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Model Predictive Control

From MPC to nonlinear or linear/quadratic programming

Step-by-step preparation of the motion planning problem
1 Space vs. Time-based problem formulations
2 Cost design
3 Reference path
4 Vehicle modeling
5 Safety constraints. Static obstacles
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minimizing a desired cost, while satisfying physical and design constraints.

Designing the cost. In road transportation applications a “reference” path is
likely to be available. E.g., the lane centerline of the desired route, which can
be assumed to be given by a route planner.

The cost should then be designed such that the planned path minimizes, in
some sense, the deviation from the reference path.

3 / 22



Optimization-based motion planning problem

formulation

The optimization-based motion planning reads as

4 / 22



Optimization-based motion planning problem

formulation

The optimization-based motion planning reads as

minimize
path/trajectory

deviation from reference path/trajectory

4 / 22



Optimization-based motion planning problem

formulation

The optimization-based motion planning reads as

minimize
path/trajectory

deviation from reference path/trajectory

subject to

vehicle model

4 / 22



Optimization-based motion planning problem

formulation

The optimization-based motion planning reads as

minimize
path/trajectory

deviation from reference path/trajectory

subject to

vehicle model

safety constraints

4 / 22



Optimization-based motion planning problem

formulation

The optimization-based motion planning reads as

minimize
path/trajectory

deviation from reference path/trajectory

subject to

vehicle model

safety constraints

actuator limitations

4 / 22



Optimization-based motion planning problem

formulation

The optimization-based motion planning reads as

minimize
path/trajectory

deviation from reference path/trajectory

subject to

vehicle model

safety constraints

actuator limitations

design (e.g., comfort) constraints

4 / 22



Optimization-based motion planning problem

formulation

The optimization-based motion planning reads as

minimize
path/trajectory

deviation from reference path/trajectory

subject to

vehicle model

safety constraints

actuator limitations

design (e.g., comfort) constraints

The planned motion is periodically updated based on the current vehicle and
environment state, and sent to motion control layer.
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The core of the MPC approach, the receding horizon idea:
1 At time instant k, predict the process response over a finite prediction

horizon N; this response depends on the sequence of future control inputs
over the control horizon M.

2 Pick the control sequence which gives the best performance in terms of a
specified objective, cost function or criterion.

3 Apply the first element in the control sequence to the process, discard
the rest of the sequence, and return to step 1.
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(Normally, M < N, and we assume that u is either 0 or unchanged after
this.)

3 Minimize a criterion (now adopting the index notation : as in Matlab)

V(k) = V(ŷ(k + 1 :k +N|k), û(k :k +M − 1|k))

with respect to the control sequence û(k :k +M − 1|k)
4 Apply the first control signal in the sequence to the process:

u(k) = û(k|k)

5 Increment time k := k + 1 and go to 1.
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MPC ingredients

An internal model describing process and disturbances

An estimator/predictor to determine the evolution of the state

An objective/criterion to express the desired system behaviour

An online optimization algorithm to determine future control actions

The receding horizon principle
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N−1
∑

i=0

(x⊤(i)Qx(i)+ u⊤(i)Ru(i)) + x⊤(N)Pf x(N)

=

N−1
∑

i=0

l(x(i), u(i))+ lf (x(N)) (2)

Remark 1: All x(i) are functions of x(0) and u(0 :N − 1) via the model (1)!
Remark 2: The first term x⊤(0)Qx(0) in the objective is really redundant but is
kept for notational convenience.
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i=0
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N−1
∑

i=0

‖Qex(i)‖∞ + ‖Reu(i)‖∞

penalizes the maximum deviation from the path over the horizon.

The minimization of VN results into a linear cost.
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Waypoints. A n-tuple of (x, y, ψ) poses.
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Reference path

The reference path can be expressed as

Waypoints. A n-tuple of (x, y, ψ) poses. Pro: Simple, most common way
to define a path. Cons: Curvature must be imposed in the generation of
the poses sequence.

Composition of curves. E.g., straight segments,
◮ constant curvature arcs,

x(s) = Px
1
+ R1 sin s

R1
,

y(s) = P
y

1
− R1

(

1 − cos s
R1

)

,

ψ(s) = − s
R1
,

0 ≤ s ≤ l1

x(s) = Px
2 + R2

(

1 − cos
s−l1
R2

)

,

y(s) = P
y

2 + R2 sin
s−l1
R2
,

ψ(s) = − π
2
+

s−l1
R1
,

l1 ≤ s ≤ l2

16 / 22



Reference path

The reference path can be expressed as

Composition of curves. E.g., straight segments, constant curvature arcs,

17 / 22



Reference path

The reference path can be expressed as

Composition of curves. E.g., straight segments, constant curvature arcs,
◮ clothoids (linearly increasing curvature). Fresnel integrals can be used to

calculate the pose

x(s) =

∫ s

0

sinτ2dτ, y(s) =
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x(s) =

∫ s

0

sinτ2dτ, y(s) =

∫ s

0

cos τ2dτ, ψ(s) = s2.

The curvature is ρ = 2s and the resulting curve is
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waypoints.

2 The reference path is given as a composition of curves. It is enough the
evaluate the curve at the specific values of s

In case (ii), the path is parametrized w.r.t. the time

xr = xr(t), ur = ur(t).

In this case the prediction model can be augmented with the state (time
dynamics)

τ+ = τ + Ts + v.

The additional control input v is used to avoid aggressive maneuvers due to
obstacles that may lead to large tracking errors.
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19 / 22



Vehicle modeling

Usually a simple vehicle model is used for motion planning. At rater low
speed a kinematic model can be used
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(

tan δf − tan δr

)

,

β = tan−1

(

lf tan δr + lr tan δf

lf + lr

)

This is to be discretized in either the time or space domain.

In case a bicycle model is used to plan the motion, motion planning and
control can be lumped together into a single task.
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Vehicle modeling

Let’s rewrite the kinematic model in the space domain, w.r.t. a reference
path (xσ(s), yσσ(s)).
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vσ = Vx cos eψ − Vy sin eψ.

gives Vs = ṡ = ρσψ̇σ = 1

1−
ey

ρσ

(

Vx cos eψ − Vy sin eψ
)

, where Vx, Vy can be

expressed in terms of the vehicle pose in the global frame.
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)
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Vxδ

Vs(lf + lr)
−

1

R(s)
,

V′x =
V̇x

Vs
,

where R(s) is the curvature radius of the reference path, V̇x is the commanded
longitudinal acceleration (control input).

Note that, all variables are to be expressed in the space domain (they are
function of s).
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Safety constraints. Static obstacles

By rewriting the vehicle model in the space domain, where the coordinates
describe the vehicle position and orientation w.r.t. the reference path, the
safety constraints simply become

ey(s) ∈

[

−
Lw(s)

2
,

Lw(s)

s

]

,

where Lw(s) is the lane width at s.
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Lw(s)
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]

,

where Lw(s) is the lane width at s.

Assuming the position within the lane of static obstacles is provided by a
sensing system,

eobs
y (s) ∈ Xobs =

[

eobs,min
y , eobs,max

y

]

, s ∈ [sobs,min, sobs,max]

collision avoidance constraints are imposed by

ey(s) ∈

[

−
3Lw(s)

2
,

Lw(s)

s

]

\ Xobs, s ∈ [sobs,min, sobs,max]
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