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Recap from previous lectures

� We saw a method to design controllers directly from (noisy) data

� Controller design is based on low-complexity experiments and data-dependent
semi-definite programs (SDP)

� The method provides stability guarantees

� The method is interpretable

� So far, we have considered linear dynamics

The remaining part of the course will be devoted to nonlinear systems
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Problem overview



The framework (general)

Consider a nonlinear system{
x(k + 1) = f(x(k), u(k), d(k))

y(k) = h(x(k), u(k), n(k))

• x ∈ Rn state, u ∈ Rm control, y ∈ Rp output

• d ∈ Rs unmeasured disturbance

• n ∈ Rq unmeasured noise

• f, h unknown functions

We want to design a stabilizing controller (stabilizing in some sense) based on a dataset of
input-output samples collected from the system.
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Motivations for direct design
System identification of nonlinear systems is difficult and time consuming, even famous
methods (NARMAX, Volterra series) can fail

Example Distributed energy resource (DER) systems

Courtesy of Dr. Javad Khazaei, Lehigh University, PA, USA
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Best predictive models are not necessarily optimal for control design. Actually, sometimes
models can hardly be used for control design

Example Adaptive optics systems

ρb
∂2y(r, t)

∂t2
+ γ

∂y(r, t)

∂t
+B∆2y(r, t) = u(r, t)
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Arcetri Astrophysical Observatory

Image without and with AO control system
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Challenges of direct design

Some of the challenges are those inherent to nonlinear control

. control design is not systematic

. stability is more tricky (e.g., GAS 6=⇒ ISS)

. stability properties are generally local

Some of the challenges are peculiar of data-driven control

. dynamics are unknown (at best, uncertain)

. noise corrupts our information on the dynamics

Providing theoretical guarantees is the main bottleneck (PID design, Unfalsified
Control, VRFT, Reinforcement Learning, Neural Nets)
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Roadmap

We will study direct data-driven control design for nonlinear systems.

We will study stabilization via:

1 Lyapunov’s linearization method

2 Approximate feedback linearization (this afternoon)

3 Contractive design (tomorrow)

9 / 48



Recap of basics facts from control theory



Equilibria and asymptotic stability

Consider a smooth nonlinear system x+ = F (x) where F : Rn → Rn is a vector field.

An equilibrium xe ∈ Rn is a vector such that xe = F (xe).

Suppose F has an equilibrium at xe. Then

• The equilibrium is called Lyapunov stable if for every ε > 0 there exists δ > 0 such
that ‖x(0)− xe‖ < δ implies ‖x(t)− xe‖ < ε for all t ≥ 0

• The equilibrium is called asymptotically stable if it is Lyapunov stable and there
exists δ > 0 such that ‖x(0)− xe‖ < δ implies limt→∞ ‖x(t)− xe‖ = 0

Linear systems x+ = Φx:

. All equilibria have the same stability properties

. We use the term “system stability”

. Asymptotic stability is a “global” property

11 / 48



Lyapunov’s direct method

Definition (Definite function) A function V : Rn → R is locally positive definite if there
exists r > 0 such that V (0) = 0 and V (x) > 0 for all ‖x‖ ≤ r, x 6= 0. It is positive definite
if r = +∞.

Theorem (Lyapunov direct method) Consider a smooth nonlinear system x+ = F (x)
and suppose that the system has an equilibrium at xe = 0, so that F (0) = 0. If there exists
a continuous function V (x) such that

• V (x) is locally positive definite

• dV (x) := V (F (x))− V (x) is locally negative definite

then xe = 0 is an asymptotically stable equilibrium. It is globally asymptotically stable if
V (x) and dV (x) are positive and negative definite, respectively, and lim‖x‖→∞ V (x) =∞.

Linear systems x+ = Φx:

. ∃V (x) ⇐⇒ P � 0 such that Φ>PΦ− P ≺ 0

. In this case, V (x) can be chosen quadratic: V (x) = x>Px
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Sketch of proof (LAS)

• Let S be a set where V and dV are locally pd and nd, and F is locally Lipschitz.
• Given ε > 0, choose r ∈ (0, ε] such that Br := {x : ‖x‖ ≤ r} ⊆ S.
• Pick α > 0 such that Ω := {x : V (x) ≤ α} ⊆ Br.
• Note that if x(k) ∈ Ω then x(k + 1) ∈ Ω because dV is nd inside Ω.
• Thus x(0) ∈ Ω implies x(k) ∈ Ω for all k ≥ 0.
• Since V is continuous there exists δ ∈ (0, r] such that ‖x‖ < δ implies V (x) < α.
• Thus, ‖x(0)‖ < δ =⇒ x(0) ∈ Ω =⇒ x(k) ∈ Ω ∀k =⇒ x(k) ∈ Br ∀k =⇒ x(0) is stable.

• As dV is nd inside Br, there exists c ≥ 0 such that V (x(k))→ c as k →∞.
• Suppose by contradiction that c > 0.
• Since c > 0 there exists d > 0 such that x(k) lies outside Bd := {x : ‖x‖ ≤ d}.
• Let ω := min‖x‖∈[d,r] V (x)− V (F (x)) which is positive because d > 0.
• We also know that for any ω there exists k such that V (x(k)) ≤ c+ ω for all k ≥ k.
• Pick ω < ω. Since x(k) is such that ‖x(k)‖ ∈ [c, r] we have V (x)− V (F (x)) ≥ ω.
• After k, V (F (x(k))) ≤ V (x(k))− ω ≤ c+ ω − ω < c. A contradiction.
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Stability inequalities for linear systems revisited

Fact 1 (Lyapunov stability inequality) System x+ = Φx is asymptotically stable if
and only if there exists P � 0 such that

Φ>PΦ− P ≺ 0 (1)

Fact 2 (Another Lyapunov stability inequality) System x+ = Φx is asymptotically
stable if and only if there exist Ω � 0, P � 0 such that

Φ>PΦ− P + Ω ≺ 0 (2)

(Fact 2 =⇒Fact 1) Obvious.
(Fact 1 =⇒Fact 2) Suppose there exists P � 0 such that Φ>PΦ− P ≺ 0.
For any Θ � 0 the inequality

Φ>PΦ− P + εΘ ≺ 0 (3)

is satisfied for ε > 0 sufficiently small, which implies (2) with Ω = εΘ.
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Linear approximation
At the core of another famous Lyapunov’s method is the linear approximation.
Given a smooth function y = F (x) of one real variable and an arbitrary real a, Taylor’s
theorem says that

F (x) = F (a) +
dF

dx

∣∣∣∣
x=a

(x− a) + ρ(x)

where ρ(x) is the remainder, which is a function that satisfies lim
x→a

ρ(x)

x− a
= 0

Example F (x) = sin(x), a = 0 =⇒ F (x) = x+ sin(x)− x

sin(x)
x (tangent)
sin(x)− x

sin(x)− x
x
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Lyapunov’s linearization method

Building on linear approximation is Lyapunov’s linearization method or Taylor’s method.

Consider a smooth system x(k + 1) = F (x(k)), x ∈ Rn, with an equilibrium point xe = 0.
The first-order expansion of the dynamics around the equilibrium gives 1

x(k + 1) =

(
∂F

∂x

∣∣∣∣
x=0

)
x(k) + ρ(x(k))

=: Φx(k) + ρ(x(k))

where ρ(x) is the remainder, which is a function that satisfies lim
x→0

‖ρ(x)‖
‖x‖

= 0.

1
Jacobian matrix of partial derivatives:

∂F

∂x
=



∂F1

∂x1
· · ·

∂F1

∂xn

.

.

.
.
.
.

.

.

.

∂Fn

∂x1
· · ·

∂Fn

∂xn


∈ Rn×n
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Theorem (Lyapunov’s linearization method) Consider a nonlinear system x+ = F (x)
with equilibrium xe = 0 and consider the linear approximation x+ = Φx with Φ = ∂F

∂x

∣∣
x=0

.
If x+ = Φx is asymptotically stable then xe = 0 is an asymptotically stable equilibrium for
x+ = F (x).

Taylor’s expansion: x+ = Φx+ ρ(x)

Φ stable =⇒ there exist Ω � 0, P � 0 such that Φ>PΦ− P + Ω ≺ 0

Let V (x) = x>Px. Then,

dV (x) := V (x+)− V (x) = (Φx+ ρ(x))>P (Φx+ ρ(x))− x>Px
= x>(Φ>PΦ− P )x+ (2Φx+ ρ(x))>Pρ(x)

≤ −x>Ωx+ (2Φx+ ρ(x))>Pρ(x)

showing that dV (x) is negative definite around the origin.
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Formally, as ρ(x) converges to zero faster than linearly, for any m > 0 there exists r > 0
such that

‖ρ(x)‖ ≤ m‖x‖ ∀x ∈ B = {x : ‖x‖ ≤ r}

Thus

dV (x) ≤ −x>Ωx+ (2Φx+ ρ(x))>Pρ(x)

≤ −λmin(Ω)‖x‖2 + 2m‖PΦ‖‖x‖2 +m2‖P‖‖x‖2

Picking m sufficiently small shows that dV (x) is negative definite around the origin.
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Stabilization via Lyapunov’s linearization

Consider a smooth nonlinear system x+ = f(x, u) with an equilibrium point (xe, ue) = 0.
The Taylor’s expansion now gives

x+ =

[
∂f

∂x

∣∣∣∣
(x,u)=0

∂f

∂u

∣∣∣∣
(x,u)=0

] [
x
u

]
+ r(x, u)

=: Ax+Bu+ r(x, u)

where r(x, u) is the remainder. A linear control law u = Kx gives

x+ = f(x,Kx) = (A+BK)x+ r(x,Kx)

Corollary (Stabilization via Lyapunov’s linearization) Consider system x+ = f(x, u)
with an equilibrium (xe, ue) = 0, and let A := ∂f

∂x |(x,u)=0 and B := ∂f
∂x |(x,u)=0. Let u = Kx.

If x+ = (A+BK)x is asymptotically stable xe = 0 is an asymptotically stable equilibrium
for x+ = f(x,Kx).
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The linearization method can be extended to nonzero equilibria

Consider a smooth nonlinear system x+ = f(x, u) with a nonzero equilibrium (xe, ue).
Let x̃ = x− xe, ũ = u− ue. Taylor’s expansion now returns

x+ = xe +

[
∂f

∂x

∣∣∣∣
(x,u)=(xe,ue)

∂f

∂u

∣∣∣∣
(x,u)=(xe,ue)

] [
x− xe
u− ue

]
+ r(x, u)

=⇒ x̃+ = Ax̃+Bũ+ r(x, u)

Hence, the problem reduces to designing a stabilizing control law ũ = Kx̃.

The control law ũ = Kx̃ has the explicit form

u = ue +K(x− xe)

which corresponds to feedback–feedforward architecture
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Data-driven design via Lyapunov’s linearization
(noise-free case)



The framework
Consider a nonlinear system

x(k + 1) = f(x(k), u(k))

where:

• x ∈ Rn state, u ∈ Rm control

• f is an unknown smooth function

• (xe, ue) = 0 is a known equilibrium

Problem Suppose we perform an experiment on the system and collect the dataset

D := {x̄(k), ū(k)}Tk=0

where the samples satisfy

x̄(k + 1) = f(x̄(k), ū(k)), k = 0, 1, . . . , T

Using D, design a control law u(k) = Kx(k) that renders xe = 0 an asymptotically stable
equilibrium for the closed-loop system x(k + 1) = f(x(k),Kx(k)).
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Data-based representation of the closed-loop system

Taylor’s form: x(k + 1) = Ax(k) +Bu(k) + r(x(k), u(k)), with A,B, r unknown

Data satisfy x̄(k + 1) = Ax̄(k) +Bū(k) + r(x̄(k), ū(k)), k = 0, 1, . . . , T

The data-based relation of the system gives[
x̄(1) x̄(2) . . . x̄(T )

]︸ ︷︷ ︸
X1

=

A ·
[
x̄(0) x̄(1) . . . x̄(T − 1)

]︸ ︷︷ ︸
X0

+B ·
[
ū(0) ū(1) . . . ū(T − 1)

]︸ ︷︷ ︸
U0

+
[
r(x̄(0), ū(0)) r(x̄(1), ū(1)) . . . r(x̄(T − 1), ū(T − 1))

]︸ ︷︷ ︸
R0

In compact form:

X1 = AX0 +BU0 +R0
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Data-based relation: X1 =
[
B A

] [U0

X0

]
+R0.

Consider a controller u = Kx and the resulting closed-loop system

x+ = Ax+Bu+ r(x, u)

= (A+BK)x+ r(x,Kx)

For any K,G that solve [
K
I

]
=

[
U0

X0

]
G

we have:

A+BK =
[
B A

] [K
I

]
=
[
B A

] [U0

X0

]
G = (X1 −R0)G

and the closed-loop system has the data-based representation

x+ = (X1 −R0)Gx+ r(x, U0Gx)
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Robust approach to Lyapunov’s stability

The closed-loop system has the data-based representation

x+ = (X1 −R0)Gx+ r(x, U0Gx)

with R0, r unknown.

Lyapunov’s linearization: (X1 −R0)G stable =⇒ origin is stable

As in Lecture 2

Since R0 is unknown we solve

((X1 −R)G)>P (X1 −R)G− P + Ω ≺ 0 for all R ∈ R

where R is a set we choose.

If R0 ∈ R then (X1 −R0)G will be stable.
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Main result

Theorem Consider the nonlinear system x+ = f(x, u) whit equilibrium (xe, ue) = (0, 0).
Let U0, X0, X1 be data matrices and let R =

{
R : RR> � ∆

}
, where ∆ is chosen by the

designer. Finally, let Θ � 0 be arbitrary. Suppose there exist S ∈ Sn×n, Y ∈ RT×n, ε > 0
such that

S = X0Y,

S −Θ (X1Y )> Y >

X1Y S − ε∆ 0

Y 0 εI

 � 0

If R0 ∈ R then K = U0Y S
−1 stabilizes the equilibrium xe = 0.

Let G = Y S−1. The two identities K = U0G and I = X0G imply

[
K
I

]
=

[
U0

X0

]
G

This implies A+BK = (X1 −R0)G

Since R0 ∈ R by assumption, it is enough that (X1 −R)G is stable for all R ∈ R

The LMI implies stability of (X1 −R)G for all R ∈ R (Lecture 2)
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Suppose the LMI holds, i.e.,  S −Θ (X1Y )> Y >

X1Y S − ε∆ 0

Y 0 εI

 � 0

A Schur complement gives[
S −Θ (X1Y )>

X1Y S − ε∆

]
− ε−1

[
Y >

0

] [
Y 0

]
� 0 ⇐⇒[

S −Θ (X1Y )>

X1Y S

]
︸ ︷︷ ︸

−V

−ε
[

0
I

]
∆
[

0 I
]︸ ︷︷ ︸

N

−ε−1

[
Y >

0

]
︸ ︷︷ ︸

M

[
Y 0

]
� 0

By Petersen’s Lemma, V + ε−1MM> + εN>∆N ≺ 0 implies V +MR>N +N>RM> ≺ 0 for
all R ∈ R = {RR> � ∆}

[
S −Θ (X1Y )>

X1Y S

]
−
[
Y >

0

]
R>

[
0 I

]
−
[

0
I

]
R
[
Y 0

]
� 0 ∀R ∈ R
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Condition[
S −Θ (X1Y )>

X1Y S

]
−
[
Y >

0

]
R>

[
0 I

]
−
[

0
I

]
R
[
Y 0

]
� 0 ∀R ∈ R

is equivalent to [
S −Θ ((X1 −R)Y )>

(X1 −R)Y S

]
� 0 ∀R ∈ R

Another Schur complement gives

((X1 −R)Y )>S−1(X1 −R)Y − S + Θ ≺ 0 ∀R ∈ R

Pre- and post-multiplying for S−1 gives

S−1((X1 −R)Y )>S−1(X1 −R)Y S−1 − S−1 + S−1ΘS−1︸ ︷︷ ︸
Ω

≺ 0 ∀R ∈ R

The change of variable G = Y S−1 gives

((X1 −R)G)>S−1(X1 −R)G− S−1 + Ω ≺ 0 ∀R ∈ R

which is the Lyapunov condition with P = S−1,

and V (x) = x>Px is a valid Lyapunov function.
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Remarks

. Design program as in the linear case

. The matrix R0 plays a similar role as the disturbance matrix D0 in the linear case, but

. is dynamics-dependent

. The choice of R =
{
R : RR> � ∆

}
requires bounds on the dynamics

. Since R0 is dynamics-dependent, R0 can be made as small as desired by running the

. experiment sufficiently close to the equilibrium

. If the linearized system is reachable the problem is feasible when R0 is sufficiently small

. and u is suitably chosen (persistence of excitation is not enough because when we excite

. the dynamics we also excite R0) 2

2
C. De Persis, P. Tesi, “Designing experiments for data-driven control of nonlinear systems”, IFAC-PapersOnLine 2021

M. Alsalti, V.G. Lopez, M.A. Müller, “On the design of persistently exciting inputs for data-driven control of linear and
nonlinear systems”, IEEE L-CSS 2023
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Nonlinear systems Linear systems with disturbances

x+ = Ax+Bu+ r(x, u) x+ = Ax+Bu+ d

type of program type of program

convex program convex program

choice of R choice of D
requires bounds on dynamics requires bounds on noise

feasibility of the program feasibility of the program

linearized system is reachable system is reachable
————– ————–

R0 sufficiently small D0 sufficiently small

and u suitably chosen and u persistently exciting
————– ————–

can be guaranteed by design can be guaranteed by design (averaging)

with experiment close to the equilibrium if noise has certain characteristics
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Inverted pendulum

Dynamics:
x+

1 = x1 + Tsx2

x+
2 =

Tsg

l
sinx1 +

(
1− Tsµ

ml2

)
x2 +

Ts
ml2

u

• x1 = angular position θ
• x2 = angular velocity
• m = mass to be balanced • l = length of the pendulum
• µ = friction • g = acceleration due to gravity • Ts = sampling time

Dynamics in Taylor’s expansion around the equilibrium:
x+

1 = x1 + Tsx2

x+
2 =

Tsg

l
x1 +

(
1− Tsµ

ml2

)
x2 +

Ts
ml2

u+
Tsg

l
(sinx1 − x1)

[
x+

1

x+
2

]
=

[
1 Ts
Tsg
l

1− Tsµ
ml2

] [
x1

x2

]
+

[
0
Ts
ml2

]
u+

[
0
Tsg
l

]
(sinx1 − x1)

31 / 48



Dynamics: [
x+

1

x+
2

]
=

[
1 Ts
Tsg
l

1− Tsµ
ml2

] [
x1

x2

]
+

[
0
Ts
ml2

]
u+

[
0
Tsg
l

]
(sinx1 − x1)

Suppose m = 1, l = 1, g = 9.8, µ = 0.01 (unknown) and Ts = 0.01.

We run an experiment with |u| ≤ 0.5 and solve the design program with the first T = 100 samples.

The program is solved with ∆ =

[
0 0
0 1e–4

]
and R0R

>
0 ≈

[
0 0
0 1e–6

]
� ∆.

The program is feasible and returns K =
[
−18.2150 −10.7779

]
.

32 / 48


bbb.mp4
Media File (video/mp4)



Closed-loop behavior
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Region of Attraction and Invariant sets

Stability properties with this method are local

Definition (Region of Attraction) Consider a dynamical system x(k + 1) = F (x(k))
with an asymptotically stable equilibrium xe = 0. The region of attraction (RoA) to xe is
the largest set X for which x(0) ∈ X implies limt→∞ x(t) = 0.

Definition (Invariant set) The set X is an invariant for system x(k + 1) = F (x(k)) if
for all x(0) ∈ X the solution x(t) ∈ X for t > 0.

Invariance:

. Milder property (does not require convergence)

. Useful for estimating RoA

. Useful for including safety constraints
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Consider a nonlinear system in Taylor’s form x+ = Φx+ ρ(x) and suppose Φ stable.

Let Ω � 0, P � 0 solve the Lyapunov inequality

Φ>PΦ− P + Ω ≺ 0

Letting V (x) = x>Px we have

dV (x) := V (x+)− V (x)

= (Φx+ ρ(x))>P (Φx+ ρ(x))− x>Px
= x>(Φ>PΦ− P )x+ (2Φx+ ρ(x))>Pρ(x)

≤ −x>Ωx+ (2Φx+ ρ(x))>Pρ(x)
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We have

dV (x) ≤ −x>Ωx+ (2Φx+ ρ(x))>Pρ(x)︸ ︷︷ ︸
`(x)

Define X := {x : `(x) < 0} All we need is to find an invariant set contained in X

We call a Lyapunov sub-level set a set of the form

Rα := {x : V (x) ≤ α}, α > 0

Consider any Lyapunov sub-level set Rα. If

Rα ⊆ (X ∪ {0})

then Rα is an invariant set and provides estimate of the RoA

X

Rα
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Data-based estimate of RoA

Recall the data-based representation:

x+ = (X1 −R0)G︸ ︷︷ ︸
Φ

x + r(x, U0Gx)︸ ︷︷ ︸
ρ(x)

and we know Ω � 0 and P � 0 such that Φ>PΦ− P + Ω ≺ 0.

Letting V (x) = x>Px we have

dV (x) ≤ −x>Ωx+ (2Φx+ ρ(x))>Pρ(x)

≤ −x>Ωx+ 2‖PΦ‖‖x‖‖ρ(x)‖+ ‖P‖‖ρ(x)‖2

≤ −x>Ωx+ 2(‖PX1G‖+ ‖P‖
√
‖∆‖‖G‖)‖x‖δ(x) + ‖P‖δ(x)2︸ ︷︷ ︸

known over-approximation

where δ(x) is a known function such that ‖ρ(x)‖ ≤ δ(x) for all x (globally for simplicity).

We only need bounds on the dynamics
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Letting V (x) = x>Px we have

dV (x) ≤ −x>Ωx+ (2Φx+ ρ(x))>Pρ(x)

≤ −x>Ωx+ 2(‖PX1G‖+ ‖P‖
√
‖∆‖‖G‖)‖x‖δ(x) + ‖P‖δ(x)2︸ ︷︷ ︸

known over-approximation h(x)

where δ(x) is a known function such that ‖ρ(x)‖ ≤ δ(x) for all x.

Corollary (Invariant sets and RoA estimate based on data) Let δ(x) be a known
function such that ‖ρ(x)‖ ≤ δ(x) for all x, and define X := {x : −x>Ωx+ h(x) < 0}. Any
Lyapunov sub-level set

Rα := {x : V (x) ≤ α} ⊆ (X ∪ {0})

is an invariant set
and provides an estimate of the RoA,
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Inverted pendulum (cont’d)
Dynamics: [

x+
1

x+
2

]
=

[
1 Ts
Tsg
l

1− Tsµ
ml2

] [
x1

x2

]
+

[
0
Ts
ml2

]
u+

[
0
Tsg
l

]
(sinx1 − x1)

Estimate obtained using δ(x) = 2‖ sinx1 − x1‖ (> 100% over-approximation)
The bounding function δ(x) can be obtained from physical considerations or from some estimation
method, and the method can be just a data-fitting algorithm

Rα
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Example of estimate obtained with Kernel-ridge regression

Consider a scalar function f : X → R, X ⊆ R
and a dataset D := {(yk, xk), k = 0, 1, . . . , T} that carries information on f :

yk = f(xk), k = 0, 1, . . . , T

Consider a (psd) kernel κ : X × X → R and its RKHS H.

Let
k(x) :=

[
κ(x0, x) κ(x1, x) · · · κ(xT , x)

]>
and K =

[
κ(xr, xk)

]
rk

.

KERNEL RIDGE REGRESSION (KRR) (Schölkopf et al, 2001)

minimize
sf∈H

T∑
k=0

|yk − sf (xk)|2 + λ · ‖sf‖2H,

where λ > 0 controls the smoothness of the estimator, ‖ · ‖H inner product on H.

The minimizer is
sf (x) = Ak(x)

where A := [y0 y1 · · · yT ] (λI +K)−1.
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Estimate of the ROA obtained with Gaussian kernels κ(s, x) = exp(−(s− x)2), λ = 0.01.

We collect T = 30 samples of the open-loop behavior from zero velocity and random position x1,
which gives the data-based relation

x2(k + 1)︸ ︷︷ ︸
yk

=
Tsg

l
sinx1(k)︸ ︷︷ ︸
f(xk)

, k = 0, 1, . . . , T

The minimizer is sf (x) = Ak(x). Since k(x) has analytic expression we can compute its Taylor’s
expansion to determine δ(x)
————————————–

A =



1.0798
−2.7006
−1.5346
−0.2564
8.2279
0.8729
−0.0697
0.5598
0.5986
−0.1021
1.1864
−3.6753
−2.0488
−0.2636
−0.1826
−2.9156

.

.

.



>

, k(x) =



exp(−(−0.4237− x)2)

exp(−(0.2799− x)2)

exp(−(−0.0616− x)2)

exp(−(0.4780− x)2)

exp(−(0.0385− x)2)

exp(−(0.0011− x)2)

.

.

.



true function f analytical approx.
samples

true remainder ρ(x)
analytical approx. ρe(x)

RoA estimate
with

δ(x) = 2‖ρe(x)‖
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Case study: DER systems
Collaboration with College of Engineering at Lehigh University, PA, USA

A DER system involves power electronics interface (converter) and filtering component (RLC
filter), which is connected to the main electricity grid at the point of common coupling (PCC).
The power converter is mainly composed of a voltage source DC/AC converter fed by the energy
resource (solar, wind, or battery) through a DC link.

Each DER unit can be controlled as an AC voltage source through an adjustable voltage
magnitude and angle at the PCC, vse

jωst. This is achieved through inner current regulators.
Therefore, the control variables vs and ωs determine the forced response of the DER unit.

The variables to be controlled are converter current ic, output current io, and the grid voltage
frequency δ, which we want to regulate at (ic, io, δ) = (15, 10, ωg).
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The model-based control scheme involves a feedback–feedforward architecture designed using a
control-affine model ẋ = f(x) + g(x)u where x = (ic, io, δ).

f(x) =


−
rg

Lg
x1 −

vg

Lg
cosx3

−
rg

Lg
x2 −

vg

Lg
sinx3

ωg

 , g(x) =


1

Lg
x2

0 −x1

0 −1



Experimental results obtained with direct data-driven design (CT implementation)3

3
J. Khazaei et al., “Direct data-driven control of grid-connected DERs using Taylor series expansion”, IEEE TSE 2024
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Summary

� We saw a method to design controllers for nonlinear systems using data

� Handles “functional” uncertainty

� Same positive features as in the linear case (stability guarantees, interpretability,
low-complex design programs)

� Merits also depend on Lyapunov’s linearization method, which requires
no assumptions on the system structure

� Another advantage of Lyapunov’s linearization method is that linearity enables
robust control tools (also the extension to noise is straightforward)
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General / control-affine systems
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Towards Lecture 4
Consider a control-affine system

x(k + 1) = f(x) +Bu

with f : Rn → Rn and B unknown.

Suppose that we know a library of functions that include f , i.e., a function Z : Rn → Rs,
s ≥ n, such that

f(x) = AZ(x)

for some unknown matrix A.

The dynamics rewrites as

x(k + 1) = AZ(x) +Bu

Knowledge of a library:

. reasonable in many cases (e.g., mechanical systems)

. reduces “functional” uncertainty to parametric uncertainty
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Consider system
x(k + 1) = AZ(x) +Bu

and arrange Z as

Z(x) =

[
x

Q(x)

]
where Q(x) collects all the nonlinearities. The system rewrites as

x(k + 1) = A1x+A2Q(x) +Bu

A nonlinear control law of the form

u(k) = K1x(k) +K2Q(x)

returns
x(k + 1) = (A1 +BK1)x(k)︸ ︷︷ ︸

linear

+ (A2 +BK2)Q(x)︸ ︷︷ ︸
nonlinear

Can we design K1 and K2 so as to stabilize the linear part and minimize the nonlinearity?
Lecture 4 will discuss methods for approximate nonlinearity cancellation.
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Additional material



Data-driven design via Lyapunov’s linearization
(noisy case)



The framework

Consider now the system

x(k + 1) = f(x(k), u(k)) + d(k), k ∈ N

where d ∈ Rn is an unmeasured disturbance.

Unlike the linear case, asymptotic stability does not guarantee any disturbance-to-state
property (e.g., GAS 6=⇒ ISS), and designing ISS controllers is difficult, even with exact
knowledge of the system dynamics.

Useful results can be obtained with Lyapunov’s linearization method.
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Data-based relation
Taylor’s form: x(k + 1) = Ax(k) +Bu(k) + r(x(k), u(k)) + d(k).

The data-based relation for the system:[
x̄(1) x̄(2) . . . x̄(T )

]︸ ︷︷ ︸
X1

=

A ·
[
x̄(0) x̄(1) . . . x̄(T − 1)

]︸ ︷︷ ︸
X0

+B ·
[
ū(0) ū(1) . . . ū(T − 1)

]︸ ︷︷ ︸
U0

+
[
r(x̄(0), ū(0)) r(x̄(1), ū(1)) . . . r(x̄(T − 1), ū(T − 1))

]︸ ︷︷ ︸
R0

+
[
d̄(0) d̄(1) . . . d̄(T − 1)

]︸ ︷︷ ︸
D0

In compact form:

X1 = AX0 +BU0 +R0 +D0

Same as before with R0 +D0 acting as a disturbance matrix.
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Main result

Letting W0 := R0 +D0 we immediately have the following result.

Theorem Consider a nonlinear system x+ = f(x, u) + d with an equilibrium (xe, ue) = 0.
Let U0, X0, X1 be data matrices and let W =

{
W : WW> � ∆

}
, where ∆ is chosen by the

designer. Finally, let Θ � 0 be arbitrary. Suppose there exist S ∈ Sn×n, Y ∈ RT×n, ε > 0
such that

S = X0Y,

S −Θ (X1Y )> Y >

X1Y S − ε∆ 0

Y 0 εI

 � 0

If W0 ∈ W then K = U0Y S
−1 stabilizes the equilibrium xe = 0.
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The closed-loop dynamics is:

x+ = (X1 −W0)G︸ ︷︷ ︸
Φ

x+ r(x, U0Gx) + d︸ ︷︷ ︸
ρ(x)+d

and we have Ω � 0, P � 0 solving Φ>PΦ− P + Ω ≺ 0.

Letting V (x) = x>Px we have

V (x+)− V (x) ≤ −x>Ωx+ (2Φx+ ρ(x) + d)>P (ρ(x) + d)

≤ −x>Ωx+ 2(‖PX1G‖+ ‖P‖
√
‖∆‖‖G‖)‖x‖(δ(x) + γ) + ‖P‖(δ(x) + γ)2︸ ︷︷ ︸

known over-approximation h(x)

where δ(x) is a continuous function such that ‖ρ(x)‖ ≤ δ(x| for all x, and γ is a positive
constant such that ‖d‖ ≤ γ.

Unlike noise-free case, h(x) can never converge to zero as x goes to zero
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V (x+)− V (x) ≤ −x>Ωx+ 2(‖X1GP‖+
√
‖∆‖‖GP‖)‖x‖(δ(x) + γ) + ‖P‖(δ(x) + γ)2︸ ︷︷ ︸
known over-approximation h(x)

Definition (Robust invariant set) The set X is called robust invariant for the system
x(k + 1) = F (x(k), d(k)) if for all x(0) ∈ X and d ∈ I, with I a compact set, the solution
x(t) ∈ X for t > 0.

Proposition (Robust invariance from data) Let X := {x : −x>Ωx+ h(x) ≤ 0} and
consider any Lyapunov sub-level set Rα := {x : V (x) ≤ α}. Let Z := Rα ∩ X c, where X c
is the complement of X (Z is the subset of Rα for which the Lyapunov difference can be
positive). If

V (x)− x>Ωx+ h(x) ≤ α ∀x ∈ Z

then Rα is a robust invariant set for the closed-loop system.
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Inverted pendulum (cont’d)
Dynamics: [

x+
1

x+
2

]
=

[
1 Ts
Tsg
l

1− Tsµ
ml2

] [
x1

x2

]
+

[
0
Ts
ml2

]
u+

[
0
Tsg
l

]
(sinx1 − x1) +

[
0
1

]
d

Same experimental setting as before, now with |d| ≤ 0.01.

Controller obtained K =
[
−21.9778 −9.6747

]
.

Estimate obtained using δ(x) = 2‖ sinx1 − x1‖ (> 100% over-approximation)

Rα

Z
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Continuous-time results



Continuous-time results

Discrete-time results can be extended to continuous-time systems with X1 matrix of state
derivatives (adding noise if necessary).

Theorem Consider the nonlinear system ẋ = f(x, u) with an equilibrium (xe, ue) = 0.
Let U0, X0, X1 be data matrices and let R =

{
R : RR> � ∆

}
, where ∆ is chosen by the

designer. Finally, let Θ � 0 be arbitrary. Suppose there exist S ∈ Sn×n, Y ∈ RT×n, ε > 0
such that

S = X0Y,

[
(X1Y ) + (X1Y )> + Θ + ε∆ Y >

Y −εI

]
≺ 0

If R0 ∈ R then u = Kx with K = U0Y S
−1 stabilizes the equilibrium xe = 0.
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