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Università di Modena e Reggio Emilia,
Modena



Lecture objectives

Lateral and longitudinal vehicle modeling

2 / 15



Lecture objectives

Lateral and longitudinal vehicle modeling

Kinematic and dynamic models

2 / 15



Lecture objectives

Lateral and longitudinal vehicle modeling

Kinematic and dynamic models

Formulation of control and simulation oriented models

2 / 15



Lecture objectives

Lateral and longitudinal vehicle modeling

Kinematic and dynamic models

Formulation of control and simulation oriented models

Analysis of the basic properties of the vehicle models
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than tire forces)
mV2
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Hence, assuming zero slip angle is legit at low vehicle speed (e.g., urban
dirving).

The vehicle motion is described
by the following ODEs system

Ẋ = V cos
(
ψ + β

)
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Hence, assuming zero slip angle is legit at low vehicle speed (e.g., urban
dirving).

The vehicle motion is described
by the following ODEs system

Ẋ = V cos
(
ψ + β

)
,

Ẏ = V sin
(
ψ + β

)
,

ψ̇ =
V cos β

lf + lr

(

tan δf − tan δr

)

,

β = tan−1

(
lf tan δr + lr tan δf

lf + lr

)

.

A nonlinear model in the state
space

ẋ = f (x, u),

can be obtained by setting

x =





X
Y
ψ




, u =





V
δf

δr




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Lateral vehicle dynamics

Write the Newton’s law along the y axis

mÿ = − Vxψ̇
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+Fyf + Fyr.

Moment balance about the z-axis

Izψ̈ = lf Fyf − lrFyr.

Write the lateral tire forces as

Fyf = 2Cαf (δ − θVf ),
Fyr = −2CαrθVr,

where (small) tire slip angles can approxima-
ted as

θVf =
ẏ + lf ψ̇

Vx
, θVr =

ẏ − lrψ̇

Vx
.
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Lateral vehicle dynamics

The resulting, speed (Vx) dependent state space model is
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By setting x =


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ẏ
ψ
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


, u = δ, the model can be compactly rewritten as

ẋ = A(Vx)x + B(Vx)u.

Remark. The model has been derived under the assumption of linear tire
forces. This assumption holds for small tire slip angles. More accurate tire
forces reveals tire force saturations for large slip angles.
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ė2

.

7 / 15



Lateral vehicle dynamics with road-aligned

reference frame
Assume to know the road geometry (curvature radius). In this case the rate
of change of the desired vehicle orientation while traveling at the speed Vx is

ψ̇ =
Vx

R
.

The resulting desired acceleration is
V2

x

R = Vxψ̇des.

By introducing

1 e1 lateral deviation fo the vehicle CoG from the lane centerline (or path),

2 e2 orientation error w.r.t. to the road (desired path),

the relative lateral acceleration w.r.t. road is

ë1 = (ÿ + Vxψ̇) −
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x
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= ÿ + Vx (ψ̇ − ψ̇des)

︸     ︷︷     ︸
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Lateral vehicle dynamics with road-aligned
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, u = δ, d = ψ̇des the model can be compactly rewritten as

ẋ = A(Vx)x + B(Vx)u + Bd(Vx)d.
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∫ t

0
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∫ t
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number of forces and moments

In this course we are interested in modeling the forces Fx, Fy, as function of
the vehicle states and control input.

Fx⋆ = fx(α⋆, σ⋆, µ⋆, Fz⋆),

Fy⋆ = fy(α⋆, σ⋆, µ⋆, Fz⋆).
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Tire forces

The characteristics seen so far show the tire forces in pure braking/driving and
cornering.
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Physical modeling of the tire forces can be very much involving.

Although useful physical tire models exist (Brush model, LuGre friction
model, Dugoff’s model), the semi-empirical Pacejka’s model is the most
widespread.
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The magic formula

The Pacejka’s tire model relies on functions, which are “shaped” to resemble
the tire forces.

Y(X) = D sin (C arctan (BΦ(X))) + Sv
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The parameters in the magic formula are calibrated on experimental data.
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Longitudinal tire forces and wheels dynamics

In order to calculate Fx we need the tire longitudinal slip. This depends on
the wheels speed.

mẍ = Fxf + Fxr − Faero − Rxf − Rxr −mg sinθ,
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mẍ = Fxf + Fxr − Faero − Rxf − Rxr −mg sinθ,

Fx⋆ = fx(α⋆, σ⋆, µ⋆, Fz⋆ ),

σ⋆ =





rwω⋆

Vx⋆

− 1 if Vx⋆ > rwω⋆, Vx⋆ , 0 for braking

1 −
vx⋆

rwω⋆
if Vx⋆ < rwω⋆, ω⋆ , 0 for driving,

Jw,⋆ω̇⋆,• = −Fl⋆,•rw − b · ω⋆,• − Tb⋆,• + Tt⋆,• ,

⋆ ∈ {f , r}, • ∈ {l, r}

15 / 15



Longitudinal tire forces and wheels dynamics

In order to calculate Fx we need the tire longitudinal slip. This depends on
the wheels speed.
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Remarks.

Vx⋆ should be the wheel velocity. You can approximate it with the
vehicle speed.

Faero, Rxf , Rxr, mg sinθ can be neglected in some vehicles speed regimes
and under the assumption of flat road, respectively,

Tb⋆,• , Tt⋆,• can be seen as control inputs to the system.
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