness factor,

- Φ is defined as:

$$
\Phi(X)=(1-E)\left(X+S_{h}\right)+(E / B) \arctan \left(B\left(X+S_{h}\right)\right),
$$

where E is the curvature factor and S_{h} is the horizontal shift

The magic formula

The Pacejka's tire model relies on functions, which are "shaped" to resemble the tire forces.

$$
Y(X)=D \sin (C \arctan (B \Phi(X)))+S_{v}
$$

- Y is either the longitudinal or lateral generated force,
- X is either the slip ratio or the tire slip angle,
- D is the peak factor,
- C is the shape factor,
- B is the stiffness factor,

- Φ is defined as:

$$
\Phi(X)=(1-E)\left(X+S_{h}\right)+(E / B) \arctan \left(B\left(X+S_{h}\right)\right),
$$

where E is the curvature factor and S_{h} is the horizontal shift
The parameters in the magic formula are calibrated on experimental data.

Longitudinal tire forces and wheels dynamics

In order to calculate F_{x} we need the tire longitudinal slip. This depends on the wheels speed.

$$
m \ddot{x}=F_{x f}+F_{x r}-F_{\text {aero }}-R_{x f}-R_{x r}-m g \sin \theta,
$$

Longitudinal tire forces and wheels dynamics

In order to calculate F_{x} we need the tire longitudinal slip. This depends on the wheels speed.

$$
\begin{aligned}
& m \ddot{x}=F_{x f}+F_{x r}-F_{\text {aero }}-R_{x f}-R_{x r}-m g \sin \theta, \\
& F_{x_{\star}}=f_{x}\left(\alpha_{\star}, \sigma_{\star}, \mu_{\star}, F_{z_{\star}}\right),
\end{aligned}
$$

Longitudinal tire forces and wheels dynamics

In order to calculate F_{x} we need the tire longitudinal slip. This depends on the wheels speed.

$$
\begin{aligned}
& m \ddot{x}=F_{x f}+F_{x r}-F_{\text {aero }}-R_{x f}-R_{x r}-m g \sin \theta, \\
& F_{x_{\star}}=f_{x}\left(\alpha_{\star}, \sigma_{\star}, \mu_{\star}, F_{z_{\star}}\right), \\
& \sigma_{\star}=\left\{\begin{array}{l}
\frac{r_{w} \omega_{\star}}{V_{x_{\star}}}-1 \text { if } V_{x_{\star}}>r_{w} \omega_{\star}, V_{x_{\star}} \neq 0 \text { for braking } \\
1-\frac{v_{x_{\star}}}{r_{w} \omega_{\star}} \text { if } V_{x_{\star}}<r_{w} \omega_{\star}, \omega_{\star} \neq 0 \text { for driving, }
\end{array}\right.
\end{aligned}
$$

Longitudinal tire forces and wheels dynamics

In order to calculate F_{x} we need the tire longitudinal slip. This depends on the wheels speed.

$$
\begin{aligned}
m \ddot{x} & =F_{x f}+F_{x r}-F_{\text {aero }}-R_{x f}-R_{x r}-m g \sin \theta, \\
F_{x_{\star}} & =f_{x}\left(\alpha_{\star}, \sigma_{\star}, \mu_{\star}, F_{z_{\star}}\right), \\
\sigma_{\star} & =\left\{\begin{array}{l}
\frac{r_{w} \omega_{\star}}{V_{x_{\star}}}-1 \text { if } V_{x_{\star}}>r_{w} \omega_{\star}, V_{x_{\star}} \neq 0 \text { for braking } \\
1-\frac{v_{x_{\star}}}{r_{w} \omega_{\star}} \text { if } V_{x_{\star}}<r_{w} \omega_{\star}, \omega_{\star} \neq 0 \text { for driving, } \\
J_{w, \star} \dot{\omega}_{\star, \bullet}
\end{array}\right. \\
\star & =-F_{l_{\star,}, r_{w}-b \cdot \omega_{\star, \bullet}-T_{b_{\star,}}+T_{t_{\star,},}}
\end{aligned}
$$

Longitudinal tire forces and wheels dynamics

In order to calculate F_{x} we need the tire longitudinal slip. This depends on the wheels speed.

$$
\begin{aligned}
m \ddot{x} & =F_{x f}+F_{x r}-F_{\text {aero }}-R_{x f}-R_{x r}-m g \sin \theta, \\
F_{x_{\star}} & =f_{x}\left(\alpha_{\star}, \sigma_{\star}, \mu_{\star}, F_{z_{\star}}\right), \\
\sigma_{\star} & =\left\{\begin{array}{l}
\frac{r_{w} \omega_{\star}}{V_{x_{\star}}}-1 \text { if } V_{x_{\star}}>r_{w} \omega_{\star}, V_{x_{\star}} \neq 0 \text { for braking } \\
1-\frac{v_{x_{\star}}}{r_{w} \omega_{\star}} \text { if } V_{x_{\star}}<r_{w} \omega_{\star}, \omega_{\star} \neq 0 \text { for driving, } \\
J_{w, \star} \dot{\omega}_{\star, \bullet}
\end{array}\right. \\
\star & =-F_{l_{\star,}, r_{w}-b \cdot \omega_{\star, \bullet}-T_{b_{\star,}}+T_{t_{\star,},}}
\end{aligned}
$$

Remarks.

Longitudinal tire forces and wheels dynamics

In order to calculate F_{x} we need the tire longitudinal slip. This depends on the wheels speed.

$$
\begin{aligned}
m \ddot{x} & =F_{x f}+F_{x r}-F_{\text {aero }}-R_{x f}-R_{x r}-m g \sin \theta, \\
F_{x_{\star}} & =f_{x}\left(\alpha_{\star}, \sigma_{\star}, \mu_{\star}, F_{z_{\star}}\right), \\
\sigma_{\star} & =\left\{\begin{array}{l}
\frac{r_{w w} \omega_{\star}}{V_{x_{\star}}}-1 \text { if } V_{x_{\star}}>r_{w} \omega_{\star}, V_{x_{\star}} \neq 0 \text { for braking } \\
1-\frac{v_{x_{\star}}}{r_{w} \omega_{\star}} \text { if } V_{x_{\star}}<r_{w} \omega_{\star}, \omega_{\star} \neq 0 \text { for driving, } \\
J_{w, \star} \dot{\omega}_{\star, \bullet}
\end{array}\right. \\
\star & \in\left\{F_{l_{\star,}} r_{w}-b \cdot \omega_{\star, \bullet}-T_{b_{\star,}}+T_{t_{\star,},}\right. \\
& \in\{l, r\}, \bullet\{l
\end{aligned}
$$

Remarks.

- $V_{x_{\star}}$ should be the wheel velocity. You can approximate it with the vehicle speed.

Longitudinal tire forces and wheels dynamics

In order to calculate F_{x} we need the tire longitudinal slip. This depends on the wheels speed.

$$
\begin{aligned}
m \ddot{x} & =F_{x f}+F_{x r}-F_{\text {aero }}-R_{x f}-R_{x r}-m g \sin \theta, \\
F_{x_{\star}} & =f_{x}\left(\alpha_{\star}, \sigma_{\star}, \mu_{\star}, F_{z_{\star}}\right), \\
\sigma_{\star} & =\left\{\begin{array}{l}
\frac{r_{w} \omega_{\star}}{V_{x_{\star}}}-1 \text { if } V_{x_{\star}}>r_{w} \omega_{\star}, V_{x_{\star}} \neq 0 \text { for braking } \\
1-\frac{v_{x_{\star}}}{r_{w} \omega_{\star}} \text { if } V_{x_{\star}}<r_{w} \omega_{\star}, \omega_{\star} \neq 0 \text { for driving, } \\
J_{w, \star} \dot{\omega}_{\star, \bullet}
\end{array}\right. \\
\star & \in\left\{F_{l_{\star,}, r_{w}-b \cdot \omega_{\star, \bullet}-T_{b_{\star,}}+T_{t_{\star},}}, \bullet \in\{l, r\}\right.
\end{aligned}
$$

Remarks.

- $V_{x_{\star}}$ should be the wheel velocity. You can approximate it with the vehicle speed.
- $F_{\text {aero, }}, R_{x f}, R_{x r}, m g \sin \theta$ can be neglected in some vehicles speed regimes and under the assumption of flat road, respectively,

Longitudinal tire forces and wheels dynamics

In order to calculate F_{x} we need the tire longitudinal slip. This depends on the wheels speed.

$$
\begin{aligned}
m \ddot{x} & =F_{x f}+F_{x r}-F_{\text {aero }}-R_{x f}-R_{x r}-m g \sin \theta, \\
F_{x_{\star}} & =f_{x}\left(\alpha_{\star}, \sigma_{\star}, \mu_{\star}, F_{z_{\star}}\right), \\
\sigma_{\star} & =\left\{\begin{array}{l}
\frac{r_{w} \omega_{\star}}{V_{x_{\star}}}-1 \text { if } V_{x_{\star}}>r_{w} \omega_{\star}, V_{x_{\star}} \neq 0 \text { for braking } \\
1-\frac{v_{x_{\star}}}{r_{w} \omega_{\star}} \text { if } V_{x_{\star}}<r_{w} \omega_{\star}, \omega_{\star} \neq 0 \text { for driving, } \\
J_{w, \star} \dot{\omega}_{\star, \bullet}
\end{array}\right. \\
\star & \in\left\{F_{l_{\star,}, r_{w}-b \cdot \omega_{\star, \bullet}-T_{b_{\star,}}+T_{t_{\star},}}, \bullet \in\{l, r\}\right.
\end{aligned}
$$

Remarks.

- $V_{x_{\star}}$ should be the wheel velocity. You can approximate it with the vehicle speed.
- $F_{\text {aero, }}, R_{x f}, R_{x r}, m g \sin \theta$ can be neglected in some vehicles speed regimes and under the assumption of flat road, respectively,
- $T_{b_{\star},,}, T_{t_{\star},}$ can be seen as control inputs to the system.

