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What is Operations Research

What is Operations Research

Operations Research is a science somewhere between Applied
Mathematics and Computer Science
used to optimize the performances of complex systems

growth in the size and complexity of organizations since the advent
of the industrial revolution
nowadays: applications in logistics, transportation systems,
telecommunications, energy management . . .
these systems must be handled both from a tactical and from an
operational viewpoint

take decisions→ decision science
sometimes referred to as Management Science
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What is Operations Research

History of Operations Research

The birth of modern OR is dated to the military services early in
World War II
war effort imposed the need to allocate scarce resources in an
effective manner
British and U.S. military created a team of scientists to deal with
strategic and tactical problems and do research on (military)
operations

effective methods of using radars, instrumental in winning the Air
Battle of Britain
maojr role in winning the Battle of the North Atlantic
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What is Operations Research

History of Operations Research

After the war: interest in applying OR outside the military
industrial boom caused an increasing complexity and
specialization in organizations
two key factors in the success of OR

a substantial progress in improving the techniques of OR; e.g., the
simplex method (Dantzig, 1947)
the computer revolution, allowing arithmetic calculations thousands
or even millions of times faster than a human being

further boost in the 1980s: development of increasingly powerful
personal computers and availability of good software packages
for doing OR
Today: millions of individuals have ready access to OR software
to routinely solve optimization problems
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What is Operations Research

The nature of Operations Research

operations research involves “research on operations”
how to perform a set of operations (activities) into an organization
“Research” means that the approach should follow the scientific
standard

1 data collection: obtain all relevant information on the problem
2 identification of the problem: fully understand the problem and the

objectives
3 modellization of the problem: reformulate the problem in a form that

is convenient for the analysis
4 solution of the model: solve the mathematical model
5 validation of the model: check if the approximation induced by the

model is satisfactory
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Mathematical models

Typically, OR specialists describe the system using a
mathematical model

decisions to be taken are modelled using decision variables
the system is described by means of mathematical relations among
the variables

a model is not the system, but it only represents the system with
some approximation
different models can be used to describe the same system

different degree of approximation
possibly, some decisions are fixed in advance
possibly, some constraints are removed/relaxed

find the right compromise between
the possibility to solve the model
the applicability of the solutions resulting from the model to the real
system
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Mathematical models

Mathematical models

Main elements of a mathematical model
variables, that correspond to the decisions to be taken; the
number of variables will be denoted by n

the feasible set F ⊆ <n, that is the set of all possible
combinations of the variable values that can be implemented in
the real system

the objective function f : F → <, that is used to determine the
best solution among all possible ones

The definition of the feasible set and of the objective function includes
some constants (coefficients) that are called the parameters of the
model



S.I.D.R.A. PhD Summer School 2023

Introduction to Optimization

Mathematical models

Example 1: production planning

An industry produces n types of products using m different
machines
Each product of each type

requires some working time on each machine, and
gives a certain reward

Each machine has a maximum workload

Problem: determine the optimal amount of each product so that the
total reward is a maximum

Variables: number of products of each type to be produced
Constraints: maximum workload for each machine
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Mathematical models

Production planning: numerical example

Parameters
n = 3 types of products (A, B, and C) with rewards 4, 5, and 3
m = 2 machines, max workoads 240 and 320
working times

A B C
M1 10 15 7
M2 20 10 18

Mathematical model
max 4xA + 5xB + 3xC

subject to 10xA + 15xB + 7xC ≤ 240 ⇒ xA = 12, xB = 8, xC = 0
20xA + 10xB + 18xC ≤ 320
xA, xB, xc ≥ 0
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Mathematical models

Example 2: The Assignment Problem

n activities to be assigned to n persons
each person can perform each activity in a certain (known)
working time

Problem: find the assignment of activities to persons so that
each activity is assigned to a person
each person is assigned one activity
the total working time is a minimum

Variables: activity assigned to each person
Constraints: each activity must be assigned

each person must be assigned an activity
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Mathematical models

How hard is the assignment problem?

When n = 2 there are only two possible solutions

A1 A2

P1 20 40
P2 30 25

• solution 1: • solution 2:
P1 → A1 and P2 → A2 P1 → A2 and P2 → A1
cost = 20 + 25 = 45 cost = 40 + 30 = 70

⇒ optimal solution by inspection
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Mathematical models

How hard is the assignment problem?

When n = 3:

A1 A2 A3

P1 20 40 30
P2 30 25 90
P3 50 70 90

For any assignment of an activity to a person, the residual problem is
a 2× 2 assignment problem
⇒ number of solutions 3× 2 = 6

For larger n: number of feasible solutions is n!
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Mathematical models

How hard is the assignment problem?

n n!
5 120

10 3,628,800
20 2.4 1018

n = 20
PC running at 1 GHz (optimistic: 109 solutions per second)
time 2.4109 seconds ∼ 28158 days ∼ 77 years

Blue Gene: Supercomputer @IBM
182k processors running at 2.3 GHz
can evaluate all solutions for n = 20 in ten hours
for n = 24 it takes 200 years
for n = 30 the exstimated time is 84 billions of years (=5 times
the age of the universe)
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Mathematical models

Example 3: Fitting function
A phenomenon has been observed and measured at a set M of
time instants
yi is the value measured at time instant ti
what is the the analytic expression of a function f (t) such that
f (ti ) = yi (for each sample i ∈ M)?
if no such function exists, how can we approximate the samples?
assume function f be defined by a polynomial function depending
on some parameters; e.g. f (x ; t) = x0 + x1t + x2t2 + x3t3 + x4t4

what is the value for coefficients x0, x1, . . . , x4 so that the
resulting function
approximates at the best
the given samples (ti , yi )?
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Mathematical models

Example 4: Classification

Classification in supervised learning: Given two sets of points, each
with a target class, find the hyperplane/function that separates the
two sets.

In an n-dimensional space a separating hyperplane is defined by
parameters w1,w2, . . . ,wn,b (to be determined).



S.I.D.R.A. PhD Summer School 2023

Introduction to Optimization

Mathematical models

Definition of a model

Without loss of generality we assume that the objective function has
to be minimized

z∗ = min
x∈F

f (x),

where z∗ denotes the optimal solution value

For solving a maximization problem, the following transformation can
be applied

max
x∈F

f (x) = −min
x∈F

g(x),

where g : F → <, x → −f (x)
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Mathematical models

Solution of a model

Assuming min form, a model can be described by a pair (F , f )

feasible solution of the model: vector x ∈ F

optimal solution (global minimum, global optimum) of the model:
vector x ∈ F such that

f (y) ≥ f (x) ∀y ∈ F
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Mathematical models

Solution of a model
In some cases, the determination of an optimal solution may be very
challenging in practice

local optimal solution: vector x ′ ∈ F such that

f (y) ≥ f (x ′) ∀y ∈ F ∩ B(x ′, ρ)

where B(x ′, ρ) = {y ∈ <n : ||y − x ′|| ≤ ρ} is a ball centered in x ′

with some positive radius ρ.
i.e., x ′ is a local optimum if ∃ρ > 0 s.t. x ′ is a global optimum
over B(x ′, ρ) ∩ F
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Mathematical models

Typical assumptions

There is a single objective function to be optimized
When multiple conflicting objectives are given
hierarchical definition of the objectives
multi-objective optimization

The exact value of all parameters is known in advance
uncertain data in real applications
stochastic optimization
robust optimization

All decisions have to be taken at the same time
some strategic decisions to be taken immediately,
while some other recourse decisions that can be postponed at a
second time, e.g., when uncertainty materializes
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Classification of the models

NLP: Nonlinear Programming
most general form

min f (x) x ∈ F

constraints may be imposed as equations and inequalities

(P) min f (x)

x ∈ <n

gi (x) ≤ 0 i ∈ I
hj (x) = 0 j ∈ E

extremely hard from a practical point of view
only approximate solutions are required (and can be computed)
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Classification of the models

CP: Convex Programming
problems of the form

min f (x) x ∈ F

where
the feasible region F is a convex set
the objective function f is a convex function

specific exact algorithms have been proposed in the literature
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Classification of the models

LP: Linear Programming
special case of CPs in which

the feasible region F is defined by linear equations and inequalities
the objective function f is a linear function

Matricial form min cT x
A x = b

x ≥ 0

Efficient solution using the simplex algorithm
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Classification of the models

ILP: Integer Linear Programming
an ILP is an LP with the additional constraint imposiing integrality
of the variables

min cT x
A x = b

x ≥ 0
x integer

integrality is a non linear constraint

xj integer ↔ sin(πxj ) = 0

however: nonlinearity only in integrality constraints→ specific
approaches for solving this class of problems
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Classification of the models

MILP: Mixed Integer Linear Programming
Generalization of ILPs in which only a subset J of the variables
are required to be integer

min cT x
A x = b

x ≥ 0
xj integer j ∈ J

if J = ∅ ⇒ LP
if J = {1, . . . ,n} ⇒ ILP
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conditions
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Nonlinear optimization: optimality conditions

Unconstrained Optimization

Unconstrained Optimization

General optimization problem min f (x), x ∈ F

Unconstrained Optimization

special case arising when F = <n

(P) min f (x), x ∈ <n

assumption: function f is smooth, i.e., its gradient can be
computed in every point
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Unconstrained Optimization

Unconstrained Optimization

Main idea

Check if a given point x ∈ <n is a local minimum

local optimality requires evaluating function f in a neighborhood
of x

for points x that are “close” to x , one can replace function f with
its first-order Taylor approximation

f (x) = f (x) +∇f (x)T (x − x) + R1(x , |x − x |)

where limx→x
R1(x,|x−x|)
|x−x| → 0
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Unconstrained Optimization

Necessary condition

Descendant directions
Definition A vector d ∈ <n is a descendant direction for function f in
x if ∃δ > 0 : f (x + αd) < f (x) ∀α ∈ (0, δ).

d is a descendant direction in x only if ∇f (x)T d < 0

First-Order Necessary Condition

Theorem Let f ∈ C1. If x ∈ <n is a local minimum for problem (P),
then ∇f (x) = 0

if x does not satisfy the required condition, it cannot be a local
minimum
The first order necessary condition is not a sufficient condition
Example: f : < → <, f (x) = −x2, and x = 0
∇f (x) = 0 and though x = 0 is not a local minimum
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Unconstrained Optimization

Necessary condition

Second-Order Necessary Condition

Theorem Let f ∈ C2. If x ∈ <n is a local minimum for problem (P),
then

(i) ∇f (x) = 0
(ii) dT ∇2 f (x) d ≥ 0 ∀d ∈ <n

the second order necessary condition is stronger than the first
order condition
however, it requires the function to be in class C2

and it is not a sufficient condition
Example: f : < → <, f (x) = x3, and x = 0
∇f (x) = 0 and ∇2f (x) = 0 though x = 0 is not a local minimum
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Unconstrained Optimization

Sufficient condition

Second-Order Sufficient Condition
Theorem Let f ∈ C2. A solution x ∈ <n that satisfies these
conditions:

(i) ∇f (x) = 0
(ii) ∇2 f (x) is positive definite

is a (strict) local minimum for problem (P)

the second order sufficient condition is aimed at indentifying
strict local minimum
it is not a necessary condition
Example: f : < → <, f (x) = x4.
The solution x = 0 is a strict local minimum for the function but
∇2f (x) is not positive definite
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Constrained Optimization

Constrained Optimization

General optimization problem min f (x), x ∈ F

Constrained Optimization

feasible region F = {x ∈ <n : gi (x) ≤ 0 i ∈ I

hj (x) = 0 j ∈ E}

assumption: f ,gi and hj are in class C1

idea: a point x ∈ F is a local minimum if there is no descendant
direction that preserves feasibility
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Constrained Optimization

Simple case: inequalities only (E = ∅)

let Ia(x) = {i ∈ I : gi (x) = 0} be the set of constraints that are
tight in x
to preserve feasibility one must consider only constraints in Ia(x)

by continuity of gi (·) functions, in a sufficiently small
neighborhood of x , all the remaining constraints are satisfied
by linearization of active constraints, if x is a local minimum then

@d ∈ <n such that ∇f (x)T d < 0 and ∇gi (x)T d < 0 ∀i ∈ Ia(x)
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Constrained Optimization

Simple case: inequalities only (E = ∅)

By linear algebra, the condition above yields

Theorem (Fritz-John conditions:) Let f ∈ C1 and gi ∈ C1 ∀i ∈ I. If
x ∈ F is a local minimum for f over F , then there exist scalar numbers
λ0 and λi (i ∈ I) such that

(i) λ0∇f (x) +
∑

i∈I λi ∇gi (x) = 0
(ii) λigi (x) = 0 ∀i ∈ I
(iii) λ0 ≥ 0, λi ≥ 0 (∀i ∈ I) and not all λ’s are zero.
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Constrained Optimization

Simple case: inequalities only (E = ∅)

When λ0 = 0 Fritz-John conditions reduce to
∑

i∈I λi ∇gi (x) = 0

define a subset of Fritz-John points by the additional requirement
λ0 > 0 (e.g., λ0 = 1)

Definition A point x ∈ F is a Karush-Kuhn-Tucker (KKT) point if
there exist scalar numbers λi (i ∈ I) such that

(i) ∇f (x) +
∑

i∈I λi ∇gi (x) = 0
(ii) λigi (x) = 0 ∀i ∈ I
(iii) λi ≥ 0 (∀i ∈ I).
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Constrained Optimization

KKT conditions

KKT points represent a subset of FJ points

if F is “regular enough” (constraint qualification conditions), a
local minimum is a KKT point

for the general case where F is defined also by equalities, KKT
conditions are

(i) λ0∇f (x) +
∑

i∈I λi ∇gi(x) +
∑

j∈E µj ∇hj(x) = 0
(ii) λigi(x) = 0 ∀i ∈ I
(iii) λ0 ≥ 0, λi ≥ 0 ∀i ∈ I
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Algorithms for unconstrained optimization

Most algorithms are iterative schemes that
start from an initial solution (denoted by x0),
define a sequence {xk} of points
until some stopping criterion is met

at each iteration k , let xk the current point; the next point is
defined as xk+1 = xk + αk dk , where

dk ∈ <n, ||dk || = 1 is the search direction
αk ∈ <+ is the step size

Two main classes of algorithms
line search algorithms: determine the search direction, and then
the step size;
trust region algorithms: determine the step size, and then the
search direction.
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Algorithms for unconstrained optimization

Algorithms for unconstrained optimization

Line search methods
At each iteration k

1 define a descendant direction dk

gradient method, stochastic gradient descent
Newton’s method, quasi-Newton’s method

2 define a step size αk

best step size
constant step size, Wolfe conditions
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Algorithms for unconstrained optimization

Trust region methods

At each iteration k
1 define a trust region for xk as T = {x : ||x − xk || ≤ ∆k}

replace f by a function f̃
typically, f̃ is the Taylor series up to the second order (quadratic
function)

2 optimize function f̃ over the trust region

how to define ∆k ?
too small ∆k : the algorithm could miss an opportunity to take a
substantial improvement
too large ∆k : f̃ can be a poor approximation of f
→ the size of the region is defined according to the performance
during previous iterations
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Algorithms for unconstrained optimization

Example: stochastic gradient descent

Fitting function problem

set M of samples; for each sample i : time ti , value yi

function f ∈ F parametrized by a weight vector x ∈ <n

for each sample i , discrepancy ei (x) = f (x ; ti )− yi

Loss function

E(x) =
∑
i∈M

Ei (x) =
1
2

∑
i∈M

||ei (x)||2

unconstrained optimization problem

min E(X ) : x ∈ <n
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Algorithms for unconstrained optimization

Example: stochastic gradient descent

What would gradient method do?

At each iteration k the gradient method computes the gradient

∇E(x) =
∑
i∈M

∇Ei (x)

|M| terms, each with n partial derivates

unpractical if |M| and/or n is large
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Algorithms for unconstrained optimization

Stochastic Gradient Descent

Stochastic gradient

At each iteration k , replace ∇E(x) by an approximation
Select a sample pi . . . and compute ∇Epi (x) only

Computation is faster by a factor of |M|
When data are redundant, the individual gradients are aligned
and the approximation is good
Convergence requires the step size to tend to zero
Computationally faster for computing near-optimal solutions→
very attractive in Machine Learning applications

optimality is not needed to avoid overfitting
very large number of samples

this method can be used online
possibly use a mini-batch of samples at each iteration



S.I.D.R.A. PhD Summer School 2023

Nonlinear optimization: algorithms

Algorithms for unconstrained optimization

Stochastic Gradient Descent

Same idea for binary classification

classification is carried out in an iterative fashion
until all samples are correctly classified
fast re-optimization of the classifier for a new sample
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Algorithms for unconstrained optimization

Algorithms for constrained optimization

Three main classes of algorithms

adaptations of the algorithms for unconstrained optimization

penalty algorithms

algorithms based on Lagrangian relaxation
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Algorithms for unconstrained optimization

Penalty algorithms

Main idea

Replace the constrained problem

min f (x), x ∈ F

into an unconstrained optimization problem

min P(x ; c), x ∈ <n

where
P(x ; c) = f (x) + cφ(x)
c > 0 is a parameter, and
φ(x) is a penalty function
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Penalty Algorithms

Penalty function

Ideally φ(x) =

{
0 if x ∈ F ;

+∞ otherwise (not continuous function)

Approximation: require that
φ is continuous;
φ(x) = 0 ∀x ∈ F ;
φ(x) > 0 ∀x /∈ F ;

Typical choices

φ(x) =
m∑

i=1

max(gi(x), 0) +
p∑

j=1

|hj(x)|

φ(x) =
m∑

i=1

[max(gi(x), 0)]2 +
p∑

j=1

|hj(x)|2
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Algorithms for unconstrained optimization

Penalty Algorithms

Parameter c

Represents the weight of the constraint violation

c “small”
P(x ; c) ' f (x)
feasibility is not so relevant in the objective function
likely to produce an infeasible solution

c “large”
→ large penalty for infeasible solutions
likely to find a feasible solution
P(x ; c) 6' f (x)→ likely to find a non-optimal solution
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Algorithms for unconstrained optimization

Example

min 2x2
1 + 4x2

2 − 2x1x2

2x1 − x2 − 1 ≤ 0
4x1x2 + x2

2 − 1 = 0

Given a value c > 0 the problem to be solved is

min P(x ; c) = 2x2
1 +4x2

2 −2x1x2 +c
[
(2x1−x2−1)2

+ +(4x1x2 +x2
2 −1)2

]
where (a)+ = max(a,0)
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Algorithms for unconstrained optimization

Penalty Algorithms

Search for feasible solutions requires a large value of c
However, optimizing with a large value of c may be
computationally challenging (numerical instability)
→ penalty algorithms are executed with different (increasing)
values of c
at each iteration a value of c is selected, and a candidate
solution is produced

Theorem Let x be a local minimum for function P(x ; c) for some
parameter c. If φ(x) = 0 then x is a local minimum for (P).
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Algorithms for unconstrained optimization

Penalty Algorithms

If a sequence of increasing weights ck is used, then:
P(xk ; ck ) ≤ f (x)

at each iteration a lower bound is available

φ(xk+1) ≤ φ(xk )

infeasibility decreases during the execution of the algorithm

f (xk+1) ≥ f (xk )

solution value worsens during the execution of the algorithm

P(xk ; ck ) ≤ P(xk+1; ck+1)

lower bound value increases during the execution of the algorithm

The algorithm moves through a sequence of infeasible solutions (dual
algorithm)
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Algorithms for unconstrained optimization

Barrier Algorithms

similar idea: the penalty function is as follows

φ(x) =
∑
i∈I

− log(−gi (x))

and is defined only for points x that have g(x) < 0
points on the boundary of F are allowed in principle; however, for
any c > 0, a barrier grows when x tends to the boundary of F

idea: initilizing the algorithm with a point inside F , the next point
is forced to remain inside F
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Lagrangian relaxation

Relaxations

Let P be an optimization problem defined as

(P) z = min f (x), x ∈ F (P)

Definition A relaxation is an optimization problem

(R) zr = min Φ(x), x ∈ F (R)

such that
(a) F (P) ⊆ F (R)

(b) Φ(x) ≤ f (x) ∀x ∈ F (P)
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Lagrangian relaxation

Relaxations

the feasible set of R should contain the feasible set of P
the relaxed objective function Φ should be “not worse” than f for
each point x ∈ F (P)

6

-
x

z

F (P)

F (R)

f

Φ
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Lagrangian relaxation

Relaxations

Theorem: Let (P) be an optimization problem with optimal value z.
Let (R) be a relaxation of P with optimal value zr . Then, zr ≤ z.

Let x be the optimal solution of problem (P)

by definition x ∈ F (P)

requirement (i) of relaxation→ x ∈ F (R)

hence zr = minx∈F (R) Φ(x) ≤ Φ(x)

requirement (ii) of relaxation→ Φ(x) ≤ f (x)

⇒ zr ≤ Φ(x) ≤ f (x) = z
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Lagrangian relaxation

Lagrangian Relaxation
Let problem (P) be defined as

(P) z = min f (x)

x ∈ X ⊆ <n

gi (x) ≤ 0 i ∈ I
hj (x) = 0 j ∈ E

Definition: given Lagrangian multipliers ui ≥ 0 (∀i ∈ I) and vj><0
(∀j ∈ E), the Lagrangian relaxation of P is

(R) `(u, v) = min
x∈X
L(x ; u, v) (1)

where the Lagrangian function is

L : X → <, x → L(x ; u, v) = f (x) +
∑
i∈I

uigi (x) +
∑
j∈E

vjhj (x)
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Lagrangian relaxation

Example

min 2x2
1 + 4x2

2 − 2x1x2

2x1 − x2 − 1 ≤ 0
4x1x2 + x2

2 − 1 = 0

Given multipliers u ≥ 0 and v><0, the Lagrangian function (to be
minimized) is

L(x ; u, v) = 2x2
1 + 4x2

2 −2x1x2 + u(2x1− x2−1) + v(4x1x2 + x2
2 −1) =

2x2
1 + (4 + v)x2

2 + (4v − 2)x1x2 + 2ux1 − ux2 − (u + v)
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Lagrangian relaxation

Lagrangian Relaxation

Lagrangian relaxation is an optimization problem which is easier
to be solved (hard constraints have been moved to the objective
function)

similar to penalty algorithms but
continuous function
reward for constraints satisfaction

in some cases the problem can be decomposed into a number of
subproblems (that can be optimized indipendently)



S.I.D.R.A. PhD Summer School 2023

Lagrangian relaxation

Weak duality

Theorem: (weak duality) For any choice of the multipliers
u ∈ <m,u ≥ 0 and v ∈ <p, we have `(u, v) ≤ z

F (P) ⊆ F (R) (← removed some constraints)
for any x ∈ F (P):

∀i ∈ I : gi(x) ≤ 0 and ui ≥ 0 →
∑

i∈I uigi(x) ≤ 0
∀j ∈ E : hj(x) = 0 →

∑
j∈E vjhj(x) = 0

⇒ L(x ; u, v) ≤ f (x)

the Lagrangian relaxation is a relaxation



S.I.D.R.A. PhD Summer School 2023

Lagrangian relaxation

Properties of the relaxed solution

General situation

an optimal solution x̃ for the Lagrangian relaxation is typically
infeasible for (P)

it provides a lower bound `(u, v) = L(x̃ ; u, v) on the optimal
solution value

6
z

F (P)

F (R)

z

`(u, v)

q
q
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Lagrangian relaxation

Properties of the relaxed solution

Special case 1: x̃ is feasible for (P)

in general x̃ is not optimal for (P)

the relaxation provides a lower bound `(u, v) = L(x̃ ; u, v) on the
optimal solution value
and an upper bound f (x̃) ≥ z

6z

F (P)

F (R)

z

`(u, v)

q q
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Lagrangian relaxation

Properties of the relaxed solution

Special case 2: x̃ is feasible and (not provably) optimal for (P)

proving optimality for x̃ may be impossible
in case L(x̃ ; u, v) < f (x̃)

6
z

F (P)

F (R)

z

`(u, v)

qq
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Lagrangian relaxation

Properties of the relaxed solution

Special case 3: x̃ is feasible and provably optimal for (P)

proving optimality for x̃ is possible
in case L(x̃ ; u, v) = f (x̃)

6
z

F (P)

F (R)

z = `(u, v)
q
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Lagrangian relaxation

Lagrangian Dual problem

the lower bound `(u, v) depends on selected multipliers (u, v)

which is the “best” lower bound that can be obtained using
Lagrangian relaxation?

Lagrangian dual

(D) ` = max
u≥0,v

`(u, v).

it can be proved that `(u, v) is convex with respect to (u, v)
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Lagrangian relaxation

Lagrangian Dual problem

(a) in general: ` ≤ z → optimality gap z − `

(b) if ∃x ∈ F (P) and (u, v) ∈ <m
+ ×<p such that f (x) = `(u, v), then

x and (u, v) are optimal solutions for the primal and dual
problems, respectively;

(c) if z = −∞ (unbounded primal), then
`(u, v) = −∞ ∀(u, v) ∈ <m

+ ×<p;

(d) if ` =∞ (unbounded dual), then the primal is infeasible (z =∞)
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Lagrangian relaxation

Lagrangian Dual problem

Optimality conditions

let x and (u, v) be optimal solutions of problems (P) and (D),
respectively
both optimal if f (x) = `(u, v) = infx L(x ; u, v) ≤

f (x) +
∑

i∈I uigi (x) +
∑

j∈E v jhj (x)

i.e., if
∑

i∈I uigi (x) +
∑

j∈E v jhj (x) = 0, meaning that
uigi (x) = 0 ∀i ∈ I, and v jhj (x) = 0 ∀j ∈ E

These orthogonality conditions impose that
u i = 0 for all all inequalities that are not tight: gi(x) < 0⇒ u i = 0
all inequalities associated to multipliers that are strictly positive
must be tight: u i > 0⇒ gi(x) = 0
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Lagrangian relaxation

Lagrangian problem and KKT conditions

Assume that X = <n

Definition A triplet (x ,u, v) with x ∈ <n,u ∈ <m
+, v ∈ <p is a saddle

point if, ∀x ∈ <n,u ∈ <m
+, v ∈ <p we have

L(x ; u, v) ≤ L(x ; u, v) ≤ L(x ; u, v)

Theorem Let f , gi (i = 1, . . . ,m) and hj (j = 1, . . . ,p) continuous
functions. Let x ∈ <n, u ∈ <m and v ∈ <p. If (x ,u, v) is a saddle
point, then

1 g(x) ≤ 0 and h(x) = 0 (Primal feasibility)
2 u ≥ 0 (Dual feasibility)
3 L(x ; u, v) = minx∈<n L(x ; u, v) (Lagrangian optimality)
4 ui gi (x) = 0 i = 1, . . . ,m (Orthogonality)
5 x is a global minimum for (P)
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Lagrangian relaxation

Lagrangian problem and KKT conditions

if a global minimum exists, it is a saddle point of the Lagrangian
(note that the Lagrangian is an unconstrained optimization problem in the x
variables)

Lagrangian optimality for a saddle point (x ,u, v):
∇xL(x ; u, v)|x=x = 0⇒
∇f (x) +

∑
i∈I ui∇gi (x) +

∑
j∈E v j∇hj (x) = 0.

by definition of saddle point and the orthogonality condition, we
have ∀i ∈ I : ui ≥ 0 e ui gi (x) = 0, i.e., KKT conditions
(assuming constraint qualification conditions are satisfied)

sufficient conditions for a certain feasible point x ∈ <n to be a
global minimum: there should exist Lagrangian multipliers u and
v such that (x ,u, v) is a saddle point
no similar necessary condition: for a given global minimum x , the
required multipliers may not exist
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Lagrangian relaxation

Example

min 1
2 (x1 − 1)2 + 1

2 (x2 − 2)2

x1 + x2 − 1 = 0

multiplier v → L(x ; v) = 1
2 (x1 − 1)2 + 1

2 (x2 − 2)2 + v(x1 + x2 − 1)

necessary condition

∇xL(x ; v) =

[
x1 − 1 + v
x2 − 2 + v

]
=

[
0
0

]
feasibility condition: x1 + x2 − 1 = 0

system with 3 conditions and 3 variables: solution x1 = 0, x2 = 1
and v = 1
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Lagrangian relaxation

Example

Is (x1 = 0, x2 = 1, v = 1) a saddle point?
L(x ; v) = 1

2 (x1 − 1)2 + 1
2 (x2 − 2)2 + v(x1 + x2 − 1) = 1

2 + 1
2 = 1,

hence L(x ; v) ≤ L(x ; v) for all v ∈ <
L(x ; v) = 1

2 (x1 − 1)2 + 1
2 (x2 − 2)2 + v(x1 + x2 − 1) =

1
2 (x1 − 1)2 + 1

2 (x2 − 2)2 + x1 + x2 − 1
∇xL(x ; v) = 0 yields x1 = 0, x2 = 1
the Hessian matrix

∇2L(x ; v) =
[

1 0
0 1

]
is positive definite→ x1 = 0, x2 = 1 is a minimum for the lagrangian
function→ L(x ; v) ≤ L(x ; v) for all x ∈ <2.
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Lagrangian relaxation

Special cases

Optimization under bound constraints

min f (x), aj ≤ xj ≤ bj j = 1, . . . ,n (aj − xj ≤ 0, and xj − bj ≤ 0 ∀j)

multipliers λ ∈ <n
+ and π ∈ <n

+: Lagrangian relaxation
minL(x ;λ) = minx∈<n f (x) + λT (a− x) + πT (x − b)

Necessary KKT conditions for a solution x to be a minimum:
∃λ∗, π∗ ∈ <n

+ such that
(a) ∇xL(x ;λ∗, π∗) = ∇f (x)− λ∗ + π∗ = 0
(b) λ∗T (a− x) = 0
(c) π∗T (x − b) = 0
(d) a ≤ x ≤ b
(e) λ∗, π∗ ≥ 0
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Lagrangian relaxation

Special cases

Optimization under bound constraints

for each j , at most one among λ∗j and π∗j can be positive

for each j : x j > aj → λ∗j = 0, hence ∂f (x)
xj

= −π∗j < 0, i.e., if j is a
decreasing direction for the objective function then xj must attain
its lower bound
similarly: if x j < bj then ∂f (x)

xj
= λ∗j > 0, i.e., variable xj must be at

the upper bound in case j is an increasing directon for the
objective function

if aj < x∗j < bj we have λ∗j = π∗j = 0, hence ∂f (x)
xj

= 0

∂f (x)
xj

> 0 implies x j = aj , whereas ∂f (x)
xj

< 0 implies x j = bj
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