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mOve carries out research, innovation and technology transfer activities 
in the areas of automotive controls, intelligent vehicles and smart 
mobility.

From component level To fleet management
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• Winners of the Indy Autonomous Challenge (Las Vegas, 2022-2023, Texas, 2023, Monza 2023)
• Rercord holders for the fastest autonomous car (@ Kennedy Space Center) 310 km/h (May 2022)
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Vertical Dynamics and its Influence

Matteo Corno

General goal: filter the road-to-vehicle
interaction

Related movements (main):

• Heave

• Roll

• Pitch

Can influence (indirectly) also yaw/sway/surge.

 

ROLL 

Pitch 

YAW 

Forward movement 
(surge) 

Lateral 
movement 
(sway) 

Vertical 
movement 
(heave) 
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Why suspensions in 2023?
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Suspension System Goals

Matteo Corno

Goals of  Suspension System:

1) Comfort à chassis vertical acceleration, pitch and roll movements
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Suspension System Goals

Matteo Corno

Goals of  Suspension System:

1) Comfort à chassis vertical acceleration, pitch and roll movements

2) Road Holding à keep vertical load as constant as possible

𝐹! = 𝜇!(𝐹")
𝐹# = 𝜇#(𝐹")

𝐹" = (𝑀 +𝑚)𝑔 + 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝐿𝑜𝑎𝑑 + [𝐴𝑒𝑟𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝐿𝑜𝑎𝑑]

Fx
Fy

Fx/Fy

Fz
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Suspension System Goals

Matteo Corno

Goals of  Suspension System:

1) Comfort à chassis vertical acceleration, pitch and roll movements

2) Road Holding à keep vertical load as constant as possible

3) Avoid hitting bump stops à keep the stroke of the suspension limited
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Main Components of a Suspension

Matteo Corno

Damper (c)

Damper: force function of stroke speed 
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Main Components of a Suspension
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Spring (k)

Spring: force function of stroke
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Actuators

Matteo Corno

Load-leveling (height
adjuster)

Quasi static

(«slow-active»)

(«full-active»)

High frequency

High frequency

Mid frequency

Quasi static

Industrially viable, but control is challenging

They change the characteristics without 
injecting mechanical energy
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Actuator Technology
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Rod

Piston + 
orifices

Gas-spring
High-speed

Rebound

Compression

FORCE

Speed
(relative)

High-speedLow-speed
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Actuator Technology

Matteo Corno

High damping               Low damping Low damping               High damping

Electro-
Hydraulic 
valve opens 
and closes 
(mechanical 
variation of 
orifices size)

Magnetic or Electric field 
changes viscosity of the 
(Magneto-Rheologic or Electro-
Rheologic)  fluid

EH damper                        MR damper                 ER 
damper
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Actuator Technology – Static Characteristics

Matteo Corno

«Controllability range»

EH damper MR damper
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The quarter-car model and its features

Matteo Corno

 

M 
(body mass) 

c 
(shock absorber) 

k 
(spring) 

m 
(unsprung 

mass) 

kt 
(tire) 

z 
 

zt 
 

zr 
 

road profile 
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The quarter-car model and its features

Matteo Corno
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The quarter-car model and its features

Matteo Corno
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The quarter-car model and its features

Matteo Corno

𝛿𝑧$ → ̈𝛿𝑧 = 𝑠% 𝐹"(𝑠) 𝛿𝑧$ → 𝛿𝑧 − 𝛿𝑧& = 𝐹" 𝑠 − 𝐹"&(𝑠)𝛿𝑧$ → 𝛿𝑧& − 𝛿𝑧$ = 𝐹"& 𝑠 − 1

«Comfort» or 
«acceleration» transfer 
function

«Road-contact» transfer 
function

«Elongation» transfer 
function
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The quarter-car model and its features

Matteo Corno

green: c=2600 Ns/m
blue : c=1300 Ns/m
red: c=750 Ns/m



Semi-Active Damping Control

26

The quarter-car model and its features

Matteo Corno

green: c=2600 
Ns/m
blue : c=1300 Ns/m
red: c=750 Ns/m
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The quarter-car model and its features

Matteo Corno

green: c=2600 Ns/m
blue : c=1300 Ns/m
red: c=750 Ns/m
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The quarter-car model and its features

Matteo Corno

blue : k=20000 N/m
green: k=40000 N/m
red: k=10000 N/m
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The quarter-car model and its features

Matteo Corno

blue : k=20000 N/m
green: k=40000 N/m
red: k=10000 N/m
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The quarter-car model and its features

Matteo Corno

blue : k=20000 N/m
green: k=40000 N/m
red: k=10000 N/m
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The quarter-car model and its features

Matteo Corno
 

Comment on:
- Body mass
- Spring stiffness
- Tire stiffness

Consider a specific road profile zr(t)
over a time-window 0-T as «standard» input for 
the comparison

The experiment is made with all the parameters 
at their «nominal» value is the (1,1) position

Each point on the trade-off map is obtained by 
changing a parameter (one only)
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The quarter-car model and its features

Matteo Corno

Recall that the three objectives are:

€ 

Facceleration (s)Zr(s) = s2Z(s)
Fstroke (s)Zr (s) = Z(s) − Zt (s)
Fload (s)Zr (s) = (Kt /m)(Zt (s) − Zr (s))

three objectives with apparently only 2 variables ( Z(s) and Zt(s) ). 

à cannot achieve all three objectives

Given: 

Zr
comfort
handling

it seems possible to design a control law for the suspension force to 
achieve those objectives

(2 unknowns 2 equations)
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The quarter-car model and its features

Matteo Corno

… not quite true. Assume the ideal case where F can be 
freely controlled

Mδz = δF
mδzt = −kt δzt −δzr( )−δF
"
#
$

%$

€ 

Ms2Z(s) + ms2Zt (s) + kt Zt (s) − Zr(s)( ) = 0

by eliminating δF:

there is an additional dynamic constraint:

The two objectives cannot be independently set
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The quarter-car model and its features

Matteo Corno
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The quarter-car model and its features

Matteo Corno
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If we linearize around an 
equilibrium point we loose 
the effect of the damping 
variation

we loose the effect of the 
damping variation.
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Actuator Technology – Dynamic Properties

Matteo Corno

Furthermore, the suspension response is more complex:

• Hysteresis
• Dynamic response
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Actuator Technology – Dynamic Properties

Matteo Corno

Furthermore, the suspension response is more complex:

• Hysteresis
• Dynamic response
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Actuator Technology – Dynamic Properties

Matteo Corno

Furthermore, the suspension response is more complex:

• Hysteresis
• Dynamic response
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Actuator Technology – Dynamic Properties

Matteo Corno

Furthermore, the suspension response is more complex:

• Hysteresis
• Dynamic response



Semi-Active Damping Control

40

Actuator Technology – Dynamic Properties

Matteo Corno

Magnetization dynamic

Static
Damping
Characteristics

Hammerstein-Wiener Model
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Control Oriented Semi-Active Damping Model

Matteo Corno

Models the actuator bandwidth

Considers a nominal damping

Is the control variable.
We need to add a dissipative constrain
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Control Oriented Semi-Active Damping Model

Matteo Corno
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Performance Assessment

Matteo Corno

Several ways to assess performance:

• Frequency Response.
 - It requires the knowledge of the input.
 - Work well in simulation.
 - Not appicable in many experimental scenarios

• Integral Performance Index
  - it works experimentally
  - it is a “lumped” approach

<latexit sha1_base64="Bbt5gA/7Le2k1YfQ5qcmQelU/Zk=">AAACGnicbZDLSsNAFIYn9V5vVZduBotQF5akeNsIohtxVcFqoZcwmU7awckkzJyIJeY53Pgqblwo4k7c+DZO2i609YeBj/+cw5nze5HgGmz728pNTc/Mzs0v5BeXlldWC2vr1zqMFWU1GopQ1T2imeCS1YCDYPVIMRJ4gt14t2dZ/eaOKc1DeQX9iLUC0pXc55SAsdyCc4GPcdNXhCZOmoBb2QXXSZtcgptk1M68FD/cl2DnoV3BHXALRbtsD4QnwRlBEY1UdQufzU5I44BJoIJo3XDsCFoJUcCpYGm+GWsWEXpLuqxhUJKA6VYyOC3F28bpYD9U5knAA/f3REICrfuBZzoDAj09XsvM/2qNGPyjVsJlFAOTdLjIjwWGEGc54Q5XjILoGyBUcfNXTHvE5AQmzbwJwRk/eRKuK2XnoLx/uVc8OR3FMY820RYqIQcdohN0jqqohih6RM/oFb1ZT9aL9W59DFtz1mhmA/2R9fUDfU+f7w==</latexit>

J =
1

t2 � t1

Z t2

t1

|x(t)|2dt
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Road Profile Generation

Matteo Corno

Road classification is made according to ISO 8608 standard
Standard road profile can be mathematically modeled as a sum of sinusoids with decreasing amplitude
Road profile can be approximated with a white noise filtered with a very low-frequency 1st order low-pass filter

ℎ 𝑥 =$
!"#

$

Δ% 2& ⋅ 10'(
𝑛)
𝑖 Δ%

cos 2𝜋 𝑖 Δ% 𝑥 + 𝜙!

• 𝑘, that allows to build road profiles with different levels of roughness;
• 𝑥, that is the longitudinal displacement;
• 𝜙! , that is the phase of each sinusoidal component, randomly chosen to obtain an irregular profile.  
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Road Profile Generation

Matteo Corno

Pebble Road A Cement Road Belgian Road C1 Pebble Road B

Dislocated Washboard Road C Belgian Road C2 Long wave road
(Short wavelenght)

Long wave road
(Long wavelenght)



Semi-Active Damping Control

46

Road Profile Generation

Matteo Corno
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Optimal Control and Benchmarking

Matteo Corno

It is useful to evaluate the best performance a given system, subject to actuator and inner nested 
limitations, can achieve

Assumptions:

1. The road disturbance profile is known 
2. The state variables of the system are perfectly measured (i.e. no measurement noise).
3. The semi-active quarter car model is known (no system uncertainty).



Semi-Active Damping Control

48

Optimal Control and Benchmarking

Matteo Corno

Subject to

• It is framed as a nonlinear optimization problem with logical constraints and solved using YALMIP
• α balances the two objective: comfort and road holding
• N is the optimization horizon
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Optimal Control and Benchmarking

Matteo Corno
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Sky-Hook Concept (Ideal Sky-Hook)

Matteo Corno

 

M 
(sprung mass) 

c 
(damping) 

k 
(stiffness) 

m 
(unsprung 

mass) 

kt 
(tire 

stiffness) 

z 
 

zt 
 

zr 
 

Damping force: 
proportional to 
body-speed only
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Sky-Hook Concept (Ideal Sky-Hook)

Matteo Corno

 

M 
(sprung mass) 

c 
(damping) 

k 
(stiffness) 

m 
(unsprung 

mass) 

kt 
(tire 

stiffness) 

z 
 

zt 
 

zr 
 

Damping force: 
proportional to 
body-speed only
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Sky-Hook Concept (Two-State Sky-Hook Control)

Matteo Corno
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Remark on its intuitive interpretation

Sensors requirement:
- Body speed
- Stroke speed

Actuator requirement: two-states
only, Cmin and Cmax if the sprung mass is raising and 

suspension extending à the 
damper does what we want à
cmax
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Sky-Hook Concept (Two-State Sky-Hook Control)

Matteo Corno
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Remark on its intuitive interpretation

Sensors requirement:
- Body speed
- Stroke speed

Actuator requirement: two-states
only, Cmin and Cmax

if the sprung mass is raising and 
suspension compressing à the 
damper is amplifying the sprung 
mass movement à cmin
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Sky-Hook Concept (Classical Linear Sky-Hook Control)

Matteo Corno

𝑐!"�̇�(𝑡)
( ̇𝑧 𝑡 − �̇�#(𝑡))

𝑐(t)

minc

MAXcRed: ideal

Green: on-off (simple) 
approximation

Yellow: linear 
approximation

C(t)= *$%,̇(.)
( ̇, . ',̇&(.))

𝑐 𝑡 = 𝑠𝑎𝑡[?@AB,?@DE]
𝑐FG�̇�

(�̇� − �̇�H)
-𝑐 𝑡 �̇� − �̇�H = −𝑐FG�̇�

 

M 
(sprung mass) 

c 
(damping) 

k 
(stiffness) 

m 
(unsprung 

mass) 

kt 
(tire 

stiffness) 

z 
 

zt 
 

zr 
 



Semi-Active Damping Control

55

Acceleration Driven Damper Control

Matteo Corno
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The two-state SH control law can be applied based on the acceleration: 
Acceleration Driven Damper Control

It is optimal if the road profile is a white noise.

The switching behavior causes high frequency discomfort.
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Ground-Hook Concept

Matteo Corno

 

M 
(sprung mass) 

c 
(damper) 

k 
(stiffness) 

m 
(unsprung 

mass) 

kt 
(tire 

stiffness) 

z 
 

zt 
 

zr 
 

!
𝑐(𝑡) = 𝑐!"# 𝑖𝑓 − �̇�$(�̇� − �̇�$) ≥ 0
𝑐(𝑡) = 𝑐%&' 𝑖𝑓 − �̇�$(�̇� − �̇�$) < 0
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Acceleration Driven Damper Control

Matteo Corno
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Acceleration Driven Damper Control

Matteo Corno
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Acceleration Driven Damper Control

Matteo Corno



Semi-Active Damping Control

60

Mixed SH-ADD Semi-Active Control

Matteo Corno

Idea: distinguish the instantaneous dynamical behavior of the suspension: in case of 
low frequency dynamic the SH is selected while the ADD is selected otherwise
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SH ADDFrequency Selector
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Frequency Range Selector

Matteo Corno

Consider the single tone
<latexit sha1_base64="fUlDCMaRBFJ91Ggwuruu4mrO240=">AAACBXicbVC7SgNBFJ2Nrxhfq5ZaDAYhacKu+GqEqI1lBPOAZAmzk0kyZHZ2mbkrxCWNjb9iY6GIrf9g5984SbbQxAMXDufcO3Pv8SPBNTjOt5VZWFxaXsmu5tbWNza37O2dmg5jRVmVhiJUDZ9oJrhkVeAgWCNSjAS+YHV/cD326/dMaR7KOxhGzAtIT/IupwSM1Lb3W50QkodRAYr4Al9izWWhFQasRzAU23beKTkT4HnipiSPUlTa9pd5jsYBk0AF0brpOhF4CVHAqWCjXCvWLCJ0QHqsaagkAdNeMrlihA+N0sHdUJmSgCfq74mEBFoPA990BgT6etYbi/95zRi6517CZRQDk3T6UTcWGEI8jgR3uGIUxNAQQhU3u2LaJ4pQMMHlTAju7MnzpHZUck9LJ7fH+fJVGkcW7aEDVEAuOkNldIMqqIooekTP6BW9WU/Wi/VufUxbM1Y6s4v+wPr8AS5vlxk=</latexit>

ż(t) = Asin(!t)
<latexit sha1_base64="mdoleYO06MA5e8GFpvyK9Tp+Hr8=">AAACFXicbVDLSgMxFM3UV62vUZdugkWooGWm+NoIRTcuK9gHtLVkMpk2NPMguSPUoT/hxl9x40IRt4I7/8a0nUVtPRA4OeceknucSHAFlvVjZBYWl5ZXsqu5tfWNzS1ze6emwlhSVqWhCGXDIYoJHrAqcBCsEUlGfEewutO/Hvn1ByYVD4M7GESs7ZNuwD1OCWipYx55BTjEl7jluiEkj0N9uy/hY9wiIuoRTVtTesfMW0VrDDxP7JTkUYpKx/zWcRr7LAAqiFJN24qgnRAJnAo2zLVixSJC+6TLmpoGxGeqnYy3GuIDrbjYC6U+AeCxOp1IiK/UwHf0pE+gp2a9kfif14zBu2gnPIhiYAGdPOTFAkOIRxVhl0tGQQw0IVRy/VdMe0QSCrrInC7Bnl15ntRKRfuseHp7ki9fpXVk0R7aRwVko3NURjeogqqIoif0gt7Qu/FsvBofxudkNGOkmV30B8bXL96mnMw=</latexit>

f(t) = z̈(t)2 � ↵2ż(t)2
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f(t) = A2!2 �A2 sin2(!t)(↵2!2)
<latexit sha1_base64="SKN6dfN15L42WrQF5DGtxBdlUqM="></latexit>

f(t) > 0 ) sin2(!t) <
!2

!2 + ↵2

<latexit sha1_base64="qP4QqPrRTahylt4jeY7F07pDfjU=">AAACF3icbVDJSgNBEO2Je9yiHr00BiGihhlxw4ME9eAxgolCJoSeTk3S2LPYXSOEIX/hxV/x4kERr3rzb+wsB018UNTjvSq663mxFBpt+9vKTExOTc/MzmXnFxaXlnMrq1UdJYpDhUcyUrce0yBFCBUUKOE2VsACT8KNd3fe828eQGkRhdfYiaEesFYofMEZGqmRK140tgtuFECLbdFd6qYUT6hfwK1Te4fa1JVwT3HQrqnbbeTydtHug44TZ0jyZIhyI/flNiOeBBAil0zrmmPHWE+ZQsEldLNuoiFm/I61oGZoyALQ9bR/V5duGqVJ/UiZCpH21d8bKQu07gSemQwYtvWo1xP/82oJ+sf1VIRxghDywUN+IilGtBcSbQoFHGXHEMaVMH+lvM0U42iizJoQnNGTx0l1r+gcFg+u9vOls2Ecs2SdbJACccgRKZFLUiYVwskjeSav5M16sl6sd+tjMJqxhjtr5A+szx97PpvJ</latexit>

D+(!)� {t : f(t) > 0, 0  t  T}
<latexit sha1_base64="84M31Iq0MVA/C7j6UNNTEpob2WY="></latexit>

|D+(!)| =
2T

⇡
arcsin

 r
!2

!2 + ↵2

!

And the frequency selector 

We can see that

If we call
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Frequency Range Selector

Matteo Corno

Over a period T:

• f(t)>0 for more than T/2 if 𝜔 > 𝛼.
• f(t)<0 for more than T/2 if 𝜔 < 𝛼.
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Frequency Range Selector

Matteo Corno
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Single Sensor Mix Algorithm

Matteo Corno
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The mixed SH-ADD control logic requires:
• Stroke velocity 
• Corner acceleration and velocity

Two sensors for each corner
• Potentiometer
• Accelerometer
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Single Sensor Mix Algorithm

Matteo Corno
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The mixed SH-ADD control logic requires:
• Stroke velocity 
• Corner acceleration and velocity

Two sensors for each corner
• Potentiometer
• Accelerometer
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Single Sensor Mix Algorithm

Matteo Corno
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The mixed SH-ADD control logic requires:
• Stroke velocity 
• Corner acceleration and velocity

The frequency selector uses only the accelerometer 
à what happens if we use only the frequency selector?
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Single Sensor Mix Algorithm

Matteo Corno67 Matteo Corno
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Single Sensor Mix Algorithm

Matteo Corno68 Matteo Corno

Single sensor Mix Algorithm
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SH-Mix Algorithm

Matteo Corno69 Matteo Corno

Both versions of the algorithm are switching algorithms:
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SH-Mix Algorithm

Matteo Corno70 Matteo Corno

Idea: propose a continuously modulating version of the SH and ADD and combine 
the two.

Continuously modulating SH:

• Smooth
• Easily

parametrizable

• It converges to 
the switching 
algorithm when
ksky increases
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SH-Mix Algorithm

Matteo Corno71 Matteo Corno

Idea: propose a continuously modulating version of the SH and ADD and combine 
the two.

Continuously modulating ADD: 𝑐$'( = 𝑠𝑎𝑡 )()*,)(,-
(𝑘*++�̈�,Δ�̇�)
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SH-Mix Algorithm

Matteo Corno72 Matteo Corno

Idea: propose a continuously modulating version of the SH and ADD and combine 
the two.

Continuously mixed SH- ADD: 𝑐!"# = 𝑠𝑎𝑡 $()*,$(+, (𝑐&'( + 𝑘)*�̇�+Δ𝑧 + 𝑘,--�̈�+Δ�̇�)
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SH-Mix Algorithm

Matteo Corno73 Matteo Corno

Idea: propose a continuously modulating version of the SH and ADD and combine 
the two.

Continuously mixed SH- ADD: 𝑐!"# = 𝑠𝑎𝑡 $()*,$(+, (𝑐&'( + 𝑘)*�̇�+Δ𝑧 + 𝑘,--�̈�+Δ�̇�)

We can extend the approach to the single-sensor philosophy

.
𝑐!"# = 𝑐(.&, 𝑖𝑓 �̈�+/ − 𝛼/�̇�+/ ≤ 0
𝑐!"# = 𝑐(01, 𝑖𝑓 �̈�+/ − 𝛼/�̇�+/ > 0

𝑐!"# = 𝑠𝑎𝑡 $()*,$(+, (𝑘23)|𝑠𝑎𝑡[56,7] �̈�+
/ − 𝛼/�̇�+/ |)

• Continuously increase the damping at low frequency.
• Keep minimum damping at high frequency.
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Calibration

Matteo Corno74 Matteo Corno

propose calibration

feedback on performance

(A) traditional calibration
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Calibration

Matteo Corno75 Matteo Corno

propose calibration

feedback on performance

(A) traditional calibration

(B) automatic performance-based paradigm

suggest test

data record

BO
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Calibration

Matteo Corno76 Matteo Corno

Control strategy

Damping reference 
command (x4)

Corner accelerations (x4)
Stroke velocities (x4)

Experimental MR damper curves
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Calibration

Matteo Corno77 Matteo Corno

Bayesian Optimization

Data-driven optimization technique suitable for cost-to-
evaluate objective function.

At each optimization step:

Objective function is modeled as a 
realization of a Gaussian Process

An acquisition function determines 
where to sample the parameters 

space next.

Frazier, P.I. (2018). A tutorial on bayesian optimization.
arXiv preprint arXiv:1807.02811.
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Calibration

Matteo Corno78 Matteo Corno

The objective function is not 

explicitly known.

It can be considered a stationary 

gaussian process.

A known surrogate of the objective 

function (Acquisition Function) is 

optimized at each iteration.
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Calibration

Matteo Corno79 Matteo Corno

Bayesian Optimization

Data-driven optimization technique suitable for cost-to-
evaluate objective function.

At each optimization step:

Objective function is modeled as a 
realization of a Gaussian Process

An acquisition function determines 
where to sample the parameters 

space next.

Frazier, P.I. (2018). A tutorial on bayesian optimization.
arXiv preprint arXiv:1807.02811.

Several acquisition functions:

Expected Improvement: The assumption is to 
return only explored values. We maximize the a 
posteriori expected improvement

Knowledge Gradient: We allow the decision-
maker to return any solution she likes,

EI is efficient to compute and to maximize

Entropy Search: acquisition function values the 
information we have about the location of the 
global maximum according to its differential 
entropy
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Calibration

Matteo Corno80 Matteo Corno

Bayesian Optimization

Data-driven optimization technique suitable for hard-
to-evaluate objective function.

At each optimization step:

Objective function is modeled as a 
realization of a Gaussian Process

An acquisition function determines 
where to sample the parameters 

space next.

Frazier, P.I. (2018). A tutorial on bayesian optimization.
arXiv preprint arXiv:1807.02811.

Objective function

Typical quantitative performance index for ride 
comfort:

𝑚𝑖𝑛-
1
𝑇 N

.

/
𝐴" 𝑡, Θ %𝑑𝑡

Where:
• Θ = 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠
• 𝐴" = 𝑐ℎ𝑎𝑠𝑠𝑖𝑠 𝐶𝑜𝐺 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛

Optimization settings

Range of parameters: obtained by sensitivity analysis

Number of iterations: 100 ~ 150 
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Calibration

Standard ISO – 8608 C-D road profile: regular-to-poor road scenario

ℎ 𝑥 = ∑-./0 Δ𝑛211023 40
-54

cos(2𝜋𝑖Δ𝑛𝑥 + 𝜙-)

Peak at the heave 
reasonance
frequency

Mid-to-high frequency realistic excitation

𝑣 = 50 X𝑘𝑚
ℎ
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Calibration

20 realizations of the ISO road profile

ℎ 𝑥 = ∑01.2 Δ𝑛231045 6.
076

cos(2𝜋𝑖Δ𝑛𝑥 + 𝜙0)

Road profile

Amplitude 
fixed by the 

standard

Phase lag 
randomly 
generated

Performance indexes

• Acceleration index:

𝐽*/ =
1
𝑇N.

/
𝐴" 𝑡 %𝑑𝑡

• Vertical jerk index

𝐽8/ =
1
𝑇N.

/
𝐽" 𝑡 %𝑑𝑡

Indexes are reported as percentage improvement
with respect to the original Mix SH-ADD:

𝐽09:$
*/,8/ =

𝐽*/,8/ − 𝐽*/,8/
<=*++

𝐽*/,8/
<=*++ ×100
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Calibration

The continuously modulating Mix SH-ADD is benchmarked against the Product SkyHook.
Index values are the average over the 20 experiments.

Benchmark with switching Mix SH-ADD:

• 𝐽09:$
*/ = 9%

• 𝐽09:$
>/ = 62%

Benchmark with Product SH:

• Better filtering of road excitation 

• Slightly higher vertical jerk.
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Calibration

The Mix-1-Linear is benchmarked against the Mix-1-Sensor algorithm.
Index values are the average over the 20 experiments.

Benchmark with switching Mix SH-ADD:

• 𝐽09:$
*/ = −4% ∽ due to reduced setup

• 𝐽09:$
>/ = 43%

Benchmark with Mix-1-Sensor:

• Better filtering of road excitation 

• Better reduction of vertical jerk
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Validation

Performance 
indexes are the 

ones
introduced for 
the validation 

on the ISO road 
profile.
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Validation

• Improvement in terms of 𝐴" filtering on all 
validation profiles (up to 10%).

• Reduction of 𝐽" on all validation profiles (up to 
96%).

• Better filtering of road excitation on validation 
profiles. 

• Comparable vertical jerk on all validation 
profiles.
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Validation

• Expected degradation of performance in 
terms of 𝐴" filtering, due to reduced setup.

• Comparable or lower 𝐽" on all validation 
profiles (up to 46% improvement on country).

• Better filtering of road excitation on longwave
and bump, comparable on country road. 

• Better reduction of vertical jerk on bump and 
country road, comparable on longwave.
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Calibration
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suggest comparison

preference

propose calibration

feedback on performance

(A) traditional calibration

(B) automatic performance-based paradigm

Savaia, Sohn, Formentin, Panzani, Corno, Savaresi –
Experimental Automatic Calibration of a Semi-Active Suspension Controller 
via Bayesian Optimization, 
Journal of Systems and Control , 2021 [in press]

(C) semi-automatic preference-based paradigm

• Advantages w.r.t. (A)
Ø time/cost of experiments

• Advantages w.r.t. (B)
Ø model-free
Ø optimization tailored to subjective preference

suggest test

data record

APL

BO

[Bemporad, 2020] – Active preference learning 
based on radial basis functions.
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APL: problem statement

Matteo Corno

• 𝑥 ∈ ℝ6 decision vector (ℝ6 decision variable space).

• 𝜋: ℝ6×ℝ6 → −1,0,1 preference function defined as:

Find best preference vector, 
inside the feasible space.

Assumption: properties of 𝜋.
Ø reflexivity 
𝜋 𝑥6, 𝑥6 = 0 ∀𝑥6 ∈ ℝ4

Ø anticommutativity 
𝜋 𝑥6, 𝑥7 = −𝜋 𝑥7, 𝑥6 ∀𝑥6, 𝑥7 ∈ ℝ4

Ø transitivity 
𝜋 𝑥6, 𝑥7 = 𝜋 𝑥7, 𝑥3 = −1
⇒ 𝜋 𝑥6, 𝑥3 = −1 ∀𝑥6, 𝑥7, 𝑥3 ∈ ℝ4

𝑙, 𝑢 ∈ ℝ4: lower and upper bound on 𝑥.

𝑥 = 𝜗?
𝜗@

∈ ℝ%

𝑙 = 0
0 , 𝑢 = 166

166
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APL: general scheme

Matteo Corno

Initialization + scaling

1) Learn the surrogate function

2) Define the acquisition function

3) Generate the next sample to test

m𝑓(𝑥)

𝑎(𝑥)

𝑥2AB

Generate 3 samples with LHS.

• It. 1: observe 𝜋 𝑥B, 𝑥% = −1 (𝑥B∗ = 𝑥B)

• It. 2: observe 𝜋 𝑥B, 𝑥5 = 1 (𝑥%∗ = 𝑥5) 

𝜎1 : comparison tolerance
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APL: general scheme

Matteo Corno

Initialization + scaling

1) Learn the surrogate function

2) Define the acquisition function

3) Generate the next sample to test

m𝑓(𝑥)

𝑎(𝑥)

𝑥2AB
RBF-interpolant

𝛽
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APL: general scheme

Matteo Corno

Initialization + scaling

1) Learn the surrogate function

2) Define the acquisition function

3) Generate the next sample to test

m𝑓(𝑥)

𝑎(𝑥)

𝑥2AB
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Exploration 
parameter 𝛿 ≥ 0
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APL: general scheme

Matteo Corno

Initialization + scaling

1) Learn the surrogate function

2) Define the acquisition function

3) Generate the next sample to test

m𝑓(𝑥)

𝑎(𝑥)

𝑥2AB
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APL: general scheme

Matteo Corno

Initialization + scaling

1) Learn the surrogate function

2) Define the acquisition function

3) Generate the next sample to test

m𝑓(𝑥)

𝑎(𝑥)

𝑥2AB
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Observe 
𝜋 𝑥0∗ , 𝑥2AB
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APL: general scheme

Matteo Corno

Initialization + scaling

1) Learn the surrogate function

2) Define the acquisition function

3) Generate the next sample to test

m𝑓(𝑥)

𝑎(𝑥)

𝑥2AB
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Observe 
𝜋 𝑥0∗ , 𝑥2AB 𝑥2∗ 𝑥2∗ → 𝑥∗ as 𝑁 → ∞s.t.
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Simulation study

Param Description

𝑁060& Number of initial samples.

𝛿 Exploration parameter of acquisition function.

𝜖 Shape parameter of RBF.

𝜎 Tolerance of (QP) learning problem.

… …

APL has many 
degrees of 
freedom

Exploration-exploitation trade-off:

• 𝑥2∗ → 𝑥∗ only for 𝜹 sufficiently 
large

• too high 𝛿 shows slower 
convergence

Sensitivity analysis 
(via simulation)

Conclusion

• 𝛿 is the most important 
hyperparameter.

• Fine-tuning the others gives 
small benefit (once 𝛿 is tuned).

APL Methodology
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Bump test scenario

Matteo Corno

Bump test scenario

APL

driver perception

driver preference  

Suspension in a car influence (mainly): 
• Vertical movement à 𝐴"
• Pitch à �̇�
• Roll (negligible in this case)

Bump test scenario
Negotiate a speed bump at constant speed. 
(30 km/h using CC system)

Bridging-the-gap from theory to practice
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Preliminary Experiment

Matteo Corno

Preliminary Experiment 
1) Understand our capability to perceive different 

behaviors of the car.
2) Fit rough model of underlying OF.

Bump test scenario

APL

driver perception

driver preference  4 benchmark settings in the 
parameters space: 

𝑥B, 𝑥%, 𝑥5, 𝑥D

0 20 40 60 80 100 120 140 160
0

20

40

60

80

100

120

140

160

 
hard-soft soft-soft

hard-hard hard-soft

Bridging-the-gap from theory to practice
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Preliminary Experiment
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Test # 1 2 3 4 5 6

𝒙𝒊 𝑥% 𝑥B 𝑥B 𝑥5 𝑥D 𝑥5
𝒙𝒋 𝑥B 𝑥5 𝑥D 𝑥% 𝑥% 𝑥D

best 𝑥B 𝑥B 𝑥B 𝑥% 𝑥% 𝑥5

• Driver is able to express committed preference.

• Transitive property satisfied à ranking: s_s, h_s, s_h, h_h.

soft-soft

hard-soft

hard-soft

hard-hard

Preference-based identification 
of the underlying OF.

Same procedure as in APL 
to learn the surrogate.

Bridging-the-gap from theory to practice
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Simulation

Matteo Corno

Tuning hyperparameter 𝛿 via simulation

𝜎( = 0.05

Best 𝛿 = 10

heuristics: equivalent to 20 
steps of “resolution”, 
expressing our preference

0 5 10 15 20 25 30 35 40
-0.1

0

0.1

0.2

0.3

0.4

0.5

OPTIMUM

a
c
ti
v
e
 l
e
a
rn

Stopping criterion
The APL procedure converges 
when:

• 3 consecutive “zeros”
OR 
• at least 4 “zeros” in 5 

consecutive iterations

𝜹 = 𝟏 𝜹 = 𝟏𝟎 𝜹 = 𝟓𝟎
𝑵𝒄𝒐𝒏𝒗 6 15 36
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Preliminary Experiment
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Step# Task description

1 APL suggest a pair-wise comparison: 𝑥0 VS 𝑥> .

2 Update 𝜗? and 𝜗@ according to 𝑥0 . 
3 Perform first bump test.

4 Update 𝜗? and 𝜗@ according to 𝑥> .

5 Perform second bump test.

6 Driver expresses his preference 𝜋(𝑥0 , 𝑥>).

Remarks:
• Driver must be well-focused on his perception (and familiar with the setup).

• The 2 bump tests should happen close in time.

• The test must be informative enough (eventually repeat).

• Driver must not know value of 𝜗? and 𝜗@ .

Experimental protocol

• Driver: express 
preference.

• Co-driver: update 
parameters.
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APL Experiment
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APL Experiment
1) Semi-automatic preference-based calibration via APL.
2) Sensitivity analysis w.r.t. 𝛿 (validate simulation results).

• 𝛿 = 1 (3 repetitions) à 𝛿1𝐴, 𝛿1𝐵, 𝛿1𝐶
Too low exploration expected.

• 𝛿 = 10 (2 repetitions) à 𝛿10𝐴, 𝛿10𝐵
Best compromise.

• 𝛿 = 50 (1 repetition) à 𝛿50
High exploration (too slow convergence) is 
expected, but most accurate result.

suggest comparison

preference

APL
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APL Experiment: comparison 𝛿 = 1
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𝛿1𝐵

• APL 𝛿 = 1 shows poor exploration of parameters space.

• Final result strongly depends on the initialization phase 
(first 3 samples).

𝛿1𝐴 𝛿1𝐶

Legend
• Red dots: all samples 𝑥6, … , 𝑥0
• Blue star: best preference in-sample 𝑥0∗
• Blue dots: equal-optimum outcomes
• Contour plot is the surrogate function

*
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APL Experiment: comparison 𝛿 = 10 / 𝛿 = 50

Matteo Corno

𝛿10𝐵

Exploration pattern 
• first rule out “bad points” (exploration)
• then surround optimal point (exploitation)

𝛿10𝐴 𝛿50

Definition of equal-optimum area from 𝛿50:
smallest-height contour-line enclosing all 
equal-optimum outcomes (𝜎( = 0.07)
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APL Experiment
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𝑵𝒄𝒐𝒏𝒗 Simulation (A) (B) (C)

𝜹 = 𝟏 𝟔 9 8 6 𝟖
𝜹 = 𝟏𝟎 𝟏𝟓 21 13 𝟏𝟕
𝜹 = 𝟓𝟎 𝟑𝟔 > 39* / *budget cap

0 50 100 150
0

20

40

60

80

100

120

140

160 • Confirm poor exploration of 𝛿 = 1

• Equal-optimum points with 𝛿 = 10
are inside equal-optimum area

• 𝛿 = 10 best compromise 
(considering 𝑁)K6L)

• Exploration-exploitation trade-off 
in agreement with simulation

How to 
validate/explain 
this result?

𝛿1𝐴 𝛿1𝐵

𝛿1𝐶 𝛿10𝐴

𝛿10𝐵 𝛿50
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A preference-based comfort index
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• 𝑢 = 𝐽M0N 𝐽M0O 𝐽M>N 𝐽M>O input

• 𝑦 ∈ −1,0,1 output
⇒ 𝐷 = { 𝑢B, 𝑦B , … , 𝑢P , 𝑦P } dataset

Supervised multiclass classification problem

Vertical acceleration RMS

Pitch rate RMS

Learn weighting coefficient 𝜆 from preference

0 0.5 1 1.5 2
-5

0

5

0 0.5 1 1.5 2
-10

-5

0

5

10

• �𝜋: 𝑈 → 𝑌 interpretation function



Experimental results

107

A preference-based comfort index

Matteo Corno

Cross-validation procedure

• Training set à to train the model solving optimization pb.

• Validation set à to detect overfitting (𝐸LQR).

𝜆 (and 𝜎8)

Mean prediction error:
measure how far is the 
model from correct label 
prediction

Learning procedure

Slack-variable minimization problem, 
which constraints imposes:

�𝜋 𝑥M = 𝑦M , ∀ℎ = 1,… , 𝐾
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A preference-based comfort index
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𝐽S from dataset Driver1
(113 preference data)

• 𝐸&K& has a convex quadratic-like shape. 
⇒ best 𝜆∗ = 0.117.

• 𝜆 far from 𝜆∗ are outliers (big 𝐸LQR à overfitting)

• Model 𝐽S cannot make 𝐸&K& = 0 because of noise
o regressors (sensors measurements) 
o labels (human preference)

𝜆 ≈ 0.12
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BO with 𝐽S Experiment
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BO with 𝐽S Experiment:

1) Automatic calibration via BO with 𝐽S.
2) Check if BO optimum is similar to APLà

results validation.

Same experimental 
setup.

suggest test

data record

BO

Same scenario: 
bump test 
at 30 km/h.
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APL Vs BO
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160

1.62

1.64

1.66

1.68

1.7

1.72

1.74

1.76

• 𝐽S gives interpretation of APL result 
à model of driver preference

• APL with 𝛿 ≥ 10 retrieve optimal 
solution according to 𝐽S

APL is time/cost effective

• BO ~40 min Vs 
• APL ~50 min (but…)

• equal-optimum area from APL
• equal-optimum area from BO 



Semi-Active Damping Control

111 Matteo Corno111 Matteo Corno

Full Body Control

Maneuver 
adapter

𝐵𝑘
𝑇𝑞T6U

𝑉,KV#

𝛿(

̅𝑐��,��
̅𝑐��,��

̅𝑐��,��

̅𝑐��,��

Mixed 
SkyHook-

Acceleration 
Driven

Damping
(SHADD)

𝑚𝑎𝑛𝑒𝑢𝑣𝑒𝑟 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔

�̈�<,=>, �̈�<,=? ,
�̈�<,?>, �̈�<,??

�̇�@,=>, �̇�@,=? ,
�̇�@,?>, �̇�@,??

Filtering

�̇�<,=>, �̇�<,=? ,
�̇�<,?>, �̇�<,??

�̈�<,=>, �̈�<,=? ,
�̈�<,?>, �̈�<,??

𝑧@,=>, 𝑧@,=? ,
𝑧@,?>, 𝑧@,??

𝑐!"# = 𝑠𝑎𝑡 $()*,$(+, (𝑐&'( + 𝑘)*�̇�+Δ𝑧 + 𝑘,--�̈�+Δ�̇�)
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Full Body Control

Thanks to the use of the driver scheduling, it is 
possible to slow down the load transfer and 
thus yield a more stable feeling while 
negotiating corners. 
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• Introduction

• Semi-Active Damping Control
• Actuators

• Models 

• Benchmark

• Causal Control

• Semi-Active Stiffness Control
• Actuators

• Benchmark

• Causal Control

• Sensing Preliminaries

• A look at the future

• Conclusions
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Actuators
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A mechanical spring does not allow for any kind of modulation

Spring (k)
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Air Spring – Pneumatic Spring
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Equivalent «k» 
computation (see
section on load-
levelling control)

Air 
bellow

Air inlet/outlet
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Air Spring – Pneumatic Spring

Matteo Corno

Equivalent «k» 
computation (see
section on load-
levelling control)

Air 
bellow

Air inlet/outlet

2( ) :
( )

t

t

p A z z F p AF A k
V z z V

g g¶ - ¶æ ö¶ = - Þ = - =ç ÷ ¶ -è ø
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Air Spring – Pneumatic Spring – Slow Active 
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Equivalent «k» 
computation (see
section on load-
levelling control)

3 positions: 
load; hold; 
discharge

Air 
bellow

Air inlet/outlet
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Air Spring – Pneumatic Spring – Semi-Active 
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𝜹𝒛

𝜹𝒛

𝒔

𝑭
𝑭
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Air Spring – Pneumatic Spring – Semi-Active 
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Air Spring – Pneumatic Spring – Semi-Active 

s Valve 
configuration

System 
configuration

0 Closed Hard

1 Open Soft

Hard configuration
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Air Spring – Pneumatic Spring – Semi-Active 

s Valve 
configuration

System 
configuration

0 Closed Hard

1 Open Soft

Hard configuration
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Air Spring – Pneumatic Spring – Semi-Active 

s Valve 
configuration

System 
configuration

0 Closed Hard

1 Open Soft

Hard configuration
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Air Spring – Pneumatic Spring – Semi-Active 

s Valve 
configuration

System 
configuration

0 Closed Hard

1 Open Soft

Soft configuration
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Air Spring – Pneumatic Spring – Semi-Active 

s Valve 
configuration

System 
configuration

0 Closed Hard

1 Open Soft

Soft configuration
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Air Spring – Pneumatic Spring – Semi-Active 

s Valve 
configuration

System 
configuration

0 Closed Hard

1 Open Soft

Soft configuration
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Kick-back
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Kick-back
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Kick-back
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Kick-back
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Model Identification

𝑝𝑉 = 𝑚𝑅𝑇
Law of ideal gases

Law of conservation of energy

𝛿𝑈 = 𝛿𝑄 + 𝛿𝐻 − 𝛿𝑊
Law of conservation of mass

𝑚!"#$ +𝑚"%&' +𝑚"%&( = 𝑐𝑜𝑛𝑠𝑡.

Flow trought valves
𝑞9,0WX, = 𝑠0𝐴L𝐶L𝑝9Q!

2𝛾
𝑅𝑇X: 𝛾 − 1

𝑝906
𝑝9Q!

%
Y
−

𝑝906
𝑝9Q!

YAB
Y
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Model Identification
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Model Identification

q open valves q closed – open

q open – closed q closed valves
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Model Identification

Opening of the valve

q When a valve is 
opened, the pressure 
(and consequently the 
elastic force) has a 
jump. The mathematical 
model is able to
describe the pressure 
dynamics at the valve 
opening.

q The old models do not 
capture the real 
behaviour.

“old” mathematical 
models
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General Control Scheme

Car designed to be 
very comfortable on 
straight road; FIXED 
low-stiffness and 
FIXED low-damping

Good-Comfort - Poor 
handling

Car designed to have a 
good handling on curvy-
roads; FIXED high-
stiffness and FIXED high-
damping

Good-Handling – Poor-
comfort
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Longitudinal Control Example

𝝋𝒑𝒊𝒕𝒄𝒉

The «all-hard» K 
configuration
guarantees the best 
«anti-dive» effect in 
braking (and «anti-
squat» in acceleration)
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Longitudinal Control Example

If the hardening-switch is
immediately applied when
braking, an unbalanced
equilibrium roll angle may
arise

𝑣B

𝜗X6,QRQ6)'

𝑣% 𝑣B 𝑣%
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Hardening suspensions stiffness 
as soon as starts braking 
manoeuvre 

Hardening independently front and rear
suspensions stiffness when braking 

manoeuvre is started and left and right 
suspensions are at the same stroke 

pointsPRO CONS

Minimized 
control 

response time

Effects given by 
suspensions 
unbalancing

PRO CONS

Left and right 
suspensions 
balanced for 

each side

Pitch 
improvement

delayed
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Pitch-unbalancing effect: the «instantly» 
control approach guarantees (slightly) 
better performance

Pitch-unbalancing negative effect: can be 
seen with the steer-angle correction
needed to keep a straight line
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Estimator Control 
logic Vehicle

Accelerations

Suspensions strokes

Valves commands

Load transfer forces
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Estimator
Accelerations Load transfer forces

Estimator

𝑎E

𝑎�

𝐹��
𝐹��
𝐹��
𝐹��

The load transfer force of each corner is 
estimated using a linear system that 
takes as input the longitudinal and lateral
acceleration of the vehicle’s COG.

𝑨𝑨𝒚

𝑨𝒙

𝚫𝑭𝑭𝑳𝚫𝑭𝑹𝑳

𝚫𝑭𝑹𝑹 𝚫𝑭𝑭𝑹
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Estimator

𝑎E

𝑎�

𝐹��
𝐹��
𝐹��
𝐹��

• It recognizes and manages 
mixed maneuvers

• It predicts suspension behavior
• Unique input for each corner

Estimator
Accelerations Load transfer forces
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Estimator Control 
logic Vehicle

Accelerations

Suspensions strokes

Valves commands

Load transfer forces

Control logic

FSM FSM

FSM FSM

𝐹�� 𝑠B
𝑠%

𝑠B
𝑠%

𝑠B
𝑠%

𝑠B
𝑠%

Δ𝑧��

𝐹��
Δ𝑧��

𝐹��
Δ𝑧��

𝐹��
Δ𝑧��

The control logic is made of four identical 
finite state machine, one for each car 
corner. The inputs are the estimated load 
transfer and the suspension stroke and 
the outputs are the valves commands.
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Estimator Control 
logic Vehicle

Accelerations

Suspensions strokes

Valves commands

Load transfer forces

Control logic

FSM FSM

FSM FSM

𝐹�� 𝑠B
𝑠%

𝑠B
𝑠%

𝑠B
𝑠%

𝑠B
𝑠%

Δ𝑧��

𝐹��
Δ𝑧��

𝐹��
Δ𝑧��

𝐹��
Δ𝑧��

The control logic is made of four identical 
finite state machine, one for each car 
corner. The inputs are the estimated load 
transfer and the suspension stroke and 
the outputs are the valves commands.
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As soon as the estimated 
load transfer force is 
greater than T1, valves get 
closed. Then if the force is 
lower than T2 valves get 
opened again.

OPEN CLOSE OPEN
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-24%

As soon as the estimated 
load transfer force is 
greater than T1, valves get 
closed. Then if the force is 
lower than T2 valves get 
opened again.
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Kick force

Valves opens

Kick force occurs if the valves 
are opened when the 
pressure of the auxiliary
chambers is different with 
respect to the pressure of the 
main chamber.
This phenomenon worsens 
the peak of vertical 
acceleration by 38%.
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The controller has a stroke-
based opening logic to avoid 
the kick-force.

Valves get opened if they reach 
the same stroke value of the 
closing instant.

Kick-force avoidance logic
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Valves get opened if the 
load transfer force is 
lower than the threshold 
T2 and the stroke is 
equal to the closing one.



Semi-Active Stiffness Control

149 Matteo Corno149 Matteo Corno

The core logic and the
controller bring to the 
same improvement 
because the closing 
strategy is the same.

-24%
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The new condition leads 
to a delay in the opening 
that solves the kick-force 
problem.

Valves opening
Core logic

Valves opening
Controller



Semi-Active Stiffness Control

151 Matteo Corno151 Matteo Corno

The controller includes an Inversion 
maneuver management, that 
improves the pitch and roll angles if 
maneuver inversion has occurred. 

𝑨𝒙

𝚫𝑭𝑭𝑳

𝚫𝑭𝑹𝑳 𝚫𝑭𝑹𝑹

𝚫𝑭𝑭𝑹

𝑨𝒙

𝚫𝑭𝑭𝑳

𝚫𝑭𝑹𝑳 𝚫𝑭𝑹𝑹

𝚫𝑭𝑭𝑹

Traction Braking
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When maneuver inversion is 
detected a rapid opening and 
closing sequence is actuated in 
order to change the working curve, 
selecting the one that minimize the 
stroke for the second maneuver 
force.

4mm

17mm

1st maneuver force

2nd maneuver force
Open Loop
Controller
Opening
Closing



Semi-Active Stiffness Control

153 Matteo Corno153 Matteo Corno

All the maneuvers except for the 
first one benefits from the 
equilibrium change, achieving 
improvements of up to 63% -63%

1st 2nd 3rd 4th 5th 6th

Steering to the left Steering to the right

-30%
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Is genuine semi-active stiffness control beneficial? 



Semi-Active Stiffness Control

155 Matteo Corno155 Matteo Corno

Is genuine semi-active stiffness control beneficial? 

Optimizer
and 

Quarter car model

𝜹𝒛𝒓
𝑱

s(𝒕)

• Offline optimization :  perfect road profile preview

• Find the sequence of openings/closings of the valve minimizing      𝑱 =
∫𝟎
𝑻 𝜹�̈�𝒃 𝒕

𝟐 𝒅𝒕

∫𝟎
𝑻 𝜹𝒛𝒓 𝒕

𝟐 𝒅𝒕
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Causal Control – Neural Network Based

Optimizer
s(𝑡) System

𝒛𝒓(𝑡)
�̈�𝒃(𝑡)

Neural Network
s(𝑡)

System

𝒛𝒓(𝑡)
�̈�𝒃(𝑡)
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Causal Control – Neural Network Based

Collected features: 

• Body position
• Body velocity
• Body acceleration
• Tire position
• Tire velocity
• Main chamber pressure
• Auxiliary chamber pressure
• Absolute value of the pressure difference
• Opening signal
• Closing signal
• Current Valve State

Vehicle Body Features
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Causal Control – Neural Network Based

Collected features: 

• Body position
• Body velocity
• Body acceleration
• Tire position
• Tire velocity
• Main chamber pressure
• Auxiliary chamber pressure
• Absolute value of the pressure difference
• Opening signal
• Closing signal
• Current Valve State

Vehicle Tire Features
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Causal Control – Neural Network Based

Collected features: 

• Body position
• Body velocity
• Body acceleration
• Tire position
• Tire velocity
• Main chamber pressure
• Auxiliary chamber pressure
• Absolute value of the pressure difference
• Opening signal
• Closing signal
• Current Valve State

Multi-chamber Pressure Variables
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Causal Control – Neural Network Based

Collected features: 

• Body position
• Body velocity
• Body acceleration
• Tire position
• Tire velocity
• Main chamber pressure
• Auxiliary chamber pressure
• Absolute value of the pressure difference
• Opening signal
• Closing signal
• Current Valve State

Multi-chamber Valve Variables
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Causal Control – Neural Network Based

HIDDEN LAYERS (FULLY 
CONNECTED)

INPUT LAYER

OUTPUT LAYER

INPUT DATA DIVISION:

• 70% of the reduced 
dataset used as 
TRAINING SET.

• 15%  used as 
VALIDATION SET

• 15%  used as 
TEST SET

Valve State 
Prediction
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Causal Control – Neural Network Based
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Causal Control – Neural Network Based

Best Structure Configuration

𝐽 '
()
*

𝐽 '
()
*
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Causal Control – Neural Network Based
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Causal Control – Neural Network Based

Feature Reduction Analysis
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Causal Control 

The neural network proves the feasibility of causal control.
Too complex for actual implementation
Does not provide an interpretation
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Causal Control 

The neural network proves the feasibility of causal control.
Too complex for actual implementation
Does not provide an interpretationOptimal comfort-oriented control of a multichamber spring

Optimality over speed 
bumps (simulation study)

Experimental validation

Car 
ECU

Suspension FL

Suspension FR

Suspension RL

Suspension RR

Sensing and 
estimation

MicroAutoBox II

Car 
dynamics

Simulator

control 
input

controlled 
output

road disturbance
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Comfort-oriented optimization
A Finite Horizon Optimal Control Problem is 
solved over an optimization horizon 𝑇? in order 
to find a globally optimal input.

Assumption: road profile

Road preview is assumed. Four different 
bump types are considered.

Type Height [cm] Length [cm]

No. 1 7.5 100

No. 2 7.5 200

No. 3 10 360

No. 4 12.5 610

min
!2,#$%,…,'3(4

1
𝑇)
N
*.

*.+(4
�̈�, 𝑡 - 𝑑𝑡

subject to:

𝑥 𝑡 + 𝑖 + 1 = 𝑓 𝑥 𝑡 + 𝑖 , 𝑢 𝑡 + 𝑖

𝑥 𝑡/ = 5𝑥 𝑡/

𝑠@ ∈ 0,1 , ∀𝜏 = 1,… , 𝑓A𝑇?

𝑧B 𝑡 = �̃� 𝑡 , 𝑡 ∈ 𝑡/, 𝑡/ + 𝑇?

Cost function

Discretized 
model equations

Initial state

Input boundaries

Road preview
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Optimal results
Vertical acceleration is reduced thanks to valve 
switching.

A bump is a single-event type of perturbation which 

particularly excites the body resonance (≈ 1.2 𝐻𝑧, 
most important chassis vertical movement).

Soft spring performs better than hard spring at 

the body resonance frequency and ensures a natural 

motion during settling.

The controlled spring outperforms the passive 

configurations, especially in the release phase of the 

bump, while keeping the motion natural.
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Take-home messages

Improvement indexes:

𝐽./01 =
𝐽 − 𝐽!2'*
𝐽!2'*

×100

Improvements are up to 17%, depending on the 
velocity. This result is consistent with the previous work.
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𝒑𝒎𝒂𝒊𝒏 𝒑𝒂𝒖𝒙

𝑝/9.: > 𝑝9;<

𝑝/9.: < 𝑝9;<

(controlled) energy release principle
It is a physical way to insert active energy into the system, 
by storing and releasing pressurized air by valve switching.

Force jumps down

Force jumps up

Pressure inside 
chambers have different 

levels (valve closed)
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(controlled) energy release principle

The valve is optimally closed so to create unequally 

pressurized chambers (energy storage phase).

Air is released by opening at an instant where the 

kick force is beneficial for the vertical acceleration. 

Optimal opening happen in proximity of the 

maxima (and minima) of the vertical acceleration, so 

to cut the wave peaks.
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Car 
ECU

Suspension FL

Suspension FR

Suspension RL

Suspension RR

Car 
dynamics

Sensing and 
estimation

MicroAutoBox II

Availability of 4 multichamber
air springs.
The control strategy is computed by 
an external rapid prototyping ECU 
and is applied independently to the 
four suspensions.

• Delay (estimated) due to 
transmission and actuation: 30 ms

• Control sampling time: 100 ms

Comfort indexes:
• Single corner vertical accelerations (given by 

single-axis accelerometers)
• Vehicle pitch rate (given by a central 6-DOF IMU)
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Experimental validation

Matteo Corno

Car 
ECU

Suspension FL

Suspension FR

Suspension RL

Suspension RR

Car 
dynamics

Sensing and 
estimation

MicroAutoBox II

Availability of 4 multichamber
air springs.
The control strategy is computed by 
an external rapid prototyping ECU 
and is applied independently to the 
four suspensions.

• Delay (estimated) due to 
transmission and actuation: 30 ms

• Control sampling time: 100 ms

Comfort indexes:
• Single corner vertical accelerations (given by 

single-axis accelerometers)
• Vehicle pitch rate (given by a central 6-DOF IMU)

How to make optimal control «online»

Closed-loop global strategy

The ECU should at each iteration:

1. preview in advance the road profile;

2. solve an optimization problem.

Impossible to tackle in practice with 
current available computational power.
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Car 
ECU

Suspension FL

Suspension FR

Suspension RL

Suspension RR

Car 
dynamics

Sensing and 
estimation

MicroAutoBox II

Availability of 4 multichamber
air springs.
The control strategy is computed by 
an external rapid prototyping ECU 
and is applied independently to the 
four suspensions.

• Delay (estimated) due to 
transmission and actuation: 30 ms

• Control sampling time: 100 ms

Comfort indexes:
• Single corner vertical accelerations (given by 

single-axis accelerometers)
• Vehicle pitch rate (given by a central 6-DOF IMU)

How to make optimal control «online»

Closed-loop global strategy

The ECU should at each iteration:

1. preview in advance the road profile;

2. solve an optimization problem.

Impossible to tackle in practice with 
current available computational power.

≈

Open-loop strategy with activation
threshold

The ECU at each iteration:

1. Takes values of acceleration;

2. Apply in open loop the global optimal 
valve sequence (found offline using same 
system parameters) when a threshold in 
acceleration is exceeded.

Activation threshold (2 𝑚/𝑠/) is chosen 
robustly to noise and disturbances.
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Dynamic valve switching outperforms the passive 

benchmark in all corners. Performance are higher in 

the bump release (in line with expectations).

Inequalities in the front/rear acceleration corners are 

given by a different suspension sizing. Also, 

performance can be enhanced by lowering delays.

The pitch rate is positively affected by suspension 

control, even though only acceleration minimization is 

enforced in the control problem.

Experimental results
FL corner, RL corner and pitch rate as signals of 
interest.
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Experimental validation
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Experimental indexes (normalized with respect to soft passive configuration)

5%
improvement on 
front acceleration

16%
improvement on 
rear acceleration

12%
improvement on 

pitch rate

First experimental evidence of benefits induced by stiffness modulation
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Experimental validation
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The Energy release principle can be used to derive a SH-like causal control law for semi-active stiffness control.
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Coordinated Stiffness and Damping Control
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Coordinated Stiffness and Damping Contro with a hierarchical control 
system

Comfort oriented control

Avoid end of stroke
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Force tracking algorithm

The force tracking algorithm tries to minimize

where

Daisy chain algorithms:

1) 

Priority goes to the damper because of smoothness
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2) The ideal chamber pressure is: 

the main chamber pressure is not a directly controllable variable, a pressure tracking 
logic is needed

the valve position s does not change the sign of the pressure derivative, (that depends on 
the stroke speed only), but affects its absolute value, which increases with closed valve and 
decreases vice-versa. 
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We have two options

When
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�ż > 0and

Pmain will decreasePmain is greater than desired one

Speed up the increase à close the valve
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We have two options

When

and

Pmain will increasePmain is smaller than desired one

Speed up the increase à close the valve
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Equilibrium pressure.
Wait until you are close to the equibrium pressure to 
open the valve
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Equilibrium pressure.
Wait until you are close to the equibrium pressure to 
open the valve

It is a discrete time algorithm
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Benchmark Sky-Hook

acausal

only
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• Introduction

• Semi-Active Damping Control
• Actuators

• Models 

• Benchmark

• Causal Control

• Semi-Active Stiffness Control
• Actuators

• Benchmark

• Causal Control

• Sensing Preliminaries

• A look at the future

• Conclusions



Sensing Preliminaries

191 Matteo Corno

Semi-active damper

Elongation (stroke) sensor

Vertical accelerometer (Az) 
sensor (body-side)

CoG IMU (3 accelerations
and 3 gyros) - Optional

Electronic Control Unit

ECU
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az d+
( )t ez z d- +

Physical sensors (signal + noise): 
- Body-accelerometer
- Stroke sensor

1 1( ) ( ) ( )V s A s D s
s s

= +

1 1( ) ( ) ( )V s A s D s
s se e

= +
+ +

2 0.1e p= ×

Body speed estimation

(OK beyond 0.1Hz)

Stroke speed estimation

( ) ( ) ( )V s sZ s sD s= +

( ) 1 2

1 2

( ) ( ) ( )V s Z s D s s
s s
G G

= +
+G +G

1 1 22 10,pG = × G < G

(OK below 20Hz)

20,

 

e 1 

 

G2 G1 
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4 eleongation sensors only + IMU 4 «twins» of accelerometers
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Cost and HW-complexity reduction;     SW-sensing complexity increase;       performance 
reduction
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Road Preview
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Road Preview

Challenge: 
integrate 
navigation 
AND road-
scanning 
LIDARS?
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Active Suspensions

 

 

«Slow-active»

Body-bandwidth
(control cut-off around 3-5 
Hz)

«Full-active»

Full-bandwidth
(control cutoff around 20-30 Hz)

𝑭

Actuator: can be 
electro-hydraulic
or electro-
mechanic
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Active Suspensions
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Active Suspensions

Just launched (13/9/22) Ferrari Purosangue
Completeley new full-active architecture (by multimatic)

4-quadrants e-motor + ballscrew
EH semi-activeamper (no oil-
free)
Full-active (by Multimatic)
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Active Suspensions

• Easier than semi-active suspensions
• System is LINEAR
• Classical linear control design tools (optimal control, Hinf, etc…) can be used
• Multi-variables and multi-objective control systems can be (easily) designed

𝑥 = 𝑧 − 𝑧* , �̇�, 𝑧* − 𝑧1 , ̇𝑧* =, 𝑢 = 𝐹

𝐽 = lim
(→?

1
𝑇
N
@

(
[�̈�- + 𝜌% 𝑧 − 𝑧* - + 𝜌- 𝑧* − 𝑧1 -] 𝑑𝑡

𝐽 = lim
(→?

1
𝑇
N
@

(
𝑥=𝑄𝑥 + 𝑢=𝑅𝑢 + 2𝑥=𝑁𝑢 𝑑𝑡

𝑄 =
𝜌% 0
0 0

0 0
0 0

0 0
0 0

𝜌- 0
0 0

, 𝑅 = 𝛾-=, 𝑁 =
0
0
0
0

Example: LQR regulator assuming the state vector is 
measurable (or estimated).

0 = 𝐴4C 𝑃 + 𝑃𝐴4 + 𝑄4 − 𝑃𝐵𝑅26𝐵C𝑃, 𝑃 > 0, 
symmetric and unique solution

𝐾DE$ = 𝑅26 𝐵C𝑃 + 𝑁C

𝐴4 = 𝐴 − 𝐵𝑅26𝑁C

𝑄4 = 𝑄 − 𝑁𝑅26𝑁C

𝐹20*(𝑡) = −𝐾20*𝑥(𝑡)

Comfort objective Elongation
objective Contact objective

With 𝜌6 and 𝜌7 very small (all emphasis on 
comfort)

Body acceleration

Without control

With control
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• Control Engineering Look at Suspension Control

• Objectives

• Control Oriented Models

• Technology

• Algorithms with an practical engineering perspective

• Tuning and Calibration
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