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bstract
Despite the widespread intuitive appeal of the concept of steady-state response and its use in shaping the asymptotic behavior of control

systems, this concept has only been rigorously defined for finite-dimensional, linear time invariant systems. In this paper, we investigate this

concept for nonlinear systems, following some classical developments in nonlinear dynamics. As an application, we show how the concept in

question plays a role of paramount importance in the design of control laws for asymptotic tracking and disturbance attenuation.
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1. The classical notion of steady state

One of the main concerns in the analysis and design of

control systems, is the ability to influence or shape the response

of a given system to assigned external inputs. This can

sometimes be achieved by finding the open-loop input which

generates a prescribed trajectory. On the other hand, the use of

closed-loop control is almost always the solution of choice in

the presence of uncertainties affecting the control systems itself

as well as the external inputs to which the response has to be

shaped. Among various possible criteria by means of which

responses can be analyzed and classified, a classical viewpoint

– dating back to the origins of control theory – consists on the

separation between steady state and transient responses.

There are several well-known strong arguments in support of

the important role played by the idea of a steady-state response

in system analysis and design. On one hand, in a large number

of cases it is actually required, as a design specification, that the

controlled system evolves, as time increases, toward a steady

state in which one or more variables describing its behavior
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exactly match one or more prescribed functions of time. This is

for instance the case in the classical set-point control problem,

in which the output of the controlled system is required to

asymptotically converge to a fixed (but otherwise arbitrary or

undetermined) value. Another well-known instance is the case

in which the output of a system is required to asymptotically

track (or reject) a prescribed sinusoidally varying trajectory (or

disturbance) of fixed frequency (but otherwise arbitrary in

amplitude and phase). On the other hand, it is well known – at

least in linear system theory – that the ability to analyze and

shape the steady-state response to sinusoidally varying inputs

also provides a powerful tool for the analysis and, to a some

extent, for the design of the transient behavior.

Given the central importance of the notion of steady-state

response, it is somewhat surprising that a rigorous investigation

and delineation of this concept has never been fully developed

in the system and control literature, especially for nonlinear

systems. The separation between steady and transient states

presumes, of course, the ability to be able to discern whether or

not a given system exhibits either one of these two kinds of

behavior. In this respect, a precise, but somewhat restricted,

definition of steady state is the one that can be found in the

classical textbook of Gardner and Barnes (1942): ‘‘A dynamical

system is said to be in the steady state when the variables

describing its behavior are either invariant with time, or are

(sections of) periodic functions of time. A dynamical system is

said to be in the transient (or unsteady) state when it is not in
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steady state.’’ In this distinction there is no predetermined

separation between inputs and outputs. Rather, the system is

only analyzed in terms of how the variables describing its

behavior depend on time. This viewpoint applies to general

dynamical systems and not necessarily to control systems with

input and output variables; it is a precursor (at least so long as

the notion of steady state is concerned) of the ‘‘behavioral’’

viewpoint proposed in much more recent times by Willems

(1991). Note also that, consistently with the behavioral

framework, this definition speaks of steady state and not of

steady-state response. However, if among the variables

describing the behavior of the system one or more can be

viewed as inputs, and if all such variables are either constant or

periodically varying, then it makes sense to speak of a steady-

state response whenever all other variables describing the

behavior of the system also exhibit the same periodic variation.

This notion of steady state of course, is quite restrictive, as

it only applies to cases in which all relevant variables which

describe the behavior of a dynamical systems are periodic

(constant in particular) functions of time. It excludes a

number of situations that one would under any circumstances

consider as manifestations of a steady-state behavior. For

instance, it excludes the simple case in which the variables

describing the behavior of the system can be expressed as

linear combinations of sinusoidal functions (of time) with at

least two frequencies whose ratio is not a rational number. In

this case, the variables in question are not periodically

varying, but by all means it would be natural to say that the

system is still in steady state.

Motivated by this classical idea of a steady state (extended to

cover the case of irrationally related sinusoidal functions of

time) and by the fact that, in a stable linear system, any transient

state asymptotically approaches a steady state, it is a common

practice to regard a steady state as a kind of limit behavior.

From this viewpoint, the steady state can be looked at as either

the limit behavior which is approached when the actual time t

tends to þ1 or, respectively, the limit behavior which is

approached when the initial time t0 tends to �1. The two

alternatives are equivalent for a stable linear system. From this

viewpoint we note, for instance, that in the classical book of

James, Nichols, and Phillips (1947) it is observed that ‘‘the

transient response of [a linear] filter is the difference between

the actual output of the filter for t> t0 and the asymptotic form

that it approaches’’ and that ‘‘only when a filter is stable it is

possible to speak with full generality of its response to an input

that starts indefinitely far in the past.’’ In slightly more general

terms, the book of Zadeh and Desoer (1963) defines a ‘‘ground

state [of the system], if it exists, [as] the limiting terminal state

of [the system] when the zero input is applied, . . ., provided the

limiting state g is the same for all initial states’’ and afterward

define ‘‘the steady-state response [of the system] to an input

uðt0;t� [as] the limit, if it exists, of the ground-state response of

[the system] to u as t0! �1.’’ Furthermore it is observed that

‘‘usually [the system] and u are such that, in [the expression of

the response], g can be replaced by an arbitrary initial state a

without affecting the limiting value of the response as

t0! �1.’’
2. Limit sets

2.1. The limit set of a point

The principle inspiring the study of the steady-state response

of a linear system to sinusoidally varying inputs, which had so

much influence in the analysis and design of linear control

systems, is indeed the same principle which is behind the

investigation of forced oscillations in nonlinear systems, a

classical problem with its origin in celestial mechanics. In this

respect it must be stressed that for a nonlinear system forced by

a sinusoidally varying input, the situation is far more complex

than those outlined above, with the possibility of one, or

several, forced oscillations with varying stability characteristics

occurring. In addition, the fundamental harmonic of these

periodic responses may agree with the frequency of the forcing

term (harmonic oscillations), or with integer multiples or

divisors of the forcing frequency (higher harmonic, or

subharmonic, oscillations) or none of the above. Despite a

vast literature on nonlinear oscillations, only for second order

systems is there much known about the existence and stability

of forced oscillation and, in particular, which of these kinds of

periodic responses might be asymptotically stable. Essentially

most of methods for determining the existence and stability of

forced periodic trajectories repose on H. Poincaré’s classical

idea of seeking the existence of fixed points for the map that

associates with any (initial) condition xð0Þ, the point xðTÞ
reached after T units of time. In fact, fixed points of this map are

points from which a periodic trajectory of period T is generated.

On the other hand, while an isolated periodic motion is truly

nonlinear phenomenon, oscillations are not the only nontrivial

asymptotic behaviors for nonlinear systems, as the actual time

tends to þ1 or, respectively, as the initial time tends to �1.

This motivates the need for a fresh approach to the whole

question of defining the steady state of a nonlinear system,

capable of covering the largest possible number of applications.

Since the idea of considering a system in steady state when the

variables describing its behavior are periodically (or almost

periodically) varying is too restrictive, it is reasonable to try to

look at the other classical characterizations outlined above,

associated to the ‘‘limit behavior’’ of the system. Fundamental

contributions, in the theory of dynamical systems, toward the

characterization of such behavior are the works of H. Poincaré

and G.D. Birkhoff. In particular Birkhoff, in his classical 1927

essay (which was considered by J. Moser ‘‘a continuation of

Poincaré’s profound and extensive work on celestial

mechanics’’), provided the appropriate definitions that made

him possible to claim that ‘‘with an arbitrary dynamical system

. . . there is associated always a closed set of ‘central motions’

which do possess this property of regional recurrence, toward

which all other motions of the system in general tend

asymptotically’’ (Birkhoff, 1927, p. 190).

The first of such definitions is the concept of v-limit (or a-

limit) set of a given point, which is consists in what follows.

Consider an autonomous ordinary differential equation

ẋ ¼ f ðxÞ (1)



Fig. 1. The v-limit set of a point.
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with x2Rn, t2R. It is well known that, if f : Rn!Rn is

locally Lipschitz, for all x0 2Rn the solution of (1) with initial

condition xð0Þ ¼ x0, denoted by xðt; x0Þ, exists on some open

interval of the point t ¼ 0 and is unique. Assume, in particular,

that xðt; x0Þ is defined for all t� 0. A point x is said to be an v-

limit point of the motion xðt; x0Þ if there exists a sequence of

times ftkg, with lim k!1tk ¼ 1, such that

lim
k!1

xðtk; x0Þ ¼ x:

The v-limit set of a point x0, denoted vðx0Þ, is the union of all

v-limit points of the motion xðt; x0Þ (see Fig. 1).

Likewise, assume that xðt; x0Þ is defined for all t � 0. A point

x is said to be an a-limit point of the motion xðt; x0Þ if there

exists a sequence of times ftkg, with lim k!1tk ¼ �1, such

that

lim
k!1

xðtk; x0Þ ¼ x:

The a-limit set of a point x0, denoted aðx0Þ, is the union of all a-

limit points of the motion xðt; x0Þ.
It is obvious from this definition that an v-limit point i s not

necessarily a limit of xðt; x0Þ as t!1, because the solution in

question may not admit any limit as t!1. It happens though,

that if the motion xðt; x0Þ is bounded, then xðt; x0Þ asympto-

tically approaches the set vðx0Þ. This property is precisely

characterized in the following statement (Birkhoff, 1927, p.

198).

Lemma 1. Suppose there is a number M such that kxðt; x0Þk �
M for all t� 0. Then, vðx0Þ is a nonempty compact connected

set, invariant under (1). Moreover, the distance of xðt; x0Þ from

vðx0Þ tends to 0 as t!1.

One of the remarkable features of vðx0Þ, as indicated in

Lemma 1, is the fact that this set is invariant for (1). Invariance

means that for all initial condition x̄0 2vðx0Þ the solution

xðt; x̄0Þ of (1) exists for all t2 ð�1;þ1Þ and that

xðt; x̄0Þ 2vðx0Þ for all such t. In particular, it is somewhat

surprising to observe that, even in case the solution xðt; x0Þ is

not defined for all negative times, the solution xðt; x̄0Þ, i.e. the

solution passing through a point x̄0 of the v-limit set of x0, is
always defined for all negative (and positive) times, and is

moreover bounded, since the set vðx0Þ is compact. Put in

different terms, the set vðx0Þ is filled by motions of (1) which

are bounded backward and forward in time. The other

remarkable feature is that xðt; x0Þ approaches vðx0Þ as

t!1, in the sense that the distance of the point xðt; x0Þ from

the set vðx0Þ tends to 0 as t!1 (recall that the distance of a

point x of Rn from a set S of Rn, denoted distðx; SÞ, is the

nonnegative number inf y2 Skx� yk). Corresponding properties

hold, of course, for the a-limit set of a motion.

We recognize in these properties some of the keywords

which have already occurred in the summary of the classical

notion of steady state: the existence of motions which are

defined backward and forward in time (as periodic motions are)

and the convergence of any actual motion to a set filled with

such special motions, as observed by Birkhoff. However, as

promising as this seems, there are some very limiting features

about a definition of steady-state behavior based only on the

concept of v-limit set of a point. Before proceeding further, we

illustrate this concept with a couple of simple examples.

Example. Let the stable, one-dimensional, linear system

ẏ ¼ �yþ u (2)

be forced by the input uðtÞ ¼ U sin ðvt þ fÞ. According to the

classical definition given in the previous section, this system is

in steady state if yðtÞ is a periodic function of period T ¼ 2p=v
and it is well known that this occur if yð0Þ is chosen appro-

priately. To determine the value of yð0Þ which makes this

happen, i.e. to evaluate the steady-state response of the system

to the given uðtÞ, regard uðtÞ as one of the state variables of a

harmonic oscillator oscillating at angular frequency v, that is,

set

x1ðtÞ ¼ u ¼ U sin ðvt þ fÞ;

x2ðtÞ ¼
1

v
u̇ðtÞ ¼ U cos ðvt þ fÞ

in which case

ẋ1

ẋ2

� �
¼ 0 v

�v 0

� �
x1

x2

� �
: (3)

Set also y ¼ x3, to represent the system, along with its

forcing input, as a three-dimensional autonomous linear system

ẋ1

ẋ2

ẋ3

0
@

1
A ¼ 0 v 0

�v 0 0

1 0 �1

0
@

1
A x1

x2

x3

0
@

1
A; xð0Þ ¼

U sin f

U cos f

yð0Þ

0
@

1
A:

(4)

Integration of this system is a standard exercise. Change x3

into

z ¼ x3 �P
x1

x2

� �



Fig. 2. The phase portrait of Van der Pol’s oscillator (5).
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with P solution of the Sylvester equation

P
0 v

�v 0

� �
¼ �P þ ð 1 0 Þ:

This yields

ż ¼ �z

from which it is concluded that

yðtÞ ¼ x3ðtÞ

¼ e�t yð0Þ �P
U sin f

U cos f

� �� �
þP

U sin ðvt þ fÞ
U cos ðvt þ fÞ

� �
:

It is seen from this that the value of yð0Þ for which xðt; x0Þ is

periodic, i.e. for which the system is in steady state according to

the classical definition, is

yð0Þ ¼ P
U sin f

U cos f

� �
:

If this is the case, then

yðtÞ ¼ P
U sin ðvt þ fÞ
U cos ðvt þ fÞ

� �
;

and this is precisely what is commonly considered a steady-

state response of system (2) to the input uðtÞ ¼ U sin ðvt þ fÞ.

Viewing system (2) driven by the harmonic input uðtÞ as a

single autonomous system, such as (4), has a number of

advantages. For instance, it simplifies the calculation of the

steady-state response to a given family of inputs: those obtained

for different values of U and f. As a matter of fact, what we

need to consider in this case is no longer a specific response to a

forcing input, but rather the behavior of an autonomous system

as certain initial conditions (those of x1 and x2 in (4)) are

allowed to vary. In this respect, the previous conclusion can be

rephrased by saying that system (4) is in steady state if and only

if the initial condition xð0Þ is a point of the plane

P ¼ x2R3 : x3 ¼ P
x1

x2

� �� �
:

Revisiting this elementary analysis from the viewpoint of the

concept of v-limit set, it is readily observed that, for any

x0 2R3, the set vðx0Þ is the ellipse defined as follows:

vðx0Þ ¼ ðx1; x2; x3Þ 2R3 : x2
1 þ x2

2 ¼ x2
1;0 þ x2

2;0;

x3 ¼ P
x1

x2

� �

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
:

Example. As a second, nonlinear, example, consider now the

classical Van der Pol oscillator, written in state-space form as

ẋ ¼ y; ẏ ¼ �x� eð1� x2Þy (5)
in which, as it is well known, the damping term �eð1� x2Þy
models the effect of a nonlinear resistor (see Khalil, 2002).

From the phase portrait of this system (depicted in Fig. 2 for

e ¼ 1) it is seen that all motions except the trivial motion

occurring for x0 ¼ 0 approach, as t!1, a limit cycle L. The

system is in steady state, according to the classical definition, if

and only if either xð0Þ ¼ 0 or xð0Þ 2L. Note also that the limit

cycle L is the v-limit set of any point x0 6¼ 0 while the point

x ¼ 0 is the v-limit set of the point x0 ¼ 0.

Since any motion xðt; x0Þ which is bounded in positive time

asymptotically approaches the v-limit set vðx0Þ as t!1, one

may be tempted to look, for a system (1) in which all motions

are bounded in positive time, at the union of the limit sets of all

points x0, that is, at the set

V ¼
[

x0 2Rn

vðx0Þ

and to say that the system is in steady state if xð0Þ 2V.

In this respect, note that in system (4) the set V is the entire

plane P, while in system (5) the set V consists of the union of

the equilibrium point {0} and of the limit cycle L. Since all

motions of systems (4) and (5) are bounded in positive time and

asymptotically approach the (respective) sets V as t increases, it

may seem that the set in question is the right object to look at for

a definition of steady state. There is however a remarkable

difference between the two cases: the type of convergence.

In both cases, as Lemma 1 says, the distance of xðt; x0Þ from

V tends to 0 as t!1, but while in the first example the

convergence is uniform in x0, for all x0 within a set of finite

distance from V, in the second example it is not. To examine

this difference in more detail, recall that to say that the distance

of xðt; x0Þ from a set S tends to 0 as t!1 is to say that for every

e there exists T such that

distðxðt; x0Þ; SÞ � e for all t� T : (6)

The number T in this expression obviously depends on e, but it

also generally depends on x0; as a matter of fact, the larger the

distance of x0 from S is, the more one can expect to wait until

xðt; x0Þ comes within an e-distance from S. However, one might

hope that if the initial distance of x0 from S is bounded by a
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fixed number, then the time required to get within an e-distance

from S would only depend on e and not on x0. Formalizing this

concept, let BdðSÞ denote the set of all points whose distance

from S does not exceed a given number d, that is

BdðSÞ ¼ fx2Rn : distðx; SÞ � dg:

The distance of xðt; x0Þ from S is said to tend to 0, as t!1,

uniformly in x0 on BdðSÞ, if for every e there exists T, which

depends on e and d but not on x0, such that (6) holds for all

x0 2BdðSÞ.
Well, it is readily seen that in the case of example (4) the

convergence is uniform, while in the second example it is not.

To this end observe that in the first example, in which V

coincides with the plane P, it is always possible to find two

numbers c1 and c2 such that, for all x,

c1 distðx;VÞ � jzj � c2 distðx;VÞ:

Thus, using the fact that ż ¼ �z, one obtains the estimate

distðxðt; x0Þ;VÞ �
c2

c1

distðx0;VÞ e�t;

from which it immediately follows that xðt; x0Þ converges to the

set V uniformly in x0 on BdðVÞ, for any given d> 0.

Consider now the second example, in which the set V

consists of the union of the equilibrium point f0g and of the

limit cycle L. Observe that all x0’s inside the limit cycle L are

within a finite distance d from L. All x0 2BdðVÞ are such that

distðxðt; x0Þ;VÞ! 0 as t!1 (as a matter of fact, if x0 6¼ 0, the

motion xðt; x0Þ asymptotically approaches L, while, if x0 ¼ 0,

the motion xðt; x0Þ trivially remains at 0). If the convergence

were uniform in x0 on BdðVÞ, it would be possible, for any

choice of e, to find a number T, only depending on e and not x0,

such that (6) holds. This, however, is not the case. In fact,

observe that, if x0 6¼ 0 is inside L, the motion xðt; x0Þ is bounded

in negative time and remains inside L for all t � 0 (as a matter

of fact, it converges to 0 as t! �1). Pick any x1 6¼ 0 inside L

such that distðx1;LÞ> e and let T1 be the minimal time needed

to have distðxðt; x1Þ; LÞ � e for all t� T1. Now, go backwards

T0 > 0 units of time, to the point x0 ¼ xð�T0; x1Þ. Then, the

minimal time T needed to have distðxðt; x0Þ;VÞ � e for all t� T
is T ¼ T0 þ T1 and, since T0 can be taken arbitrarily large

(while keeping x0 inside the limit cycle, within distance d from

V), we see that the time T needed to have property (6) fulfilled

cannot be made independent of x0.

Now, recall that one of the main motivations for looking into

the concept of steady state is the aim to shape the steady-state

response of a system to a given (or to a given family of) forcing

input(s). But this motivation looses much of its meaning if the

time needed to get within an e-distance from the steady state

may grow unbounded as the initial state changes (even when the

latter is picked within a fixed bounded set). In other words,

uniform convergence to the steady state (which is automatically

guaranteed in the case of linear systems) is an indispensable

feature to be required in a nonlinear version of this notion.

However, as shown above, the set consisting of the union of the

v-limit sets of all points in the state space does not have this

property of uniform convergence.
2.2. The limit set of a set

As it turns out, the features in question are in fact shared by

an object which extends the concept of limit set from the case of

a single initial point to the case of a set of initial points. This

object, defined in Bhatia and Szego (1970) as prolongational

limit set and defined in Hale, Magalhães, and Oliva (2002) and

Sell and You (2002) as omega limit set of a given set B,

addresses in a convenient way the issue of uniform convergence

(when initial conditions are picked in a bounded set) and also

lends itself to the possibility of looking at steady-state

behaviors as limits taken when the initial time tends to �1.

The notion in question is defined as follows.

Consider again system (1), let B be a subset of Rn and

suppose xðt; x0Þ is defined for all t� 0 and all x0 2B. The v-

limit set of B, denoted vðBÞ, is the set of all points x for which

there exists a sequence of pairs fxk; tkg, with xk 2B and

lim k!1tk ¼ 1 such that

lim
k!1

xðtk; xkÞ ¼ x:

It is clear from the definition that if B consists of only one

single point x0, all xk’s in the definition above are necessarily

equal to x0 and the definition in question reduces to the

definition of v-limit set of a point, given earlier. It is also clear

from this definition that, if for some x0 2B the set vðx0Þ is

nonempty, all points of vðx0Þ are points of vðBÞ. In fact, all

such points have the property indicated in the definition, if all

the xk’s are taken equal to x0. Thus, in particular, if all motions

with x0 2B are bounded in positive time,[
x0 2B

vðx0Þ�vðBÞ:

However, the converse inclusion is not true in general.

This can be immediately checked on the second of our

earlier examples. In fact, consider again the van der Pol

oscillator (5), and let the set B be, for instance, a closed disc of

sufficiently large radius, to include the limit cycle L in its

interior. We already know that f0g and L, being v-limit sets of

points of B, are in vðBÞ. But it is also easy to see that any other

point inside L is a point of vðBÞ. In fact, let x̄ be any of such

points and pick any sequence ftkg such that lim k!1tk ¼ 1. It

is seen from the phase portrait that xðt; x̄Þ remains inside L (and

hence in B) for all negative values of t; hence

xk :¼ xð�tk; x̄Þ

is a point in B for all k. Since the sequence fxk; tkg is such that

xðtk; xkÞ ¼ x̄, the property required for x̄ to be in vðBÞ is

trivially satisfied. This shows that vðBÞ includes not just f0g
and L, but also all points of the open region bounded by L. As a

matter of fact, it is not difficult to prove that no other point can

be a point of vðBÞ. This can be done either by direct arguments,

or – more simply – by appealing to the result indicated in the

next Lemma, which says that, in this example, all motions with

initial conditions in vðBÞ have to be bounded backward in time.

Now, it is observed from the phase portrait that for any point x̄
which is not on or inside L, the motion xðt; x̄Þ is such that
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kxðt; x̄Þk!1 as t! �1. Thus, any of such x̄ cannot be a

point of vðBÞ.
The relevant properties of the v-limit set of a set, which

extend those presented earlier in Lemma 1, can be

summarized as follows (see, for instance, Bhatia &

Szego, 1970; Hale, Magalhães, & Oliva, 2002; Sell &

You, 2002).

Lemma 2. Let B be a nonempty bounded subset of Rn and

suppose there is a number M such that kxðt; x0Þk � M for all

t� 0 and all x0 2B. Then vðBÞ is a nonempty compact set,

invariant under (1). Moreover, the distance of xðt; x0Þ from

vðBÞ tends to 0 as t!1, uniformly in x0 2B. If B is connected,

so is vðBÞ.

Thus, as it is the case for the v-limit set of a point, we see

that the v-limit set of a bounded set, being compact and

invariant, is filled with motions which exist for all

t2 ð�1;þ1Þ and are bounded backward and forward in

time (the set of all such trajectories is a behavior, in the sense of

Willems, 1991). But, above all, we see that the set in question is

uniformly approached by motions with initial state x0 2B, a

property that the v-limit set of a point does not have. The

property in question makes this notion more suitable, as

explained above, for a definition of steady-state behavior of a

nonlinear system.

We conclude the section with another property, that will be

useful in the sequel.

Lemma 3. If B is a compact set invariant for (1), then

vðBÞ ¼ B.

Proof. As shown in the previous example, for any x̄2B it is

trivially always possible to find a sequence fxk; tkg, with xk 2B
and lim k!1tk ¼ 1 such that xðtk; xkÞ ¼ x̄, and this shows that

B�vðBÞ. To show that the reverse inclusion vðBÞ�B also

holds, pick any point x̃2vðBÞ, and observe that – by definition

– for some sequence fxkg of points of B there is a sequence of

times ftkg such that lim k!1xðtk; xkÞ ¼ x̃. Since B is by

assumption invariant for (1), xðtk; xkÞ 2B for all k. Thus x̃ is

the limit of a sequence of points of B and, since B is also

compact, necessarily x̃2B. &
Fig. 3. The phase portrait of Vinograd’s system (7).
3. Limit sets and stability

It is well known, in the classical theory of the stability of

motion, that (in a nonlinear system) an equilibrium point

which attracts all motions starting from initial conditions in

some (small) open neighborhood of this point is not

necessarily stable in the sense of Lyapunov. Examples of

systems in which convergence to an equilibrium does not

imply stability can even be built in dimension two, as seen

for instance from the following classical example due to

Vinograd (1957) (and thoroughly analyzed in Hahn (1967,

pp. 191–194)).
Example. Consider the nonlinear system

ẋ
ẏ

� �
¼ f ðx; yÞ

gðx; yÞ

� �

in which f ð0; 0Þ ¼ gð0; 0Þ ¼ 0 and

f ðx; yÞ
gðx; yÞ

� �
¼ 1

ðx2 þ y2Þð1þ ðx2 þ y2Þ2Þ
x2ðy� xÞ þ y5

y2ðy� 2xÞ

� �

(7)

for ðx; yÞ 6¼ ð0; 0Þ. The phase portrait of this system is the one

depicted in Fig. 3. In particular, this system has only one

equilibrium at ðx; yÞ ¼ ð0; 0Þ and any initial condition

ðx0; y0Þ in the plane produces a motion that asymptotically

tends to this point. However, this equilibrium point is not stable

in the sense of Lyapunov, because it is not possible to find, for

every e> 0, a number d> 0 such that every initial condition in a

disc of radius d produces a motion which remains for all t� 0 in

a disc of radius e. As a matter of fact, as is seen from the phase

portrait, there are points arbitrarily close to the origin from

which the motion always travels a finite fixed distance away

from the origin. Thus, no matter how small d is chosen, it is

impossible to keep the motion within an e-distance from the

origin, if e is not large enough.

Note that, in this example, the point ðx; yÞ ¼ ð0; 0Þ is an v-

limit point of every point in the plane and thus the set V

introduced before, that is, the union of all v-limit sets of all

points in the plane, is simply the point ð0; 0Þ. However, if B is

a disc of sufficiently large radius, centered at the origin, the

v-limit set of B is the nontrivial set consisting of the larger

‘‘figure eight’’ and of all points in its interior. As expected,

the set vðBÞ in question is filled with motions of system (7),

all bounded in backward and forward time. Note, in

particular, that the orbit of any of such motions is a motion

in which the v-limit set and the a-limit set coincide (a

homoclinic orbit).

It should be stressed that while, in general, convergence to

an equilibrium may not imply stability of the latter, this is no

longer the case if the convergence to the equilibrium is uniform

ews in Control 32 (2008) 1–16
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(in the sense made precise in the previous section). As a matter

of fact, uniform convergence to an equilibrium does imply

stability in the sense of Lyapunov. This is a consequence of the

fact that xðt; x0Þ depends continuously on x0 (see for example

Hahn (1967, p. 181)). Of course, in the previous example the

convergence to the equilibrium is not uniform: no matter how

large T is taken it is always possible to pick initial states

arbitrarily close to the origin (for instance on any of the

homoclinic orbits) from which the motion needs a time larger

than T to enter a disc of small radius e.
In this respect, the v-limit set of a (bounded) set B of initial

conditions, which carries with it the property of uniform

convergence, appears to be a more satisfactory object to look

at in the quest for a set (other than a simple equilibrium)

having both the properties of attractivity and stability in the

sense of Lyapunov. For motions converging to a closed

invariant set A, the notion of asymptotic stability, a

straightforward extension of the notion of asymptotic stability

of an equilibrium, is defined as follows. Let A�Rn be a

closed set invariant for (1). The set A is asymptotically stable

if the following hold:
(i) f
or every e> 0, there exists d> 0 such that,

distðx0;AÞ � d implies distðxðt; x0Þ;AÞ � e

for all t� 0:
(ii) th
ere exists a number d> 0 such that

distðx0;AÞ � d implies lim
t!1

distðxðt; x0Þ;AÞ ¼ 0:
As in the case of equilibria, for a closed invariant set A
which is asymptotically stable for (1), the domain of attraction

is the set of all x0 for which xðt; x0Þ is defined for all t� 0 and

distðxðt; x0Þ;AÞ! 0 as t!1.

It is not difficult to show (see for example Celani, 2003;

Sontag & Wang, 1995) that if the set A in Rn is also bounded

and hence compact, and the convergence in (ii) is uniform in x0,

then property (ii) implies property (i). Using this fact and the

result of Lemma 2, this yields the following important property.

Lemma 4. Let B be a nonempty bounded subset of Rn and

suppose there is a number M such that kxðt; x0Þk � M for all

t� 0 and all x0 2B. Then vðBÞ is a nonempty compact set,

invariant under (1). Suppose also that vðBÞ is contained in the

interior of B. Then, vðBÞ is asymptotically stable, with a

domain of attraction that contains B.

4. The steady-state behavior of a nonlinear system

Consider now again system (1), with initial conditions in a

closed subset X�Rn. Suppose the set X is positively invariant,

which means that for all initial conditions x0 2X, the solution

xðt; x0Þ exists for all t� 0 and xðt; x0Þ 2X for all t� 0. The

motions of this system are said to be ultimately bounded if there

is a bounded subset B with the property that, for every compact
subset X0 of X, there is a time T > 0 such that xðt; x0Þ 2B for all

t� T and all x0 2X0. In other words, if the motions of the

system are ultimately bounded, every motion eventually enters

and remains in the bounded set B.

Note that, since by hypothesis X is positively invariant, there

is no loss of generality in assuming B�X in the definition

above. Hence, there exists a number M such that kxðt; x0Þk � M
for all t� 0 and all x0 2B and, from Lemma 2, it is concluded

that the set vðBÞ is nonempty (and has all the properties

indicated in that Lemma). It is worth stressing that, for a system

whose motions are ultimately bounded, the set vðBÞ is a unique

well-defined set, regardless of how B is taken.

Lemma 5. Let the motions of (1) be bounded and let B0 be any

other bounded subset of X with the property that, for every

compact subset X0 of X, there is a time T > 0 such that

xðt; x0Þ 2B0 for all t� T and all x0 2X0. Then, vðBÞ ¼ vðB0Þ.

Proof. Let x̄ be a point of vðB0Þ. By hypothesis, there exists a

sequence fx̄k; t̄kg, with x̄k 2B0 and lim k!1 t̄k ¼ 1 such that

xðt̄k; x̄kÞ converges to x̄ as k!1. As all such x̄k’s are in a

compact subset of X, by definition of B there exist a time T > 0

such that all points xk ¼ xðT; x̄kÞ are points of B. Set tk ¼ t̄k � T
and consider the sequence fxk; tkg. Trivially xðtk; xkÞ, being

equal to xðt̄k; x̄kÞ, converges to x̄ as k!1. Thus, x̄ is a point of

v(B) also. We have shown in this way that vðB0Þ �vðBÞ.
Reversing the role of the two sets shows that vðBÞ�vðB0Þ,
that is, that the two sets in question are identical. &

For systems whose motions are ultimately bounded, the

notion of steady state can be defined as follows.

Definition. Suppose the motions of system (1), with initial

conditions in a closed and positively invariant set X, are

ultimately bounded. A steady-state motion is any motion with

initial condition in xð0Þ 2vðBÞ. The set vðBÞ is the steady-state

locus of (1) and the restriction of (1) to vðBÞ is the steady-state

behavior of (1).

The notion thus introduced recaptures the classical notion of

steady state for linear systems and provides a new powerful tool

to deal with similar issues in the case of nonlinear systems. To

see how this notion includes the classical viewpoint, consider

an n-dimensional, single-input, linear system

ż ¼ Fzþ Gu (8)

forced by the harmonic input uðtÞ ¼ U sin ðvt þ fÞ. As shown

in the first example, a simple method to determine the periodic

motion of (8) consists in viewing the forcing input uðtÞ as

provided by an autonomous signal generator of the form (3) and

in analyzing the state state behavior of the associated augmen-

ted system

ẇ
ż

� �
¼

0 v
�v 0

� �
0

Gð 1 0 Þ F

0
@

1
A w

z

� �
(9)
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As a matter of fact, let P be the unique solution of the Sylvester

equation

P
0 v

�v 0

� �
¼ FP þ Gð 1 0 Þ

and observe that the graph of the linear map

p : R2!Rn

w 7!Pw

is an invariant subspace for the system (9). Since all trajectories

of (9) approach this subspace as t!1, the steady-state

behavior of (9) is determined by the restriction of its motion

to this invariant subspace.

Revisiting this analysis from the viewpoint of the more

general notion of steady state introduced above, let W �R2 be a

set of the form

W ¼ fw2R2 : kwk � cg (10)

in which c is a fixed number, and suppose the set of initial

conditions for (9) is W � Rn. This is in fact the case when the

problem of evaluating the periodic response of (8) to harmonic

inputs whose amplitude does not exceed a fixed number c is

addressed. The set W is compact and invariant for the upper

subsystem of (9). Therefore, as shown before, the v-limit set of

W under the motion of the upper subsystem of (9) is the subset

W itself.

The set W � Rn is closed and positively invariant for the full

system (9) and, moreover, since the lower subsystem of (9) is a

linear asymptotically stable system driven by a bounded input,

it is immediate to check that the motions of system (9), with

initial conditions taken in W � Rn, are ultimately bounded. As

a matter of fact, any bounded set B of the form

B ¼ fðw; zÞ 2R2 � Rn : w2W ; kz�Pwk � dg

in which d is any positive number, has the property indicated in

the definition of ultimate boundedness. Note also that any such

B satisfies B�W � Rn. It is easy to check that

vðBÞ ¼ fðw; zÞ 2R2 � Rn : w2W ; z ¼ Pwg;

that is, vðBÞ is the graph of the restriction of the map p to the set

W. Note that vðBÞ is independent of the choice of B (so long as

B is a set having the properties indicated in the definition of

ultimate boundedness). The restriction of (9) to the invariant set

vðBÞ characterizes the steady-state behavior of (8) under the

family of all harmonic inputs of fixed angular frequency v, and

amplitude not exceeding c.

A similar result, that is, the fact that the steady-state locus is

the graph of a map, can be reached if the signal generator is any

nonlinear system, with initial conditions chosen in a compact

invariant set W. More precisely, consider an augmented system

of the form (we retain, throughout, the assumption that both

sðwÞ and qðwÞ are locally Lipschitz functions)

ẇ ¼ sðwÞ; ż ¼ Fzþ GqðwÞ; (11)

in which w2W �Rr, z2Rn, and assume that: (i) the eigen-

values of F have negative real part, (ii) the set W is a compact
set, invariant for the upper subsystem of (11). As in the previous

example, the v-limit set of W under the motion of the upper

subsystem of (11) is the subset W itself. Moreover, since the

lower subsystem of (11) is a linear asymptotically stable system

driven by the bounded input uðtÞ ¼ qðwðtÞÞ, it is easy to check

that the motions of system (11), with initial conditions taken in

W � Rn, are ultimately bounded. As a matter of fact, so long as

wð0Þ 2W , the input qðwðtÞÞ to the lower subsystem of (11) is

bounded by some fixed number U and standard arguments can

be invoked to show that

kzðtÞk � K e�ltkzð0Þk þ LU

for all t� 0, in which K; l and L are appropriate positive

numbers. Thus, any bounded set B of the form

B ¼ fðw; zÞ 2Rr � Rn : w2W ; kzk � 2LUg

has the property indicated in the definition of ultimate bound-

edness.

Moreover, it is possible to show that, regardless of how B is

taken, vðBÞ is the graph of the map

p : W!Rn

w 7!pðwÞ;

defined by

pðwÞ ¼
Z 0

1
e�FtGqðwðt;wÞÞ dt: (12)

The explanation of this fact reposes on the following

arguments. First of all, observe that – since qðwðt;wÞÞ is by

hypothesis a bounded function of t and all eigenvalues of F

have negative real part – the improper integral on the right-hand

side of (12) exists. Then, a simple calculation shows that the

graph of the map p is invariant for (11). To see why this is the

case, pick any initial condition ðw0; z0Þ on the graph of p, i.e.

with z0 ¼ pðw0Þ and compute the solution zðtÞ of the lower

equation of (11) by means of the classical variation of constants

formula, to obtain

zðtÞ ¼ eFt

Z 0

�1
e�FtGqðwðt;w0ÞÞ dt

þ
Z t

0

eFðt�tÞGqðwðt;w0ÞÞ dt

From this, an easy manipulation yields zðtÞ ¼ pðwðt;w0ÞÞ,
proving the invariance of the graph of p for (11). Then, it is

immediately concluded that any point of the graph of p is

necessarily a point of vðBÞ. To complete the proof of the claim

it remains to show that no other point of W � Rn can be a point

of vðBÞ. But this is a direct consequence of the fact that F has

eigenvalues with negative real part. In fact, this assumption

implies that all motions of (11) whose initial condition is not on

the graph of p are unbounded in backward time and therefore

cannot be contained in vðBÞ, which we know is a bounded set.

There are various ways in which this result can be

generalized. For instance, it can be extended to describe the
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steady-state response of a nonlinear system

ż ¼ f ðz; uÞ (13)

in the neighborhood of a locally exponentially stable equilibrium

point. To this end, suppose that f ð0; 0Þ ¼ 0 and that the matrix

F ¼
�

@ f

@z

�
ð0; 0Þ

has all eigenvalues with negative real part. Then, it is well

known (see for example Hahn (1967, p. 275)) that it is always

possible to find a compact subset Z �Rn, which contains z ¼ 0

in its interior and a number s> 0 such that, if z0 2 Z and

kuðtÞk � s for all t� 0, the solution of (13) with initial con-

dition zð0Þ ¼ z0 satisfies zðtÞ 2 Z for all t� 0. Suppose that the

input u to (13) is produced, as before, by a signal generator of

the form

ẇ ¼ sðwÞ; u ¼ qðwÞ (14)

with initial conditions chosen in a compact invariant set W and,

moreover, suppose that, kqðwÞk � s for all w2W . If this is the

case, the set Z �W is positively invariant for

ẇ ¼ sðwÞ; ż ¼ f ðz; qðwÞÞ; (15)

and the motions of the latter are ultimately bounded, with

B ¼ Z �W . The set vðBÞmay have a complicated structure but

it is possible to show, using the Center Manifold theorem, that if

sð0Þ ¼ 0 and the matrix

S ¼
�

@s

@w

�
ð0Þ

has all eigenvalues on the imaginary axis and if Z and B are

small enough, the set in question can still be expressed as the

graph of a map z ¼ pðwÞ. Specifically, the graph in question is

precisely the center manifold of (15) at ð0; 0Þ.
Of course, the possibility of expressing the steady-state

locus of a system of the form (15) as the graph of a map

z ¼ pðwÞ is not necessarily tied to the assumption that the

equilibrium point ðw; zÞ ¼ ð0; 0Þ of (13) be locally exponen-

tially stable. This is shown for instance in the following simple

example. It should be stressed, though, that if the equilibrium

ðw; zÞ ¼ ð0; 0Þ of (13) is not locally exponentially stable, the

map p may fail to be differentiable at the point w ¼ 0.

Example. Consider the system

ż ¼ �z3 þ u (16)

forced by an input u ¼ w1 provided by the autonomous signal

generator (3), in which we assume, for simplicity v ¼ 1 and Was

in (10). The set W � R is positively invariant and, by means of

simple arguments, it is easy to see that the motions with initial

conditions in W � R are ultimately bounded. Now, by means of

the classical method of Poincaré for the study of periodic

solutions of a nonlinear differential equation (whose details

cannot be included here for reasons of space, but which can

be found for instance in Byrnes, Gilliam, Isidori, and Ramsey

(2003)), it is possible to show that, for each wð0Þ 2W , there is one
and only one value zð0Þ 2R from which the motion of

ẇ1 ¼ w2; ẇ2 ¼ �w1; ż ¼ �z3 þ w1

is a periodic motion. The set of all such pairs identifies a map

p : W!R, whose graph coincides with the steady-state locus

vðBÞ of the system. The map in question, depicted in Fig. 4, is

continuously differentiable at any nonzero w but only contin-

uous at w ¼ 0, as shown in Byrnes et al. (2003).

Note that the motions of the autonomous system generator

(14) that drives system (13) are not supposed to be periodic

motions. For instance, the system in question could be a stable

Van der Pol oscillator, with W defined as the set of all points

inside and on the boundary of the limit cycle. In this case, our

approach makes it possible to define the steady-state response

of (13) not just to the (single) periodic motion generated by (14)

when the initial condition is taken on the boundary of W, but

also to all (non-periodic) motions generated by (14) when the

initial condition is taken in the interior of W. We consider this as

an advantage of the proposed approach.

A common feature of the examples discussed above is the

fact that the set vðBÞ can be expressed as the graph of a map

z ¼ pðwÞ. This means that, so long as this is the case, a system

of the form (13) has a unique well defined steady-state response

to the input uðtÞ ¼ qðwðtÞÞ. As a matter of fact, the response in

question is precisely zðtÞ ¼ pðwðtÞÞ. Of course, in general, this

may not be the case and the global structure of the steady-state

locus can be very complicated. In particular, the set vðBÞ may

fail to be the graph of a map z ¼ pðwÞ and multiple steady-state

responses to a given input may occur. This is the counterpart –

in the context of forced motions – of the fact that, in general, a

nonlinear system may possess multiple equilibria. In these

cases, the steady-state response is determined not only by the

forcing input, but also by the initial state of the system to which

the input is applied.

Even though, in general, uniqueness of the steady-state

response of system (13) to inputs generated by a system of the

form (14) cannot be guaranteed, it is useful to stress that, if the

set W is compact and invariant (as assumed above), for each

w2W there is always at least one z2Z such that the pair ðw; zÞ
produces a steady-state response.



A. Isidori, C.I. Byrnes / Annual Reviews in Control 32 (2008) 1–1610
Lemma 6. Consider a system of the form (15) with

ðw; zÞ 2W � Z. Suppose its motions are ultimately bounded.

If W is a compact set invariant for ẇ ¼ sðwÞ, the steady-state

locus of (15) is the graph of a (possibly set-valued) map defined

on W.
Proof. Recall that, as shown above, the limit set of W under the

flow of ẇ ¼ sðwÞ coincides with W itself, that is vðWÞ ¼ W . As

a consequence, for all w̄2W there is a sequence fwk; tkg with

wk in W for all k such that w̄ ¼ lim k!1wðtk;wkÞ: Set p ¼
colðw; zÞ and let fðt; p0Þ denote the integral curve of (15)

passing through p0 at time t ¼ 0. Pick any point z0 2Z and

let pk ¼ colðwk; z0Þ. If the motions of (15) are ultimately

bounded, there is a bounded set B and a time T > 0 such that

fðt; pkÞ 2B for all t� T and all k> 0. Pick any integer h such

that th� T , set p̄k ¼ fðth; pkÞ and t̄k ¼ tk � th, for k� h, and

observe that, by construction, fðtk; pkÞ ¼ fðt̄k; p̄kÞ. The

sequence ffðt̄k; p̄kÞg is bounded. Hence, there exists a sub-

sequence ffðt̂k; p̂kÞg converging to a point p̂ ¼ colðŵ; x̂Þ,
which is a point of vðBÞ because all p̄k’s are in B. Since

system (15) is upper triangular, necessarily ŵ ¼ w̄. This shows

that, for any point w̄2W , there is a point ẑ2 Z such that

ðw̄; ẐÞ 2vðBÞ, as claimed. &
5. Asymptotic tracking and disturbance rejection

5.1. Background

One of the main motivations for the importance of an

appropriate notion of steady state is the need to address control

problems in which the output of a system is required to

asymptotically track prescribed trajectories and/or to asymp-

totically reject prescribed disturbances. Problems of this kind

are commonly known as generalized tracking problems, as

generalized servomechanism problems, or – more often –

output regulation problems. In any realistic scenario, this

control goal has to be achieved in spite of a good number of

phenomena which would cause a system to behave differently

than expected. These phenomena could be endogenous, for

instance parameter variations, or exogenous, such as additional

undesired inputs affecting the behavior of the plant.

In most cases of practical interest, the trajectories to be

tracked (or the disturbance to be rejected) are not available for

measurement. Rather, it is only known that these trajectories are

simply (undefined) members of a set of functions, for instance

the set of all possible solutions of an ordinary differential

equation. Theses cases include the classical problem of the set-

point control, the problem of active suppression of harmonic

disturbances of unknown amplitude, phase and even frequency,

the synchronization of nonlinear oscillations, and similar

others.

For linear multivariable systems, the generalized servome-

chanism problem has been successfully addressed by various

authors (Davison, 1976; Francis, 1977; Francis & Wonham). In

particular Francis and Wonham (1976) and Francis (1977)

provide a very elegant analysis, that was later taken as a

paradigm for the study of the nonlinear version of the problem.
One of the contributions of Francis and Wonham (1976) was a

precise characterization of what the author called (and since

then has become known as) the internal model principle. In a

suitable framework, they proved that the property of perfect

tracking is insensitive to plant parameter variations ‘‘only if the

controller utilizes feedback of the regulated variable, and

incorporates in the feedback path a suitably reduplicated model

of the dynamic structure of the exogenous signals which the

regulator is required to process’’. The converse of this property,

also shown in Francis (1977), is that if the controller embeds an

internal model of the exogenous signals, stable perfect tracking

can be achieved, regardless of plant parameter variations (so

long as the stability of the closed loop is preserved).

A nonlinear enhancement of this theory, which uses a

combination of geometry and nonlinear dynamical systems

theory, was initiated by pioneering works of Isidori and Byrnes

(1990), Huang and Rugh (1990) and Huang and Lin (1994) who

showed how to design a controller that provides a local solution

near an equilibrium point, in the presence of exogenous signals

which were produced by a Poisson stable system. In particular,

Isidori and Byrnes (1990) showed how the use center manifold

theory determines – also in the case of nonlinear systems – the

necessity of the existence of an internal model and Khalil (1994)

showed how issues of global convergence to the required steady

state could be addressed. Since these early contributions, the

theory has experienced a tremendous growth, culminating in the

recent development of design methods able to handle the case of

parametric uncertainties affecting the autonomous (linear)

system which generates the exogenous signals (such as in Delli

Priscoli, Marconi, & Isidori, 2006; Serrani, Isidori, & Marconi,

2001), the case of nonlinear exogenous systems (such as in

Byrnes & Isidori, 2004), or a combination thereof (as in Marconi,

Praly, & Isidori, 2006).

5.2. The generalized tracking problem

The generalized tracking problem is cast in the following

terms. The controlled plant is a finite-dimensional, time-

invariant, nonlinear system modelled by equations of the form

ẋ ¼ f ðw; x; uÞ; e ¼ hðw; xÞ; y ¼ kðw; xÞ; (17)

in which x2Rn is a vector of state variables, u2Rm is a vector of

inputs used for control purposes, w2Rs is a vector of inputs

which cannot be controlled and include exogenous commands,

exogenous disturbances and model uncertainties, e2R p is a

vector of regulated outputs which include tracking errors and any

other variable that needs to be steered to 0, y2Rq is a vector of

outputs that are available for measurement and hence used to feed

the device that supplies the control action. The problem is to

design a controller, which receives yðtÞ as input and produces uðtÞ
as output, to the purpose that, in the resulting closed-loop system,

xðtÞ remains bounded and

lim
t!1

eðtÞ ¼ 0; (18)

regardless of what the exogenous input wðtÞ actually is.
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The specific characteristic of the problem at issue is that the

exogenous input wðtÞ is assumed to be a (undefined) member of

a fixed family of functions of time, the family of all solutions

obtained when the initial condition wð0Þ of a fixed ordinary

differential equation of the form

ẇ ¼ sðwÞ (19)

is allowed to vary on a prescribed set W. This system is usually

referred to as the exosystem. This approach can be viewed as

intermediate between one extreme case in which wðtÞ is totally

unknown, and the opposite extreme case in which wðtÞ is

available for measurement. As observed earlier, there is abun-

dance of design problems in which parameter uncertainties,

reference commands and/or exogenous disturbances can be

modelled in this way: the case of set point control, in which the

exosystem has a trivial dynamics, namely ẇ ¼ 0, the case in

which wðtÞ is any combination sinusoidal signals of fixed

frequency but unspecified amplitude and phase, in which case

the exosystem is characterized by a bench of harmonic oscil-

lators

ẇ1

ẇ2

� �
¼ 0 v

�v 0

� �
w1

w2

� �
;

but even the case in which the frequencies of such sinusoidal

signals are undetermined, in which case the exosystem

is characterized by a bench of (nonlinear) equations of the

form

ẇ1

ẇ2

ẇ3

0
@

1
A ¼ 0 w3 0

�w3 0 0

0 0 0

0
@

1
A w1

w2

w3

0
@

1
A:

The control law for (17) is to be provided by a system

modelled by equations of the form

j̇ ¼ jðj; yÞ
u ¼ gðj; yÞ (20)

with state j2Rn. The initial conditions xð0Þ of the plant (17),

wð0Þ of the exosystem (19) and jð0Þ of the controller (20) are

allowed to range over a fixed compact sets X�Rn, W �Rs and,

respectively J�Rn. All maps characterizing the model of the

controlled plant, of the exosystem and of the controller are

assumed to be sufficiently differentiable.

The problem to be addressed, is to design a feedback

controller of the form (20) so as to obtain a closed-loop system

in which all trajectories are bounded and the regulated output

eðtÞ asymptotically decays to 0 as t!1. More precisely, it is

required that

ẇ ¼ sðwÞ; ẋ ¼ f ðw; x; gðj; kðw; xÞÞÞ;

j̇ ¼ jðj; kðw; xÞÞ;
(21)

viewed as an autonomous system with output

e ¼ hðw; xÞ;

be such that:
(i) th
e positive orbit of W � X �J is bounded, i.e. there

exists a bounded subset S of Rs � Rn � Rn such that, for

any ðw0; x0; j0Þ 2W � X �J, the integral curve

ðwðtÞ; xðtÞ; jðtÞÞ of (21) passing through ðw0; x0; j0Þ at

time t ¼ 0 remains in S for all t� 0.
(ii) li
m t!1eðtÞ ¼ 0, uniformly in the initial condition, i.e. for

every e> 0 there exists a time t̄, depending only on e and not

on ðw0; x0; j0Þ such that the integral curve ðwðtÞ; xðtÞ; jðtÞÞ
of (21) passing through ðw0; x0; j0Þ at time t ¼ 0 yields

keðtÞk � e for all t� t̄.
Condition (i) replaces, and actually extends to a nonlinear

setting, the classical requirement – of linear system theory –

that the un-driven closed-loop system be an asymptotically

stable system. Condition (ii) expresses the property of

asymptotic regulation (or tracking). The property that

convergence of the regulated variable eðtÞ to zero be uniform,

which is granted in the case of a linear system, needs now to be

explicitly requested, since in the case of nonlinear systems (as

shown earlier) this may no longer be the case even if the initial

conditions are taken in a compact set. Form a practical

viewpoint, in fact, the only meaningful case is the one in which

there is a guaranteed ‘‘rate of decay’’ of the regulated variable

to zero.

5.3. Steady-state analysis

The notion of steady state introduced earlier is instrumental

to prove the following, elementary – but fundamental – result,

which is a nonlinear enhancement of a Lemma of Francis

(1977) on which all the theory of output regulation for linear

systems is based (see Byrnes and Isidori (2003) for a proof).

Lemma 7. Suppose the positive orbit of W � X �J is

bounded. Then

lim
t!1

eðtÞ ¼ 0

if and only if

vðW � X �JÞ� fðw; x; jÞ : hðw; xÞ ¼ 0g: (22)

This result is simply a characterization of the generalized

tracking problem in geometric terms. The problem in question,

in fact, can be cast as a problem of shaping the steady-state

locus of the closed-loop system, in such a way that the latter

becomes a subset of the set of all points at which the regulated

variable is 0.

To proceed with the analysis in a more concrete fashion, we

restrict our discussion to a very special case, on which

nevertheless most of the relevant features of the theory can be

illustrated. This is the case of a controlled plant modelled by

equations of the form

ż ¼ f 0ðw; zÞ þ f 1ðw; z; eÞe;

ė ¼ q0ðw; zÞ þ q1ðw; z; eÞeþ u; y ¼ e:
(23)
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This system is very special because the relative degree

(Isidori, 1995, p. 137) between the control input u and the

regulated output e is equal to one, the coefficient of u in the

second equation (known, with an abuse of terminology, as

‘‘high-frequency gain’’) is unitary, and, moreover, the regu-

lated variable e is assumed to coincide with the measured

variable y. It must be observed, though, that there is not much

loss of generality in considering a system having this simple

structure because, as shown for instance in Delli Priscoli et al.

(2006) and Marconi et al. (2006), the case of a more general

system (having arbitrary relative degree, but with the

dynamics of z still driven only by e, and having non-unitary

high-frequency gain) can be handled in a very similar manner,

after suitable preliminary manipulations. The initial condi-

tions of (23) are assumed to range on a set Z � E, in which Z is

a fixed compact subset of Rn�1 and E ¼ fe2R : jej � cg,
with c a fixed number.

Since the problem in question is a problem concerning how

the closed-loop system behaves in steady state, there is no

special interest in considering exosystems that are not ‘‘in

steady state’’. Thus – without loss of generality – we assume

that the set W is invariant for (19), and hence – by Lemma 3–

that W ¼ vðWÞ.
Suppose that a controller of the form (20) solves the problem

of output regulation. Then Lemma 7 applies and, the following

conclusions immediately come true:
� T
he steady-state locus vðW � Z � E �JÞ of the closed-loop

system is a subset of the set W � Rn�1 � f0g � Rn.
� T
he restriction of the closed-loop system to its steady-state

locus vðW � Z � E �JÞ reduces to

ẇ ¼ sðwÞ; ż ¼ f 0ðw; zÞ; j̇ ¼ jðj; 0Þ: (24)
� F
or each ðw; z; 0; jÞ 2vðW � Z � E �JÞ

0 ¼ q0ðw; zÞ þ gðj; 0Þ: (25)

With this in mind we observe that, by Lemma 6, if the

positive orbit of W � Z � E �J under the flow of (21) is

bounded, then vðW � Z � E �JÞ is the graph of a (possibly

set-valued) map defined on the whole of W. As a consequence,

the set

Ass ¼ fðw; zÞ : ðw; z; 0; jÞ 2vðW � Z � E �JÞ

for some j2Rng

is the graph of a (possibly set-valued) map defined on the whole

of W, and is invariant for the dynamics of

ẇ ¼ sðwÞ; ż ¼ f 0ðw; zÞ: (26)

Define the map

uss : Ass!R

ðw; zÞ 7! � q0ðw; zÞ:

The conclusions reached above can be rephrased in the

following terms. Suppose that a controller of the form (20)

solves the problem of output regulation for (23) with exosystem
(19). Then, there exists a (possibly set-valued) map, defined on

the whole of W, whose graph Ass is invariant for the

autonomous system (26). Moreover, for each ðw0; z0Þ 2Ass

there is a point j0 2Rn such that the integral curve of (26) issued

from ðw0; z0Þ and the integral curve of

j̇ ¼ jðj; 0Þ

issued from j0 satisfy

ussðwðtÞ; zðtÞÞ ¼ gðjðtÞ; 0Þ 8 t2R:

This is a nonlinear version of the celebrated internal model

principle of Francis and Wonham (1976).

6. Regulator design

6.1. Controller structure

The steady-state analysis presented above has identified

certain features that any controller must have to be able to solve

the problem at issue. As a matter of fact, this controller must

include a subsystem that behaves as a ‘‘generator’’ of all inputs

of the form ussðwðtÞ; zðtÞÞ in which ðwðtÞ; zðtÞÞ is a trajectory of

(26), issued at any point ðw0; z0Þ of the compact invariant set

Ass. As such, the characterization seems to be independent of

the controller, because the system (26) and the map ussðw; zÞ
only depend on the plant. However, this is not strictly speaking

true, because the invariant set Ass may depend on how the

controller is chosen. In view of the property thus established, it

appears that a first, fundamental, step in the design of a

controller that solves the problem of output regulation is to find

a suitable candidate for the invariant set Ass and to build a

‘‘device’’ able to generate – as outputs – all inputs of the form

ussðwðtÞ; zðtÞÞ. Driving the controlled plant by means of a

device of this kind yields a system possessing a (compact)

invariant set on which the regulated variable is identically zero.

This is a necessary prerequisite for the solution of the problem

in question, but clearly not sufficient yet, because the

convergence to this invariant set still has to be secured. To

this purpose, an additional assumption (which in general is not

necessary, though) is useful.

Assumption (A). There exists a bounded subset B�W �
Rn�1 which contains the positive orbit of the set W � Z under

the flow of (26) and the resulting omega-limit set A :¼vðW �
ZÞ is locally exponentially stable.

While in the analysis of the necessity we have only identified

the existence of a compact set (actually, the graph of a map

defined on W) which is invariant for (26), Assumption (A)

implies, in its first part, the existence of a compact set A (still

the graph of a map defined on W) which is not only invariant but

also uniformly attractive of all trajectories of (26) issued from

points of W � Z. The second part of the Assumption, in turn,

strengthens this property by also requiring the set A to be

locally exponentially stable.
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For convenience, rewrite the ‘‘augmented’’ system (19)–(23)

as

˙̂z ¼ f̂0ðẑÞ þ f̂1ðẑ; eÞe ė ¼ q̂0ðẑÞ þ q̂1ðẑ; eÞeþ u (27)

having set ẑ ¼ ðw; zÞ. Consistently let Ẑ :¼W � Z denote the

compact set where the initial condition ẑð0Þ is supposed to

range, and set ûssðẑÞ ¼ �q̂0ðẑÞ. In these notations, Assumption

(A) expresses the property that, in the autonomous system

˙̂z ¼ f̂0ðẑÞ; (28)

the compact invariant set A is asymptotically and locally

exponentially stable, with a domain of attraction that contains

the set Ẑ.

With a view to the internal model principle, we choose the

following candidate controller

j̇ ¼ jðjÞ þ Gv; u ¼ gðjÞ þ v; v ¼ �ke: (29)

In fact, when the regulated variable e is identically zero (as it

should occur in steady state), this controller reduces to the

autonomous system with output

j̇ ¼ jðjÞ u ¼ gðjÞ; (30)

which is supposed to be a ‘‘generator’’ capable – as the internal

model principle dictates – to produce inputs of the form

ûssðẑðtÞÞ, with ẑðtÞ a trajectory of (28) issued at any point ẑ0

of A.

Controlling system (27) by means of (29) yields a closed-

loop system

˙̂z ¼ f̂0ðẑÞ þ f̂1ðẑ; eÞe; ė ¼ q̂0ðẑÞ þ q̂1ðẑ; eÞeþ gðjÞ þ v;

j̇ ¼ jðjÞ þ Gv

(31)

which, regarded as a system with input v and output e, has

relative degree 1. It can be put in normal form by changing

variables as

x ¼ j� Ge

which yields

˙̂z ¼ f̂0ðẑÞ þ f̂1ðẑ; eÞe;

ẋ ¼ jðxþ GeÞ � Ggðxþ GeÞ � Gq̂0ðẑÞ � Gq̂1ðẑ; eÞe;

ė ¼ q̂0ðẑÞ þ q̂1ðẑ; eÞeþ gðxþ GeÞ þ v:

(32)

Setting p ¼ ðẑ; xÞ, this system can be further rewritten in the

form

ṗ ¼ Fð pÞ þ Pð p; eÞe ė ¼ Qð pÞ þ Rð p; eÞeþ v (33)

in which

Fð pÞ ¼ f̂0ðẑÞ
jðxÞ � G½gðxÞ þ q̂0ðẑÞ�

� �

Qð pÞ ¼ gðxÞ þ q̂0ðẑÞ

and Pð p; eÞ, Rð p; eÞ are suitable continuous functions.
Suppose now that the control v is chosen as v ¼ �ke, as

indicated earlier. This yields a closed-loop system that can be

regarded as pure feedback interconnection of

ṗ ¼ Fð pÞ þ Pð p; eÞe (34)

viewed as a system with input e and state p, and

ė ¼ Qð pÞ þ Rð p; eÞe� ke (35)

viewed as a system with input p and state e. To obtain bounded

trajectories, and to steer eðtÞ to zero, one might invoke the so-

called small gain theorem, actually an enhanced version of it

(see e.g. Teel & Praly, 1995). As a matter of fact, suppose that

the following properties hold:
(P1) th
e dynamics

ṗ ¼ Fð pÞ (36)

possesses a compact invariant set S which is asymptoti-

cally (and locally exponentially) stable, with a domain of

attraction that contains the set P :¼ Ẑ� X of all admissible

initial conditions, and
(P2) th
e function Qð pÞ vanishes on this invariant set.
Then, a version of the small-gain theorem (enhanced to

allow the case in which one of the two pieces of the

interconnection, in this case system (34), possesses an

asymptotically stable compact invariant set) can be invoked

to conclude that, if k is large enough (the lower limit of k being

dependent on the actual choice of the set P� E of admissible

initial conditions), all trajectories of the interconnected system

(33) are bounded and do converge, as t!1, to the invariant set

S� f0g. Thus, in particular, eðtÞ! 0 as t!1 and the problem

of output regulation is solved.

Motivated by this observation, in what follows we will seek

properties such as (P1) and (P2).

6.2. The internal model property

Properties (P1) and (P2) are only determined by the

properties of the autonomous system (28) and of the function

û ¼ q̂0ðẑÞ (37)

which, in the composite system (36), can be viewed as an output

of (28) driving a system of the form

ẋ ¼ jðxÞ � G½gðxÞ þ û�: (38)

For convenience, we will say that triplet fjðxÞ;G; gðxÞg is an

asymptotic internal model of the pair (28)–(37) if properties

(P1) and (P2) are satisfied. In this terminology, we can sum-

marize the conclusion of the previous subsection as follows.

Proposition 1. Pick compact sets Ẑ, E and J for the initial

conditions of the closed-loop system (19), (23), (29). Suppose

that Assumption A holds and that the triplet fjðxÞ;G; gðxÞg is

an asymptotic internal model for (28)–(37). Then there exists
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k
$

> 0such that for all k� k
$

the controller (29) with v ¼ �ke
solves the generalized tracking problem.

The notion of steady state provides a useful interpretation of

the properties in question. In fact, recall that, by Assumption A,

all trajectories of system (28) with initial conditions in Ẑ
asymptotically converge to the compact invariant setA, and the

latter is also locally exponentially stable. If property (P1) holds,

all trajectories of the composite system

˙̂z ¼ f̂0ðẑÞ
ẋ ¼ jðxÞ � G½gðxÞ þ q̂0ðẑÞ�

with initial conditions in Ẑ� X asymptotically converge to the

limit set vðẐ� XÞ. Since (36) is a triangular system, its is

readily seen (see also Lemma 6), that the set vðẐ� XÞ is the

graph of a set-valued map defined on A, i.e. that there exists a

map

t : ẑ2A 7! tðẑÞ�Rn;

such that

vðẐ� XÞ ¼ fðẑ; xÞ : ẑ2A; x2 tðẑÞg :¼ grðtÞ:

The set grðtÞ is the steady-state locus of (36) and the

restriction of the latter to this invariant set characterizes its

steady-state behavior. Property (P2), on the other hand,

expresses the property that at each point of ðẑ; xÞ 2 grðtÞ

q̂0ðẑÞ ¼ �gðxÞ: (39)

Thus, looking again at system (36), it is realized that grðtÞ is in

fact invariant for the simpler system

˙̂z ¼ f̂0ðẑÞ ẋ ¼ jðxÞ: (40)

Note that, if the map tðẑÞ is single-valued and C1, its

invariance for (40) is expressed by the property that

@tðẑÞ
@ẑ

f̂0ðẑÞ ¼ jðtðẑÞÞ 8 ẑ2A; (41)

while the fact that (39) holds at each point of ðẑ; xÞ 2 grðtÞ is

expressed by the property that

q̂0ðẑÞ ¼ �gðtðẑÞÞ 8 ẑ2A: (42)

Properties (41) and (42) have been usually referred to, in the

literature (see, e.g. Isidori, 1995), as properties of immersion of

system

˙̂z ¼ f̂0ðẑÞ
û ¼ q̂0ðẑÞ

into system

ẋ ¼ jðxÞ
û ¼ �gðxÞ:

6.3. Nonlinear observers as internal models

In this section, we discuss how the properties (P1) and (P2)

can be enforced. To simplify matters, we refer to the case in
which the map tðẑÞ that characterizes the steady-state locus of

(36) is singled-valued and C1. To this end, we stress that the

properties in question are quite similar to properties that are

usually sought in the design of state observers. As a matter of

fact it is seen from (41)–(42) that, for each ẑ0 2A, the function

of time

x̂ðtÞ ¼ tðẑðt; ẑ0ÞÞ

which is defined (and bounded) for all t2R satisfies

dx̂ðtÞ
dt
¼ jðx̂ðtÞÞ (43)

and, moreover,

gðx̂ðtÞÞ ¼ �q̂0ðẑðt; ẑ0ÞÞ:

In view of the latter, system (38) can be rewritten in the form

ẋ ¼ jðxÞ þ G½gðx̂Þ � gðxÞ� (44)

and interpreted as a copy of the dynamics (43) of x̂ corrected by

an ‘‘innovation term’’ ½gðx̂Þ � gðxÞ� weighted by an ‘‘output

injection gain’’ G. This is the classical structure on an observer

and the requirement in (P1) precisely expresses the property

that the difference xðtÞ � x̂ðtÞ (the ‘‘observation error’’, in our

interpretation) should asymptotically decay to zero (with ulti-

mate exponential decay).

This interpretation is at the basis of a number of major recent

advances in the design of regulators. In fact, in a number of

recent papers, this interpretation has been pursued and, taking

into consideration various approaches to the design of nonlinear

observers, has lead to effective design methods. In Byrnes and

Isidori (2004), the approach of Bornard–Gauthier–Hammouri–

Kupca to the design of high-gain observers (as described, e.g.

by Gauthier and Kupka (2001)) has been followed. This design

requires the extra assumption that the set of all functions of the

form uðtÞ :¼ ûssðẑðtÞÞ obtained as ẑð0Þ ranges overA be a subset

of the set of solutions of a (nonlinear) differential equation

uðdÞ þ fðuðd�1Þ; . . . ; uð1Þ; uÞ ¼ 0: (45)

The controller obtained in this way cannot handle cases in

which the exosystem contains uncertain constant parameters

(as it is in the case of harmonic oscillator of unknown fre-

quency). To handle this case, an adaptive nonlinear observer is

needed, as that of Bastin and Gevers (1988), which in turn –

though – requires stronger hypotheses, such as the possibility of

expressing the state-space version of (45) in a form which can

be made linear by means of output injection and diffeomorph-

isms. The design of a regulator on the basis of the theory of

adaptive observers was pursued by Serrani et al. (2001) and by

Delli Priscoli et al. (2006). Finally, in Marconi et al. (2006), the

more recent advances in the theory of nonlinear observers

obtained by Andrieu and Praly (2006) have been exploited,

to show that a triplet fjðjÞ;G; gðjÞg having internal model

property controller does in fact exist always, and no assumption

like the existence of an equation of the form (45) is actually

required. In the triplet in question, jðjÞ has the following form

jðjÞ ¼ Fj� GgðjÞ
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in which ðF;GÞ is a controllable pair, with F a d � d Hurwitz

matrix, and sufficiently large d. However, no closed form is

immediately available for gðjÞ and this function is only guar-

anteed to be continuous.

7. Conclusions

Classically, engineers have developed two intuitive

approaches to formalize the concept of steady-state response.

The first is that such a motion should be the response of the

system as the initial time tends to �1, independent of the

initial condition. The second is based on the idea that every

motion can be decomposed into the superposition of a transient

response and a steady-state response. Any rigorous interpreta-

tion of the first approach would require the trajectories to be

bounded backward in time, while any effective use of the

second interpretation for analysis and design would require

some form of uniformity: that is, for any given tolerance and

any given (compact) set of initial conditions there should exist a

time after which the magnitude of the transient response is less

than this given tolerance regardless of the choice of initial

condition.

In this paper, we outlined concepts and tools necessary to

motivate, for general nonlinear systems, a simple definition of

steady-state behavior which captures both of the classical

intuitive approaches: boundendess of steady-state trajectories

backward and forward in time and uniform attractivity of the

steady-state behavior. A rigorous technical treatment is

provided as well as an indication of the recent applications

of these ideas and tools to the generalized tracking problem for

nonlinear control systems.
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