
Motion planning problem formulation

SIDRA Summer School,
Bertinoro 2023

Paolo Falcone

Department of Electrical Engineering,
Chalmers University of Technology,

Gothenburg, Sweden

Dipartimento di Ingegneria “Enzo Ferrari”,
Università di Modena e Reggio Emilia,
Modena



Lecture objectives

Motion planning problem statement

2 /9



Lecture objectives

Motion planning problem statement

Trajectory and path planning problems

2 /9



Lecture objectives

Motion planning problem statement

Trajectory and path planning problems

Randomized methods

2 /9



Lecture objectives

Motion planning problem statement

Trajectory and path planning problems

Randomized methods

Artificial potential fields

2 /9



Problem statement
Find the trajectory to track (path to follow) as the solution of the problem of
minimizing a desired cost, while satisfying physical and design constraints.

3 /9



Problem statement
Find the trajectory to track (path to follow) as the solution of the problem of
minimizing a desired cost, while satisfying physical and design constraints.

Designing the cost.

3 /9



Problem statement
Find the trajectory to track (path to follow) as the solution of the problem of
minimizing a desired cost, while satisfying physical and design constraints.

Designing the cost. In road transportation applications a “reference” path is
likely to be available. E.g., the lane centerline of the desired route,

3 /9



Problem statement
Find the trajectory to track (path to follow) as the solution of the problem of
minimizing a desired cost, while satisfying physical and design constraints.

Designing the cost. In road transportation applications a “reference” path is
likely to be available. E.g., the lane centerline of the desired route, which can
be assumed to be given.

3 /9



Problem statement
Find the trajectory to track (path to follow) as the solution of the problem of
minimizing a desired cost, while satisfying physical and design constraints.

Designing the cost. In road transportation applications a “reference” path is
likely to be available. E.g., the lane centerline of the desired route, which can
be assumed to be given.

The cost should then be designed such that the planned path minimizes, in
some sense, the deviation from the reference path.

3 /9



Path or trajectory planning?

A path in ∈ R2 is a sequence of pairs
[

(x1, y1), . . . , (xn, yn)
]

.

4 /9



Path or trajectory planning?

A path in ∈ R2 is a sequence of pairs
[

(x1, y1), . . . , (xn, yn)
]

.

A trajectory in ∈ R2 is a timed sequence of pairs
[

(x1(t), y1(t)), . . . , (xn(t), yn(t))
]

.

4 /9



Path or trajectory planning?

A path in ∈ R2 is a sequence of pairs
[

(x1, y1), . . . , (xn, yn)
]

.

A trajectory in ∈ R2 is a timed sequence of pairs
[

(x1(t), y1(t)), . . . , (xn(t), yn(t))
]

.

A path or trajectory is sought to plan the vehicle motion in static and
dynamic environments, respectively.

4 /9



Path or trajectory planning?

A path in ∈ R2 is a sequence of pairs
[

(x1, y1), . . . , (xn, yn)
]

.

A trajectory in ∈ R2 is a timed sequence of pairs
[

(x1(t), y1(t)), . . . , (xn(t), yn(t))
]

.

A path or trajectory is sought to plan the vehicle motion in static and
dynamic environments, respectively.

4 /9



Randomized methodsa

Problem formulation. Given a configuration workspace C = Cfree

⋃

Cobs and the
points xstart, xgoal ∈ Cfree, find a function f : [0, 1]→ Cfree, such
that f (0) = xstart, f (1) = xgoal.

aRandomized motion planning - A tutorial. Stefano Carpin.
5 /9



Randomized methodsa

Problem formulation. Given a configuration workspace C = Cfree

⋃

Cobs and the
points xstart, xgoal ∈ Cfree, find a function f : [0, 1]→ Cfree, such
that f (0) = xstart, f (1) = xgoal.

Main Idea.

1 Explore the environment by (random) sampling.

aRandomized motion planning - A tutorial. Stefano Carpin.
5 /9



Randomized methodsa

Problem formulation. Given a configuration workspace C = Cfree

⋃

Cobs and the
points xstart, xgoal ∈ Cfree, find a function f : [0, 1]→ Cfree, such
that f (0) = xstart, f (1) = xgoal.

Main Idea.

1 Explore the environment by (random) sampling.

2 Add legit (e.g., safe) points/regions to the set of explored points/regions.

aRandomized motion planning - A tutorial. Stefano Carpin.
5 /9



Randomized methodsa

Problem formulation. Given a configuration workspace C = Cfree

⋃

Cobs and the
points xstart, xgoal ∈ Cfree, find a function f : [0, 1]→ Cfree, such
that f (0) = xstart, f (1) = xgoal.

Main Idea.

1 Explore the environment by (random) sampling.

2 Add legit (e.g., safe) points/regions to the set of explored points/regions.

3 Connect (find a path between) the new point/region with the existing
ones.

aRandomized motion planning - A tutorial. Stefano Carpin.
5 /9



Randomized methodsa

Problem formulation. Given a configuration workspace C = Cfree

⋃

Cobs and the
points xstart, xgoal ∈ Cfree, find a function f : [0, 1]→ Cfree, such
that f (0) = xstart, f (1) = xgoal.

Main Idea.

1 Explore the environment by (random) sampling.

2 Add legit (e.g., safe) points/regions to the set of explored points/regions.

3 Connect (find a path between) the new point/region with the existing
ones.

4 [Online] Given an origin xstart and a destination xgoal, online extract a
path connecting them.

aRandomized motion planning - A tutorial. Stefano Carpin.
5 /9



Randomized methodsa

Problem formulation. Given a configuration workspace C = Cfree

⋃

Cobs and the
points xstart, xgoal ∈ Cfree, find a function f : [0, 1]→ Cfree, such
that f (0) = xstart, f (1) = xgoal.

Main Idea.

1 Explore the environment by (random) sampling.

2 Add legit (e.g., safe) points/regions to the set of explored points/regions.

3 Connect (find a path between) the new point/region with the existing
ones.

4 [Online] Given an origin xstart and a destination xgoal, online extract a
path connecting them.

Two main approaches

aRandomized motion planning - A tutorial. Stefano Carpin.
5 /9



Randomized methodsa

Problem formulation. Given a configuration workspace C = Cfree

⋃

Cobs and the
points xstart, xgoal ∈ Cfree, find a function f : [0, 1]→ Cfree, such
that f (0) = xstart, f (1) = xgoal.

Main Idea.

1 Explore the environment by (random) sampling.

2 Add legit (e.g., safe) points/regions to the set of explored points/regions.

3 Connect (find a path between) the new point/region with the existing
ones.

4 [Online] Given an origin xstart and a destination xgoal, online extract a
path connecting them.

Two main approaches

probabilistic roadmaps. Data organized in a graph.

aRandomized motion planning - A tutorial. Stefano Carpin.
5 /9



Randomized methodsa

Problem formulation. Given a configuration workspace C = Cfree

⋃

Cobs and the
points xstart, xgoal ∈ Cfree, find a function f : [0, 1]→ Cfree, such
that f (0) = xstart, f (1) = xgoal.

Main Idea.

1 Explore the environment by (random) sampling.

2 Add legit (e.g., safe) points/regions to the set of explored points/regions.

3 Connect (find a path between) the new point/region with the existing
ones.

4 [Online] Given an origin xstart and a destination xgoal, online extract a
path connecting them.

Two main approaches

probabilistic roadmaps. Data organized in a graph.

rapidly exploring random trees (RRT). Data organized in a tree.

aRandomized motion planning - A tutorial. Stefano Carpin.
5 /9



Randomized methods. Probabilistic roadmaps

1 Learning stage. An undirected graph G = (V,E) is built by exploration.

2 Query stage. Extract a path from G = (V,E) connecting xstart to xgoal.

6 /9



Randomized methods. Probabilistic roadmaps

1 Learning stage. An undirected graph G = (V,E) is built by exploration.
1 Randomly pick a point c in C,

2 Query stage. Extract a path from G = (V,E) connecting xstart to xgoal.

6 /9



Randomized methods. Probabilistic roadmaps

1 Learning stage. An undirected graph G = (V,E) is built by exploration.
1 Randomly pick a point c in C,
2 if c ∈ Cfree then add it to V,

2 Query stage. Extract a path from G = (V,E) connecting xstart to xgoal.

6 /9



Randomized methods. Probabilistic roadmaps

1 Learning stage. An undirected graph G = (V,E) is built by exploration.
1 Randomly pick a point c in C,
2 if c ∈ Cfree then add it to V,
3 select the neighbors of c in V as those nodes in V within a distance M from c.

2 Query stage. Extract a path from G = (V,E) connecting xstart to xgoal.

6 /9



Randomized methods. Probabilistic roadmaps

1 Learning stage. An undirected graph G = (V,E) is built by exploration.
1 Randomly pick a point c in C,
2 if c ∈ Cfree then add it to V,
3 select the neighbors of c in V as those nodes in V within a distance M from c.
4 connect c to the neighbors in V with a “simple” path planner (straight

segment within Cfree).

2 Query stage. Extract a path from G = (V,E) connecting xstart to xgoal.

6 /9



Randomized methods. Probabilistic roadmaps

1 Learning stage. An undirected graph G = (V,E) is built by exploration.
1 Randomly pick a point c in C,
2 if c ∈ Cfree then add it to V,
3 select the neighbors of c in V as those nodes in V within a distance M from c.
4 connect c to the neighbors in V with a “simple” path planner (straight

segment within Cfree).
5 a refinement step might be performed to more densely sample critical

regions.

2 Query stage. Extract a path from G = (V,E) connecting xstart to xgoal.

6 /9



Randomized methods. Probabilistic roadmaps

1 Learning stage. An undirected graph G = (V,E) is built by exploration.
1 Randomly pick a point c in C,
2 if c ∈ Cfree then add it to V,
3 select the neighbors of c in V as those nodes in V within a distance M from c.
4 connect c to the neighbors in V with a “simple” path planner (straight

segment within Cfree).
5 a refinement step might be performed to more densely sample critical

regions.

2 Query stage. Extract a path from G = (V,E) connecting xstart to xgoal.
1 Connect xstart and xgoal to the nodes in V. Report failure if it is not possible,

6 /9



Randomized methods. Probabilistic roadmaps

1 Learning stage. An undirected graph G = (V,E) is built by exploration.
1 Randomly pick a point c in C,
2 if c ∈ Cfree then add it to V,
3 select the neighbors of c in V as those nodes in V within a distance M from c.
4 connect c to the neighbors in V with a “simple” path planner (straight

segment within Cfree).
5 a refinement step might be performed to more densely sample critical

regions.

2 Query stage. Extract a path from G = (V,E) connecting xstart to xgoal.
1 Connect xstart and xgoal to the nodes in V. Report failure if it is not possible,
2 be vs and vg the nodes connected to xstart and xgoal, respectively. If a path

connecting vs and vg return it, otherwise return failure.

6 /9



Randomized methods. Probabilistic roadmaps

1 Learning stage. An undirected graph G = (V,E) is built by exploration.
1 Randomly pick a point c in C,
2 if c ∈ Cfree then add it to V,
3 select the neighbors of c in V as those nodes in V within a distance M from c.
4 connect c to the neighbors in V with a “simple” path planner (straight

segment within Cfree).
5 a refinement step might be performed to more densely sample critical

regions.

2 Query stage. Extract a path from G = (V,E) connecting xstart to xgoal.
1 Connect xstart and xgoal to the nodes in V. Report failure if it is not possible,
2 be vs and vg the nodes connected to xstart and xgoal, respectively. If a path

connecting vs and vg return it, otherwise return failure.

Remarks.

6 /9



Randomized methods. Probabilistic roadmaps

1 Learning stage. An undirected graph G = (V,E) is built by exploration.
1 Randomly pick a point c in C,
2 if c ∈ Cfree then add it to V,
3 select the neighbors of c in V as those nodes in V within a distance M from c.
4 connect c to the neighbors in V with a “simple” path planner (straight

segment within Cfree).
5 a refinement step might be performed to more densely sample critical

regions.

2 Query stage. Extract a path from G = (V,E) connecting xstart to xgoal.
1 Connect xstart and xgoal to the nodes in V. Report failure if it is not possible,
2 be vs and vg the nodes connected to xstart and xgoal, respectively. If a path

connecting vs and vg return it, otherwise return failure.

Remarks.

1 Learning stage can be expensive. Worth if it supports multiple queries,

6 /9



Randomized methods. Probabilistic roadmaps

1 Learning stage. An undirected graph G = (V,E) is built by exploration.
1 Randomly pick a point c in C,
2 if c ∈ Cfree then add it to V,
3 select the neighbors of c in V as those nodes in V within a distance M from c.
4 connect c to the neighbors in V with a “simple” path planner (straight

segment within Cfree).
5 a refinement step might be performed to more densely sample critical

regions.

2 Query stage. Extract a path from G = (V,E) connecting xstart to xgoal.
1 Connect xstart and xgoal to the nodes in V. Report failure if it is not possible,
2 be vs and vg the nodes connected to xstart and xgoal, respectively. If a path

connecting vs and vg return it, otherwise return failure.

Remarks.

1 Learning stage can be expensive. Worth if it supports multiple queries,

2 not suitable for dynamic environments,

6 /9



Randomized methods. Probabilistic roadmaps

1 Learning stage. An undirected graph G = (V,E) is built by exploration.
1 Randomly pick a point c in C,
2 if c ∈ Cfree then add it to V,
3 select the neighbors of c in V as those nodes in V within a distance M from c.
4 connect c to the neighbors in V with a “simple” path planner (straight

segment within Cfree).
5 a refinement step might be performed to more densely sample critical

regions.

2 Query stage. Extract a path from G = (V,E) connecting xstart to xgoal.
1 Connect xstart and xgoal to the nodes in V. Report failure if it is not possible,
2 be vs and vg the nodes connected to xstart and xgoal, respectively. If a path

connecting vs and vg return it, otherwise return failure.

Remarks.

1 Learning stage can be expensive. Worth if it supports multiple queries,

2 not suitable for dynamic environments,

3 simple (uniform) sampling policies may leave narrow regions poorly
explored.

6 /9



Randomized methods. RRTs

Cfree is randomly explored and a tree is built.

7 /9



Randomized methods. RRTs

Cfree is randomly explored and a tree is built.

1 Starting form the current tree, pick a random configuration xrand in Cfree,

7 /9



Randomized methods. RRTs

Cfree is randomly explored and a tree is built.

1 Starting form the current tree, pick a random configuration xrand in Cfree,

2 find the nearest node xnear in the tree,

7 /9



Randomized methods. RRTs

Cfree is randomly explored and a tree is built.

1 Starting form the current tree, pick a random configuration xrand in Cfree,

2 find the nearest node xnear in the tree,

3 from the nearest node find the control input to the robot (planner) that
leads the state x as close as possible to xrand,

7 /9



Randomized methods. RRTs

Cfree is randomly explored and a tree is built.

1 Starting form the current tree, pick a random configuration xrand in Cfree,

2 find the nearest node xnear in the tree,

3 from the nearest node find the control input to the robot (planner) that
leads the state x as close as possible to xrand,

4 if such a control input exists and xrand = x, the state xrand is added to the
tree,

7 /9



Randomized methods. RRTs

Cfree is randomly explored and a tree is built.

1 Starting form the current tree, pick a random configuration xrand in Cfree,

2 find the nearest node xnear in the tree,

3 from the nearest node find the control input to the robot (planner) that
leads the state x as close as possible to xrand,

4 if such a control input exists and xrand = x, the state xrand is added to the
tree,

5 if xrand , x, then x is added to the tree, which grows,

7 /9



Randomized methods. RRTs

Cfree is randomly explored and a tree is built.

1 Starting form the current tree, pick a random configuration xrand in Cfree,

2 find the nearest node xnear in the tree,

3 from the nearest node find the control input to the robot (planner) that
leads the state x as close as possible to xrand,

4 if such a control input exists and xrand = x, the state xrand is added to the
tree,

5 if xrand , x, then x is added to the tree, which grows,

6 otherwise, the algorithm is trapped.

7 /9



Randomized methods. RRTs

Cfree is randomly explored and a tree is built.

1 Starting form the current tree, pick a random configuration xrand in Cfree,

2 find the nearest node xnear in the tree,

3 from the nearest node find the control input to the robot (planner) that
leads the state x as close as possible to xrand,

4 if such a control input exists and xrand = x, the state xrand is added to the
tree,

5 if xrand , x, then x is added to the tree, which grows,

6 otherwise, the algorithm is trapped.

The tree can grow faster if the tree grows from both xstart to xgoal.

7 /9



Artificial potential fields

Idea. Build a function to be minimized, which decreases toward the goal
position and increases close to the obstacles.

8 /9



Artificial potential fields

Idea. Build a function to be minimized, which decreases toward the goal
position and increases close to the obstacles.

The potential function is U = Ug +Uo, where

8 /9



Artificial potential fields

Idea. Build a function to be minimized, which decreases toward the goal
position and increases close to the obstacles.

The potential function is U = Ug +Uo, where the term Ug attracts the robot
toward the goal position xgoal,

Ug(x) =
1

2
k(x − xgoal)

T(x − xgoal).

8 /9



Artificial potential fields

Idea. Build a function to be minimized, which decreases toward the goal
position and increases close to the obstacles.

The potential function is U = Ug +Uo, where the term Ug attracts the robot
toward the goal position xgoal,

Ug(x) =
1

2
k(x − xgoal)

T(x − xgoal).

The minimization of Ug(x) results in an attractive force

fg(x) = −∇Ug(x) = k(x − xgoal).

8 /9



Artificial potential fields

Idea. Build a function to be minimized, which decreases toward the goal
position and increases close to the obstacles.

The potential function is U = Ug +Uo, where the term Ug attracts the robot
toward the goal position xgoal,

Ug(x) =
1

2
k(x − xgoal)

T(x − xgoal).

The minimization of Ug(x) results in an attractive force

fg(x) = −∇Ug(x) = k(x − xgoal).

Similarly, a repulsive force fo(x) is generate by minimizing Uo defined as

Uo(x) =















k
α

(

1
d(x) −

1
d0

)α
, if d(x) ≤ d0,

0, if d(x) > d0,

8 /9



Artificial potential fields

Idea. Build a function to be minimized, which decreases toward the goal
position and increases close to the obstacles.

The potential function is U = Ug +Uo, where the term Ug attracts the robot
toward the goal position xgoal,

Ug(x) =
1

2
k(x − xgoal)

T(x − xgoal).

The minimization of Ug(x) results in an attractive force

fg(x) = −∇Ug(x) = k(x − xgoal).

Similarly, a repulsive force fo(x) is generate by minimizing Uo defined as

Uo(x) =















k
α

(

1
d(x) −

1
d0

)α
, if d(x) ≤ d0,

0, if d(x) > d0,

where d(x) = minx̄∈Cobs
‖x − x̄‖.

8 /9



Artificial potential fields

The repulsive force generated by the obstacles is

fo(x) = −∇Uo(x) =















k
d2(x)

(

1
d(x) −

1
d0

)α−1
∇d(x), if d(x) ≤ d0,

0, if d(x) > d0.

9 /9



Artificial potential fields

The repulsive force generated by the obstacles is

fo(x) = −∇Uo(x) =















k
d2(x)

(

1
d(x) −

1
d0

)α−1
∇d(x), if d(x) ≤ d0,

0, if d(x) > d0.

Main issue. Local minima. The robot may get stuck in a local minimum
introduced by Uo.

9 /9



Artificial potential fields

The repulsive force generated by the obstacles is

fo(x) = −∇Uo(x) =















k
d2(x)

(

1
d(x) −

1
d0

)α−1
∇d(x), if d(x) ≤ d0,

0, if d(x) > d0.

Main issue. Local minima. The robot may get stuck in a local minimum
introduced by Uo. The potential function could be modified to remove the
local minima, provided that the environment is known.

Actuator limitations and design constraints are not included in the force
generation. The forces fg, fo could be limited.

9 /9


