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Models and control

If physics is the science of understanding the physical environment, then control theory may be
viewed as the science of modifying that environment [...] Control theory does not deal
directly with physical reality but with mathematical models.

Rudolf Kalman, Control Theory, Encyclopædia Britannica

x+/ẋ = Ax+Bu
y = Cx+Du

x+/ẋ = f(x, u)
y = h(x, u)

Data-driven control

To offset the lack of “known” models by the use of data

Using data through the lenses of control theory
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Control when the dynamics is “unknown”
If the model is unknown, there are a few approaches

System identification from data + control of the identified system

• G. Pillonetto et al. “Kernel methods in system identification, machine learning and function estimation: A survey”.

Automatica, 50(3):657–682, 2014.

Direct data-based control design

• M.C. Campi, A. Lecchini, and S.M. Savaresi. “Virtual reference feedback tuning: a direct method for the design of

feedback controllers”. Automatica, 38(8):1337-1346, 2002.

These lectures “Direct” design of controllers from data for “unknown” systems

Direct because the method returns controllers via data-dependent SDPs

The system is “unknown” but some priors are available

Data are collected to infer information about the dynamics

The method





works with perturbed data of low complexity
provides analytical guarantees of correctness
is based on basic tools of automatic control
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Control when the dynamics is unknown

These lectures “Direct” design of controllers from data for “unknown” systems

Lec 1
Linear systems
Unperturbed data of low complexity

Lec 2 Perturbed data

Lec 3 A first glimpse at nonlinear control system design:
Lyapunov’s indirect method

Lec 4 Nonlinear control system design via
approximate and exact feedback linearization

Lec 5 Advanced topics: contraction
and tracking problems

The lectures will present a personal perspective and will focus on a few selected papers
(listed at the end of the lectures). A broader overview and a discussion of related work are
provided in those papers.
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Outline Lecture 1

We will study 2 (data-driven) control problems

. Full measurements Stabilization of linear systems via static state feedback

. Partial measurements Stabilization of linear systems via dynamic output
feedback

To introduce the main ideas, in Lecture 1 we consider the ideal case of
unperturbed (noise-free) data and linear systems.

Before diving into the control design, we introduce the dataset and a concept that
is at the core of these lectures.

What we do not cover

. Linear Quadratic Regulation, robust invariance, model reference control,
output feedback control with noisy data (linear systems)

. Bilinear, Polynomial and Lur’e systems (nonlinear systems)

. Many other topics.
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Dynamical control systems

We focus our attention on systems of the form

x+ = Ax+Bu

. x ∈ Rn (state) and u ∈ Rm (control)

. A ∈ Rn×n, B ∈ Rn×m are unknown matrices

At this stage we do not impose any property on the system. Whenever a particular
property is needed, we introduce it.

Focus on discrete-time systems (but we will also briefly remark on continuous-time
systems later on)
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Dataset

Information about the system’s dynamics is obtained from a T -long dataset of
input/state samples collected during (multiple) experiment(s)

D := {u(k), x(k)}T−1
k=0 ∪ {x(T )}

where the samples satisfy

x(k + 1) = Ax(k) +Bu(k), k = 0, . . . , T − 1
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Persistence of excitation

The approach to the design of controllers from data is inspired by nonparametric data-dependent
representations of the unknown dynamics. To recall the origin of such a representation, we recall a
notion of persistently exciting signals, which is useful to generate “rich” data.

Definition The sequence of input values u : [0, T − 1] ∩ Z→ Rm

u(0), u(1), . . . , u(T − 1)

is persistently exciting (PE) of order L if the Hankel matrix associated to it

U0 =




u(0) u(1) . . . u(T − L)
u(1) u(2) . . . u(T − L+ 1)

...
...

. . .
...

u(L− 1) u(L) . . . u(T − 1)




has full rank mL.

PE requires sufficiently long input sequences: T ≥ (m+ 1)L− 1
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Generating PE signals

% File Gen_PE_inputs.m

clear all

close all

rng(1);

% Order of the PE input

L=3;

% Dimension of the input space

m=2;

% Length of the input sequence

T=(m+1)*L-1;

% Generating the input sequence u on [0,T-1] taking values in the interval

% [-0.5,0.5]^m in the form of an m x T matrix [u(0) u(1) .... u(T-1)]

magnitude=0.5;

aux=zeros(m,T);

aux(:)=magnitude;

u(1:m,1:T)=(2*magnitude).*rand(m,T)-aux;
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% Arranging the samples in the Hankel matrix U0 on [0,T-1]

for j=1:T-L+1

for i=1:L

U0((i-1)*m+1:(i-1)*m+m,j)=u(1:m, j+i-1);

end

end

% If rank(U0)= m*L then the sequence u(0),...u(T-1) is PE of order L

if rank(U0) == m*L

disp(’input sequence is PE’);

end

L = 3,m = 2 (T = 8)

u[0,T−1] =

[
−0.0830 −0.4999 −0.3532 −0.3137 −0.1032 −0.0808 −0.2955 −0.4726
0.2203 −0.1977 −0.4077 −0.1544 0.0388 0.1852 0.3781 0.1705

]

U0 =



−0.0830 −0.4999 −0.3532 −0.3137 −0.1032 −0.0808
0.2203 −0.1977 −0.4077 −0.1544 0.0388 0.1852

−0.4999 −0.3532 −0.3137 −0.1032 −0.0808 −0.2955
−0.1977 −0.4077 −0.1544 0.0388 0.1852 0.3781

−0.3532 −0.3137 −0.1032 −0.0808 −0.2955 −0.4726
−0.4077 −0.1544 0.0388 0.1852 0.3781 0.1705


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More simply, PE inputs can be generated analytically.

Example 1 Consider to generate a sequence of scalar (m = 1) inputs {u(k)}T−1
k=0

that is PE of order L = 3 (T ≥ 5).
We build the Hankel matrix

U0 =



u(0) u(1) u(2) . . . u(T − 3)
u(1) u(2) u(3) . . . u(T − 2)
u(2) u(3) u(4) . . . u(T − 1)




and we would like to design the samples to render U0 a full-row rank matrix. The
choice

u(0) = 0, u(1) = 0, u(2) = 1, u(3) = 0, . . . , u(T − 1) = 0

returns the matrix

U0 =




0 0 1 . . . 0
0 1 0 . . . 0
1 0 0 . . . 0




with the desired property.
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Example 2 Consider to generate a sequence of inputs {u(k)}T−1
k=0 , u(k) ∈ R2

(m = 2), which is PE of order L = 3 (T ≥ 8).
We build the Hankel matrix

U0 =



u(0) u(1) u(2) u(3) u(4) u(5) . . . u(T − 3)
u(1) u(2) u(3) u(4) u(5) u(6) . . . u(T − 2)
u(2) u(3) u(4) u(5) u(6) u(7) . . . u(T − 1)




and we would like to design the samples to render U0 a full-row rank matrix. As
m = 2, the strategy is to render the submatrix made of the first 6 rows/columns
nonsingular. The choice

u(0) = [ 0
0 ] , u(1) = [ 0

0 ] , u(2) = [ 1
0 ] , u(3) = [ 0

0 ] , u(4) = [ 0
0 ]

returns the matrix

U0 =




[ 0
0 ] [ 0

0 ] [ 1
0 ] [ 0

0 ] [ 0
0 ] u(5) . . . u(T − 3)

[ 0
0 ] [ 1

0 ] [ 0
0 ] [ 0

0 ] u(5) u(6) . . . u(T − 2)
[ 1

0 ] [ 0
0 ] [ 0

0 ] u(5) u(6) u(7) . . . u(T − 1)



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U0 =




[ 0
0 ] [ 0

0 ] [ 1
0 ] [ 0

0 ] [ 0
0 ] u(5) . . . u(T − 3)

[ 0
0 ] [ 1

0 ] [ 0
0 ] [ 0

0 ] u(5) u(6) . . . u(T − 2)
[ 1

0 ] [ 0
0 ] [ 0

0 ] u(5) u(6) u(7) . . . u(T − 1)




To make the 4th column linearly independent from the previous 3, it is natural to
design

u(5) = [ 0
1 ] , u(6) = [ 0

0 ] , . . . , u(T − 1) = [ 0
0 ]

which returns

U0 =




[ 0
0 ] [ 0

0 ] [ 1
0 ] [ 0

0 ] [ 0
0 ] [ 0

1 ] . . . [ 0
0 ]

[ 0
0 ] [ 1

0 ] [ 0
0 ] [ 0

0 ] [ 0
1 ] [ 0

0 ] . . . [ 0
0 ]

[ 1
0 ] [ 0

0 ] [ 0
0 ] [ 0

1 ] [ 0
0 ] [ 0

0 ] . . . [ 0
0 ]




with the desired property (the 6× 6 submatrix made of the first rows/columns is
I6 after elementary row/column manipulations).

This design can be applied to every m-dimensional input space and every PE order
L and returns a sparse input sequence.

11 / 68



The Fundamental Lemma
A PE input applied to a linear reachable? system produces data that are sufficiently rich.
?A system is reachable if and only if rank

[
B AB . . . An−1B

]
= n

Lemma Let system
x(k + 1) = Ax(k) +Bu(k)

be reachable. For any t ≥ 1,

u[0,T−1] PE of order n+ t ⇒ rank

[
U0

X0

]
= n+ tm

where the matrix U0 consists of the samples of the input sequence u[0,T−1] = {u(0), u(1), . . . , u(T − 1)}

U0 =


u(0) u(1) . . . u(T − t)
u(1) u(2) . . . u(T − t+ 1)

...
...

. . .
...

u(t− 1) u(t) . . . u(T − 1)


and the matrix X0 consists of the samples of the state response x(k + 1) = Ax(k) +Bu(k),
k = 0, 1, . . . , T − t, to the input sequence u[0,T−1]

X0 =
[
x(0) x(1) . . . x(T − t)

]
J.C. Willems, P. Rapisarda, I. Markovsky, B.L. De Moor. “A note on persistency of excitation.” Systems & Control
Letters, 54, 4, 325–329, 2005.
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Example

A partially known model (n = 2, m = 1, reachable system)

u[0,T−1] PE of order L = n+ t = 3 (n = 2, t = 1), with T = L(m+ 1)− 1 ≥ 5
(T = 5)

u[0,T−1] =
[
−0.0166 0.0441 −0.1000 −0.0395 −0.0706

]

We “experimentally” determine the matrix (U0 ∈ Rm×T−t+1, X0 ∈ Rn×T−t+1)

[
U0

X0

]
=



−0.0166 0.0441 −0.1000 −0.0395 −0.0706

−0.0815 −0.0962 −0.1132 −0.1337 −0.1577
−0.0627 −0.0451 −0.0043 −0.0438 −0.0406




where
X0 =

[
x(0) x(1) x(2) x(3) x(4)

]

contains the state response of the system from the initial condition x(0) to the

input u[0,4]. As predicted,

[
U0

X0

]
has rank n+ tm = 3.
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%Bertinoro_Lect1_Exmpl_Data_Rich

clear all

close all

rng(1);

%% System

n = 2;

m = 1;

A=[ 1.178 0.001;...

-0.051 0.661];

B= [0.004;...

0.467];

T = 5; % (m+1)*L-1; % length of a trajectory; L=n+t; t=1
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% Generate random values for the inputs and the initial state

% from the uniform distribution on the interval [-mag, mag].

mag = 0.1;

U0 = (2*mag).*rand(m,T)-mag; % as t=1, U0 is m x T

x = (2*mag).*rand(n,1)-mag;

X = x;

for i=1:T

x=A*x+B*U0(:,i);

X = [X x];

end

X0 = X(:,1:end-1); % as t=1, X0 is n x T

X1 = X(:,2:end);

if rank([U0 ; X0]) == m+n

disp(’data are sufficiently rich’);

end
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Profound implications for control

LINEAR  
SYSTEM 

u(0), . . . , u(T � 1) x(0), . . . , x(T � 1)

Ht,T (ud, yd) =

2
6664

ud(0) ud(1) . . . ud(T � t)
ud(1) ud(2) . . . ud(T � t + 1)

...
...

. . .
...

ud(t � 1) ud(t) . . . ud(T � 1)

3
7775

2
6666666666664

u(k)
u(k + 1)

...
u(k + t � 1)

y(k)
y(k + 1)

...
y(k + t � 1)

3
7777777777775

= Ht,T (ud, yd)g(k)


U0,t,T�t+1

Y0,t,T�t+1

�
=

2
666666664

ud(0) . . . ud(T � t)
...

. . .
...

ud(t � 1) . . . ud(T � 1)

yd(0) . . . yd(T � t)
...

. . .
...

yd(t � 1) . . . yd(T � 1)

3
777777775

2
666666664

u(k)
...

u(k + t � 1)

y(k)
...

y(k + t � 1)

3
777777775

=


U0,t,T�t+1

Y0,t,T�t+1

�
g(k)


u
x

�
=


K
I

�
x =


U0,1,T

X0,1,T

�
GKx

A + BK =
⇥
B A

⇤ K
I

�
=

⇥
B A

⇤ U0,1,T

X0,1,T

�
GK = X1,1,T GK

2

u(0), . . . , u(T � 1) x(0), . . . , x(T � 1)

Ht,T (ud, yd) =

2
6664

ud(0) ud(1) . . . ud(T � t)
ud(1) ud(2) . . . ud(T � t + 1)

...
...

. . .
...

ud(t � 1) ud(t) . . . ud(T � 1)

3
7775

2
6666666666664

u(k)
u(k + 1)

...
u(k + t � 1)

y(k)
y(k + 1)

...
y(k + t � 1)

3
7777777777775

= Ht,T (ud, yd)g(k)


U0,t,T�t+1

Y0,t,T�t+1

�
=

2
666666664

ud(0) . . . ud(T � t)
...

. . .
...

ud(t � 1) . . . ud(T � 1)

yd(0) . . . yd(T � t)
...

. . .
...

yd(t � 1) . . . yd(T � 1)

3
777777775

2
666666664

u(k)
...

u(k + t � 1)

y(k)
...

y(k + t � 1)

3
777777775

=


U0,t,T�t+1

Y0,t,T�t+1

�
g(k)


u
x

�
=


K
I

�
x =


U0,1,T

X0,1,T

�
GKx

A + BK =
⇥
B A

⇤ K
I

�
=

⇥
B A

⇤ U0,1,T

X0,1,T

�
GK = X1,1,T GK

2


U0

X0

�
=

2
666666664

u(0) . . . u(T � t)
...

. . .
...

u(t � 1) . . . u(T � 1)

x(0) . . . x(T � t)
...

. . .
...

x(t � 1) . . . x(T � 1)

3
777777775

2
666666664

ū(0)
...

ū(t � 1)

x̄(0)
...

x̄(t � 1)

3
777777775

=


U0

X0

�
g


u
x

�
=


K
I

�
x =


U0

X0

�
GKx

+
A + BK =

⇥
B A

⇤ U0

X0

�
GK

= X1GK

3


U0

X0

�
=

2
666666664

u(0) . . . u(T � t)
...

. . .
...

u(t � 1) . . . u(T � 1)

x(0) . . . x(T � t)
...

. . .
...

x(t � 1) . . . x(T � 1)

3
777777775

2
666666664

ū(0)
...

ū(t � 1)

x̄(0)
...

x̄(t � 1)

3
777777775

=


U0

X0

�
g


u
x

�
=


K
I

�
x =


U0

X0

�
GKx

+
A + BK =

⇥
B A

⇤ U0

X0

�
GK

= X1GK

3

For a reachable linear system
(i) Let u(0), . . . , u(T − 1) be PE of order
n+ t, t ≥ 1, then any t-long input/state
trajectory of the system (ū[0,t−1], x̄[0,t−1])
can be expressed as

[
ū[0,t−1]

x̄[0,t−1]

]
=

[
U0

X0

]
g

where g ∈ RT−t+1.
(ii) Any linear combination of the
columns of the matrix of data, i.e.,

[
U0

X0

]
g,

is a t-long input-state trajectory of the
system.
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Relating closed-loop trajectories with data
Consider Item (i) in the special case t = 1. Then

[
ū[0,t−1]

x̄[0,t−1]

]
=

[
U0

X0

]
g becomes

[
ū(0)
x̄(0)

]
=

[
U0

X0

]
g

Given a K ∈ Rm×n, consider n 1-long input/state trajectories

[
ū(0)
x̄(0)

]
=

[
Kx̄(0)
x̄(0)

]
, x̄(0) = ei, i = 1, 2, . . . , n

where ei is the i-th vector of the canonical basis of Rn.

Then [
K
In

] [
e1 . . . en

]
=

[
U0

X0

] [
g1 . . . gn

]

that is,

[
K
In

]
=

[
U0

X0

]
G
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Stabilization of linear systems



Data-dependent representations

Consider the dataset

D = {u(k), x(k)}Tk=0 , x(k + 1) = Ax(k) +Bu(k), k = 0, . . . , T − 1

and store it into matrices U0, X0, X1 defined as

U0 :=
[
u(0) u(1) · · · u(T − 1)

]

X0 :=
[
x(0) x(1) · · · x(T − 1)

]

X1 :=
[
x(1) x(2) · · · x(T )

]

which satisfy the identity

[
x(1) x(2) . . . x(T )

]
︸ ︷︷ ︸

X1

= A
[
x(0) x(1) . . . x(T − 1)

]
︸ ︷︷ ︸

X0

+B
[
u(0) u(1) . . . u(T − 1)

]
︸ ︷︷ ︸

U0

X1 = AX0 +BU0

8 / 68



Data-dependent representations
Consider a full-state feedback u = Kx and the resulting closed-loop system
x+ = (A+BK)x

Consider any matrices K ∈ Rm×n, G ∈ RT×n such that

[
K
In

]
=

[
U0

X0

]
G

where
U0 =

[
u(0) u(1) . . . u(T − 1)

]

X0 =
[
x(0) x(1) . . . x(T − 1)

] X1 = AX0 +BU0

The matrix A+BK of the closed-loop system x+ = (A+BK)x is arranged as

A+BK

=
[
B A

] [K
In

]
[
K
In

]
=

[
U0
X0

]
G

=
[
B A

] [U0

X0

]
G

X1=[B A]
[
U0
X0

]
= X1G
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Data-based parametrization of the closed-loop system

Theorem Consider the system x+ = Ax+Bu. Consider any matrices K ∈ Rm×n,
G ∈ RT×n such that [

K
In

]
=

[
U0

X0

]
G

Then the closed-loop system x+ = (A+BK)x has the following equivalent
representation

x+ = X1Gx

. The representation depends on data U0, X0, X1 and design variables G

. The design of the controller is shifted from K to G and in the process the
system’s matrices are replaced by data.

. If the system is reachable and the input PE of order n+ 1, rank
[
U0
X0

]
= n+m

and matrices K ∈ Rm×n, G ∈ RT×n such that
[
K
In

]
=
[
U0
X0

]
G exist.

C. De Persis, P. Tesi. “Formulas for data-driven control: stabilization, optimality, robustness”. IEEE Transactions on
Automatic Control, 65, 3, 909–924, 2020.
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Linear Matrix Inequalities and

Semidefinite Programs



LMIs

A linear matrix inequality (LMI) is an expression of the form

F (y) := F0 + F1y1 + . . .+ FNyN ≺ 0

where

. F : RN → SM×M is an affine function

. y =
[
y1 . . . yN

]> ∈ RN is the variable

. F0, F1, . . . , FN are symmetric matrices

. F (y) ≺ 0 means that F (y) is negative definite

Note that since F is affine, it can be written as F (y) = F0 + T (y), with
T : RN → SM×M a linear function.

Solving an LMI means finding y ∈ RN that makes F (y) ≺ 0 or establishing that
such y does not exist.

A non-strict LMI is a linear matrix inequality of the form F (y) � 0
C. Scherer and S. Weiland, “Linear matrix inequalities in control”. Notes for a course of the Dutch Institute of Systems
and Control, 2004.
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Functions of matrix variables as LMIs
LMIs often appear as functions of matrix variables, that is in the form

F̂ (Y ) ≺ 0 Y ∈ RN1×N2 matrix variable

where F̂ (Y ) = T̂ (Y ) + F̂0 and T̂ (Y ) linear.

Example Discrete-time Lyapunov matrix inequality F̂ (Y ) = T̂ (Y ) = A>Y A− Y , where
A ∈ Rn×n is a given matrix and Y ∈ Sn×n is the decision variable (N1 = N2 = n).

This is a special case of F (y) = F0 + F1y1 + . . .+ FNyN ≺ 0. Let E1, . . . , En be a basis of
RN1×N2 and let

Y =
∑

j

yjEj , yj ∈ R

Then
0 � F̂ (Y ) = F̂0 + T̂ (

∑

j

yjEj) = F̂0︸︷︷︸
=:F0

+
∑

j

yj T̂ (Ej)︸ ︷︷ ︸
=:Fj

Example (continued) (n = 2) Fix the basis E1 = [ 1 0
0 0 ] , E2 = [ 0 0

0 1 ] , E3 = [ 0 1
1 0 ]. Then

Y = [ y1 y3y3 y2 ] = y1E1 + y2E2 + y3E3. Hence

A>Y A−Y = y1(A>E1A−E1) +y2(A>E2A−E2) +y3(A>E3A−E3) = y1F1 +y2F2 +y3F3
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Systems of LMIs
A system of LMIs 




F (1)(y) ≺ 0
F (2)(y) ≺ 0
...
F (p)(y) ≺ 0

is still an LMI, because it is equivalent to



F (1)(y) 0 . . . 0
0 F (2)(y) . . . 0
...

... . . .
...

0 0 . . . F (p)(y)


 ≺ 0

which in turn is equivalent to



F
(1)
0 0 . . . 0

0 F
(2)
0 . . . 0

...
... . . .

...

0 0 . . . F
(p)
0




︸ ︷︷ ︸
F0

+

N∑

j=1

yj




F
(1)
j 0 . . . 0

0 F
(2)
j . . . 0

...
... . . .

...

0 0 . . . F
(p)
j




︸ ︷︷ ︸
Fj

≺ 0
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Feasibility and optimization

LMI are studied in connection with the following two problems

. Feasibility whether or not there exists y ∈ RN such that F (y) ≺ 0

. Optimization Given a function f : S → R, where S = {y ∈ RN : F (y) ≺ 0}, an
optimization problem with LMI constraints is infy∈S f(y).

An LMI defines a convex set, i.e., the set {y : F (y) ≺ 0} is a convex set, hence checking the
feasibility of an LMI or optimizing a convex function over a constraint defined by an LMI
is a convex optimization problem

Minimizing linear objective functions over symmetric semidefinite matrix variables belongs
to the realm of semidefinite programming for which effective numerical methods and
software are available.

Here to illustrate some examples we use CVX.
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Schur complement
Schur complement is a powerful tool to linearize nonlinear inequalities.

Consider the LMI

F (y) =

[
F11(y) F12(y)
F21(y) F22(y)

]
≺ 0

where F : RN → SM×M is an affine function. Then∗

F (y) ≺ 0~w�{
F11(y) ≺ 0
F22(y)− F21(y)[F11(y)]−1F12(y) ≺ 0~w�{
F22(y) ≺ 0
F11(y)− F12(y)[F22(y)]−1F21(y) ≺ 0

∗The proof is based on the factorizations

[
F11 F12
F21 F22

]
=


[

I 0

F21F
−1
11 I

] [
F11 0

0 F22 − F21F
−1
11 F12

] [
I F−1

11 F12
0 I

]
if F11 is invertible[

I F12F
−1
22

0 I

] [
F11 − F12F

−1
22 F21 0

0 F22

] [
I 0

F−1
22 F21 I

]
if F22 is invertible
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Schur complement
The Schur complement also applies to functions of matrix variables, and we will be using it
mostly in this form.

Consider the LMI

F̂ (Y ) =

[
F̂11(Y ) F̂12(Y )

F̂21(Y ) F̂22(Y )

]
≺ 0

where F̂ : RN1×N2 → SM×M is an affine function. Then∗

F̂ (Y ) ≺ 0~w�{
F̂11(Y ) ≺ 0

F̂22(Y )− F̂21(Y )[F̂11(Y )]−1F̂12(Y ) ≺ 0~w�{
F̂22(Y ) ≺ 0

F̂11(Y )− F̂12(Y )[F̂22(Y )]−1F̂21(Y ) ≺ 0

∗The proof is based on the same factorizations considered before.
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Schur complement

We will use the Schur complement also with nonstrict inequalities.

Consider the LMI

F̂ (Y ) =

[
F̂11(Y ) F̂12(Y )

F̂21(Y ) F̂22(Y )

]
� 0

where F̂ : RN1×N2 → SM×M is an affine function.

If F̂11(Y ) ≺ 0, then

F̂ (Y ) � 0⇔ F̂22(Y )− F̂21(Y )[F̂11(Y )]−1F̂12(Y ) � 0

If F̂22(Y ) ≺ 0, then

F̂ (Y ) � 0⇔ F̂11(Y )− F̂12(Y )[F̂22(Y )]−1F̂21(Y ) � 0
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Data-based stabilization



Direct data-driven stabilization

Problem (Stabilization) Based on the dataset D

find K,P = P> � 0

such that (A+BK)P (A+BK)> − P ≺ 0

. The stabilization problem is solvable if and only if u = Kx makes the origin
a globally exponentially stable equilibrium for the closed-loop system x+ = (A+BK)>x

. The stabilization problem is solvable if and only if all the eigenvalues of (A+BK)>

have magnitude strictly smaller than 1.

. As the eigenvalues of A+BK and (A+BK)> coincide, the stabilization problem is
solvable if and only if u = Kx makes the origin a globally exponentially stable
equilibrium for x+ = (A+BK)x

As A,B are unknown, to find a solution to the problem the idea is to work with X1G
instead of A+BK under the condition for which X1G = A+BK
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A formula for direct data-driven stabilization

For any K,G such that

[
K
In

]
=

[
U0

X0

]
G, we have A+BK = X1G

Theorem Consider a system x+ = Ax+Bu, which generates the dataset D from
which the matrices U0, X1, X0 are obtained. Consider the decision variables

P ∈ Sn×n, Y ∈ RT×n

and the following SDP

X0Y = P (1a)
[
−P X1Y

Y >X>1 −P

]
≺ 0 (1b)

If it is feasible then the control gain

K = U0Y P
−1

solves the stabilization problem.
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Let (1) be feasible. Constraint (1b) guarantees P � 0. Hence P is invertible.
Constraint (1a) can be equivalently written as

(1a) X0Y = P ⇔ X0Y P
−1 = In,

Perform the change of variable G := Y P−1, to obtain X0G = In.

By the same change of variable,
the control gain

K = U0Y P
−1

can be written as K = U0G

Hence,
[
K
In

]
=
[
U0

X0

]
G. This returns the data-dependent representation of the closed-loop

system, i.e., A+BK = X1G.

Consider constraint (1b)
[
−P X1Y

Y>X>1 −P

]
≺ 0. By Schur complement, the inequality is

equivalent to P � 0 and −P +X1Y P
−1Y >X>1 ≺ 0. Rewrite the last inequality as

−P +X1Y P
−1PP−1Y >X>1 ≺ 0. Bearing in mind the change of variable G = Y P−1, the

latter can be written as −P +X1GPG
>X>1 ≺ 0, or, by the identity A+BK = X1G, as

P � 0, (A+BK)P (A+BK)> − P ≺ 0
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A few comments
. Simple solution: data-dependent Lyapunov matrix inequality

. The data-based problem is solvable via efficient numerical algorithms (cvx)

. It only requires a finite number of data collected in one-shot low sample-complexity
experiments

. Number of samples For X0Y = P to be feasible, it is necessary that X0 ∈ Rn×T has full
row rank, i.e., T ≥ n.

. If the system is high-dimensional and unstable, then collecting data in one-shot
experiment of length T might not be viable and one can use multiple dataset of shorter
length

What we will do next.

. An example that can be solved by hand.

. “Sufficiently rich” data gave several advantages.

. Parametrization of all stabilizing state feedback gains.

. Feasibility of the LMI.

. An example solved by software for convex optimization.

. The case of continuous-time systems.
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Example
Consider the system

x+ = Ax+Bu,

with x, u ∈ R and the dataset D = {u(0), x(0), x(1)} (T = 1), where

x(0) = −2, u(0) = 3, x(1) = −1

In this case, X0 = x(0), U0 = u(0), X1 = x(1).

The decision variables P ∈ Sn×n, Y ∈ RT×n are both scalars (n = 1, T = 1). Condition (1)

X0Y = P[
−P X1Y

Y >X>1 −P

]
≺ 0

becomes
−2Y = P[
−P −Y
−Y −P

]
≺ 0

which is equivalent to



−2Y = P
P > 0
−P + P−1Y 2 < 0

⇔




−2Y = P
P > 0
−P 2 + Y 2 < 0

⇔




−2Y = P
P > 0
−3Y 2 < 0

Hence, any Y, P such that −2Y = P , P > 0 is a solution of the system of (in)equalities
above. The controller solving the stabilisation problem is

K = U0Y P
−1 = 3(−P

2
)P−1 = −3

2
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By construction, K makes the closed-loop matrix A+BK Schur stable for all
(A,B) ∈ R2 that satisfy X1 = AX0 +BU0, that is,

−1 < A+BK < 1 for all A,B such that −1 = −2A+ 3B

By eliminating A from −1 = −2A+ 3B, the above is equivalent to

−1 <
3

2
B +

1

2
+BK < 1 for all B ∈ R

By replacing K = −3
2 the condition above is trivially satisfied, confirming that K

is the stabilising gain for all A,B that satisfy X1 = AX0 +BU0. In fact it can be
shown that K in this case is unique.

Note that the set of all A,B that satisfy X1 = AX0 +BU0, that is the set of all
A,B that satisfy −1 = −2A+ 3B is a line.
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Data-based parameterization of all stabilizing controllers

Under the assumption of sufficiently rich data, i.e.,
[
U0
X0

]
has full row rank, then

one can parametrize via data all the controllers that solve the stabilization
problem.

Corollary Assume that
[
U0
X0

]
has full row rank. Any control gain K ∈ Rm×n that

solves the stabilization problem must be of the form

K = U0Y P
−1

where Y, P are a solution of

X0Y = P (2a)
[
−P X1Y

Y >X>1 −P

]
≺ 0 (2b)
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As K is stabilizing, A+BK is Schur stable, that is, equivalently, there exists P � 0 such
that (A+BK)P (A+BK)> − P ≺ 0.

As
[
U0

X0

]
has full row rank, by Rouché-Capelli theorem there must exist G such that

[
K
In

]
=

[
U0

X0

]
G

Hence, K = U0G, In = X0G and A+BK = X1G. The latter implies that the Lyapunov
inequality can be equivalently rewritten as

P � 0, X1GP (X1G)> − P ≺ 0

Proceedings as before, one performs the change of variable Y := GP and the Lyapunov
inequality above is equivalently rewritten as

[
−P X1Y

Y >X>1 −P

]
≺ 0

The identities K = U0G, In = X0G expressed in the variables Y, P return K = U0Y P
−1,

In = X0Y P
−1.
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Feasibility of the SDP

The solution to the data-dependent stabilization problem rests on the feasibility of
the SDP

X0Y = P[
−P X1Y

Y >X>1 −P

]
≺ 0

Under which conditions is the SDP feasible?

If the matrix
[
U0
X0

]
has full row rank, by Rouché-Capelli theorem, for any K there

exists G such that
[
U0
X0

]
G =

[
K
In

]
. This implies that A+BK = X1G.

Pick K such that A+BK is Schur and fix G such that
[
U0
X0

]
G =

[
K
In

]
. Since

A+BK = X1G is Schur, there exists P = P> � 0 such that

X1GPG
>X>1 − P ≺ 0

Setting GP =: Y and applying the Schur complement returns
[ −P X1Y
Y >X>1 −P

]
≺ 0.

Furthermore, X0G = In implies X0Y = P , thus showing the feasibility of the SDP.
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A technical result that is useful for the other lectures

We tackled the stabilization problem
Based on the dataset D

find K,P = P> � 0

such that (A+BK)P (A+BK)> − P ≺ 0

and found out that the feasibility of X0Y = P,

[
−P X1Y

Y >X>1 −P

]
≺ 0 returns a solution to

the problem, with K = U0Y P
−1.

For some of the other lectures, it will
be useful to also have a solution to this
other problem

Based on the dataset D

find K,P = P> � 0

such that (A+BK)>P (A+BK)− P ≺ 0

It can be shown that feasibility of X0Y = Q,

[
−Q Y >X>1
X1Y −Q

]
≺ 0 returns a solution to

the problem, with P = Q−1 and K = U0Y Q
−1.
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Proof The proof proceeds as in the case of the previous result to show that[
K
In

]
=
[
U0
X0

]
Y Q−1 implies X1G = A+BK, where G = Y Q−1. On the other

hand, the manipulation of the constraint

[
−Q Y >X>1
X1Y −Q

]
≺ 0 goes in a slightly

different way.

By Schur complement, the inequality is equivalent to

Q � 0 and −Q+ Y >X>1 Q
−1X1Y ≺ 0.

Multiply the last inequality by Q−1 on both sides, to obtain

Q � 0 and −Q−1 +Q−1Y >X>1 Q
−1X1Y Q

−1 ≺ 0.

Bearing in mind the change of variable G = Y P−1, the latter can be written as
−P−1 +G>X>1 P

−1X1G ≺ 0, or, by the identity A+BK = X1G, as P � 0,
(A+BK)>P−1(A+BK)− P−1 ≺ 0, as claimed.
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Example (cont’d)
Data-based stabilization of the unknown dynamics

State response to PE input from experiment

X0 =

[
0.4027 0.3478 0.3571 0.3216 0.2362
0.4448 1.1451 1.7499 2.3708 2.9301

]

X1 =

[
0.3478 0.3571 0.3216 0.2362 0.1541
1.1451 1.7499 2.3708 2.9301 3.3409

]

Solve for Y, P the (nonstrict?) LMI

cvx_begin sdp

variable Y(T,n)

variable P(n,n) symmetric

[P-eye(n) X1*Y; Y’*X1’ P]>=0;

P==X0*Y

cvx_end

?“The use of strict inequalities in CVX is strongly

discouraged”

which returns

Y =




17.4905 −12.3092
−16.1889 −5.2031
−2.7196 −1.4260
5.0981 3.3803
−0.0311 11.2900




P =

[
2.0739 −3.5219
−3.5219 27.1664

]

S. Boyd. “Solving semidefinite programs using cvx,” http://stanford.edu/class/ee363/notes/lmi-cvx.pdf
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Replacing strict inequalities with weak ones
Replacing the strict inequality in (1) with the weak inequality results in no loss of
generality because of the following

(a)

[
−P X1Y

Y >X>1 −P

]
≺ 0 is feasible⇐⇒ (b)

[
−P + In X1Y
Y >X>1 −P

]
� 0 is feasible

By Schur complement, (a) holds if and only if

{
P � 0
−P +X1Y P

−1(X1Y )> ≺ 0

Set Q := P −X1Y P
−1(X1Y )> � 0 and

λ := min{λmin(Q), λmin(P )}, P̂ :=
P

λ
, Ŷ :=

Y

λ

Then P̂ = P
λ �

λmin(P )
λ In � In, and

0 ≺ Q := P −X1Y P
−1(X1Y )>

divide by λ⇐⇒ 0 ≺ Q

λ
:= P̂ −X1Ŷ P̂

−1(X1Ŷ )>

from which In � Q
λ = P̂ −X1Ŷ P̂

−1(X1Ŷ )>, i.e., by Schur complement, (b) holds

with Y → Ŷ , P → P̂ .
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Replacing the strict inequality in (1) with the weak inequality results in no loss of
generality because of the following

(a)

[
−P X1Y

Y >X>1 −P

]
≺ 0 is feasible⇐⇒ (b)

[
−P + In X1Y
Y >X>1 −P

]
� 0 is feasible

We will use the following version of the Schur complement: for any symmetric

matrix M =

[
A B
B> C

]
, if C ≺ 0, then M � 0 if and only if A−BC−1B> � 0.

If (b) holds, then P � In � 0; hence, by the Schur complement recalled above,[
−P + In X1Y
Y >X>1 −P

]
� 0 if and only if −P + In +X1Y P

−1(X1Y )> � 0, which implies

−P +X1Y P
−1(X1Y )> ≺ 0

The latter and P � 0 shown before imply that (a) holds.
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The case of continuous-time systems
Input and state sampled trajectories Given a sampling time Ts > 0, let

U0 =
[
ud(0) ud(Ts) . . . ud((T − 1)Ts)

]

X0 =
[
xd(0) xd(Ts) . . . xd((T − 1)Ts)

]

Data-dependent representation of the closed-loop system As in the discrete-time case,
A+BK = X1G where

X1 :=
[
ẋd(0) ẋd(Ts) . . . ẋd((T − 1)Ts)

]

Lyapunov stabilization condition Any matrices Y, P satisfying

{
X1Y + Y >X>1 ≺ 0

P = X0Y � 0

are such that K = U0Y P
−1 is a stabilizing feedback gain for the continuous-time system

Main difference Derivatives of the state at the sampling times X1 are required =⇒ Noisy

data (Lecture 2-4)
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The case of continuous-time systems
Alternative1 Integral version of ẋ = Ax+Bu

ξ(k)︷ ︸︸ ︷
x((k + 1)Ts)− x(kTs) = A

r(k)︷ ︸︸ ︷∫ (k+1)Ts

kTs

x(t)dt+B

v(k)︷ ︸︸ ︷∫ (k+1)Ts

kTs

u(t)dt

and work with the relation

X1︷ ︸︸ ︷[
ξ(0) . . . ξ(T − 1)

]
= A

X0︷ ︸︸ ︷[
r(0) . . . r(T − 1)

]
+B

U0︷ ︸︸ ︷[
v(0) . . . v(T − 1)

]

Lyapunov stabilization condition Any matrices Y, P satisfying

{
X1Y + Y >X>1 ≺ 0

P = X0Y � 0

is such that K = U0Y P
−1 is a stabilizing feedback gain for the continuous-time system

(and does not require state derivatives!)

1
De Persis, Postoyan, Tesi. Event-triggered control from data. IEEE Transactions on Automatic Control, 69 (6), 2024
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A bridge towards Lecture 2

. The derivations in Lecture 1 were based on the data-dependent closed-loop
system representation

x(k + 1) = X1Gx(k) with

[
K
In

]
=

[
U0

X0

]
G

. Suppose now that the system’s dynamics is affected by disturbances

x(k + 1) = Ax(k) +Bu(k) + d(k)

How does the system’s representation change?
Spoiler The presence of noise leads to a perturbed data-dependent
representation

x(k + 1) = (X1 −D0)Gx(k) with D0 =
[
d(0) . . . d(T − 1)

]

. How would you design a controller for the system above if D0 is unknown?
Which new assumptions would you introduce?
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In the second part of this lecture, we will look at the output feedback stabilization
problem (partial information).

The lack of a model discourages the use of an observer.

We will see how to overcome this obstacle to design dynamic output feedback
controllers from data.
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Partial information



Output feedback stabilization problem

Consider minimal (reachable and observable) MIMO space representation with A,B,C
unknown matrices

x(k + 1) = Ax(k) +Bu(k) x(k) ∈ Rn, u(k) ∈ Rm

y(k) = Cx(k) y(k) ∈ Rp, k = 0, 1, 2, . . .

Design from data a dynamic output feedback controller

χ(k + 1) = Fχ(k) +Gy(k)
u(k) = Hχ(k)

such that the equilibrium (x, χ) = (0, 0) is globally asymptotically stable for the
closed-loop system [

x(k + 1)
χ(k + 1)

]
=

[
A BH
GC F

] [
x(k)
χ(k)

]
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Output feedback stabilization problem - rationale
Minimal SISO space representation with output measurements

x(k + 1) = Ax(k) +Bu(k) x(k) ∈ Rn, u(k) ∈ Rm

y(k) = Cx(k) y(k) ∈ Rp, k = 0, 1, 2, . . .

Rationale Reduce the data-driven output feedback control design to the state feedback
one.

We assume to know the observability index ` of the system, that is, the minimum integer
` ≥ 1 for which

rank




C
CA

...
CA`−1


 = n

Given the I/O sequence {u(k), y(k)}∞k=0, we consider, for every k ≥ `, a vector φ(k) of the
past ` values of input and output samples

φ(k) =
[
y(k − `)> y(k − `+ 1)> . . . y(k − 1)> u(k − `)> u(k − `+ 1)> . . . u(k − 1)>

]>
Observe that φ(k) is a measured vector
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Towards an auxiliary system

The sequence {φ(k)}∞k=`, defined starting from {u(k), y(k)}∞k=0, where

φ(k) =
[
y(k − `)> y(k − ` + 1)> . . . y(k − 2)> y(k − 1)> u(k − `)> u(k − ` + 1)> . . . u(k − 2)> u(k − 1)>

]>
,

satisfies the equation

φ(k+1) =



y(k − `+ 1)
y(k − `+ 2)

...
y(k − 1)
y(k)

u(k − `+ 1)
u(k − `+ 2)

...
u(k − 1)
u(k)



=



0 Ip . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 0
...

...
. . .

...
...

...
...

...
...

...
0 0 . . . 0 Ip 0 0 . . . 0 0
? ? . . . ? ? ? ? . . . ? ?
0 0 . . . 0 0 0 Im . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 0
..
.

...
. . .

...
...

...
...

...
...

...
0 0 . . . 0 0 0 0 . . . 0 Im
0 0 . . . 0 0 0 0 . . . 0 0





y(k − `)
y(k − `− 1)

...
y(k − 2)
y(k − 1)
u(k − `)

u(k − `− 1)
...

u(k − 2)
u(k − 1)



+



0
0
...
0
0
0
0
...
0
Im



u(k),∀k ≥ `

To complete the expression, we must compute the relation between y(k) and φ(k), u(k).

39 / 68



We write first the expression of the output response y(k) at time k obtained starting from
the “initial state” x(k − `) when the input sequence u(k − `), u(k − `+ 1), . . . , u(k − 1) is
applied:

y(k) = CA`x(k−`)+CA`−1Bu(k−`)+CA`−2Bu(k−`+1)+. . .+CABu(k−2)+CBu(k−1)

= CA`x(k − `) + C
[
A`−1B A`−2B . . . AB B

]
︸ ︷︷ ︸

=:R`




u(k−`)
u(k−`+1)

...
u(k−2)
u(k−1)




To eliminate x(k − `), we express it through the sequence of past I/O sequences



y(k − `)

...
y(k − 1)


 =




C
CA

...
CA`−1




︸ ︷︷ ︸
=:O`

x(k − `) +




0p×m 0 . . . 0 0
CB 0p×m . . . 0 0
CAB CB . . . 0 0

...
...

. . .
...

...
CA`−2B CA`−3B . . . CB 0p×m




︸ ︷︷ ︸
=:T`



u(k − `)

...
u(k − 1)




By observability, O` has a left inverse O†` := (O>` O`)−1O>` , from which

x(k − `) = O†`



y(k − `)

...
y(k − 1)


−O†`T`



u(k − `)

...
u(k − 1)



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In turn we get the expression of y(k) we were looking for.

y(k) = CA`x(k − `) + CR`



u(k − `)

...
u(k − 1)




= CA`


O†`



y(k − `)

...
y(k − 1)


−O†`T`



u(k − `)

...
u(k − 1)





+ CR`



u(k − `)

...
u(k − 1)




=
[
CA`O†` CR` − CA`O†`T`

]




y(k − `)
...

y(k − 1)
u(k − `)

...
u(k − 1)



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We turn our attention again to

φ(k+1) =



y(k − `+ 1)
y(k − `+ 2)

...
y(k − 1)
y(k)

u(k − `+ 1)
u(k − `+ 2)

...
u(k − 1)
u(k)



=



0 Ip . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 0
...

...
. . .

...
...

...
...

...
...

...
0 0 . . . 0 Ip 0 0 . . . 0 0
? ? . . . ? ? ? ? . . . ? ?
0 0 . . . 0 0 0 Im . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 0
...

...
. . .

...
...

...
...

...
...

...
0 0 . . . 0 0 0 0 . . . 0 Im
0 0 . . . 0 0 0 0 . . . 0 0





y(k − `)
y(k − `+ 1)

...
y(k − 2)
y(k − 1)
u(k − `)

u(k − `+ 1)
...

u(k − 2)
u(k − 1)



+



0
0
...
0
0
0
0
...
0
Im



u(k)

and replace the “?”s with the expression computed before,which returns

φ(k+1) =



y(k − `+ 1)
y(k − `+ 2)

...
y(k − 1)
y(k)

u(k − `+ 1)
u(k − `+ 2)

...
u(k − 1)
u(k)



=



0 Ip . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 0
.
..

.

..
. . .

.

..
.
..

.

..
.
..

.

..
.
..

.

..
0 0 . . . 0 Ip 0 0 . . . 0 0

CA`O†` CR` − CA`O†`T`
0 0 . . . 0 0 0 Im . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 0
...

...
. . .

...
...

...
...

...
...

...
0 0 . . . 0 0 0 0 . . . 0 Im
0 0 . . . 0 0 0 0 . . . 0 0





y(k − `)
y(k − `+ 1)

...
y(k − 2)
y(k − 1)
u(k − `)

u(k − `+ 1)
...

u(k − 2)
u(k − 1)



+



0
0
...
0
0
0
0
...
0
Im



u(k)
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An auxiliary system
Starting from system

{
x+ = Ax+Bu
y = Cx,

we construct the auxiliary system

φ+ = Aφ+ Bv, where

A =



0 Ip . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 Ip
CA`O†`

0 0 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0

CR` − CA`O†`T`
0 0 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . 0 0

0 Im . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 Im
0 0 . . . 0 0


, B =



0
0
...
0
0
0
0
...
0
Im


and O`,R`, T` are the observability, reachability and Toeplitz matrix of order `.

For any initial condition x(0) and input sequence {u(k)}∞k=0, there exist an initial
condition φ(`) and an input sequence {v(k)}∞k=` = {u(k)}∞k=` such that the solution of
φ+ = Aφ+ Bv satisfies

φ(k) =




y(k−`)...
y(k−1)
u(k−`)...
u(k−1)


 for all k ≥ `
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Another form of the auxiliary system

Before studying a key property of the auxiliary system φ+ = Aφ+ Bv, we give it another
form, which will be useful in deriving the dynamic controller. The form is as follows:

φ+ = Aφ+ Bv = (F + LZ)φ+ Bv

where

F =



0 Ip . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 Ip
0 0 . . . 0 0

0 0 . . . 0 0
0 0 . . . 0 0
...

...
...

...
...

0 0 . . . 0 0
0 0 . . . 0 0

0 0 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . 0 0

0 Im . . . 0 0
0 0 . . . 0 0
...

...
...

...
...

0 0 . . . 0 Im
0 0 . . . 0 0


,L =



0
0
...
0
Ip
0
0
...
0
0



,Z =
[
CA`O†` CR` − CA`O†`T`

]
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A key property of the Auxiliary System

For (A,B,C) minimal, the pair (A,B) is reachable if and only if p` = n.

. “Lifting” the system

{
x+ = Ax+Bu
y = Cx

to φ+ = Aφ+ Bv preserves

reachability iff p` = n.

. For SISO observable systems, the condition pl = n is always satisfied.

. For SISO systems, the proof is based on the Key Reachability Lemma (“The pair
(A,B) above is reachable if and only the polynomials zn + anz

n−1 . . .+ a2z + a1,
bnz

n−1 + . . .+ b2z + b1 defined by

CA`O†` =
[
−a1 −a2 −a3 . . . −an

]
, CR`−CA`O†`T` =

[
b1 b2 b3 . . . bn

]

are coprime”) to conclude that (A,B) is reachable.
G.C. Goodwin, K.S. Sin. Adaptive Filtering Prediction and Control. Courier Corporation,

2014.

Here, we give a proof valid for MIMO systems.
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The proof that, for (A,B,C) minimal,

(A,B) reachable⇐⇒ p` = n

is based on the following technical lemma

For (A,B,C) minimal, let

. R(A,B) be the reachability subspace of the pair (A,B);

. H` :=

[
O` T`

0m`×n Im`

]
.

Then
ImH` = R(A,B).

Preliminary observation By the structure of H` and observability of (A,C), H` has
full-column rank, i.e. rank(H`) = n+m`.
(A,B) reachable =⇒ p` = n (A,B) reachable =⇒ dim(R(A,B)) = (m+ p)`
=⇒ dim(Im(H`)) = (m+ p)`. Note now that 1) H` is a (m+ p)`× (n+m`)
matrix; 2) rank(H`) = (m+ p)`. We observed before that rank(H`) = n+m`,
hence n = p`.
p` = n =⇒ (A,B) reachable As H` is a (m+ p)`× (n+m`) matrix and
rank(H`) = n+m`, then dim(R(A,B)) = n+m`. p` = n implies
dim(R(A,B)) = (p+m)`. Hence, the pair (A,B)) is reachable.
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Dataset
Information about the system’s dynamics is obtained from a T + 1-long dataset of
input/output samples

D := {u(k), y(k)}Tk=0

collected from the system {
x+ = Ax+Bu
y = Cx

We define the matrices of data

Φ1 :=




y(1) y(2) ... y(T−`+1)

...
...

...
y(`) y(`+1) ... y(T )

u(1) u(2) ... u(T−`+1)

...
...

...
u(`) u(`+1) ... u(T )



∈ R(p+m)`×T−`+1, Φ0 :=




y(0) y(1) ... y(T−`)
...

...
...

y(`−1) y(`) ... y(T−1)

u(0) u(1) ... u(T−`)
...

...
...

u(`−1) u(`) ... u(T−1)




U0 := [ u(`) u(`+1) ... u(T ) ] ∈ Rm×T−`+1

Bearing in mind the “lifted” dynamics φ+ = Aφ+ Bv, the matrices satisfy the
identity

Φ1 = AΦ0 + BU0
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Controller
We focus on the feedback law

u(k) = K




y(k−`)
...

y(k−1)
u(k−`)

...
u(k−1)



,∀k ≥ `

for some matrix K to be designed.

This corresponds to the dynamic controller

{
χ+ = Fχ+ Ly + Bu
u = Kχ where

F =



0 Ip . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 Ip
0 0 . . . 0 0

0 0 . . . 0 0
0 0 . . . 0 0
...

...
...

...
...

0 0 . . . 0 0
0 0 . . . 0 0

0 0 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . 0 0

0 Im . . . 0 0
0 0 . . . 0 0
...

...
...

...
...

0 0 . . . 0 Im
0 0 . . . 0 0


,L =



0
0
...
0
Ip
0
0
...
0
0



,B =



0
0
...
0
0

0
0
...
0
Im


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In fact, by the expression of the matrices F ,L,B,

F =



0 Ip . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 Ip
0 0 . . . 0 0

0 0 . . . 0 0
0 0 . . . 0 0
...

...
...

...
...

0 0 . . . 0 0
0 0 . . . 0 0

0 0 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . 0 0

0 Im . . . 0 0
0 0 . . . 0 0
...

...
...

...
...

0 0 . . . 0 Im
0 0 . . . 0 0


,L =



0
0
...
0
Ip
0
0
...
0
0



,B =



0
0
...
0
0

0
0
...
0
Im


for any initial condition χ(0) ∈ R2`, starting from time step `, the state of the controller

{
χ+ = Fχ+ Ly + Bu
u = Kχ satisfies χ(k) =




y(k−`)...
y(k−1)
u(k−`)...
u(k−1)


 for all k ≥ `, thus providing the past

` I/O samples required in u(k) = K




y(k−`)...
y(k−1)
u(k−`)...
u(k−1)


 for all k ≥ `.
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Direct data-driven output-feedback stabilization

Problem (Output-feedback stabilization) Consider the minimal system

{
x+ = Ax+Bu
y = Cx

Design a matrix K for the dynamic output feedback controller

{
χ+ = Fχ+ Ly + Bu
u = Kχ

such that the equilibrium (x, χ) = (0, 0) is globally asymptotically stable for the feedback
interconnection {

x+ = Ax+BKχ
χ+ = LCx+ (F + BK)χ

. We will design K by focusing on the auxiliary system φ+ = Aφ+ Bv and looking for
v = Kφ that globally asymptotically stabilizes φ+ = (A+ BK)φ, i.e. renders A+ BK
Schur. We refer to φ+ = (A+ BK)φ as the auxiliary closed-loop system.

. We will then show that the controller

{
χ+ = Fχ+ Ly + Bu
u = Kχ with K as above solves

the output feedback stabilization problem.
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Data-based parametrization of the auxiliary closed-loop system
. To design K that renders A+ BK Schur, we follow the previous path:

data-dependent closed-loop representation followed by a convex program to
stabilize such a representation.

. The data-dependent representation is obtained via the identity Φ1 = AΦ0 + BU0 where

Φ1 :=


y(1) y(2) ... y(T−`+1)

...
...

...
y(`) y(`+1) ... y(T )

u(1) u(2) ... u(T−`+1)

...
...

...
u(`) u(`+1) ... u(T )

 ,Φ0 :=


y(0) y(1) ... y(T−`)

...
...

...
y(`−1) y(`) ... y(T−1)

u(0) u(1) ... u(T−`)
...

...
...

u(`−1) u(`) ... u(T−1)

 , U0 := [ u(`) u(`+1) ... u(T ) ]

Consider the system φ+ = Aφ+ Bv in closed-loop with the feedback law v = Kφ. Consider
any matrices K ∈ Rm×(p+m)`, G ∈ RT−`+1×(p+m)` such that

[
K

I(p+m)`

]
=

[
U0

Φ0

]
G

Then the closed-loop system φ+ = (A+ BK)φ has the following equivalent representation

φ+ = Φ1Gφ
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A formula for direct data-driven output feedback stabilization

For any K,G such that

[
K

I(p+m)`

]
=

[
U0

Φ0

]
G, we have A+ BK = Φ1G

Theorem Consider the auxiliary system φ+ = Aφ+ Bv and the matrices of data
U0,Φ1,Φ0 assembled from the dataset D = {u(k), y(k)}Tk=0 obtained from the

minimal system

{
x+ = Ax+Bu
y = Cx

.

Consider the decision variables P ∈ S(p+m)`×(p+m)`, Y ∈ RT−`+1×(p+m)` and the
following SDP

Φ0Y = P
[
−P Φ1Y
Y>Φ>1 −P

]
≺ 0

If it is feasible then the control gain

K = U0YP−1

is such that (A+ BK)P(A+ BK)> − P ≺ 0, i.e. A+ BK is Schur.
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Stability of the closed-loop system

Closed-loop system 



x+ = Ax+Bu, y = Cx
χ+ = Fχ+ Ly + Bu
u = Kχ

where K has been designed such that A+ BK is Schur. We want to show that
(x, χ) = (0, 0) is a globally asymptotically stable equilibrium for the system.

Reminder 1 For any initial condition χ(0) ∈ R(p+m)`, the state of the controller

{
χ+ = Fχ+ Ly + Bu
u = Kχ satisfies χ(k) =




y(k−`)...
y(k−1)
u(k−`)...
u(k−1)


 for all k ≥ `.

Reminder 2 For any initial condition x(0) and input sequence {u(k)}∞k=0, there
exist an initial condition φ(`) and an input sequence {v(k)}∞k=` = {u(k)}∞k=` such

that the solution of φ+ = Aφ+ Bv satisfies φ(k) =



y(k−`)
...

y(k−1)
u(k−`)
...

u(k−1)


 for all k ≥ `.

Hence, if {v(k)}∞k=` = {u(k)}∞k=`, then χ(k) = φ(k) for all k ≥ `. 53 / 68



Here {u(k)}∞k=` = {Kχ(k)}∞k=`, hence {v(k)}∞k=` = {u(k)}∞k=` implies that
{v(k)}∞k=` = {Kχ(k)}∞k=` and φ(k) coincides with the solution of φ(k + 1) = (A+ BK)φ(k)
for all k ≥ `.
Bearing in mind that χ(k) = φ(k) for all k ≥ `, we conclude that χ(k)

k→+∞−→ 0.

As χ(k) =




y(k−`)...
y(k−1)
u(k−`)...
u(k−1)


, also




y(k−`)...
y(k−1)
u(k−`)...
u(k−1)



k→+∞−→ 0.

Previously, we computed that y(k) =
[
CA`O†` CR` − CA`O†`T`

]




y(k−`)
...

y(k−1)
u(k−`)

...
u(k−1)




. Similarly,

we can derive that x(k) =
[
A`OL` R` −A`OL` T`

]




y(k−`)
...

y(k−1)
u(k−`)

...
u(k−1)




. Hence, x(k)
k→+∞−→ 0.

For LTI systems, attractivity implies stability. Hence, we have shown that (x, χ) = (0, 0) is
a globally asymptotically stable equilibrium for the closed-loop system.
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Recap - A procedure to design output feedback controllers
Priors A,B,C minimal, the observability index is known, and p` = n.

Acquire the dataset D = {u(k), y(k)}Tk=0 and form the matrices of data

Φ1 :=




y(1) y(2) ... y(T−`+1)

...
...

...
y(`) y(`+1) ... y(T )

u(1) u(2) ... u(T−`+1)

...
...

...
u(`) u(`+1) ... u(T )



,Φ0 :=




y(0) y(1) ... y(T−`)
...

...
...

y(`−1) y(`) ... y(T−1)
u(0) u(1) ... u(T−`)

...
...

...
u(`−1) u(`) ... u(T−1)



, U0 := [ u(`) u(`+1) ... u(T ) ]

Consider the decision variables P ∈ S(p+m)`×(p+m), Y ∈ RT−`+1×(p+m)`×(p+m) and the
SDP

Φ0Y = P,
[
−P Φ1Y
Y>Φ>1 −P

]
≺ 0

If feasible, then design K = U0YP−1.

Consider the known matrices F ,L,B (see slide 41). The output feedback controller
{
χ+ = (F + BK)χ+ Ly
u = Kχ

globally exponentially stabilizes the equilibrium (x, χ) = (0, 0) of
{

x+ = Ax+Bu, y = Cx
χ+ = Fχ+ Ly + Bu, u = Kχ 55 / 68



Comment 1 If the (m+ p)`+m× T − `+ 1 matrix

[
U0

Φ0

]
has full row rank, then

the SDP

Φ0Y = P,
[
−P Φ1Y
Y>Φ>1 −P

]
≺ 0

is feasible.

Comment 2 Under the standing assumptions (A,B,C is minimal, the observability
index ` is known and u[0,T−1] is PE of order L = (m+ p)`+ 1) it holds that

[
U0

Φ0

]
has full row rank.
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Example – Output feedback stabilization of a mechanical system

Consider the SISO system

ẋ =




0 1 0 0
−γ 0 γ 0
0 0 0 1
γ 0 −γ 0


x+




0
1
0
0


u

y =
[
0 0 1 0

]
x

representing two carts mechanically coupled by a spring with unknown stiffness γ (data are
collected assuming that γ = 1). The output is the position of one of the carts and the
input is a force applied to the other cart.

System is discretized using a sampling time of 1sec to obtain x+ = Ax+Bu, y = Cx, where

A =




0.5780 0.8492 0.4220 0.1508
−0.6985 0.5780 0.6985 0.4220
0.4220 0.1508 0.5780 0.8492
0.6985 0.4220 −0.6985 0.5780


 , B =




0.4610
0.8492
0.0390
0.1508


 , C =

[
0 0 1 0

]

The system is reachable and observable. As the system is SISO, ` = n and p` = n.
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Data are generated from random initial conditions applying a random input
sequence of length T ≥ m(L+ 1)− 1 = m(2`+ 2)− 1 = 9 (we take T = 12). The
dataset

u[0,T ] =
[
−0.8456 −0.5727 −0.5587 0.1784 −0.1969 0.5864 −0.8519 0.8003 −1.5094 0.8759 −0.2428 0.1668 −1.9654

]
y[0,T ] =

[
−0.758 −1.509 −1.252 −1.304 −2.921 −4.892 −5.414 −5.008 −5.839 −8.040 −9.702 −10.047 −10.330

]
is arranged in the matrices

Φ1 :=




y(1) y(2) ... y(T−`+1)

...
...

...
y(`) y(`+1) ... y(T )

u(1) u(2) ... u(T−`+1)

...
...

...
u(`) u(`+1) ... u(T )



,Φ0 :=




y(0) y(1) ... y(T−`)
...

...
...

y(`−1) y(`) ... y(T−1)
u(0) u(1) ... u(T−`)

...
...

...
u(`−1) u(`) ... u(T−1)



, U0 := [ u(`) u(`+1) ... u(T ) ]

These are used in the formulation of the SDP

Φ0Y = P,
[
−P Φ1Y
Y>Φ>1 −P

]
≺ 0.

With the dataset above, the SDP is feasible (it can be checked that

[
U0

Φ0

]
has full

row rank).
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We obtain the “controller gain”

K = U0YP−1 =
[
1.3529 −1.7460 1.5509 −1.6854 −0.0496 −0.5617 −1.0801 −1.0371

]

which stabilizes the auxiliary system φ+ = Aφ+ Bv, i.e., it makes A+ BK Schur, where

A =




0 1 0 0
0 0 1 0
0 0 0 1

CAnO†n

0 0 0 0
0 0 0 0
0 0 0 0

CRn − CAnO†nTn
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0




, B =




0
0
0
0

0
0
0
1




, n = 4

Recall that CAnO†n, CRn − CAnO†nTn are unknown.

Sanity check The eigenvalues (modulus) of A+ BK are

{0.8896, 0.8896, 0.5863, 0.5863, 0.5235, 0.3028, 0.3028, 0.2406}.
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The output feedback controller
{
χ+ = (F + BK)χ+ Ly
u = Kχ

is 
χ+ =





0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


+



0
0
0
0
0
0
0
1


K


χ+



0
0
0
1
0
0
0
0


y

u = Kχ, K =
[
1.3529−1.74601.5509−1.6854−0.0496−0.5617−1.0801−1.0371

]
The matrix of the closed-loop system

[
x+

χ+

]
=

[
A BK
LC F + BK

] [
x
χ

]

has eigenvalues (modulus)

{0.8896, 0.8896, 0.2406, 0.3028, 0.3028, 0.5863, 0.5863, 0.0005, 0.0005, 0.0005, 0.0005, 0.5235},
hence, it is Schur stable.
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% Bertinoro_output_feedback

clear all

close all

rng(1)

%% system

n = 4; % dimension state, which we assume to be known

m = 1; % dimension input

p = 1; % dimension output

T = 12; % number of samples

J = T-n;

gam = 1;

A = [0 1 0 0;-gam 0 gam 0;0 0 0 1;gam 0 -gam 0];

B = [0;1;0;0];

C = [0 0 1 0];

STcont = ss(A,B,C,0);

STdisc = c2d(STcont,1);

[A,B,C,D] = ssdata(STdisc);
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%% Minimality test

OB = obsv(A,C);

if rank(OB) < n

disp(’system not observable’);

return

end

CO = ctrb(A,B);

if rank(CO) < n

disp(’system not controllable’);

return

end

%% i/o representation

[num,den] = ss2tf(A,B,C,0);

A_coeff = den(:,2:end);

B_coeff = num(:,2:end);

A_coeff = fliplr(A_coeff);

B_coeff = fliplr(B_coeff);

62 / 68



%% auxiliary system

A_cal = zeros(2*n,2*n);

app2 = eye(n-1);

A_cal(1:n-1,2:n) = app2;

A_cal(n+1:2*n-1,n+2:2*n) = app2;

A_cal(n,:) = [-A_coeff B_coeff];

F_cal = zeros(2*n,2*n);

app2 = eye(n-1);

F_cal(1:n-1,2:n) = app2;

F_cal(n+1:2*n-1,n+2:2*n) = app2;

B_big = zeros(2*n,1);

B_big(end,1) = 1;

B_cal = B_big;

C_big = [-A_coeff B_coeff];

L_big = zeros(2*n,1);

L_big(n,1) = 1;

L_cal = L_big;

A_cal2 = F_cal+L_cal*[-A_coeff B_coeff]; % same as A_cal above
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CO_big_sys = ctrb(A_cal,B_cal);

if rank(CO_big_sys) < 2*n

disp(’System A_cal, B_cal not reachable’);

return

end

%% data acquisition

X = zeros(n,T); % storage, corresponds to X_{0,T}

U = randn(m,T+1); % storage, corresponds to U_{0,1,T}

Y = zeros(m,T); % storage, corresponds to Y_{0,1,T}

x = randn(n,1); % initial conditions

for i =1:T+1

u = U(:,i);

X(:,i) = x;

Y(:,i) = C*x;

x = A*x+B*u;

end

M = zeros(2*n,J+1); % to construct matrices Phi0, Phi1
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for i =1:n

M(i,:) = Y(1,i:i+J);

end

for i =1:n

M(n+i,:) = U(1,i:i+J);

end

Phi0 = M;

U0 = U(1,n+1:n+J+1);

N = [U0;Phi0];

if rank(N) < 2*n+1

disp(’PE condition failed’);

return

end

Phi_aux = [Y(1,J+2:J+n+1)’; U(1,J+2:J+n+1)’];

Phi1 = [Phi0(:,2:end) Phi_aux];

%% test on the identity A_cal*Phi0+B_cal*U0 = Phi1

if norm(A_cal*Phi0+B_cal*U0 - Phi1) > 1e-5

disp(’numerical problems’);

return
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%% controller design (using CVX)

cvx_begin sdp

variable Q(J+1,2*n)

variable P(2*n,2*n) symmetric

[P-eye(2*n), Phi1*Q; transpose(Phi1*Q), P] >= 0;

Phi0*Q==P;

cvx_end

K_cal = U0*Q/P;

A_closed_loop_aux=A_cal+B_cal*K_cal;

disp(’Aux system closed-loop eigenvalues (modulus)’); disp(abs(eig(A_closed_loop_aux)));

A_closed_loop=[A B*K_cal; L_cal*C F_cal+B_cal*K_cal];

disp(’Closed-loop system eigenvalues (modulus)’); disp(abs(eig(A_closed_loop)));
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Some final comments

. The whole construction requires a few priors, the most demanding of which is
arguably the knowledge of the observability index `. In the case of SISO
observable systems, this boils down to the knowledge of the number of states
(` = n). This is either available from physical principles or can be obtained
from techniques processing the input-output data, as in e.g. subspace
identification, without requiring the whole procedure to identify the system’s
model.

. What if p` 6= n? By observability, p` ≥ n, hence the case of interest is p` > n.
In this case, we can augment the system with an artificial one of our choice
connected in parallel with the actual system and aim at having p` = naug.

. The arguments can be extended to deal with the case of noisy output
measurements, but it is outside the scope of these lectures.

. Dealing with the output feedback stabilization problem for continuous-time
systems is more challenging than dealing with the state feedback problem.

. A similar construction can be extended to nonlinear systems that are
uniformly observable.

67 / 68



Summary Lecture 1

Lecture 1

. Data-driven stabilization of linear systems via full state static feedback

. Data-driven stabilization of linear systems via output dynamic feedback.

. Lecture 2 discusses how the design of a state feedback controller can be extended in the
presence of perturbed measurements

. Lectures 3-5 discusses extensions to nonlinear systems
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on Automatic Control 68 (7), 4351-4358, 2022.

68 / 68



Additional material



Optimality



Optimality - Linear Quadratic Regulation

LQR problem Assume (A,B) reachable. Consider the problem of minimizing

J∞(x0, u) :=

∞∑

k=0

(x(k)Qx(k) + u(k)>Ru(k)), Q � 0, R � 0

over the set of input sequences u : Z≥0 → Rm for which the solution x : Z≥0 → Rn to
x(k + 1) = Ax(k) +Bu(k), x(0) = x0, satisfies limk→∞ x(k) = 0.

There exists a unique optimal controller given by

u? := K?x, K? := −(R+B>PB)−1B>PA

where P � 0 is the unique solution of the DARE

A>PA− P −A>PB(R+B>PB)−1B>PA+Q = 0

that renders the matrix A−B(R+B>PB)−1B>PA Schur stable. Moreover, the optimal
cost is x>0 Px0.

Importance of data-driven LQR
. Infinite-horizon LQR is the prime example of challenges encountered in data-driven optimal

control (effect of noise, deviation from optimality)

. Of interest to both the data-driven control and machine learning community
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A reformulation of LQR: computing K? via SDP

For the system
x(k + 1) = Ax(k) +Bu(k) + ξ(k)

z(k) =

[
Q1/2 0

0 R1/2

] [
x
u

]
(?)

design K that
. makes A+BK Schur stable
. minimizes the sum of the squares of the energy of the output responses to the impulse inputs of

the closed-loop system
x(k + 1) = (A+BK)x(k) + ξ(k)

z(k) =

[
Q1/2

R1/2K

]
x(k)
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Impulse response
Consider the Schur stable closed-loop system

x(k + 1) = (A+BK)︸ ︷︷ ︸
Ac

x(k) + In︸︷︷︸
Bc

·ξ(k)

z(k) =

[
Q1/2

R1/2K

]
︸ ︷︷ ︸

Cc

x(k)

and compute the output energy of the impulse responses of the system.

. Let z(j) be the response to the impulse ejδ(k), with ej the j-th vector of the canonical basis of Rn and
δ(k) the discrete-time impulse

z(j)(k) =

{
0 k = 0

CcA
k−1
c ej k > 0

. Let ‖z(j)‖22 denote its energy (the series is summable because Ac is Schur)

∞∑
k=0

‖z(j)(k)‖2 =
∞∑
k=0

e>j (A>c )kC>c CcA
k
c ej =

∞∑
k=0

trace(CcA
k
c eje

>
j (A>c )kC>c )

Then
n∑
j=1

‖z(j)‖22 = trace
( ∞∑
k=0

CcA
k
cBcB

>
c (A>c )kC>c

)
= trace

( ∞∑
k=0

B>c (A>c )kC>c CcA
k
cBc

)
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From
∑n
j=1 ‖z(j)‖22 = trace

( ∞∑

k=0

CcA
k
cBcB

>
c (A>c )k

)
= trace

(
Cc

( ∞∑

k=0

AkcBcB
>
c (A>c )k

)
C>c

)
,

if one sets

P :=

∞∑

k=0

AkcBcB
>
c (A>c )k

one realizes that P , the controllability gramian, is the (unique) positive semidefinite
matrix satisfying

AcPA
>
c − P +BcB

>
c = (A+BK)P (A+BK)> − P + I = 0

The last equation and P � 0 implies that

P = (A+BK)P (A+BK)> + I � I

Finally

n∑

j=1

‖z(j)‖22 = trace
(
CcPC

>
c

)

= trace
([ Q1/2

R1/2K

]
P

[
Q1/2

R1/2K

]>)
= trace(QP ) + trace(R1/2KPK>R1/2)
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In summary The sum of the squares of the energy of the output responses to the
impulse inputs of the Schur stable system

x(k + 1) = (A+BK)︸ ︷︷ ︸
Ac

x(k) + In︸︷︷︸
Bc

·ξ(k)

z(k) =

[
Q1/2

R1/2K

]

︸ ︷︷ ︸
Cc

x(k)

is given by
n∑

j=1

‖z(j)‖22 = trace(QP ) + trace(R1/2KPK>R1/2)

with P the unique matrix satisfying

(A+BK)P (A+BK)> − P + In = 0
P � In
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The H2-norm minimization problem
H2-norm By the discrete-time version of Parseval’s theorem

n∑

j=1

‖z(j)‖22 = ‖T (K)‖22

where ‖T (K)‖22 is the H2-norm? of the transfer function T (K) of the Schur stable system

x(k + 1) = (A+BK)︸ ︷︷ ︸
Ac

x(k) + In︸︷︷︸
Bc

·ξ(k)

z(k) =

[
Q1/2

R1/2K

]

︸ ︷︷ ︸
Cc

x(k)

?‖T (K)‖22 :=
1

2π

∫ 2π

0
trace

(
T (eiθ)∗T (eiθ)

)
dθ where T (eiθ) := T (K)|z=eiθ

The state feedback controller that minimizes ‖T (K)‖22, i.e., that solves

minK,P trace(QP ) + trace(R1/2KPK>R1/2)

subject to

{
(A+BK)P (A+BK)> − P + In = 0

P � In
is unique and coincides with the solution to the LQR problem, i.e., K = K? (Chen-Francis,
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A semidefinite program for solving the H2-norm minimization problem
The previous arguments suggest the following convex relaxation of the H2-norm
minimization problem

minK,P,L trace (QP ) + trace (L)

subject to



(A+BK)P (A+BK)> − P + In�0

P � In
L−R1/2KPK>R1/2 � 0

where the equality constraint is relaxed to an inequality and the constraint

R1/2KWK>R1/2 � L

is introduced to remove
trace(R1/2KWK>R1/2)

from the cost function and replace it with the linear term trace(L).

By (Feron et al., Proposition 1), under the given assumptions, the problem above is
well-posed, ie. the feasible set is compact or empty. As the feasible set is non-empty, then
the feasible set is compact.
E. Feron, V. Balakrishnan, S. Boyd, L. El Ghaoui, “Numerical methods for H2 related problems,” in 1992 American
Control Conference, pp. 2921–2922.

7 / 41



A data-dependent solution to the LQR

The H2-norm minimization problem and its convex relaxation

minK,P trace(QP ) + trace(R1/2KPK>R1/2)

subject to

{
(A+BK)P (A+BK)> − P + In = 0

P � In

minK,P,L trace (QP ) + trace (L)

subject to


(A+BK)P (A+BK)> − P + In � 0

P � In
L−R1/2KPK>R1/2 � 0

are related as follows

Proposition A solution (K,P ,L) to the convex relation is such that (K,P ) is the solution
to the H2-norm minimization problem. Moreover, K = K?, that is, K is the solution to
the optimal LQR problem.
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A data-dependent solution to the LQR

The previous optimization problem leads to the following data-dependent SDP for designing the
LQR from data

minG,P,L trace (QP ) + trace (L)

subject to
X1GPG

>X>1 − P + In � 0

P � In
L−R1/2U0GPG

>U>0 R
1/2 � 0

X0G = In

(DD-SDP-LQR)

Theorem Assume that
[
U0
X0

]
has full row rank. Any optimal solution (Go, P o, Lo) to

(DD-SDP-LQR) is such that Ko := U0G
o satisfies

K? = Ko

and
‖T (Ko)‖22 = trace(QP o) + trace(Lo)
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A sketch of proof

Lemma 1 Consider any control gain K stabilising for

x(k + 1) = Ax(k) +Bu(k) + ξ(k)

z(k) =

[
Q1/2 0

0 R1/2

] [
x
u

]
(?)

Then there exists a triple (GK , P, L) feasible for (DD-SDP-LQR) such that

K = U0GK and ‖T (K)‖22 = trace(QP ) + trace(L)

Let K? be the optimal controller and GK? be such that
[
K?

In

]
=

[
U0

X0

]
GK?

As K? is stabilizing,
A+BK∗ = X1GK? is Schur stable and

‖T (U0GK?)‖22 = trace(QP?) + trace(R1/2U0GK?P?G
>
K?U

>
0 R

1/2)

with P? such that
X1GK?P?X1G

>
K? − P? + I = 0, P? � I
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A sketch of proof

Lemma 1 Consider any control gain K stabilising for (?). Then there exists a triple
(GK , P, L) feasible for (DD-SDP-LQR) such that

K = U0GK and ‖T (K)‖22 = trace(QP ) + trace(L)

For a given K, let GK be such that
[
K
In

]
=

[
U0

X0

]
GK ⇐⇒ K = U0GK , In = X0GK

As K is stabilizing, A+BK = X1GK is Schur stable and there exists a unique
controllability gramian P such that

X1GKPX1G
>
K − P + I = 0, P � I

Moreover, ‖T (U0GK)‖22 = trace(QP ) + trace(R1/2U0GKPG
>
KU
>
0 R

1/2)

Set L := R1/2U0GKPG
>
KU
>
0 R

1/2. Then

‖T (U0GK)‖22 = trace(QP ) + trace(L)

and (GK , P, L) is feasible for (DD-SDP-LQR)
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A sketch of proof

Lemma 1 Consider any control gain K stabilising for (?). Then there exists a triple
(GK , P, L) feasible for (DD-SDP-LQR) such that

K = U0GK and ‖T (K)‖22 = trace(QP ) + trace(L)

The feasible
solution (GK , P, L)
to

minG,P,L trace (QP ) + trace (L)

subject to




X1GPG
>X>1 − P + In � 0

P � In
L−R1/2U0GPG

>U>0 R
1/2 � 0

X0G = In

(DD-SDP-LQR)

was obtained by

• computing GK as a solution to

[
K
In

]
=

[
U0

X0

]
GK

• Setting P equal to the controllability gramian, i.e. X1GKPG
>
KX

>
1 − P + In = 0,

P � In
• Setting L = R1/2U0GKPG

>
KU
>
0 R

1/2
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A sketch of proof

Lemma 2 Any feasible solution (G,P, L) to (DD-SDP-LQR) is such that K = U0G is
stabilizing for (?) and

‖T (K)‖22 ≤ trace(QP ) + trace(L)

Proof – see Exercise #1 As In = X0G, setting K = U0G yields A+BK = X1G. Hence, P � I
and X1GKPX1GK

> − P + I � 0 show that K = U0G is stabilising.
The inequality

X1GKPX1GK
> − P + I � 0 implies the existence of a matrix Θ such that

X1GKPX1GK
> − P + I + ΘΘ> = 0

Hence, P is the controllability Gramian of the system

x(k + 1) = X1GKx(k) +
[
I Θ

]
ξ(k)

z(k) =

[
Q1/2

R1/2K

]
x(k)

and, therefore, ‖Te(K)‖22 = trace(QP ) + trace(R1/2KPK>R1/2).

We conclude

‖T (K)‖22 ≤ ‖Te(K)‖22 ≤ trace(QP ) + trace(L), since ‖Te(K)‖22 =
∞∑
k=0

Cc · (X1GK)
k [I Θ

] [ I

Θ>

]
(G
>
KX
>
1 )
k
C
>
c =

∞∑
k=0

Cc(X1GK)
k
I (G

>
KX
>
1 )
k
C
>
c +

∞∑
k=0

. . .ΘΘ
>
. . .
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A sketch of proof
Exercise #1
(a) Show that K = U0G is stabilising.
As In = X0G, setting K = U0G yields A+BK = X1G. Since (G,P,L) is a feasible solution,
P � I and X1GKPX1GK

> − P + I � 0 show that X1GK is Schur stable, hence K = U0G is
stabilising.
(b) Show that the inequality X1GKPX1GK

> − P + I � 0 implies the existence of a matrix Θ
such that P is the controllability Gramian of the system

x(k + 1) = X1GKx(k) +
[
I Θ

]
ξ(k)

z(k) =

[
Q1/2

R1/2K

]
x(k)

Since X1GK is Schur stable, P is the controllability gramian for the system if and only if

X1GKPX1GK
> − P + I +

[
I Θ

] [
I Θ

]>
= 0

Hence, one needs to prove the existence of a matrix Θ such that the equation above holds. Since
X1GKPGK

>X>1 − P + I � 0, then there exists Θ such that

X1GKPX1GK
> − P + I + ΘΘ> = 0

In fact, set Ξ := −(X1GKPX1GK
> − P + I). Then X1GKPX1GK

> − P + I + Ξ = 0. Since

Ξ � 0, by Cholesky factorization, we have Ξ = ΘΘ>.



A sketch of proof

(c) Show that ‖Te(K)‖22 = trace(QP ) + trace(R1/2KPK>R1/2), where Te(K) is the
transfer function of

x(k + 1) = X1GKx(k) +
[
I Θ

]
ξ(k)

z(k) =

[
Q1/2

R1/2K

]
x(k)

Since P is the controllability gramian for the system, then

‖Te(K)‖22 = trace
([ Q1/2

R1/2K

]
P

[
Q1/2

R1/2K

]>)

and the claim follows immediately by the definition of trace.

(d) Conclude ‖T (K)‖22 ≤ ‖Te(K)‖22 ≤ trace(QP ) + trace(L)
By Parseval’s theorem the total energy of the output impulsive responses equals the
H2-norm squared of the system

‖Te(K)‖22 = trace
( ∞∑

k=0

Cc · (X1GK)k
[
I Θ

] [ I
Θ>

]
(G>KX

>
1 )kC>c

)



A sketch of proof

Hence

‖Te(K)‖22 = trace
( ∞∑
k=0

Cc · (X1GK)k
[
I Θ

] [ I
Θ>

]
(G>KX

>
1 )kC>c

)
=

trace
( ∞∑
k=0

Cc(X1GK)k I (G>KX
>
1 )kC>c

)
+ trace

( ∞∑
k=0

Cc(X1GK)kΘΘ>(G>KX
>
1 )kC>c

)
≥

trace
( ∞∑
k=0

Cc(X1GK)k I (G>KX
>
1 )kC>c

)
= ‖T (K)‖22

The claim follows since

‖Te(K)‖22
(c)
= trace(QP ) + trace(R1/2KPK>R1/2)
R1/2KPK>R1/2�L

≤ trace(QP ) + trace(L)



A sketch of proof – final argument
An optimal solution (Go, P o, Lo) to (DD-SDP-LQR) satisfies (Lemma 2)

‖T (Ko)‖22 ≤ trace(QP o) + trace(Lo) with Ko := U0G
o

On the other hand, since K? is stabilizing, there exists a feasible (GK? , P?, L?) for
(DD-SDP-LQR) such that (Lemma 1)

K? = U0GK? and ‖T (K?)‖22 = trace(QP?) + trace(L?)

As (Go, P o, Lo) is an optimal solution to (DD-SDP-LQR), it is true that

trace(QP o) + trace(Lo) ≤ trace(QP?) + trace(L?)

which implies

‖T (Ko)‖22 ≤trace(QP o) + trace(Lo) ≤ trace(QP?) + trace(L?) = ‖T (K?)‖22

As K? is the optimal solution to the H2-norm minimization problem,

‖T (K?)‖22 ≤ ‖T (Ko)‖22, that is ‖T (K?)‖22 = ‖T (Ko)‖22 and by uniqueness of the optimal

gain, Ko = K?
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A data-dependent solution to the LQR

Recap We have shown the correctness of the following data-dependent SDP for designing the LQR
from data

minG,P,L trace (QP ) + trace (L)

subject to
X1GPG

>X>1 − P + In � 0

P � In
L−R1/2U0GPG

>U>0 R
1/2 � 0

X0G = In

(DD-SDP-LQR)

Theorem Assume that
[
U0
X0

]
has full row rank. Any optimal solution (Go, P o, Lo) to

(DD-SDP-LQR) is such that Ko := U0G
o satisfies

K? = Ko

and
‖T (Ko)‖22 = trace(QP o) + trace(Lo)
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A data-dependent SDP for solving the LQR
The change of variables Y = GP and an application of Schur complement lead to the
semidefinite program

minY,P,L trace (QP ) + trace (L)

subject to




[
P − In X1Y

Y >X>1 P

]
� 0

[
L R1/2U0Y

Y >U>0 R
1/2 P

]
� 0

P = X0Y

with the optimal gain matrix given by

K? = U0Y P
−1

C. De Persis, P. Tesi. “Formulas for data-driven control: stabilization, optimality, robustness”. IEEE Transactions on
Automatic Control, 65(3), 909-924, 2020.
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Discussion

• The data-based problem is solvable via efficient numerical algorithms (cvx)

cvx_begin sdp

variable Y(T,n)

variable L(m,m) symmetric

variable P(n,n) symmetric

minimize ( trace(Q*P) +trace(L) )

[L, sqrtm(R)*U0*Y; Y’*U0’*sqrtm(R)’, P] >= 0

[P-eye(n), X1*Y; Y’*X1’, P] >= 0

P=X0*Y

cvx_end

K = U0*Y*inv(P);

• It only requires data collected in low sample-complexity experiments

• Solution is exactly computed via a single SDP and not approximated via
sequential iterations as in, e.g., LQR via policy iteration
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Policy iteration and LQR

Algorithm 1 Policy iteration applied to the LQR problem

1: Guess initial stabilizing gain K0

2: Set initial time k = 0
3: for i = 0 to ∞ do
4: for j = 1 to N do
5: Apply u(k) = Kix(k) + e(k), e(k) PE “exploration signal”
6: Estimate Ki(j) using RLS and I/O measurements
7: k = k + 1
8: end for
9: Set Ki+1 = Ki(N)

10: end for

There exists an estimation interval N such that the algorithm generates a sequence
{Ki : i = 0, 1, 2, . . .} such that limi→∞ ‖Ki −K?‖ = 0

S.J. Bradtke, B.E. Ydstie and A.G. Barto. Adaptive linear quadratic control using policy iteration. Proceedings of the
1994 American Control Conference, 3475–3479, 1994.
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The data-dependent solution to LQR with noisy data

minG,P,L trace (QP ) + trace (L)

subject to
X1GPG

>X>1 − P + In � 0

P � In
L−R1/2U0GPG

>U>0 R
1/2 � 0

X0G = In

As any other result in this Lecture
1, this program is derived from
noise-free data

In the presence of noise, brought in
by the unknown matrix D0

(Lecture 2), the data-dependent
representation leads to the SDP ⇒

The resulting optimal gain matrix
is Ko = U0Y P

−1, which coincides
with K?

minG,P,L trace (QP ) + trace (L)

subject to
(X1 −D0)GPG>(X1 −D0)> − P + In � 0

P � In
L−R1/2U0GPG

>R1/2 � 0

X0G = In
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The data-dependent solution to LQR with noisy data

minG,P,L trace (QP ) + trace (L)

subject to
X1GPG

>X>1 − P + In � 0

P � In
L−R1/2U0GPG

>U>0 R
1/2 � 0

X0G = In

As any other result in this Lecture
1, this program is derived from
noise-free data

In the presence of noise, brought in
by the unknown matrix D0

(Lecture 2), the data-dependent
representation leads to the SDP ⇒

The resulting optimal gain matrix
is Ko = U0Y P

−1, which coincides
with K?

minG,P,L trace (QP ) + trace (L)

subject to
(X1 −D0)GPG>(X1 −D0)> − P + In � 0

P � In
L−R1/2U0GPG

>R1/2 � 0

X0G = In
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Data-dependent solution to LQR - Soft constraint
• Since D0 is unknown, one option is to neglect D0 and require the term M = GPG> to be

small via the hard constraint 2M � εI
• The hard constraint, however, favours too much robustness to the detriment of performance

We instead look for a solution that trades off robustness for performance via a
soft constraint

minY,P,L,V trace (QP ) + trace (L) +α trace(V )

subject to



X1GPG
>X>1 − P + In � 0

P � In
L−R1/2U0GPG

>U>0 R
1/2 � 0

V −GPG> � 0

X0G = In

where
α� 1 favours robustness
α� 1 favours performance

C. De Persis, P. Tesi. “Low-complexity learning of Linear Quadratic Regulators from noisy data”. Automatica 128, 109548,
2021
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