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Data-driven control of nonlinear systems so far
In this last lecture, we look again at nonlinear continuous-time systems of the form

ẋ = AZ(x) +Bu+ Ed

We took Z : Rn → Rs as a C1 vector-valued function that includes both linear and
nonlinear functions

Z(x) =

[
x

Q(x)

]
and considered for the disturbance the model |d| ≤ δ. Here we restrict this model:

Assumption Disturbance d is constant and unknown.

The analysis to be presented below carries over if the disturbance d is time-varying
and satisfies

|d(t)| ≤ δ

with δ known. The focus on constant disturbances allows us to present a new
data-dependent represantation (“noise-filtered data-dependent” representation) in
a more compact way.
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Data-driven control of nonlinear systems so far

ẋ = AZ(x) +Bu+ Ed

Previously, we showed that, if d = 0, then the solution of the SDP

minimizeP,Y1,G2
‖X1G2‖

subject to Z0Y1 =

[
P

0(s−n)×n

]
(1a)

X1Y1 + (X1Y1)> ≺ 0 (1b)

Z0G2 =

[
0n×(s−n)
Is−n

]
(1c)

provides a stabilising feedback u = KZ(x).

. If a zero cost is attained (‖X1G2‖ = 0 – nonlinearity cancellation), then we
obtain a global asymptotic result.

. For a zero cost to be attained, the system must have a special structure (e.g.
nonlinearities matched by the control input, systems in strict feedback form)

. The purpose of today’s lecture is to present an alternative approach to
stabilization without cancelling the nonlinearity. The approach allows us to deal
with tracking problems too.
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Information collection
Information about the system’s dynamics is obtained from a T -long dataset of
input/state samples collected during (multiple) experiment(s)

D := {(ẋi, xi, ui)}T−1
i=0

where
ẋi := ẋ(ti), xi := x(ti), ui := u(ti)

and
0 ≤ t0 < t1 < . . . < tT−1

are the sampling times.

The samples satisfy

ẋi = AZ(xi) +Bui + Edi, i = 0, . . . , T − 1

Recall that we can avoid measuring the state derivatives ẋi using the integral
version of

ẋ = AZ(x) +Bu+ Ed
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A revised control problem for nonlinear systems

Problem Based on the dataset D design a state feedback controller

u = KZ(x)

that makes the closed-loop system

ẋ = (A+BK)Z(x) + Ed

exponentially contractive on X ⊆ Rn.

. The system is exponentially contractive on X if

∃P � 0, β > 0: ((A+BK)
∂Z

∂x
)>P−1 + P−1(A+BK)

∂Z

∂x
� −βP−1 ∀x ∈ X

which is a property on the Jacobian of the dynamics.

. As before, the choice u = KZ(x) allows us to express the closed-loop dynamics
in terms of the dataset D and to reduce the design of K to a convex problem.
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Why contractivity?
Global results

If X = Rn, then a unique equilibrium x∗ exists, which is globally exponentially stable.

Existence of a compact forward invariant set R for ẋ = f(x) := (A+BK)Z(x) + Ed Let
x be any point in X and V (x) = (x− x)>P−1(x− x). Then

V̇ (x) := ∇V (x)>f(x) = 2(x− x)>P−1
[
∂f

∂y

]
y∈(x,x)

(x− x) + 2(x− x)>P−1f(x)

≤ −βV (x) + ‖f(x)‖ ‖P− 1
2 ‖V (x)

1
2

Hence, the sublevel set R := {x : V (x) ≤ (β−1‖f(x)‖ ‖P− 1
2 ‖)2} is a forward invariant set

for ẋ = f(x).

Existence of a limit solution (Yakubovich & Demidovich) Consider ẋ = f(t, x), where
f(t, x) is C0 in t and C1 in x. A compact set that is forward invariant for ẋ = f(t, x)
contains a unique (limit) solution x∗(t) defined for all t ∈ (−∞,+∞). Moreover, if f(t, x)
is independent of t, then x∗(t) = x∗, i.e. the limit solution is an equilibrium.

Global exponential stability We can repeat the analysis as before with
V∗(x) = (x− x∗)>P−1(x− x∗), this time obtaining

V̇ (x) ≤ −βV (x)

thanks to f(x∗) = 0.
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Why contractivity?

Local results

If X ⊂ Rn is a convex set and there exists an equilibrium x∗ ∈ int(X ) of ẋ = f(x),
then it is locally exponentially stable.

Alternatively, if X is a convex set, which is forward invariant wrt ẋ = f(x) and
ẋ = f(x) is forward complete on X , then there exists a unique equilibrium x∗ ∈ X ,
which is locally exponentially stable.

Regulation problem

If the equilibrium x∗ is not the desired one, then contractivity allows for the design
of a controller that regulates a certain function of the state y = h(x) to a desired
value r.
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Consider the dataset

D := {(ẋi, xi, ui)}T−1
i=0 , ẋi = AZ(xi) +Bui + Edi, i = 0, . . . , T − 1

and store the samples into matrices U0, X0, X1, Z0 defined as

U0 :=
[
u0 u1 · · · uT−1

]
X0 :=

[
x0 x1 · · · xT−1

]
X1 :=

[
ẋ0 ẋ1 · · · ẋT−1

]
Z0 :=

[
Z(x0) Z(x1) . . . Z(xT−1)

]
which satisfy the identity[

ẋ0 ẋ1 · · · ẋT−1

]︸ ︷︷ ︸
X1

= A
[
Z(x0) Z(x1) . . . Z(xT−1)

]︸ ︷︷ ︸
Z0

+B
[
u0 u1 · · · uT−1

]︸ ︷︷ ︸
U0

+E
[
d0 d1 · · · dT−1

]︸ ︷︷ ︸
D0

X1 = AZ0 +BU0 +ED0
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Data-dependent representations of closed-loop nonlinear systems
Closed-loop nonlinear system ẋ = (A+BK)Z(x) + Ed

Consider any matrices K ∈ Rm×s, G ∈ RT×n such that[
K
Is

]
=

[
U0

Z0

]
G

where

U0 =
[
u0 u1 · · · uT−1

]
Z0 =

[
Z(x0) Z(x1) . . . Z(xT−1)

] X1 = AZ0 +BU0 + ED0

The matrix A+BK of the closed-loop system ẋ = (A+BK)Z(x) + Ed is
arranged as

A+BK

=
[
B A

] [K
Is

]
[
K
Is

]
=

[
U0
Z0

]
G

=
[
B A

] [U0

Z0

]
G

X1=[B A]
[
U0
Z0

]
+ED0

= (X1 − ED0)G
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A noise-filtered representation

Consider (again) the dataset

D := {(ẋi, xi, ui)}T−1
i=0 , ẋi = AZ(xi) +Bui + Edi, i = 0, . . . , T − 1

and the data matrices that satisfy

X1 = AZ0 +BU0 + ED0

We focus on D0 and observe that

D0 =
[
d0 d1 . . . dT−1

]
= d011×T =: LM

Hence

X1 = AZ0 +BU0 + ELM

The perturbation D0 due to the disturbance can be split into two factors, the first
one of which, L, is unknown and the second one, M , is known.
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Consider any matrices K ∈ Rm×s, G ∈ RT×s such that K
Is

01×s

 =

U0

Z0

M

G
The matrix A+BK of the closed-loop system ẋ = (A+BK)Z(x) + Ed is
arranged as

A+BK

=
[
B A EL

] KIs
0


KIn

0

=
U0
Z0
M

G
=

[
B A EL

] U0

Z0

M

G
X1=[B A EL]

U0
Z0
M


= X1G

10 / 32



Consider any matrices K ∈ Rm×s, G ∈ RT×s such thatKIs
0

 =

U0

Z0

M

G
Partition G as

G =
[
G1 G2

]
T

n s−n

n dimension of x, s− n dimension of Q(x)

The closed-loop system ẋ = (A+BK)Z(x) + Ed, where Z(x) =

[
x

Q(x)

]
, results in

the data-dependent representation

ẋ = X1G1x+X1G2Q(x) + Ed

. The representation depends on data U0, Z0, X1 and design variables G1, G2

. The unknown disturbance d affecting the dataset is filtered out via a suitable
choice of G enforced by the additional condition 01×s = MG.
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Enforcing contractivity from data – recap so far
A dataset

D := {(ẋi, xi, ui)}T−1i=0

is obtained from off-line experiments conducted on the system

ẋ = AZ(x) +Bu+ Ed

and data are organized into matrices U0, X0, X1, Z0 that satisfy

X1 = AZ0 +BU0 + ED0

To design a controller u = KZ(x), we look for G =
[
G1 G2

]
that satisfiesKIs

0

 =

U0

Z0

M

G where M = 11×T

and makes
ẋ = X1G1x+X1G2Q(x) + Ed

exponentially contractive.

D0 is unknown but can be factored as D0 = LM , where M = 11×T known.
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A formula for enforcing contraction via dataKIs
0

 =

U0

Z0

M

G, ẋ = X1G1x+X1G2Q(x) + Ed

Consider the decision variables P ∈ Sn×n, Y1 ∈ RT×n, G2 ∈ RT×n, α ∈ R>0 and the SDP

P � 0 (2a)

Z0Y1 =

[
P

0(s−n)×n

]
(2b)X1Y1 + (X1Y1)> + αIn X1G2 PRQ

(X1G2)> −Is−n 0s−n×r
(PRQ)> 0r×s−n −Ir

 � 0 (2c)

Z0G2 =

[
0n×(s−n)
Is−n

]
(2d)

0 = M
[
Y1 G2

]
(2e)

where
∂Q

∂x
(x)>

∂Q

∂x
(x) � RQR>Q for every x ∈ X . If it is feasible then the control law

u = KZ(x) with
K = U0

[
Y1P

−1 G2

]
makes the closed-loop system exponentially contractive on X .
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Constraint (2b) can be equivalently written as

(2b) Z0Y1 =

[
P

0(s−n)×n

]
⇔ Z0Y1P

−1 =

[
In

0(s−n)×n

]
, (2d) Z0G2 =

[
0n×(s−n)
Is−n

]
Perform the change of variable G1 := Y1P

−1, to obtain Z0

[
G1 G2

]
= Is.

By the same change of variable, the control gain
K = U0

[
Y1P

−1 G2

]
can be written as

K = U0

[
G1 G2

] (2e) 0 = M
[
Y1 G2

]
can be

written as 0 = M
[
G1 G2

]
Hence,

[
K
Is
0

]
=
[
U0

Z0

M

]
G. This yields A+BK = (AZ0 +BU0 + ELM) = X1G.

Applying the Schur complement, constraint (2c)

X1Y1 + (X1Y1)
> + αIn X1G2 PRQ

(X1G2)
> −Is−n 0s−n×r

(PRQ)> 0r×s−n −Ir

 � 0

is equivalently written as[
X1Y1 + (X1Y1)> + αIn X1G2

(X1G2)> −Is−n

]
+

[
PRQ

0s−n×r

] [
(PRQ)> 0r×s−n

]
� 0

and, applying the Schur complement once more, as

X1Y1 + (X1Y1)> +X1G2(X1G2)> + PRQ(PRQ)> + αIn � 0
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Thus, we have written the constraint (2c) as

X1Y1 + (X1Y1)> +X1G2(X1G2)> + PRQ(PRQ)> + αIn � 0

Recall the change of variable G1 = Y1P
−1 and note that

∂Q

∂x
(x)>

∂Q

∂x
(x) � RQR>Q ∀x ∈ X =⇒ P

∂Q

∂x
(x)>

∂Q

∂x
(x)P � PRQR>QP ∀x ∈ X

Hence,

X1G1P + (X1G1P )> +X1G2G
>
2 X
>
1 + P

∂Q

∂x
(x)>

∂Q

∂x
(x)P + αIn � 0 ∀x ∈ X

By a completion of the squares argument

0 � (X1G2−P
∂Q

∂x

>
)(G>2 X

>
1 −

∂Q

∂x
P ) = X1G2G

>
2 X
>
1 −X1G2

∂Q

∂x
P −P ∂Q

∂x

>
G>2 X

>
1 +P

∂Q

∂x

> ∂Q

∂x
P

we obtain

X1G1P + (X1G1P )> + P
∂Q

∂x

>
G>2 X

>
1 +X1G2

∂Q

∂x
P + αIn � 0 ∀x ∈ X

i.e.

X1

[
G1 G2

] [ In
∂Q
∂x

]
P + P

[
In
∂Q
∂x

]> [
G1 G2

]>
X>1 + αIn � 0 ∀x ∈ X

or

P−1(A+BK)
∂Z

∂x
+
∂Z

∂x

>
(A+BK)>P−1 � −βP−1 ∀x ∈ X ,with β :=

α

λmax(P )
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Discussion
Growth condition To derive the result, we introduce a growth condition on the
nonlinearities of Z(x)

The nonlinearities Q(x) satisfy

∂Q

∂x
(x)>

∂Q

∂x
(x) � RQR>Q for any x ∈ X

for some known matrix RQ.

Since Q(x) is continuous, RQ exists when X is a compact set. Otherwise, the
existence of RQ must be considered as an assumption.

Aim of the controller Constraint (2c)

X1Y1 + (X1Y1)
> + αIn X1G2 PRQ

(X1G2)
> −Is−n 0s−n×r

(PRQ)> 0r×s−n −Ir

 � 0 implies

P−1X1G1 + (P−1X1G1)> + P−1X1G2(X1G2)>P−1 +RQR
>
Q + αP−2 � 0

This reveals that the linear part of the controller aims at dominating the nonlinear
part X1G2

∂Q
∂x of the dynamics.

16 / 32



Asymptotic behavior
Global results If X = Rn, then the designed feedback controller induces the
equilibrium x∗ in the closed-loop dynamics

ẋ = (A+BK)Z(x) + Ed

and makes it globally exponentially stable.

Local result If X ⊂ Rn and the designed feedback controller

u = KZ(x), K = U0

[
Y1P

−1 G2

]
induces an equilibrium x∗ in int(X ) for the closed-loop dynamics, i.e.,

(A+BK)Z(x∗) + Ed = 0 for some x∗ ∈ int(X )

then x∗ is exponentially stable.

The case d = 0 The result holds under the same SDP (the controller must still
dominate the nonlinearities) but in this case we can analytically determine whether
or not there exists x∗ such that (A+BK)Z(x∗) = 0 because A+BK = X1G.

17 / 32



An example - A flexible robot arm
ẋ1 = x2

ẋ2 = −Kc

J2
x1 −

F2

J2
x2 +

Kc

J2Nc
x3 −

mgd

J2
cosx1

ẋ3 = x4

ẋ4 = − Kc

J1Nc
x1 +

Kc

J1N2
c

x3 −
F1

J1
x4 +

1

J1
u

Experiment

x0 ∈ [−0.1, 0.1]4

u ∈ [−0.1, 0.1]

T = 10

Q(x) = cosx1, RQ = R>Q =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , X = R4

Results The SDP is feasible and returns the controller gain

K =
[
−3.1639 −4.6751 −3.9299 −0.7614 0.0106

]
and the closed-loop system ẋ =

 0.0000 1.0000 0.0000 0.0000 0.0000
−2.0000 −0.7500 1.0000 0.0000 −1.9600
0.0000 0.0000 0.0000 1.0000 0.0000
−22.4261 −31.1671 −25.5328 −5.7430 0.0708

Z(x).

Since the latter is contractive, the equilibrium x∗ exists and computable via

X1GZ(x∗) = 0, which gives x∗ =
[
−0.5718 0 0.5046 0

]>
.
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Example (continued)
Let us include additional nonlinearities in Q(x)

Q(x) =

cosx1
x21

sinx2

 , ∂Q

∂x
(x)>

∂Q

∂x
(x) =


sin(x1)2 + 4x21 0 0 0

0 cos(x2)2 0 0
0 0 0 0
0 0 0 0

 .
If we choose X = [−w,w]× R3, where w ∈ R>0, then the growth condition

∂Q

∂x
(x)>

∂Q

∂x
(x) � RQR>Q

is satisfied on X with

RQ = R>Q =


√

4w2 + 1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 .
Here, we set w = 1 and solve the SDP with the new value of RQ and find the controller
gain

K =
[
−280.8884 −257.1662 −91.3493 −8.2326 0.1591 −0.0032 −0.0030

]
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The controller returns the closed-loop system

ẋ =


0.0000 1.0000 0.0000 0.0000 0.0000 −0.0000 −0.0000
−2.0000 −0.7500 1.0000 0.0000 −1.9600 0.0000 0.0000
0.0000 0.0000 0.0000 1.0000 −0.0000 0.0000 0.0000

−1873.9225 −1714.4416 −608.3286 −55.5510 1.0603 −0.0213 −0.0201

Z(x)

which is known to the designer since it coincides with ẋ = X1GZ(x). We can solve for x∗
in X1GZ(x∗) = 0 and find out that the equation has a solution

x∗ =
[
−0.3607 0 1.1126 0

]>
,

which belongs to int(X ). Hence, it is exponentially stable.

Comment 1 Solutions initialized outside the largest sublevel set of x>P−1x contained X
still converge to x∗, suggesting a much larger RoA than the certifiable one.

Comment 2 The SDP remains feasible for values of w up to 100, to which it corresponds
higher controller gains, consistent with the observation that the proposed control design
dominate the growth of the nonlinearities.
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Steering towards a desired equilibrium

Making the closed-loop system contractive allows the designer to guarantee
asymptotic properties of an equilibrium without knowing the equilibrium. This is
useful in the data-driven control design context where the model is uncertain. A
drawback, though, is that the equilibrium might differ from the desired one. We
deal now with this problem formulating an output regulation problem.

As a first step, we endow the system with an output of interest

ẋ = AZ(x) +Bu+ Ed
y = CZ(x)

where C is an unknown matrix. We would like to design a controller that steers
the output y ∈ Rp to a prescribed constant reference signal r.

To this purpose, we assume to measure the regulation error

e = r − y
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Given the state x and the regulated error e, we would like to design the controller

ξ̇ = e
u =

[
Kx KQ

]︸ ︷︷ ︸
K

Z(x) +Kξξ

that, for the closed-loop system

ẋ = AZ(x) +Bu+ Ed
e = r − CZ(x)

ξ̇ = e
u = KZ(x) +Kξξ,

guarantees
(i) boundedness of the solution (x(t), ξ(t));
(ii) limt→+∞ e(t) = 0.

The feedback law u = KZ(x) +Kξξ has the task of making the augmented
dynamics [

ẋ

ξ̇

]
=

[
A 0
C 0

] [
Z(x)
ξ

]
+

[
B
0

]
u+

[
E 0
0 −I

] [
d
r

]
contractive.
The internal model controller ξ̇ = e induces an equilibrium for which e = 0.
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The goal is to design the feedback law

u = KZ(x) +Kξξ

that makes the augmented dynamics[
ẋ

ξ̇

]
=

[
A 0
C 0

] [
Z(x)
ξ

]
+

[
B
0

]
u+

[
E 0
0 −I

] [
d
r

]
contractive.
It is easier to to realize that we are in the same setup considered previously if we arrange
the quantities Z(x), ξ in a suitable order, namely as in the vector x

ξ
Q(x)


and rewrite the augmented dynamics above accordingly, i.e.[

ẋ

ξ̇

]
=

[
A 0 Â

C 0 Ĉ

]
︸ ︷︷ ︸

A

 x
ξ

Q(x)

+

[
B
0

]
︸︷︷︸
B

u+

[
E 0
0 −I

]
︸ ︷︷ ︸

E

[
d
r

]

where we used the partition

AZ(x) =
[
A Â

] [ x
Q(x)

]
, CZ(x) =

[
C Ĉ

] [ x
Q(x)

]
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The goal is to design the feedback law

u = KZ(x) +Kξξ

that makes the augmented dynamics[
ẋ

ξ̇

]
=

[
A 0 Â

C 0 Ĉ

]
︸ ︷︷ ︸

A

 x
ξ

Q(x)

+

[
B
0

]
︸︷︷︸
B

u+

[
E 0
0 −I

]
︸ ︷︷ ︸

E

[
d
r

]

contractive.

We collect the dataset D := {xi, ξi, ui, ẋi, ei}T−1i=0 from the augmented system and arrange
it into the data matrices U0,Z0,Z1,M that satisfy

Z1 = AZ0 + BU0 + ELM
where

U0 :=
[
u0 u1 · · · uT−1

]
Z0 :=

 x0 x1 · · · xT−1
ξ0 ξ1 · · · ξT−1

Q(x0) Q(x1) · · · Q(xT−1)

 (ξi := ξ(ti))

Z1 :=

[
ẋ0 ẋ1 · · · ẋT−1
e0 e1 · · · eT−1

]
(ei := e(ti))

L :=

[
d0
r0

]
, M = 11×T
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Data-dependent representation of the augmented dynamics
Consider any matrices K =

[
Kx Kξ KQ

]
∈ Rm×(s+p), G =

[
G1 G2

]
∈ RT×(s+p)

such that  K
Is+p

01×(s+p)

 =

U0

Z0

M

 [G1 G2

]
Then the closed-loop system[

ẋ

ξ̇

]
= A

 x
ξ

Q(x)

+ Bu+ E
[
d
r

]

u = K

 x
ξ

Q(x)


results in [

ẋ

ξ̇

]
= Z1G

 x
ξ

Q(x)

+ E
[
d
r

]
We can then design K (through G) that makes the closed-loop system contractive
and – as a byproduct – returns the integral controller that regulates e to 0.
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Design of nonlinear regulators (PI controllers)

Consider the decision variables P ∈ Sn+p×n+p, Y1 ∈ RT×n+p, G2 ∈ RT×s−n,
α ∈ R>0 and the SDP

P � 0

Z0Y1 =

[
P

0(s−n)×n+p

]

Z1Y1 + (Z1Y1)> + αIn Z1G2 P

[
RQ
0p×r

]
(Z1G2)> −Is−n 0s−n×r

(P
[
RQ
0p×r

]
)> 0r×s−n −Ir

 � 0

Z0G2 =

[
0n+p×(s−n)

Is−n

]
0 = M

[
Y1 G2

]
where

∂Q

∂x
(x)>

∂Q

∂x
(x) � RQR>Q for every x ∈ X . If it is feasible then the control

law u = K
[ x

ξ
Q(x)

]
with K = U0

[
Y1P−1 G2

]
makes the closed-loop system

exponentially contractive on X × Rp.
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If X = Rn, then the designed nonlinear regulator

ξ̇ = e

u = K

 x
ξ

Q(x)

 where K = U0

[
Y1P−1 G2

]
induces an equilibrium (x∗, ξ∗) in the closed-loop system, i.e.

0 =

[
A+BKx BKξ Â+BKQ

C 0 Ĉ

]
︸ ︷︷ ︸

A+BK=Z1G

[
Z(x∗)
ξ∗

]
+

[
E 0
0 −I

]
︸ ︷︷ ︸

L

[
d
r

]
,

such that

(x∗, ξ∗) is globally exponentially stable (hence, boundedness of solutions)

0 = CZ(x?)− r = e? (regulation).

The designed regulator

{
ξ̇ = e

u = K
[ x

ξ
Q(x)

] is a nonlinear PI controller. The SDP

gives a method to tune offline the parameters of a PI controller for nonlinear
systems.
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Example - A flexible robot arm (continued)

ẋ1 = x2 + d1, ẋ2 = −Kc

J2
x1 −

F2

J2
x2 +

Kc

J2Nc
x3 −

mgd

J2
cosx1 + d2

ẋ3 = x4 + d3, ẋ4 = − Kc

J1Nc
x1 +

Kc

J1N2
c

x3 −
F1

J1
x4 +

1

J1
u+ d4

Experiment

x0 ∈ [−0.1, 0.1]4

u ∈ [−0.1, 0.1]

T = 10

Q(x) = cosx1 RQ = R>Q =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 X = R4

y = x1, r = π
3 , d =

[
0.1 0.2 0.3 0.4

]>
Results The solution of the SDP returns

K =
[
−3.6314 −5.9014 −5.1133 −1.0990 −0.9704 −0.0001

]
and allows the designer to tune the PI

controller


ξ̇ = e = r − y

u = K

 x
ξ

cos(x1)


0 10 20 30 40 50 60

t

-3

-2

-1

0

1

2

3

4

5

x

x
1

x
2

x
3

x
4

r
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Practical considerations on the collection of data
To design our PI controller we collected the dataset D := {xi, ξi, ui, ẋi, ei}T−1

i=0 from
the augmented system[

ẋ

ξ̇

]
=

[
A 0 Â

C 0 Ĉ

]
︸ ︷︷ ︸

A

 x
ξ

Q(x)

+

[
B
0

]
︸︷︷︸
B

u+

[
E 0
0 −I

]
︸ ︷︷ ︸

E

[
d
r

]

and arranged it into the data matrices U0,Z0,Z1,M that satisfy

Z1 = AZ0 + BU0 + ELM
where

U0 :=
[
u0 u1 · · · uT−1

]
Z0 :=

 x0 x1 · · · xT−1
ξ0 ξ1 · · · ξT−1

Q(x0) Q(x1) · · · Q(xT−1)

 (ξi := ξ(ti))

Z1 :=

[
ẋ0 ẋ1 · · · ẋT−1
e0 e1 · · · eT−1

]
(ei := e(ti))

L :=

[
d0
r0

]
, M = 11×T

As Z1 depends on the
samples ei := r − yi, if
the reference signal r
changes, then we need
a new dataset to design
the PI controller, which
is not desirable.
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This issue can be overcome if we collect the dataset D := {xi, ξi, ui, ẋi, yi}T−1i=0 , instead of
D := {xi, ξi, ui, ẋi, ei}T−1i=0 and define

Z1 =

[
ẋ0 ẋ1 · · · ẋT−1
y0 y1 · · · yT−1

]
instead of Z1. Consider the system’s dynamics with output

[
ẋ
y

]
=

[
A 0 Â

C 0 Ĉ

]
︸ ︷︷ ︸

A

 x
ξ

Q(x)

+

[
B
0

]
︸︷︷︸
B

u+

[
E 0
0 0

]
︸ ︷︷ ︸
E

[
d
r

]

With the data matrices U0,Z0,M defined as before, we have the identity

Z1 = AZ0 + BU0 + ELM

From here we obtain the result that if the SDP with Z1 replaced by Z1 is feasible, then a
PI controller that solves the output regulation problem exists. This time, if the reference
signal r takes a different constant value, the same PI controller continues to regulate the
output y to r.1

1In fact, due to the structure of A, the measurement of ξi can be omitted from D.
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Final comment

. In the case of data perturbed by constant exogenous signals (ḋ = 0), we found out that
the condition  K

Is
01×s

 =

U0

Z0

M

G, M = 11×T

allows us to obtain a data-dependent representation of the closed-loop system in which
the effect of d on A+BK is filtered out, i.e.,

ẋ = (A+BK)Z(x) + Ed = X1GZ(x) + Ed

. Can this property be generalized to the case of time-varying disturbances d(t)?

. Can this generalization be used to solve an output regulation problem in the presence of
time-varying exogenous signals?
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Summary Lecture 5

. Contractivity We enforced contractivity as a method to design nonlinear controllers from
data alternative to cancelling the nonlinearities.

. The design aims at dominating the growth of the nonlinearities.

. Tracking The method allows for a data-driven design of regulators for tracking.

. Noise filtering technique Unmeasured disturbances on data that are generated by known
systems are filtered out in the data-based representation.

Designing controllers for nonlinear systems from data remains a challenging problem.
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