Motion planning problem formulation

SIDRA Summer School, Bertinoro 2023

Lecture objectives

- Motion planning problem statement

Lecture objectives

- Motion planning problem statement
- Trajectory and path planning problems

Lecture objectives

- Motion planning problem statement
- Trajectory and path planning problems
- Randomized methods

Lecture objectives

- Motion planning problem statement
- Trajectory and path planning problems
- Randomized methods
- Artificial potential fields

Problem statement

Find the trajectory to track (path to follow) as the solution of the problem of minimizing a desired cost, while satisfying physical and design constraints.

Problem statement

Find the trajectory to track (path to follow) as the solution of the problem of minimizing a desired cost, while satisfying physical and design constraints.

Designing the cost.

Problem statement

Find the trajectory to track (path to follow) as the solution of the problem of minimizing a desired cost, while satisfying physical and design constraints.

Designing the cost. In road transportation applications a "reference" path is likely to be available. E.g., the lane centerline of the desired route,

Problem statement

Find the trajectory to track (path to follow) as the solution of the problem of minimizing a desired cost, while satisfying physical and design constraints.

Designing the cost. In road transportation applications a "reference" path is likely to be available. E.g., the lane centerline of the desired route, which can be assumed to be given.

Problem statement

Find the trajectory to track (path to follow) as the solution of the problem of minimizing a desired cost, while satisfying physical and design constraints.

Designing the cost. In road transportation applications a "reference" path is likely to be available. E.g., the lane centerline of the desired route, which can be assumed to be given.

The cost should then be designed such that the planned path minimizes, in some sense, the deviation from the reference path.

Path or trajectory planning?

A path in $\in \mathbb{R}^{2}$ is a sequence of pairs $\left[\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right]$.

Path or trajectory planning?

A path in $\in \mathbb{R}^{2}$ is a sequence of pairs $\left[\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right]$.
A trajectory in $\in \mathbb{R}^{2}$ is a timed sequence of pairs $\left[\left(x_{1}(t), y_{1}(t)\right), \ldots,\left(x_{n}(t), y_{n}(t)\right)\right]$.

Path or trajectory planning?

A path in $\in \mathbb{R}^{2}$ is a sequence of pairs $\left[\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right]$.
A trajectory in $\in \mathbb{R}^{2}$ is a timed sequence of pairs $\left[\left(x_{1}(t), y_{1}(t)\right), \ldots,\left(x_{n}(t), y_{n}(t)\right)\right]$.
A path or trajectory is sought to plan the vehicle motion in static and dynamic environments, respectively.

Path or trajectory planning?

A path in $\in \mathbb{R}^{2}$ is a sequence of pairs $\left[\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right]$.
A trajectory in $\in \mathbb{R}^{2}$ is a timed sequence of pairs $\left[\left(x_{1}(t), y_{1}(t)\right), \ldots,\left(x_{n}(t), y_{n}(t)\right)\right]$.
A path or trajectory is sought to plan the vehicle motion in static and dynamic environments, respectively.

Randomized methods ${ }^{\text {a }}$

Problem formulation. Given a configuration workspace $C=C_{\text {free }} \cup C_{\text {obs }}$ and the points $x_{\text {start }}, x_{\text {goal }} \in C_{\text {free, }}$ find a function $f:[0,1] \rightarrow C_{\text {free, }}$, such that $f(0)=x_{\text {start }}, f(1)=x_{\text {goal }}$.

[^0]
Randomized methods ${ }^{\text {a }}$

Problem formulation. Given a configuration workspace $C=C_{\text {free }} \cup C_{\text {obs }}$ and the points $x_{\text {start }}, x_{\text {goal }} \in C_{\text {free, }}$, find a function $f:[0,1] \rightarrow C_{\text {free, }}$, such that $f(0)=x_{\text {start }}, f(1)=x_{\text {goal }}$.

Main Idea.

(1) Explore the environment by (random) sampling.

[^1]
Randomized methods ${ }^{\text {a }}$

Problem formulation. Given a configuration workspace $C=C_{\text {free }} \cup C_{\text {obs }}$ and the points $x_{\text {start }}, x_{\text {goal }} \in C_{\text {free }}$ find a function $f:[0,1] \rightarrow C_{\text {free }}$, such that $f(0)=x_{\text {start }}, f(1)=x_{\text {goal }}$.

Main Idea.

(1) Explore the environment by (random) sampling.
(2) Add legit (e.g., safe) points/regions to the set of explored points/regions.

[^2]
Randomized methods ${ }^{\text {a }}$

Problem formulation. Given a configuration workspace $C=C_{\text {free }} \cup C_{\text {obs }}$ and the points $x_{\text {start }}, x_{\text {goal }} \in C_{\text {free }}$ find a function $f:[0,1] \rightarrow C_{\text {free }}$, such that $f(0)=x_{\text {start }}, f(1)=x_{\text {goal }}$.

Main Idea.

(1) Explore the environment by (random) sampling.
(2) Add legit (e.g., safe) points/regions to the set of explored points/regions.
(0) Connect (find a path between) the new point/region with the existing ones.

[^3]
Randomized methods ${ }^{\mathrm{a}}$

Problem formulation. Given a configuration workspace $C=C_{\text {free }} \cup C_{\text {obs }}$ and the points $x_{\text {start }}, x_{\text {goal }} \in C_{\text {free }}$ find a function $f:[0,1] \rightarrow C_{\text {free }}$, such that $f(0)=x_{\text {start }}, f(1)=x_{\text {goal }}$.

Main Idea.

(1) Explore the environment by (random) sampling.
(2) Add legit (e.g., safe) points/regions to the set of explored points/regions.
(0) Connect (find a path between) the new point/region with the existing ones.
(9) [Online] Given an origin $x_{\text {start }}$ and a destination $x_{\text {goal }}$, online extract a path connecting them.

[^4]
Randomized methods ${ }^{\mathrm{a}}$

Problem formulation. Given a configuration workspace $C=C_{\text {free }} \cup C_{\text {obs }}$ and the points $x_{\text {start }}, x_{\text {goal }} \in C_{\text {free }}$ find a function $f:[0,1] \rightarrow C_{\text {free }}$, such that $f(0)=x_{\text {start }}, f(1)=x_{\text {goal }}$.

Main Idea.

(1) Explore the environment by (random) sampling.
(2) Add legit (e.g., safe) points/regions to the set of explored points/regions.
(0) Connect (find a path between) the new point/region with the existing ones.
(9) [Online] Given an origin $x_{\text {start }}$ and a destination $x_{\text {goal }}$, online extract a path connecting them.

Two main approaches

[^5]
Randomized methods ${ }^{\text {a }}$

Problem formulation. Given a configuration workspace $C=C_{\text {free }} \cup C_{\text {obs }}$ and the points $x_{\text {start }}, x_{\text {goal }} \in C_{\text {free }}$ find a function $f:[0,1] \rightarrow C_{\text {free }}$, such that $f(0)=x_{\text {start }}, f(1)=x_{\text {goal }}$.

Main Idea.

(1) Explore the environment by (random) sampling.
(2) Add legit (e.g., safe) points/regions to the set of explored points/regions.
(Connect (find a path between) the new point/region with the existing ones.
(9) [Online] Given an origin $x_{\text {start }}$ and a destination $x_{\text {goal }}$, online extract a path connecting them.

Two main approaches

- probabilistic roadmaps. Data organized in a graph.

[^6]
Randomized methods ${ }^{\text {a }}$

Problem formulation. Given a configuration workspace $C=C_{\text {free }} \cup C_{\text {obs }}$ and the points $x_{\text {start }}, x_{\text {goal }} \in C_{\text {free }}$ find a function $f:[0,1] \rightarrow C_{\text {free }}$, such that $f(0)=x_{\text {start }}, f(1)=x_{\text {goal }}$.

Main Idea.

(1) Explore the environment by (random) sampling.
(2) Add legit (e.g., safe) points/regions to the set of explored points/regions.
(0) Connect (find a path between) the new point/region with the existing ones.
(9) [Online] Given an origin $x_{\text {start }}$ and a destination $x_{\text {goal }}$, online extract a path connecting them.

Two main approaches

- probabilistic roadmaps. Data organized in a graph.
- rapidly exploring random trees (RRT). Data organized in a tree.

[^7]
Randomized methods. Probabilistic roadmaps

(1) Learning stage. An undirected graph $G=(V, E)$ is built by exploration.
(2) Query stage. Extract a path from $G=(V, E)$ connecting $x_{\text {start }}$ to $x_{\text {goal }}$.

Randomized methods. Probabilistic roadmaps

(1) Learning stage. An undirected graph $G=(V, E)$ is built by exploration.

- Randomly pick a point c in C,
(2) Query stage. Extract a path from $G=(V, E)$ connecting $x_{\text {start }}$ to $x_{\text {goal }}$.

Randomized methods. Probabilistic roadmaps

(1) Learning stage. An undirected graph $G=(V, E)$ is built by exploration.
(1) Randomly pick a point c in C,
(2) if $c \in C_{\text {free }}$ then add it to V,
(2) Query stage. Extract a path from $G=(V, E)$ connecting $x_{\text {start }}$ to $x_{\text {goal }}$.

Randomized methods. Probabilistic roadmaps

(1) Learning stage. An undirected graph $G=(V, E)$ is built by exploration.
(1) Randomly pick a point c in C,
(2) if $c \in C_{\text {free }}$ then add it to V,
(3) select the neighbors of c in V as those nodes in V within a distance M from c.
(2) Query stage. Extract a path from $G=(V, E)$ connecting $x_{\text {start }}$ to $x_{\text {goal }}$.

Randomized methods. Probabilistic roadmaps

(1) Learning stage. An undirected graph $G=(V, E)$ is built by exploration.
(1) Randomly pick a point c in C,
(2) if $c \in C_{\text {free }}$ then add it to V,
(3) select the neighbors of c in V as those nodes in V within a distance M from c.
(9) connect c to the neighbors in V with a "simple" path planner (straight segment within $C_{\text {free }}$).
(2) Query stage. Extract a path from $G=(V, E)$ connecting $x_{\text {start }}$ to $x_{\text {goal }}$.

Randomized methods. Probabilistic roadmaps

(1) Learning stage. An undirected graph $G=(V, E)$ is built by exploration.
(1) Randomly pick a point c in C,
(2) if $c \in C_{\text {free }}$ then add it to V,
(3) select the neighbors of c in V as those nodes in V within a distance M from c.
(9) connect c to the neighbors in V with a "simple" path planner (straight segment within $C_{\text {free }}$).
(6) a refinement step might be performed to more densely sample critical regions.
(3) Query stage. Extract a path from $G=(V, E)$ connecting $x_{\text {start }}$ to $x_{\text {goal }}$.

Randomized methods. Probabilistic roadmaps

(1) Learning stage. An undirected graph $G=(V, E)$ is built by exploration.
(1) Randomly pick a point c in C,
(2) if $c \in C_{\text {free }}$ then add it to V,
(3) select the neighbors of c in V as those nodes in V within a distance M from c.
(9) connect c to the neighbors in V with a "simple" path planner (straight segment within $C_{\text {free }}$).
(3) a refinement step might be performed to more densely sample critical regions.
(2) Query stage. Extract a path from $G=(V, E)$ connecting $x_{\text {start }}$ to $x_{\text {goal }}$.
(1) Connect $x_{\text {start }}$ and $x_{\text {goal }}$ to the nodes in V. Report failure if it is not possible,

Randomized methods. Probabilistic roadmaps

(1) Learning stage. An undirected graph $G=(V, E)$ is built by exploration.
(1) Randomly pick a point c in C,
(2) if $c \in C_{\text {free }}$ then add it to V,
(3) select the neighbors of c in V as those nodes in V within a distance M from c.
(9) connect c to the neighbors in V with a "simple" path planner (straight segment within $C_{\text {free }}$).
(3) a refinement step might be performed to more densely sample critical regions.
(3) Query stage. Extract a path from $G=(V, E)$ connecting $x_{\text {start }}$ to $x_{\text {goal }}$.
(1) Connect $x_{\text {start }}$ and $x_{\text {goal }}$ to the nodes in V. Report failure if it is not possible,
(2) be v_{s} and v_{g} the nodes connected to $x_{\text {start }}$ and $x_{g o a l}$, respectively. If a path connecting v_{s} and v_{g} return it, otherwise return failure.

Randomized methods. Probabilistic roadmaps

(1) Learning stage. An undirected graph $G=(V, E)$ is built by exploration.
(1) Randomly pick a point c in C,
(2) if $c \in C_{\text {free }}$ then add it to V,
(3) select the neighbors of c in V as those nodes in V within a distance M from c.
(9) connect c to the neighbors in V with a "simple" path planner (straight segment within $C_{\text {free }}$).
(3) a refinement step might be performed to more densely sample critical regions.
(3) Query stage. Extract a path from $G=(V, E)$ connecting $x_{\text {start }}$ to $x_{\text {goal }}$.
(1) Connect $x_{\text {start }}$ and $x_{\text {goal }}$ to the nodes in V. Report failure if it is not possible,
(2) be v_{s} and v_{g} the nodes connected to $x_{\text {start }}$ and $x_{g o a l}$, respectively. If a path connecting v_{s} and v_{g} return it, otherwise return failure.
Remarks.

Randomized methods. Probabilistic roadmaps

(1) Learning stage. An undirected graph $G=(V, E)$ is built by exploration.
(1) Randomly pick a point c in C,
(2) if $c \in C_{\text {free }}$ then add it to V,
(3) select the neighbors of c in V as those nodes in V within a distance M from c.
(9) connect c to the neighbors in V with a "simple" path planner (straight segment within $C_{\text {free }}$).
(3) a refinement step might be performed to more densely sample critical regions.
(3) Query stage. Extract a path from $G=(V, E)$ connecting $x_{\text {start }}$ to $x_{\text {goal }}$.
(1) Connect $x_{\text {start }}$ and $x_{\text {goal }}$ to the nodes in V. Report failure if it is not possible,
(2) be v_{s} and v_{g} the nodes connected to $x_{\text {start }}$ and $x_{g o a l}$, respectively. If a path connecting v_{s} and v_{g} return it, otherwise return failure.
Remarks.
(1) Learning stage can be expensive. Worth if it supports multiple queries,

Randomized methods. Probabilistic roadmaps

(1) Learning stage. An undirected graph $G=(V, E)$ is built by exploration.
(1) Randomly pick a point c in C,
(2) if $c \in C_{\text {free }}$ then add it to V,
(3) select the neighbors of c in V as those nodes in V within a distance M from c.
(9) connect c to the neighbors in V with a "simple" path planner (straight segment within $C_{\text {free }}$).
(3) a refinement step might be performed to more densely sample critical regions.
(2) Query stage. Extract a path from $G=(V, E)$ connecting $x_{\text {start }}$ to $x_{\text {goal }}$.
(1) Connect $x_{\text {start }}$ and $x_{\text {goal }}$ to the nodes in V. Report failure if it is not possible,
(2) be v_{s} and v_{g} the nodes connected to $x_{\text {start }}$ and $x_{g o a l}$, respectively. If a path connecting v_{s} and v_{g} return it, otherwise return failure.
Remarks.
(1) Learning stage can be expensive. Worth if it supports multiple queries,
(2) not suitable for dynamic environments,

Randomized methods. Probabilistic roadmaps

(1) Learning stage. An undirected graph $G=(V, E)$ is built by exploration.
(1) Randomly pick a point c in C,
(2) if $c \in C_{\text {free }}$ then add it to V,
(3) select the neighbors of c in V as those nodes in V within a distance M from c.
(9) connect c to the neighbors in V with a "simple" path planner (straight segment within $C_{\text {free }}$).
(3) a refinement step might be performed to more densely sample critical regions.
(2) Query stage. Extract a path from $G=(V, E)$ connecting $x_{\text {start }}$ to $x_{\text {goal }}$.
(1) Connect $x_{\text {start }}$ and $x_{\text {goal }}$ to the nodes in V. Report failure if it is not possible,
(2) be v_{s} and v_{g} the nodes connected to $x_{\text {start }}$ and $x_{g o a l}$, respectively. If a path connecting v_{s} and v_{g} return it, otherwise return failure.
Remarks.
(1) Learning stage can be expensive. Worth if it supports multiple queries,
(2) not suitable for dynamic environments,
(3) simple (uniform) sampling policies may leave narrow regions poorly explored.

Randomized methods. RRTs

$C_{\text {free }}$ is randomly explored and a tree is built.

Randomized methods. RRTs

$C_{\text {free }}$ is randomly explored and a tree is built.
(1) Starting form the current tree, pick a random configuration $x_{\text {rand }}$ in $C_{\text {free }}$,

Randomized methods. RRTs

$C_{\text {free }}$ is randomly explored and a tree is built.
(1) Starting form the current tree, pick a random configuration $x_{\text {rand }}$ in $C_{\text {freee }}$
(2) find the nearest node $x_{\text {near }}$ in the tree,

Randomized methods. RRTs

$C_{\text {free }}$ is randomly explored and a tree is built.
(1) Starting form the current tree, pick a random configuration $x_{\text {rand }}$ in $C_{\text {freee }}$
(2) find the nearest node $x_{\text {near }}$ in the tree,
(3) from the nearest node find the control input to the robot (planner) that leads the state x as close as possible to $x_{\text {rand }}$,

Randomized methods. RRTs

$C_{\text {free }}$ is randomly explored and a tree is built.
(1) Starting form the current tree, pick a random configuration $x_{\text {rand }}$ in $C_{\text {freee }}$
(2) find the nearest node $x_{\text {near }}$ in the tree,
(3) from the nearest node find the control input to the robot (planner) that leads the state x as close as possible to $x_{\text {rand }}$,
(9) if such a control input exists and $x_{\text {rand }}=x$, the state $x_{\text {rand }}$ is added to the tree,

Randomized methods. RRTs

$C_{\text {free }}$ is randomly explored and a tree is built.
(1) Starting form the current tree, pick a random configuration $x_{\text {rand }}$ in $C_{\text {freee }}$
(2) find the nearest node $x_{\text {near }}$ in the tree,
(0) from the nearest node find the control input to the robot (planner) that leads the state x as close as possible to $x_{\text {rand }}$,
(9) if such a control input exists and $x_{\text {rand }}=x$, the state $x_{\text {rand }}$ is added to the tree,
(0) if $x_{\text {rand }} \neq x$, then x is added to the tree, which grows,

Randomized methods. RRTs

$C_{\text {free }}$ is randomly explored and a tree is built.
(1) Starting form the current tree, pick a random configuration $x_{\text {rand }}$ in $C_{\text {freee }}$
(2) find the nearest node $x_{\text {near }}$ in the tree,
(0) from the nearest node find the control input to the robot (planner) that leads the state x as close as possible to $x_{\text {rand }}$,
(9) if such a control input exists and $x_{\text {rand }}=x$, the state $x_{\text {rand }}$ is added to the tree,
(0) if $x_{\text {rand }} \neq x$, then x is added to the tree, which grows,
(0) otherwise, the algorithm is trapped.

Randomized methods. RRTs

$C_{\text {free }}$ is randomly explored and a tree is built.
(1) Starting form the current tree, pick a random configuration $x_{\text {rand }}$ in $C_{\text {freee }}$
(2) find the nearest node $x_{\text {near }}$ in the tree,
(0) from the nearest node find the control input to the robot (planner) that leads the state x as close as possible to $x_{\text {rand }}$,
(9) if such a control input exists and $x_{\text {rand }}=x$, the state $x_{\text {rand }}$ is added to the tree,
(0) if $x_{\text {rand }} \neq x$, then x is added to the tree, which grows,
(0) otherwise, the algorithm is trapped.

The tree can grow faster if the tree grows from both $x_{\text {start }}$ to $x_{\text {goal }}$.

Artificial potential fields

Idea. Build a function to be minimized, which decreases toward the goal position and increases close to the obstacles.

Artificial potential fields

Idea. Build a function to be minimized, which decreases toward the goal position and increases close to the obstacles.

The potential function is $U=U_{g}+U_{0}$, where

Artificial potential fields

Idea. Build a function to be minimized, which decreases toward the goal position and increases close to the obstacles.

The potential function is $U=U_{g}+U_{o}$, where the term U_{g} attracts the robot toward the goal position $x_{\text {goal }}$,

$$
U_{g}(x)=\frac{1}{2} k\left(x-x_{\text {goal }}\right)^{T}\left(x-x_{\text {goal }}\right) .
$$

Artificial potential fields

Idea. Build a function to be minimized, which decreases toward the goal position and increases close to the obstacles.

The potential function is $U=U_{g}+U_{0}$, where the term U_{g} attracts the robot toward the goal position $x_{\text {goal }}$,

$$
U_{g}(x)=\frac{1}{2} k\left(x-x_{\text {goal }}\right)^{T}\left(x-x_{\text {goal }}\right) .
$$

The minimization of $U_{g}(x)$ results in an attractive force

$$
f_{g}(x)=-\nabla U_{g}(x)=k\left(x-x_{\text {goal }}\right) .
$$

Artificial potential fields

Idea. Build a function to be minimized, which decreases toward the goal position and increases close to the obstacles.

The potential function is $U=U_{g}+U_{0}$, where the term U_{g} attracts the robot toward the goal position $x_{\text {goal }}$,

$$
U_{g}(x)=\frac{1}{2} k\left(x-x_{\text {goal }}\right)^{T}\left(x-x_{\text {goal }}\right) .
$$

The minimization of $U_{g}(x)$ results in an attractive force

$$
f_{g}(x)=-\nabla U_{g}(x)=k\left(x-x_{\text {goal }}\right) .
$$

Similarly, a repulsive force $f_{o}(x)$ is generate by minimizing U_{0} defined as

$$
U_{0}(x)= \begin{cases}\frac{k}{\alpha}\left(\frac{1}{d(x)}-\frac{1}{d_{0}}\right)^{\alpha}, & \text { if } d(x) \leq d_{0} \\ 0, & \text { if } d(x)>d_{0}\end{cases}
$$

Artificial potential fields

Idea. Build a function to be minimized, which decreases toward the goal position and increases close to the obstacles.

The potential function is $U=U_{g}+U_{0}$, where the term U_{g} attracts the robot toward the goal position $x_{\text {goal }}$,

$$
U_{g}(x)=\frac{1}{2} k\left(x-x_{\text {goal }}\right)^{T}\left(x-x_{\text {goal }}\right) .
$$

The minimization of $U_{g}(x)$ results in an attractive force

$$
f_{g}(x)=-\nabla U_{g}(x)=k\left(x-x_{\text {goal }}\right) .
$$

Similarly, a repulsive force $f_{o}(x)$ is generate by minimizing U_{0} defined as

$$
U_{0}(x)= \begin{cases}\frac{k}{\alpha}\left(\frac{1}{d(x)}-\frac{1}{d_{0}}\right)^{\alpha}, & \text { if } d(x) \leq d_{0} \\ 0, & \text { if } d(x)>d_{0}\end{cases}
$$

where $d(x)=\min _{\bar{x} \in C_{\text {ols }}}\|x-\bar{x}\|$.

Artificial potential fields

The repulsive force generated by the obstacles is

$$
f_{0}(x)=-\nabla U_{0}(x)= \begin{cases}\frac{k}{d^{2}(x)}\left(\frac{1}{d(x)}-\frac{1}{d_{0}}\right)^{\alpha-1} \nabla d(x), & \text { if } d(x) \leq d_{0} \\ 0, & \text { if } d(x)>d_{0}\end{cases}
$$

Artificial potential fields

The repulsive force generated by the obstacles is

$$
f_{0}(x)=-\nabla U_{0}(x)= \begin{cases}\frac{k}{d^{2}(x)}\left(\frac{1}{d(x)}-\frac{1}{d_{0}}\right)^{\alpha-1} \nabla d(x), & \text { if } d(x) \leq d_{0} \\ 0, & \text { if } d(x)>d_{0}\end{cases}
$$

Main issue. Local minima. The robot may get stuck in a local minimum introduced by U_{0}.

Artificial potential fields

The repulsive force generated by the obstacles is

$$
f_{0}(x)=-\nabla U_{0}(x)= \begin{cases}\frac{k}{d^{2}(x)}\left(\frac{1}{d(x)}-\frac{1}{d_{0}}\right)^{\alpha-1} \nabla d(x), & \text { if } d(x) \leq d_{0} \\ 0, & \text { if } d(x)>d_{0}\end{cases}
$$

Main issue. Local minima. The robot may get stuck in a local minimum introduced by U_{0}. The potential function could be modified to remove the local minima, provided that the environment is known.

Actuator limitations and design constraints are not included in the force generation. The forces f_{g}, f_{o} could be limited.

[^0]: ${ }^{\mathrm{a}}$ Randomized motion planning - A tutorial. Stefano Carpin.

[^1]: ${ }^{\mathrm{a}}$ Randomized motion planning - A tutorial. Stefano Carpin.

[^2]: ${ }^{\mathrm{a}}$ Randomized motion planning - A tutorial. Stefano Carpin.

[^3]: ${ }^{\text {a }}$ Randomized motion planning - A tutorial. Stefano Carpin.

[^4]: ${ }^{\text {a }}$ Randomized motion planning - A tutorial. Stefano Carpin.

[^5]: ${ }^{\text {a }}$ Randomized motion planning - A tutorial. Stefano Carpin.

[^6]: ${ }^{\text {a }}$ Randomized motion planning - A tutorial. Stefano Carpin.

[^7]: ${ }^{\text {a }}$ Randomized motion planning - A tutorial. Stefano Carpin.

