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Recap from Lecture 1

• We saw a method to design controllers directly from data

• Controller design is based on data-dependent semi-definite programs (SDP)

. Consider a linear system
x(k + 1) = Ax(k) +Bu(k)

with A,B unknown.

We want to design a control law u = Kx that makes A+BK stable

. Run an experiment and collect a dataset D = {x̄(k), ū(k)}Tk=0 satisfying[
x̄(1) x̄(2) . . . x̄(T )

]︸ ︷︷ ︸
X1

=

A ·
[
x̄(0) x̄(1) . . . x̄(T − 1)

]︸ ︷︷ ︸
X0

+B ·
[
ū(0) ū(1) . . . ū(T − 1)

]︸ ︷︷ ︸
U0

In compact form, X1 = AX0 +BU0
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. For any K,G that solve [
K
I

]
=

[
U0

X0

]
G

the matrix A+BK can be parametrized via data

A+BK =
[
B A

] [K
I

]
=
[
B A

] [U0

X0

]
G = X1G

. This leads to the design program
find K,G,P � 0

such that (X1G)>P (X1G)− P ≺ 0[
K
I

]
=

[
U0

X0

]
G

which can be converted to a convex (SDP) form.

. Persistence of excitation plus reachability make sure that the program is feasible.
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Outline of this lecture

We will study data-driven control with noisy data

1 the framework

2 why noisy data are problematic

3 a robust control approach

4 practical considerations

5 summary
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The framework
(and why noisy data are problematic)



The framework (general)

Consider a linear system {
x(k + 1) = Ax(k) +Bu(k) + d(k)

y(k) = Cx(k) +Du(k) + n(k)

where:

• x ∈ Rn state, u ∈ Rm control, y ∈ Rp output

• d ∈ Rn unmeasured disturbance

• n ∈ Rp unmeasured noise

• A,B,C,D unknown matrices

We want to design a stabilizing controller based on a dataset of (noisy) input-output data
collected from the system.
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The framework (this lecture)

Consider a linear system

x(k + 1) = Ax(k) +Bu(k) + d(k)

Problem Suppose we perform an experiment on the system and collect the dataset

D := {x̄(k), ū(k)}Tk=0

of samples which satisfy

x̄(k + 1) = Ax̄(k) +Bū(k) + d̄(k), k = 0, 1, . . . , T

where d̄(k) are the unmeasured disturbance samples.

Based on D, design a state-feedback controller K that renders A+BK stable

Note A+BK stable implies that x+ = (A+BK)x+ d is input-to-state stable (ISS)
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Why noisy data are problematic

System: x(k + 1) = Ax(k) +Bu(k) + d(k)

The data-based relation for the system now reads:[
x̄(1) x̄(2) . . . x̄(T )

]︸ ︷︷ ︸
X1

=

A ·
[
x̄(0) x̄(1) . . . x̄(T − 1)

]︸ ︷︷ ︸
X0

+B ·
[
ū(0) ū(1) . . . ū(T − 1)

]︸ ︷︷ ︸
U0

+
[
d̄(0) d̄(1) . . . d̄(T − 1)

]︸ ︷︷ ︸
D0

In compact form:

X1 = AX0 +BU0 +D0

Note The data matrix D0 is unknown
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Data-based relation: X1 =
[
B A

] [U0

X0

]
+D0

For any K,G that solve [
K
I

]
=

[
U0

X0

]
G

the matrix A+BK can still be parametrized via data:

A+BK =
[
B A

] [K
I

]
=
[
B A

] [U0

X0

]
G = (X1 −D0)G

The Lyapunov condition now reads

((X1 −D0)G)>P (X1 −D0)G− P︸ ︷︷ ︸
L(G,P )

≺ 0

but is no longer implementable

and ensuring (X1G)>PX1G− P ≺ 0 does not ensure L(G,P ) ≺ 0.
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Classic indirect approach (certainty-equivalence design)
Same issues with classic indirect approach

Data-based relation: X1 =
[
B A

] [U0

X0

]
+D0

The least-squares problem

min
Ae,Be

∥∥∥∥X1 −
[
Be Ae

] [U0

X0

]∥∥∥∥
F

has solution 1

[
Be Ae

]
= X1

[
U0

X0

]†

=⇒
[
Be Ae

]
−
[
B A

]︸ ︷︷ ︸
estimation error

= X1

[
U0

X0

]†
− (X1 −D0)

[
U0

X0

]†
= D0

[
U0

X0

]†

Simply ensuring Ae + BeK stable does not ensure A+BK stable.

1
Assume [

U0
X0

] full-row rank.

M. Verhaegen, V. Verdult. Filtering and system identification: a least squares approach. Cambridge Univ. Press, 2007.
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A robust control approach



A robust approach to control design

For any K,G that solve [
K
I

]
=

[
U0

X0

]
G

we have A+BK = (X1 −D0)G.

The Lyapunov condition reads ((X1 −D0)G)>P (X1 −D0)G− P ≺ 0

The matrix D0 is unknown but finite (has bounded norm).

The idea is to solve

((X1 −D)G)>P (X1 −D)G− P ≺ 0 for all ‖D‖ ≤ δ

for some δ > 0 that we choose. If ‖D0‖ ≤ δ then A+BK will be stable
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Controller design problem

Define a disturbance set

D :=
{
D ∈ Rn×T : DD> � ∆ for known matrix ∆ � 0

}
. This set specifies norm constraints on possible noise matrices

. ∆ = δ2In means DD> � δ2In, equiv. ‖D‖ =
√
λmax(DD>) ≤ δ

. Other ∆ can be chosen in specific contexts (later on)

Problem (Controller design)

Based on the dataset D,

find K,G,P � 0

such that ((X1 −D)G)>P (X1 −D)G− P ≺ 0 for all D ∈ D[
K
I

]
=

[
U0

X0

]
G
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Problem (Controller design)

Based on the dataset D,

find K,G,P � 0

such that ((X1 −D)G)>P (X1 −D)G− P ≺ 0 for all D ∈ D[
K
I

]
=

[
U0

X0

]
G

. Our formulation considers quadratic stabilization 2

. Quadratic stabilization is only sufficient for stabilization

2Definition (Quadratic stability) A system x(k + 1) = A(θ)x(k) with θ ∈ Θ is quadratically
stable if there exists P � 0 such that

A(θ)>PA(θ)− P ≺ 0 for all θ ∈ Θ
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Petersen’s lemma (matrix elimination method)

Lemma3 Let V,M and N be given matrices of appropriate dimension, and define the set
D := {D : DD> � ∆} where ∆ is given. Then,

V +MD>N +N>DM> ≺ 0 ∀D ∈ D (1)

if and only if there exists ε > 0 such that

V + ε−1MM> + εN>∆N ≺ 0 (2)

(only ⇐=) For every ε > 0

0 �
(√

ε−1M −
√
εN>D

)(√
ε−1M −

√
εN>D

)
>

= ε−1MM> + εN>DD>N −MD>N −N>DM>

� ε−1MM> + εN>∆N −MD>N −N>DM>

Hence
MD>N +N>DM> � ε−1MM> + εN>∆N

3
I. Petersen, C. Hollot. A Riccati equation approach to the stabilization of uncertain linear systems, Automatica, 1986

15 / 45



Main result

Theorem Consider the system x+ = Ax+Bu+ d which generates the dataset from which
the matrices U0, X0, X1 are obtained. Let D =

{
D : DD> � ∆

}
, where ∆ is chosen by the

designer. Suppose there exist S ∈ Sn×n, Y ∈ RT×n, and ε > 0 such that

S = X0Y,

 S (X1Y )> Y >

X1Y S − ε∆ 0

Y 0 εI

 � 0

If D0 ∈ D then K = U0Y S
−1 is stabilizing.

Let G = Y S−1. The two identities K = U0G and I = X0G imply

[
K
I

]
=

[
U0

X0

]
G

This implies A+BK = (X1 −D0)G

Since D0 ∈ D by assumption, it is enough that (X1 −D)G is stable for all D ∈ D

We only need to prove that the LMI implies stability of (X1 −D)G for all D ∈ D
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Suppose the LMI holds, i.e.,  S (X1Y )> Y >

X1Y S − ε∆ 0

Y 0 εI

 � 0

A Schur complement gives[
S (X1Y )>

X1Y S − ε∆

]
− ε−1

[
Y >

0

] [
Y 0

]
� 0 ⇐⇒[

S (X1Y )>

X1Y S

]
︸ ︷︷ ︸

−V

−ε
[

0
I

]
∆
[

0 I
]︸ ︷︷ ︸

N

−ε−1

[
Y >

0

]
︸ ︷︷ ︸

M

[
Y 0

]
� 0

By Petersen’s Lemma, V + ε−1MM> + εN>∆N ≺ 0 implies V +MD>N +N>DM> ≺ 0 for
all D ∈ D = {DD> � ∆}

[
S (X1Y )>

X1Y S

]
−
[
Y >

0

]
D>

[
0 I

]
−
[

0
I

]
D
[
Y 0

]
� 0 ∀D ∈ D
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Condition[
S (X1Y )>

X1Y S

]
−
[
Y >

0

]
D>

[
0 I

]
−
[

0
I

]
D
[
Y 0

]
� 0 ∀D ∈ D

is equivalent to [
S ((X1 −D)Y )>

(X1 −D)Y S

]
� 0 ∀D ∈ D

Another Schur complement gives

((X1 −D)Y )>S−1(X1 −D)Y − S ≺ 0 ∀D ∈ D

Pre- and post-multiplying for S−1 gives

S−1((X1 −D)Y )>S−1(X1 −D)Y S−1 − S−1 ≺ 0 ∀D ∈ D

The change of variable G = Y S−1 gives

((X1 −D)G)>S−1(X1 −D)G− S−1 ≺ 0 ∀D ∈ D

which is the Lyapunov condition with P = S−1
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Remarks

. Provides stability guarantees despite noisy data

. It only requires a finite number of data collected in low sample-complexity
experiment(s)

. As simple as the baseline solution: data-dependent SDP

. The data-based problem is solvable via efficient numerical algorithms (cvx)

. No statistics for the disturbance is needed
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Example

Consider a randomly generated system

A =

 −0.3245 −0.5548 −0.2793
0.5906 −0.4228 0.0892
−0.3792 −0.2863 −0.0984

 , B =

 0.5864
−0.8519

0.8003


We collect T = 100 samples generated with |u| ≤ 1 and ‖d‖ ≤ 0.1. We select ∆ = I3, meaning
that D =

{
D : DD> � I3

}
. We have

D0D
>
0 =

[
d(0) d(1) · · · d(99)

]

d(0)>

d(1)>

...

d(99)>

 � I3

Thus D0 ∈ D. The SDP is feasible and returns

K =
[
0.5980 0.0325 0.1748

]
Since D0 ∈ D the controller is stabilizing.
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Closed-loop eigenvalues of A+BK = (X1 −D0)G:

λ =

−0.3356
−0.0400
−0.0072


Figure Closed-loop eigenvalues of (X1 −D)G as we vary D ∈ D

Eigenvalues are far from the border, indicating
there is still robustness margin.
Indeed, the design program remains feasible for
larger noise values (feasibility is discussed next)

Im[λ]

Re[λ]
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Selected literature



Selected literature

This result appeared in

• C. De Persis, P. Tesi, “Formulas for data-driven control: Stabilization, optimality, and
robustness”, IEEE TAC, 2019

Other approaches have been proposed using different robust control tools, sometimes considering
a purely stochastic setting:

• H. Mania, N. Matni, B. Recht, S. Tu. “On the sample complexity of the linear quadratic
regulator”. Foundations of Computational Mathematics, 2019
• M. Ferizbegovic, J. Umenberger, H. Hjalmarsson, T. Schön. Learning robust LQ-controllers
using application oriented exploration. IEEE L-CSS, 2019
• H. van Waarde, M. Camlibel, M. Mesbahi, “From noisy data to feedback controllers:
Nonconservative design via a matrix S-lemma”, IEEE TAC, 2020
• J. Berberich, A. Koch, C. Scherer, F. Allgöwer, “Robust data-driven state-feedback design”,
IEEE American Control Conference (ACC), 2020
• A. Bisoffi, C. De Persis, P. Tesi, “Data-driven control via Petersen’s lemma”, Automatica, 2022

Some of these approaches are indirect
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The indirect approach

Indirect approaches involve explicit sys–ID.

In practice, the uncertainty on D0 is “projected” onto the system matrices. The idea is to
determine all possible systems that are compatible with the data according to the bounds
on the noise:

C := {(A, B) : X1 = AX0 + BU0 +D, with DD> � ∆}

Called consistency set, confidence region,...

Assuming W0 :=

[
U0

X0

]
full-row rank, one can explicitly characterize the consistency set:

C =

{
(A, B) :

([
B A

]
−X1W

†
0

)
Θ
([
B A

]
−X1W

†
0

)>
� L

}
for suitable matrices Θ, L (next slide)
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The consistency set has ellipsoidal form:

C =

{
(A, B) :

([
B A

]
−X1W

†
0

)
Θ
([
B A

]
−X1W

†
0

)>
� L

}
where: consistency set in scalar case

• Θ := W0W
>
0 B

• L := HΘ−1H> + ∆−X1X
>
1

• H := X1W
>
0

Size and orientation of C depend on data and ∆ A
centre: X1W

†
0

C

Stability requires to find a controller that stabilizes the whole set C. Since C is convex, also
this formulation leads to convex design programs (H.J. van Waarde et al., IEEE TAC 2020;
A. Bisoffi et al., Automatica 2022)
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The centre of the set C is the least-squares estimate
[
Be Ae

]
= X1W

†
0 . We visualize why

certainty equivalence can fail if not accompanied by robust controller design.

centre: X1W
†
0

−−−−−−−−−−−−−−→
Consistency set C

←−−−−−−−−−−−−−−
Stability region for CE design

This also explains why certainty equivalence is popular: by stabilizing the LS estimate we

stabilize at least some portion of C. In fact, modern LS–based approaches (S. Dean et al.,

FCM 2019, M. Ferizbegovic et al., IEEE L-CSS 2019) try to build a controller around the

LS estimate which is robust enough to cover C.
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Practical considerations



Practical considerations

Recall the main result:

Theorem Consider the system x+ = Ax+Bu+ d which generates the dataset from which
the matrices U0, X0, X1 are obtained. Let D =

{
D : DD> � ∆

}
, where ∆ is chosen by the

designer. Suppose there exist S ∈ Sn×n, Y ∈ RT×n, and ε > 0 such that

S = X0Y,

 S (X1Y )> Y >

X1Y S − ε∆ 0

Y 0 εI

 � 0

If D0 ∈ D then K = U0Y S
−1 is stabilizing.

We need the problem to be feasible and we need D0 ∈ D.
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How to choose the set D

The choice of D =
{
D : DD> � ∆

}
is context-dependent (no universal recipe)

The choice of D can involve:

. Point-wise worst-case bounds. If we know that ‖d‖ ≤ γ point-wise then

D0D
>
0 =

[
d(0) d(1) · · · d(T − 1)

]


d(0)>

d(1)>

...
d(T − 1)>

 � γ2 · TIn︸ ︷︷ ︸
∆

See also Bisoffi et al., “Trade-offs in learning controllers from noisy data”, SCL 2021

. Signal-to-noise ratio conditions. E.g., ∆ := γ2 · U0U
>
0

. Statistical properties of the noise
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Exploiting statistical properties

If available, statistical properties of noise permit to relax worst-case bounds as long as we
accept bounds in probability

Lemma (Almost sure boundedness)a

Identically distributed = samples are taken from the same probability distribution
Independent = samples are all independent events: P (X|Y ) = P (X) and P (Y |X) = P (Y )

Assume d ∈ Rn are i.i.d. zero-mean random vectors with covariance matrix Σ and such
that ‖d‖ ≤ γ almost surely. For all µ > 0,

D0D
>
0 � T (‖Σ‖+ µ) In︸ ︷︷ ︸

∆

with probability at least 1− 2n exp
(
− Tµ2

2γ2(‖Σ‖+µ)

)
.

(Indeed, QT := 1
TD0D

>
0 is the MLE of the covariance matrix based on T samples)

a
M. Wainwright. High-dimensional statistics: A non-asymptotic viewpoint. Cambridge University Press, 2019
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Lemma (Gaussian noise)a

Assume d ∈ Rn are i.i.d. random vectors drawn from N (0,Σ).
Then, for all µ > 0,

D0D
>
0 � T

(
λmax(Σ1/2)(1 + µ) +

√
trace(Σ)

T

)2

In︸ ︷︷ ︸
∆

with probability at least 1− exp(−Tµ2/2).

a
M. Wainwright. High-dimensional statistics: A non-asymptotic viewpoint. Cambridge University Press, 2019

source: Wikipedia
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Results in probability

Theorem Consider the system x+ = Ax+Bu+ d which generates the dataset from which
the matrices U0, X0, X1 are obtained. Let D =

{
D : DD> � ∆

}
, where ∆ is chosen by the

designer. Suppose there exist S ∈ Sn×n, Y ∈ RT×n, and ε > 0 such that

S = X0Y,

 S (X1Y )> Y >

X1Y S − ε∆ 0

Y 0 εI

 � 0

If D0 ∈ D with probability at least p

then K = U0Y S
−1 is stabilizing with probability at least p.

Remarkably, distribution–free!

(more difficult with indirect approaches)
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Let E be an event and let X,Y be two mutually exclusive and collectively exhaustive
events, i.e.,

P (X ∩ Y ) = 0 and P (X ∪ Y ) = 1

By the law of total probability,

P (E) = P (E|X)︸ ︷︷ ︸
conditional prob

·P (X) + P (E|Y ) · P (Y )

Applied to our case, suppose that the design program is feasible and let E denote the event
“K is stabilizing”. Then,

P (E) = P (E|D0 ∈ D) · P (D0 ∈ D) + P (E|D0 /∈ D) · P (D0 /∈ D)

≥ P (E|D0 ∈ D)︸ ︷︷ ︸
=1

·P (D0 ∈ D)

= P (D0 ∈ D)
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Example (cont’d)

Consider again previous system where

A =

 −0.3245 −0.5548 −0.2793
0.5906 −0.4228 0.0892
−0.3792 −0.2863 −0.0984

 , B =

 0.5864
−0.8519

0.8003


We collect T = 100 samples generated with |u| ≤ 1 and d ∼ N (0, 0.01I3) i.i.d.. With µ = 0.4 we
obtain D0D

>
0 � 2.4750I3 with probability at least p = 99.97%. Hence, we choose ∆ = 2.4750I3.

The design program is feasible and we get

K =
[
0.5933 −0.0905 0.1460

]
This controller ensures closed-loop stability with 99.97% probability.

It is indeed stabilizing as ‖D0‖2 = 0.9945.
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Feasibility of the design program

The last point regards feasibility. Recall the main result (or the version using probability):

Theorem Consider the system x+ = Ax+Bu+ d which generates the dataset from which
the matrices U0, X0, X1 are obtained. Let D =

{
D : DD> � ∆

}
, where ∆ is chosen by the

designer. Suppose there exist S ∈ Sn×n, Y ∈ RT×n, and ε > 0 such that

S = X0Y,

 S (X1Y )> Y >

X1Y S − ε∆ 0

Y 0 εI

 � 0

If D0 ∈ D then K = U0Y S
−1 is stabilizing.

Under what conditions the design program is feasible?

Can we render the problem feasible? Is the quantity of data important?
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Two auxiliary facts

1) Feasibility of

S = X0Y,

S (X1Y )> Y >

? S − ε∆ 0

? ? εI

 � 0

with decision variables S, Y, ε is equivalent to the feasibility ofX0Y (X1Y )> Y >

? X0Y − ε∆ 0

? ? εI

 � 0

with decision variables Y, ε.

2) Given three symmetric matrices A,B,C with

A = B + C, B � 0

then A � 0 if ‖C‖ < λmin(B).
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Considerations about feasibility

Decompose the system response into noise-free and noisy:{
xf (k + 1) = Axf (k) +Bu(k)

xf (0) = x(0)

{
xn(k + 1) = Axn(k) + d(k)

xn(0) = 0

Define data matrices Xf
0 , X

f
1 , X

n
0 , X

n
1 which satisfy the identities X0 = Xf

0 +Xn
0 , X1 = Xf

1 +Xn
1

Decompose the LMI:

X0Y (X1Y )> Y >

? X0Y − ε∆ 0

? ? εI


︸ ︷︷ ︸

M

=


Xf

0 Y (Xf
1 Y )> Y >

? Xf
0 Y 0

? ? εI


︸ ︷︷ ︸

noise-free term F

+

X
n
0 Y (Xn

1 Y )> 0

? Xn
0 Y − ε∆ 0

? ? 0


︸ ︷︷ ︸

noisy term N

If the problem with noise-free data is feasible then there exist Y, ε > 0 such that F � 0.4

—————————————————–
4 Recall If C � 0 then

[
A B
? C

]
� 0 ⇐⇒ A−BC−1B> � 0
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Decompose the LMI:X0Y (X1Y )> Y >

? X0Y − ε∆ 0

? ? εI


︸ ︷︷ ︸

M

=

 Xf
0 Y (Xf

1 Y )> Y >

? Xf
0 Y 0

? ? εI


︸ ︷︷ ︸

noise-free term F

+

X
n
0 Y (Xn

1 Y )> 0

? Xn
0 Y − ε∆ 0

? ? 0


︸ ︷︷ ︸

noisy term N

Assume that the problem with noise-free data is feasible and let Y, ε > 0 such that F � 0.

Since F � 0, if

‖N‖ < λmin(F ) (∼)

then M � 0. Condition (∼) can be equivalently expressed as

max{‖D0‖, ‖∆‖} < cλmin(F ) (?)

for some constant c independent of the noise. To have (?) fulfilled:

(1) Data quality is more important than quantity

(2) Also the quantity of data can help
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Averaging data

Fact (Informal) Consider a zero-mean uncorrelated signal d with variance E[d2] = σ2.
Suppose we take N realizations of d. The variance of the average of the realizations is

E

( 1

N

N∑
k=1

dk

)2
 =

1

N2
· E

( N∑
k=1

dk

)2


=
1

N2
· E [(d1 + d2 + . . . + dN )(d1 + d2 + . . . + dN )]

= uncorrelation implies E[dkdj ] = 0

=
1

N2
· E
[
d2

1 + d2
2 + . . . + d2

N

]
=

1

N2
· (N · σ2) =

σ2

N

meaning that averaging reduces the variance by a factor of N
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Applying this idea to our case, suppose we perform N experiments.

Each experiment returns the dataset (U0k, X0k, X1k, D0k), k = 1, . . . , N , D0k unknown.

Denote by (U0, X0, X1, D0) the average dataset.

We have

X1 =
1

N

N∑
k=1

X1k

=
1

N

N∑
k=1

(AX0k +BU0k +D0k)

= AX0 +BU0 +D0

The average signals still provide a valid trajectory but now D0 may have reduced variance,
and hence smaller norm. In turn, feasibility becomes easier. This is true under the same
(multivariable) conditions as in previous Fact.
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Example with Gaussian distribution:

Lemma (Gaussian noise)
Assume d ∈ Rn are i.i.d. random vectors drawn from N (0,Σ).
Then, for all µ > 0,

D0D
>
0 �

T

N

(
λmax(Σ1/2)(1 + µ) +

√
trace(Σ)

T

)2

In︸ ︷︷ ︸
∆

with probability at least 1− exp(−Tµ2/2).
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A result on sample–complexity

Theorem Consider a reachable system x+ = Ax+Bu+ d where d
iid∼ N (0,Σ). Suppose

we perform N experiments with the same persistently exciting input u, and determine the
average datasets U0, X0, X1. (Applying the same input u ensures that the average input is
persistently exciting and the feasibility of the noise-free problem.)

Pick any µ > 0 and let

∆ :=
T

N

(
λmax(Σ1/2)(1 + µ) +

√
trace(Σ)

T

)2

In

Consider the design program in the decision variables S, Y, ε > 0:

S = X0Y,

 S (X1Y )> Y >

X1Y S − ε∆ 0

Y 0 εI

 � 0

If N is sufficiently large then the program is feasible and K = U0Y S
−1 is stabilizing with

probability at least 1− exp(−Tµ2/2).
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Example (cont’d)

Consider the same system as before

A =

 −0.3245 −0.5548 −0.2793
0.5906 −0.4228 0.0892
−0.3792 −0.2863 −0.0984

 , B =

 0.5864
−0.8519

0.8003


We take again |u| ≤ 1 and T = 100, but this time we assume d ∼ N (0, 0.3I3) i.i.d...

For single experiment, the design program is infeasible (‖D0‖2 ≈ 34)

Next, we considera N = 100 repeated experiments (same u) and we obtain D0D
>
0 � 0.7425I3 with

probability at least p = 99.97%. Hence, we choose ∆ = 0.7425I3. This time the design program is
feasible and we get

K =
[
−0.1604 −0.1705 −0.3730

]
The controller ensures closed-loop stability with 99.97% probability.
It is indeed stabilizing as ‖D0‖

2 = 0.3437. which is approximately 1
N
‖D0‖2.
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(Left) Input and disturbance signals for one of the experiments

(Right) Input and disturbance signals after averaging N = 100 experiments
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Summary and research topics

� We saw a method for designing controllers from noisy data

� Statistics–free but amenable to sample-complexity analysis

� Computationally effective (convex programming)

� Offers stability guarantees and is interpretable

� We saw stabilization problems and state-feedback design

� Important extensions exist: I/O data and dynamic controllers, input and state constraints,

network implementation (including resource-aware control), sparse design,...

Some of these extensions are very preliminary

� Optimal control not well understood (C. De Persis, P. Tesi, “Low-complexity learning of
linear quadratic regulators from noisy data”, Automatica 2021)
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Additional material



Measurement noise



Measurement noise

Consider the following setting:

x(k + 1) = Ax(k) +Bu(k), y(k) = x(k) + n(k)

The relation between data and dynamics now reads:

X1 = AX0 +BU0, Y0 = X0 +N0, Y1 = X1 +N1

This gives

Y1 = X1 +N1

= AX0 +BU0 +N1

= AY0 +BU0 + N1 −AN0︸ ︷︷ ︸
Q0=Q0(N0,N1,A)

Same structure as before
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Let
Q :=

{
Q : QQ> � ∆

}
represent a bound on Q0 = N1 −AN0. This set specifies how much the noise may deviate
from a genuine system trajectory n+ = An.

Theorem Consider a system x+ = Ax+Bu, y = x+ n which generates the dataset from
which the matrices U0, X0, X1 are obtained. Let Q =

{
Q : QQ> � ∆

}
, where ∆ is chosen

by the designer. Suppose there exist S ∈ Sn×n, Z ∈ RT×n, and ε > 0 such that

S = Y0Z,

 S (Y1Z)> Z>

Y1Z S − ε∆ 0

Z 0 εI

 � 0

If Q0 ∈ D then K = U0ZS
−1 is stabilizing.
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Petersen’s lemma



Petersen’s lemma

Lemma Let V,M and N be given matrices of appropriate dimension, and define the set
D := {D : DD> � ∆} where ∆ is given. Then,

V +MD>N +N>DM> ≺ 0 ∀D ∈ D

if and only if there exists ε > 0 such that

V + ε−1MM> + εN>∆N ≺ 0

Necessity is the difficult part, we give some intuitions considering the scalar case
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We want to show that

V +MD>N +N>DM> ≺ 0 for all D : DD> � ∆

=⇒ ∃ε > 0 : V + ε−1MM> + εN>∆N ≺ 0

Assume M,N,∆ 6= 0. By hypothesis

V + 2
√

∆|M ||N | < 0

We also have V − 2
√

∆|M ||N | < 0, so

V 2 − 4∆M2N2 > 0

This can be viewed as the discriminant of the second-order polynomial ∆N2λ2 + V λ+M2,
which has two positive roots λ±, with λ+ > λ− (note that ∆N2 > 0, V < 0, M2 > 0).
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The polynomial ∆N2λ2 + V λ+M2 has two positive roots λ+ > λ−, so there exists a value
ε ∈ (λ−, λ+) such that ∆N2ε2 + V ε+M2 < 0. This is equivalent to
V + ε−1M2 + ε∆N2 < 0.
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Continuous-time results



Continuous-time results

Discrete-time results can be extended to continuous-time systems with X1 matrix of state
derivatives (adding noise if necessary).

Theorem Consider the system ẋ = Ax+Bu+ d which generates the dataset from which
the matrices U0, X0, X1 are obtained. Let D =

{
D : DD> � ∆

}
, where ∆ is chosen by the

designer. Suppose there exist S ∈ Sn×n, Y ∈ RT×n, and ε > 0 such that

S = X0Y,

[
(X1Y ) + (X1Y )> + ε∆ Y >

Y −εI

]
≺ 0

If D0 ∈ D then K = U0Y S
−1 is stabilizing.
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