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minimizing a desired cost, while satisfying physical and design constraints.

Designing the cost. In road transportation applications a “reference” path is
likely to be available. E.g., the lane centerline of the desired route, which can
be assumed to be given.

The cost should then be designed such that the planned path minimizes, in
some sense, the deviation from the reference path.
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Randomized methodsa

Problem formulation. Given a configuration workspace C = Cfree

⋃

Cobs and the
points xstart, xgoal ∈ Cfree, find a function f : [0, 1]→ Cfree, such
that f (0) = xstart, f (1) = xgoal.

aRandomized motion planning - A tutorial. Stefano Carpin.
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3 Connect (find a path between) the new point/region with the existing
ones.

4 [Online] Given an origin xstart and a destination xgoal, online extract a
path connecting them.

Two main approaches

probabilistic roadmaps. Data organized in a graph.

rapidly exploring random trees (RRT). Data organized in a tree.

aRandomized motion planning - A tutorial. Stefano Carpin.
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2 be vs and vg the nodes connected to xstart and xgoal, respectively. If a path

connecting vs and vg return it, otherwise return failure.

Remarks.

1 Learning stage can be expensive. Worth if it supports multiple queries,

2 not suitable for dynamic environments,

3 simple (uniform) sampling policies may leave narrow regions poorly
explored.
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2 find the nearest node xnear in the tree,

3 from the nearest node find the control input to the robot (planner) that
leads the state x as close as possible to xrand,

4 if such a control input exists and xrand = x, the state xrand is added to the
tree,

5 if xrand , x, then x is added to the tree, which grows,

6 otherwise, the algorithm is trapped.

The tree can grow faster if the tree grows from both xstart to xgoal.
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k
α

(

1
d(x) −

1
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, if d(x) ≤ d0,

0, if d(x) > d0,

where d(x) = minx̄∈Cobs
‖x − x̄‖.
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d2(x)

(

1
d(x) −

1
d0

)α−1
∇d(x), if d(x) ≤ d0,

0, if d(x) > d0.

Main issue. Local minima. The robot may get stuck in a local minimum
introduced by Uo. The potential function could be modified to remove the
local minima, provided that the environment is known.

Actuator limitations and design constraints are not included in the force
generation. The forces fg, fo could be limited.
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