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Data-driven control of nonlinear systems so far
In this last lecture, we look again at nonlinear continuous-time systems of the form

ẋ = AZ(x) +Bu+ Ed

We took Z : Rn → Rs as a C1 vector-valued function that includes both linear and
nonlinear functions

Z(x) =

[
x

Q(x)

]
and considered for the disturbance the model |d| ≤ δ. Here we restrict this model:

Assumption Disturbance d is constant and unknown.

The analysis to be presented below carries over if the disturbance d is time-varying
and satisfies

|d(t)| ≤ δ

with δ known. The focus on constant disturbances allows us to present a new
data-dependent represantation (“noise-filtered data-dependent” representation) in
a more compact way.
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Data-driven control of nonlinear systems so far

ẋ = AZ(x) +Bu+ Ed

Previously, we showed that, if d = 0, then the solution of the SDP

minimizeP,Y1,G2
‖X1G2‖

subject to Z0Y1 =

[
P

0(s−n)×n

]
(1a)

X1Y1 + (X1Y1)> ≺ 0 (1b)

Z0G2 =

[
0n×(s−n)
Is−n

]
(1c)

provides a stabilising feedback u = KZ(x).

. If a zero cost is attained (‖X1G2‖ = 0 – nonlinearity cancellation), then we
obtain a global asymptotic result.

. For a zero cost to be attained, the system must have a special structure (e.g.
nonlinearities matched by the control input, systems in strict feedback form)

. The purpose of today’s lecture is to present an alternative approach to
stabilization without cancelling the nonlinearity. The approach allows us to deal
with tracking problems too.
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Information collection
Information about the system’s dynamics is obtained from a T -long dataset of
input/state samples collected during (multiple) experiment(s)

D := {(ẋi, xi, ui)}T−1
i=0

where
ẋi := ẋ(ti), xi := x(ti), ui := u(ti)

and
0 ≤ t0 < t1 < . . . < tT−1

are the sampling times.

The samples satisfy

ẋi = AZ(xi) +Bui + Edi, i = 0, . . . , T − 1

Recall that we can avoid measuring the state derivatives ẋi using the integral
version of

ẋ = AZ(x) +Bu+ Ed
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A revised control problem for nonlinear systems

Problem Based on the dataset D design a state feedback controller

u = KZ(x)

that makes the closed-loop system

ẋ = (A+BK)Z(x) + Ed

exponentially contractive on X ⊆ Rn.

. The system is exponentially contractive on X if

∃P � 0, β > 0: ((A+BK)
∂Z

∂x
)>P−1 + P−1(A+BK)

∂Z

∂x
� −βP−1 ∀x ∈ X

which is a property on the Jacobian of the dynamics.

. As before, the choice u = KZ(x) allows us to express the closed-loop dynamics
in terms of the dataset D and to reduce the design of K to a convex problem.
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Why contractivity?
Global results

If X = Rn, then a unique equilibrium x∗ exists, which is globally exponentially stable.

Existence of a compact forward invariant set R for ẋ = f(x) := (A+BK)Z(x) + Ed Let
x be any point in X and V (x) = (x− x)>P−1(x− x). Then

V̇ (x) := ∇V (x)>f(x) = 2(x− x)>P−1
[
∂f

∂y

]
y∈(x,x)

(x− x) + 2(x− x)>P−1f(x)

≤ −βV (x) + ‖f(x)‖ ‖P− 1
2 ‖V (x)

1
2

Hence, the sublevel set R := {x : V (x) ≤ (β−1‖f(x)‖ ‖P− 1
2 ‖)2} is a forward invariant set

for ẋ = f(x).

Existence of a limit solution (Yakubovich & Demidovich) Consider ẋ = f(t, x), where
f(t, x) is C0 in t and C1 in x. A compact set that is forward invariant for ẋ = f(t, x)
contains a unique (limit) solution x∗(t) defined for all t ∈ (−∞,+∞). Moreover, if f(t, x)
is independent of t, then x∗(t) = x∗, i.e. the limit solution is an equilibrium.

Global exponential stability We can repeat the analysis as before with
V∗(x) = (x− x∗)>P−1(x− x∗), this time obtaining

V̇ (x) ≤ −βV (x)

thanks to f(x∗) = 0.
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Why contractivity?

Local results

If X ⊂ Rn is a convex set and there exists an equilibrium x∗ ∈ int(X ) of ẋ = f(x),
then it is locally exponentially stable.

Alternatively, if X is a convex set, which is forward invariant wrt ẋ = f(x) and
ẋ = f(x) is forward complete on X , then there exists a unique equilibrium x∗ ∈ X ,
which is locally exponentially stable.

Regulation problem

If the equilibrium x∗ is not the desired one, then contractivity allows for the design
of a controller that regulates a certain function of the state y = h(x) to a desired
value r.
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Consider the dataset

D := {(ẋi, xi, ui)}T−1
i=0 , ẋi = AZ(xi) +Bui + Edi, i = 0, . . . , T − 1

and store the samples into matrices U0, X0, X1, Z0 defined as

U0 :=
[
u0 u1 · · · uT−1

]
X0 :=

[
x0 x1 · · · xT−1

]
X1 :=

[
ẋ0 ẋ1 · · · ẋT−1

]
Z0 :=

[
Z(x0) Z(x1) . . . Z(xT−1)

]
which satisfy the identity[

ẋ0 ẋ1 · · · ẋT−1

]︸ ︷︷ ︸
X1

= A
[
Z(x0) Z(x1) . . . Z(xT−1)

]︸ ︷︷ ︸
Z0

+B
[
u0 u1 · · · uT−1

]︸ ︷︷ ︸
U0

+E
[
d0 d1 · · · dT−1

]︸ ︷︷ ︸
D0

X1 = AZ0 +BU0 +ED0
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Data-dependent representations of closed-loop nonlinear systems
Closed-loop nonlinear system ẋ = (A+BK)Z(x) + Ed

Consider any matrices K ∈ Rm×s, G ∈ RT×n such that[
K
Is

]
=

[
U0

Z0

]
G

where

U0 =
[
u0 u1 · · · uT−1

]
Z0 =

[
Z(x0) Z(x1) . . . Z(xT−1)

] X1 = AZ0 +BU0 + ED0

The matrix A+BK of the closed-loop system ẋ = (A+BK)Z(x) + Ed is
arranged as

A+BK

=
[
B A

] [K
Is

]
[
K
Is

]
=

[
U0
Z0

]
G

=
[
B A

] [U0

Z0

]
G

X1=[B A]
[
U0
Z0

]
+ED0

= (X1 − ED0)G
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A noise-filtered representation

Consider (again) the dataset

D := {(ẋi, xi, ui)}T−1
i=0 , ẋi = AZ(xi) +Bui + Edi, i = 0, . . . , T − 1

and the data matrices that satisfy

X1 = AZ0 +BU0 + ED0

We focus on D0 and observe that

D0 =
[
d0 d1 . . . dT−1

]
= d011×T =: LM

Hence

X1 = AZ0 +BU0 + ELM

The perturbation D0 due to the disturbance can be split into two factors, the first
one of which, L, is unknown and the second one, M , is known.
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Consider any matrices K ∈ Rm×s, G ∈ RT×s such that K
Is

01×s

 =

U0

Z0

M

G
The matrix A+BK of the closed-loop system ẋ = (A+BK)Z(x) + Ed is
arranged as

A+BK

=
[
B A EL

] KIs
0


KIn

0

=
U0
Z0
M

G
=

[
B A EL

] U0

Z0

M

G
X1=[B A EL]

U0
Z0
M


= X1G
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Consider any matrices K ∈ Rm×s, G ∈ RT×s such thatKIs
0

 =

U0

Z0

M

G
Partition G as

G =
[
G1 G2

]
T

n s−n

n dimension of x, s− n dimension of Q(x)

The closed-loop system ẋ = (A+BK)Z(x) + Ed, where Z(x) =

[
x

Q(x)

]
, results in

the data-dependent representation

ẋ = X1G1x+X1G2Q(x) + Ed

. The representation depends on data U0, Z0, X1 and design variables G1, G2

. The unknown disturbance d affecting the dataset is filtered out via a suitable
choice of G enforced by the additional condition 01×s = MG.
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Enforcing contractivity from data – recap so far
A dataset

D := {(ẋi, xi, ui)}T−1i=0

is obtained from off-line experiments conducted on the system

ẋ = AZ(x) +Bu+ Ed

and data are organized into matrices U0, X0, X1, Z0 that satisfy

X1 = AZ0 +BU0 + ED0

To design a controller u = KZ(x), we look for G =
[
G1 G2

]
that satisfiesKIs

0

 =

U0

Z0

M

G where M = 11×T

and makes
ẋ = X1G1x+X1G2Q(x) + Ed

exponentially contractive.

D0 is unknown but can be factored as D0 = LM , where M = 11×T known.
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A formula for enforcing contraction via dataKIs
0

 =

U0

Z0

M

G, ẋ = X1G1x+X1G2Q(x) + Ed

Consider the decision variables P ∈ Sn×n, Y1 ∈ RT×n, G2 ∈ RT×n, α ∈ R>0 and the SDP

P � 0 (2a)

Z0Y1 =

[
P

0(s−n)×n

]
(2b)X1Y1 + (X1Y1)> + αIn X1G2 PRQ

(X1G2)> −Is−n 0s−n×r
(PRQ)> 0r×s−n −Ir

 � 0 (2c)

Z0G2 =

[
0n×(s−n)
Is−n

]
(2d)

0 = M
[
Y1 G2

]
(2e)

where
∂Q

∂x
(x)>

∂Q

∂x
(x) � RQR>Q for every x ∈ X . If it is feasible then the control law

u = KZ(x) with
K = U0

[
Y1P

−1 G2

]
makes the closed-loop system exponentially contractive on X .
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Constraint (2b) can be equivalently written as

(2b) Z0Y1 =

[
P

0(s−n)×n

]
⇔ Z0Y1P

−1 =

[
In

0(s−n)×n

]
, (2d) Z0G2 =

[
0n×(s−n)
Is−n

]
Perform the change of variable G1 := Y1P

−1, to obtain Z0

[
G1 G2

]
= Is.

By the same change of variable, the control gain
K = U0

[
Y1P

−1 G2

]
can be written as

K = U0

[
G1 G2

] (2e) 0 = M
[
Y1 G2

]
can be

written as 0 = M
[
G1 G2

]
Hence,

[
K
Is
0

]
=
[
U0

Z0

M

]
G. This yields A+BK = (AZ0 +BU0 + ELM) = X1G.

Applying the Schur complement, constraint (2c)

X1Y1 + (X1Y1)
> + αIn X1G2 PRQ

(X1G2)
> −Is−n 0s−n×r

(PRQ)> 0r×s−n −Ir

 � 0

is equivalently written as[
X1Y1 + (X1Y1)> + αIn X1G2

(X1G2)> −Is−n

]
+

[
PRQ

0s−n×r

] [
(PRQ)> 0r×s−n

]
� 0

and, applying the Schur complement once more, as

X1Y1 + (X1Y1)> +X1G2(X1G2)> + PRQ(PRQ)> + αIn � 0
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Thus, we have written the constraint (2c) as

X1Y1 + (X1Y1)> +X1G2(X1G2)> + PRQ(PRQ)> + αIn � 0

Recall the change of variable G1 = Y1P
−1 and note that

∂Q

∂x
(x)>

∂Q

∂x
(x) � RQR>Q ∀x ∈ X =⇒ P

∂Q

∂x
(x)>

∂Q

∂x
(x)P � PRQR>QP ∀x ∈ X

Hence,

X1G1P + (X1G1P )> +X1G2G
>
2 X
>
1 + P

∂Q

∂x
(x)>

∂Q

∂x
(x)P + αIn � 0 ∀x ∈ X

By a completion of the squares argument

0 � (X1G2−P
∂Q

∂x

>
)(G>2 X

>
1 −

∂Q

∂x
P ) = X1G2G

>
2 X
>
1 −X1G2

∂Q

∂x
P −P ∂Q

∂x

>
G>2 X

>
1 +P

∂Q

∂x

> ∂Q

∂x
P

we obtain

X1G1P + (X1G1P )> + P
∂Q

∂x

>
G>2 X

>
1 +X1G2

∂Q

∂x
P + αIn � 0 ∀x ∈ X

i.e.

X1

[
G1 G2

] [ In
∂Q
∂x

]
P + P

[
In
∂Q
∂x

]> [
G1 G2

]>
X>1 + αIn � 0 ∀x ∈ X

or

P−1(A+BK)
∂Z

∂x
+
∂Z

∂x

>
(A+BK)>P−1 � −βP−1 ∀x ∈ X ,with β :=

α

λmax(P )
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Discussion
Growth condition To derive the result, we introduce a growth condition on the
nonlinearities of Z(x)

The nonlinearities Q(x) satisfy

∂Q

∂x
(x)>

∂Q

∂x
(x) � RQR>Q for any x ∈ X

for some known matrix RQ.

Since Q(x) is continuous, RQ exists when X is a compact set. Otherwise, the
existence of RQ must be considered as an assumption.

Aim of the controller Constraint (2c)

X1Y1 + (X1Y1)
> + αIn X1G2 PRQ

(X1G2)
> −Is−n 0s−n×r

(PRQ)> 0r×s−n −Ir

 � 0 implies

P−1X1G1 + (P−1X1G1)> + P−1X1G2(X1G2)>P−1 +RQR
>
Q + αP−2 � 0

This reveals that the linear part of the controller aims at dominating the nonlinear
part X1G2

∂Q
∂x of the dynamics.
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Asymptotic behavior
Global results If X = Rn, then the designed feedback controller induces the
equilibrium x∗ in the closed-loop dynamics

ẋ = (A+BK)Z(x) + Ed

and makes it globally exponentially stable.

Local result If X ⊂ Rn and the designed feedback controller

u = KZ(x), K = U0

[
Y1P

−1 G2

]
induces an equilibrium x∗ in int(X ) for the closed-loop dynamics, i.e.,

(A+BK)Z(x∗) + Ed = 0 for some x∗ ∈ int(X )

then x∗ is exponentially stable.

The case d = 0 The result holds under the same SDP (the controller must still
dominate the nonlinearities) but in this case we can analytically determine whether
or not there exists x∗ such that (A+BK)Z(x∗) = 0 because A+BK = X1G.
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An example - A flexible robot arm
ẋ1 = x2

ẋ2 = −Kc

J2
x1 −

F2

J2
x2 +

Kc

J2Nc
x3 −

mgd

J2
cosx1

ẋ3 = x4

ẋ4 = − Kc

J1Nc
x1 +

Kc

J1N2
c

x3 −
F1

J1
x4 +

1

J1
u

Experiment

x0 ∈ [−0.1, 0.1]4

u ∈ [−0.1, 0.1]

T = 10

Q(x) = cosx1, RQ = R>Q =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , X = R4

Results The SDP is feasible and returns the controller gain

K =
[
−3.1639 −4.6751 −3.9299 −0.7614 0.0106

]
and the closed-loop system ẋ =

 0.0000 1.0000 0.0000 0.0000 0.0000
−2.0000 −0.7500 1.0000 0.0000 −1.9600
0.0000 0.0000 0.0000 1.0000 0.0000
−22.4261 −31.1671 −25.5328 −5.7430 0.0708

Z(x).

Since the latter is contractive, the equilibrium x∗ exists and computable via

X1GZ(x∗) = 0, which gives x∗ =
[
−0.5718 0 0.5046 0

]>
.
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Example (continued)
Let us include additional nonlinearities in Q(x)

Q(x) =

cosx1
x21

sinx2

 , ∂Q

∂x
(x)>

∂Q

∂x
(x) =


sin(x1)2 + 4x21 0 0 0

0 cos(x2)2 0 0
0 0 0 0
0 0 0 0

 .
If we choose X = [−w,w]× R3, where w ∈ R>0, then the growth condition

∂Q

∂x
(x)>

∂Q

∂x
(x) � RQR>Q

is satisfied on X with

RQ = R>Q =


√

4w2 + 1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 .
Here, we set w = 1 and solve the SDP with the new value of RQ and find the controller
gain

K =
[
−280.8884 −257.1662 −91.3493 −8.2326 0.1591 −0.0032 −0.0030

]
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The controller returns the closed-loop system

ẋ =


0.0000 1.0000 0.0000 0.0000 0.0000 −0.0000 −0.0000
−2.0000 −0.7500 1.0000 0.0000 −1.9600 0.0000 0.0000
0.0000 0.0000 0.0000 1.0000 −0.0000 0.0000 0.0000

−1873.9225 −1714.4416 −608.3286 −55.5510 1.0603 −0.0213 −0.0201

Z(x)

which is known to the designer since it coincides with ẋ = X1GZ(x). We can solve for x∗
in X1GZ(x∗) = 0 and find out that the equation has a solution

x∗ =
[
−0.3607 0 1.1126 0

]>
,

which belongs to int(X ). Hence, it is exponentially stable.

Comment 1 Solutions initialized outside the largest sublevel set of x>P−1x contained X
still converge to x∗, suggesting a much larger RoA than the certifiable one.

Comment 2 The SDP remains feasible for values of w up to 100, to which it corresponds
higher controller gains, consistent with the observation that the proposed control design
dominate the growth of the nonlinearities.
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Steering towards a desired equilibrium

Making the closed-loop system contractive allows the designer to guarantee
asymptotic properties of an equilibrium without knowing the equilibrium. This is
useful in the data-driven control design context where the model is uncertain. A
drawback, though, is that the equilibrium might differ from the desired one. We
deal now with this problem formulating an output regulation problem.

As a first step, we endow the system with an output of interest

ẋ = AZ(x) +Bu+ Ed
y = CZ(x)

where C is an unknown matrix. We would like to design a controller that steers
the output y ∈ Rp to a prescribed constant reference signal r.

To this purpose, we assume to measure the regulation error

e = r − y
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Given the state x and the regulated error e, we would like to design the controller

ξ̇ = e
u =

[
Kx KQ

]︸ ︷︷ ︸
K

Z(x) +Kξξ

that, for the closed-loop system

ẋ = AZ(x) +Bu+ Ed
e = r − CZ(x)

ξ̇ = e
u = KZ(x) +Kξξ,

guarantees
(i) boundedness of the solution (x(t), ξ(t));
(ii) limt→+∞ e(t) = 0.

The feedback law u = KZ(x) +Kξξ has the task of making the augmented
dynamics [

ẋ

ξ̇

]
=

[
A 0
C 0

] [
Z(x)
ξ

]
+

[
B
0

]
u+

[
E 0
0 −I

] [
d
r

]
contractive.
The internal model controller ξ̇ = e induces an equilibrium for which e = 0.
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The goal is to design the feedback law

u = KZ(x) +Kξξ

that makes the augmented dynamics[
ẋ

ξ̇

]
=

[
A 0
C 0

] [
Z(x)
ξ

]
+

[
B
0

]
u+

[
E 0
0 −I

] [
d
r

]
contractive.
It is easier to to realize that we are in the same setup considered previously if we arrange
the quantities Z(x), ξ in a suitable order, namely as in the vector x

ξ
Q(x)


and rewrite the augmented dynamics above accordingly, i.e.[

ẋ

ξ̇

]
=

[
A 0 Â

C 0 Ĉ

]
︸ ︷︷ ︸

A

 x
ξ

Q(x)

+

[
B
0

]
︸︷︷︸
B

u+

[
E 0
0 −I

]
︸ ︷︷ ︸

E

[
d
r

]

where we used the partition

AZ(x) =
[
A Â

] [ x
Q(x)

]
, CZ(x) =

[
C Ĉ

] [ x
Q(x)

]
23 / 32



The goal is to design the feedback law

u = KZ(x) +Kξξ

that makes the augmented dynamics[
ẋ

ξ̇

]
=

[
A 0 Â

C 0 Ĉ

]
︸ ︷︷ ︸

A

 x
ξ

Q(x)

+

[
B
0

]
︸︷︷︸
B

u+

[
E 0
0 −I

]
︸ ︷︷ ︸

E

[
d
r

]

contractive.

We collect the dataset D := {xi, ξi, ui, ẋi, ei}T−1i=0 from the augmented system and arrange
it into the data matrices U0,Z0,Z1,M that satisfy

Z1 = AZ0 + BU0 + ELM
where

U0 :=
[
u0 u1 · · · uT−1

]
Z0 :=

 x0 x1 · · · xT−1
ξ0 ξ1 · · · ξT−1

Q(x0) Q(x1) · · · Q(xT−1)

 (ξi := ξ(ti))

Z1 :=

[
ẋ0 ẋ1 · · · ẋT−1
e0 e1 · · · eT−1

]
(ei := e(ti))

L :=

[
d0
r0

]
, M = 11×T
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Data-dependent representation of the augmented dynamics
Consider any matrices K =

[
Kx Kξ KQ

]
∈ Rm×(s+p), G =

[
G1 G2

]
∈ RT×(s+p)

such that  K
Is+p

01×(s+p)

 =

U0

Z0

M

 [G1 G2

]
Then the closed-loop system[

ẋ

ξ̇

]
= A

 x
ξ

Q(x)

+ Bu+ E
[
d
r

]

u = K

 x
ξ

Q(x)


results in [

ẋ

ξ̇

]
= Z1G

 x
ξ

Q(x)

+ E
[
d
r

]
We can then design K (through G) that makes the closed-loop system contractive
and – as a byproduct – returns the integral controller that regulates e to 0.
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Design of nonlinear regulators (PI controllers)

Consider the decision variables P ∈ Sn+p×n+p, Y1 ∈ RT×n+p, G2 ∈ RT×s−n,
α ∈ R>0 and the SDP

P � 0

Z0Y1 =

[
P

0(s−n)×n+p

]

Z1Y1 + (Z1Y1)> + αIn Z1G2 P

[
RQ
0p×r

]
(Z1G2)> −Is−n 0s−n×r

(P
[
RQ
0p×r

]
)> 0r×s−n −Ir

 � 0

Z0G2 =

[
0n+p×(s−n)

Is−n

]
0 = M

[
Y1 G2

]
where

∂Q

∂x
(x)>

∂Q

∂x
(x) � RQR>Q for every x ∈ X . If it is feasible then the control

law u = K
[ x

ξ
Q(x)

]
with K = U0

[
Y1P−1 G2

]
makes the closed-loop system

exponentially contractive on X × Rp.
26 / 32



If X = Rn, then the designed nonlinear regulator

ξ̇ = e

u = K

 x
ξ

Q(x)

 where K = U0

[
Y1P−1 G2

]
induces an equilibrium (x∗, ξ∗) in the closed-loop system, i.e.

0 =

[
A+BKx BKξ Â+BKQ

C 0 Ĉ

]
︸ ︷︷ ︸

A+BK=Z1G

[
Z(x∗)
ξ∗

]
+

[
E 0
0 −I

]
︸ ︷︷ ︸

L

[
d
r

]
,

such that

(x∗, ξ∗) is globally exponentially stable (hence, boundedness of solutions)

0 = CZ(x?)− r = e? (regulation).

The designed regulator

{
ξ̇ = e

u = K
[ x

ξ
Q(x)

] is a nonlinear PI controller. The SDP

gives a method to tune offline the parameters of a PI controller for nonlinear
systems.
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Example - A flexible robot arm (continued)

ẋ1 = x2 + d1, ẋ2 = −Kc

J2
x1 −

F2

J2
x2 +

Kc

J2Nc
x3 −

mgd

J2
cosx1 + d2

ẋ3 = x4 + d3, ẋ4 = − Kc

J1Nc
x1 +

Kc

J1N2
c

x3 −
F1

J1
x4 +

1

J1
u+ d4

Experiment

x0 ∈ [−0.1, 0.1]4

u ∈ [−0.1, 0.1]

T = 10

Q(x) = cosx1 RQ = R>Q =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 X = R4

y = x1, r = π
3 , d =

[
0.1 0.2 0.3 0.4

]>
Results The solution of the SDP returns

K =
[
−3.6314 −5.9014 −5.1133 −1.0990 −0.9704 −0.0001

]
and allows the designer to tune the PI

controller


ξ̇ = e = r − y

u = K

 x
ξ

cos(x1)
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t
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Practical considerations on the collection of data
To design our PI controller we collected the dataset D := {xi, ξi, ui, ẋi, ei}T−1

i=0 from
the augmented system[

ẋ

ξ̇

]
=

[
A 0 Â

C 0 Ĉ

]
︸ ︷︷ ︸

A

 x
ξ

Q(x)

+

[
B
0

]
︸︷︷︸
B

u+

[
E 0
0 −I

]
︸ ︷︷ ︸

E

[
d
r

]

and arranged it into the data matrices U0,Z0,Z1,M that satisfy

Z1 = AZ0 + BU0 + ELM
where

U0 :=
[
u0 u1 · · · uT−1

]
Z0 :=

 x0 x1 · · · xT−1
ξ0 ξ1 · · · ξT−1

Q(x0) Q(x1) · · · Q(xT−1)

 (ξi := ξ(ti))

Z1 :=

[
ẋ0 ẋ1 · · · ẋT−1
e0 e1 · · · eT−1

]
(ei := e(ti))

L :=

[
d0
r0

]
, M = 11×T

As Z1 depends on the
samples ei := r − yi, if
the reference signal r
changes, then we need
a new dataset to design
the PI controller, which
is not desirable.
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This issue can be overcome if we collect the dataset D := {xi, ξi, ui, ẋi, yi}T−1i=0 , instead of
D := {xi, ξi, ui, ẋi, ei}T−1i=0 and define

Z1 =

[
ẋ0 ẋ1 · · · ẋT−1
y0 y1 · · · yT−1

]
instead of Z1. Consider the system’s dynamics with output

[
ẋ
y

]
=

[
A 0 Â

C 0 Ĉ

]
︸ ︷︷ ︸

A

 x
ξ

Q(x)

+

[
B
0

]
︸︷︷︸
B

u+

[
E 0
0 0

]
︸ ︷︷ ︸
E

[
d
r

]

With the data matrices U0,Z0,M defined as before, we have the identity

Z1 = AZ0 + BU0 + ELM

From here we obtain the result that if the SDP with Z1 replaced by Z1 is feasible, then a
PI controller that solves the output regulation problem exists. This time, if the reference
signal r takes a different constant value, the same PI controller continues to regulate the
output y to r.1

1In fact, due to the structure of A, the measurement of ξi can be omitted from D.
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Final comment

. In the case of data perturbed by constant exogenous signals (ḋ = 0), we found out that
the condition  K

Is
01×s

 =

U0

Z0

M

G, M = 11×T

allows us to obtain a data-dependent representation of the closed-loop system in which
the effect of d on A+BK is filtered out, i.e.,

ẋ = (A+BK)Z(x) + Ed = X1GZ(x) + Ed

. Can this property be generalized to the case of time-varying disturbances d(t)?

. Can this generalization be used to solve an output regulation problem in the presence of
time-varying exogenous signals?
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Summary Lecture 5

. Contractivity We enforced contractivity as a method to design nonlinear controllers from
data alternative to cancelling the nonlinearities.

. The design aims at dominating the growth of the nonlinearities.

. Tracking The method allows for a data-driven design of regulators for tracking.

. Noise filtering technique Unmeasured disturbances on data that are generated by known
systems are filtered out in the data-based representation.

Designing controllers for nonlinear systems from data remains a challenging problem.

Hu, De Persis, Tesi. “Enforcing contraction from data”. ArXiv, 2024.
De Persis, Rotulo, Tesi. “Learning controllers from data via approximate nonlinearity cancellation”. IEEE
Transactions on Automatic Control, 65 (3), 909-924, 2023.
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