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Glossary

Exosystem: A dynamical system modelling the set of all exogenous inputs (command/disturbances)
affecting a controlled plant.

Internal Model: A model of the exogenous inputs (command/disturbances) affecting a controlled
plant, embedded in the interior of the controller.

Generalized Tracking Problem: The problem of designing a controller able to asymptotically track/reject
any exogenous command/disturbance in a fixed set of functions.

Observer: A device designed to asymptotically track the state of a dynamical system on the basis of
measured observations.

Steady state: A family of behaviors, in a dynamical system, that are asymptotically approached, as
actual time tends to infinity or as initial time tends to minus infinity.
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1 Definition

A central problem in control theory is the design of feedback controllers so as to have certain outputs
of a given plant to track prescribed reference trajectories. In any realistic scenario, this control goal
has to be achieved in spite of a good number of phenomena which would cause the system to behave
differently than expected. These phenomena could be endogenous, for instance parameter variations,
or exogenous, such as additional undesired inputs affecting the behavior of the plant. In numerous
design problems, exogenous inputs are not available for measurement, nor are known ahead of time,
but rather can only seen as unspecified members of a given family of functions. Embedding a suitable
“internal model” of such a family in the controller is a design strategy that has proven to be quite
successful in handling uncertainties in the controlled plant as well as in the exogenous inputs.

2 Introduction

The problem of controlling the output of a system so as to achieve asymptotic tracking of prescribed
trajectories and/or asymptotic rejection of disturbances is a central problem in control theory. There
are essentially three different possibilities to approach the problem: tracking by dynamic inversion,
adaptive tracking, tracking via internal models. Tracking by dynamic inversion consists in computing
a precise initial state and a precise control input (or equivalently a reference trajectory of the state),
such that, if the system is accordingly initialized and driven, its output exactly reproduces the reference
signal. The computation of such control input, however, requires “perfect knowledge” of the entire
trajectory which is to be tracked as well as “perfect knowledge” of the model of the plant to be
controlled. Thus, this type of approach is not suitable in the presence of large uncertainties on plant
parameters as well as on the reference signal. Adaptive tracking consists in tuning the parameters of a
control input computed via dynamic inversion in such a way as to guarantee asymptotic convergence
to zero of a tracking error. This method can successfully handle parameter uncertainties, but still
presupposes the knowledge of the entire trajectory which is to be tracked (to be used in the design
of the adaptation algorithm) and therefore an approach of this kind is not suited to the problem of
tracking unknown trajectories. Of course, one might consider the problem of tracking a slowly varying
reference trajectory as a stabilization problem in the presence of a slowly varying unknown parameter,
but this would, in most cases, yield a very conservative solution.

In most cases of practical interest, the trajectory to be tracked (or the disturbance to be rejected)
is not available for measurement. Rather, it is only known that this trajectory is simply an (un-
defined) member in a set of functions, for instance the set of all possible solutions of an ordinary
differential equation. Theses cases include the classical problem of the set point control, the problem
of active suppression of harmonic disturbances of unknown amplitude, phase and even frequency, the
synchronization of nonlinear oscillations, and similar others. It is in these cases that tracking via
internal models proves particularly efficient, in its ability to handle simultaneously uncertainties in
plant parameters as well as in the trajectory which is to be tracked.

For linear multivariable systems, tracking problems of this kind (those in which the exogenous
commands and/or disturbances are only known to be members in the set of solutions of a given
ordinary differential equations) have been addressed in very elegant geometric terms by Davison,
Francis, Wonham [8, 11, 10] and others. In particular, one of the most relevant contributions of [11]
was a clear delineation of what is known as internal model principle, i.e. the fact that the property
of perfect tracking is insensitive to plant parameter variations “only if the controller utilizes feedback
of the regulated variable, and incorporates in the feedback path a suitably reduplicated model of the
dynamic structure of the exogenous signals which the regulator is required to process”. Conversely, in a
stable-closed loop system, if the controller utilizes feedback of the regulated variable and incorporates
an internal model of the exogenous signals, the output regulation property is insensitive to plant
parameter variations.
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A nonlinear enhancement of this theory, which uses a combination of geometry and nonlinear
dynamical systems theory, was initiated in [19, 16, 15] in the context of solving the problem near an
equilibrium, in the presence of exogenous signals which were produced by a Poisson stable system. In
particular, in [19] it was shown how the use center manifold theory near an equilibrium determines the
necessity of the existence of an internal model whenever one can solve an output regulation problem in
spite of (small) parameter uncertainties (see also [3]). Since these pioneering contributions, the theory
has experienced a tremendous growth, culminating in the development of design methods able to
handle the case of parametric uncertainties affecting the autonomous (linear) system which generates
the exogenous signals (such as in [23, 9]), the case of nonlinear exogenous systems (such as in [5]), or
a combination thereof (as in [22]). The purpose of these notes is to present a self-contained exposition
of the fundamentals of these design methods.

3 The Generalized Tracking Problem

In this article, we address tracking problems that can be cast in the following terms. Consider a
finite-dimensional, time-invariant, nonlinear system modelled by equations of the form

ẋ = f(w, x, u)
e = h(w, x)
y = k(w, x) ,

(1)

in which x ∈ Rn is a vector of state variables, u ∈ Rm is a vector of inputs used for control purposes,
w ∈ Rs is a vector of inputs which cannot be controlled and include exogenous commands, exogenous
disturbances and model uncertainties, e ∈ Rp is a vector of regulated outputs which include tracking
errors and any other variable that needs to be steered to 0, y ∈ Rq is a vector of outputs that are
available for measurement and hence used to feed the device that supplies the control action. The
problem is to design a controller, which receives y(t) as input and produces u(t) as output, able to
guarantee that, in the resulting closed-loop system, x(t) remains bounded and

lim
t→∞

e(t) = 0 , (2)

regardless of what the exogenous input w(t) actually is.
The ability to successfully address this problem very much depends on how much the controller is

allowed to know about the exogenous disturbance w(t). In the ideal situation in which w(t) is available
to the controller in real-time, the design problem indeed looks much simpler. This is, though, only
an extremely optimistic situation which does not represent, in any circumstance, a realistic scenario.
The other extreme situation is the one in which nothing is known about w(t). In this, pessimistic,
scenario the best result one could hope for is the fulfillment of some prescribed ultimate bound for
|e(t)|, but certainly not a sharp goal such as (2). A more comfortable, intermediate, situation is the
one in which w(t) is only known to belong to a fixed family of functions of time, for instance the family
of all solutions obtained from a fixed ordinary differential equation of the form

ẇ = s(w) (3)

as the corresponding initial condition w(0) is allowed to vary on a prescribed set. This situation is in
fact sufficiently distant from the ideal but unrealistic case of perfect knowledge of w(t) and from the
realistic but conservative case of totally unknown w(t). But, above all, this way of thinking at the
exogenous inputs covers a number of cases of major practical relevance. There is, in fact, abundance of
design problems in which parameter uncertainties, reference commands and/or exogenous disturbances
can be modelled as functions of time that satisfy an ordinary differential equation.

The control law is to be provided by a system modelled by equations of the form

ξ̇ = ϕ(ξ, y)
u = γ(ξ, y)

(4)
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with state ξ ∈ Rν . The initial conditions x(0) of the plant (1), w(0) of the exosystem (3) and ξ(0) of
the controller (4) are allowed to range over a fixed compact sets X ⊂ Rn, W ⊂ Rs and, respectively
Ξ ⊂ Rν . All maps characterizing the of the controlled plant, of the exosystem and of the controller
are assumed to be sufficiently differentiable.

The problem which will be studied, known as the generalized tracking problem (or problem of
output regulation or also generalized servomechanism problem) is to design a feedback controller of the
form (4) so as to obtain a closed loop system in which all trajectories are bounded and the regulated
output e(t) asymptotically decays to 0 as t →∞. More precisely, it is required that the composition
of (1), (3) and (4), that is the autonomous system

ẇ = s(w)
ẋ = f(w, x, γ(ξ, k(w, x)))
ξ̇ = ϕ(ξ, k(w, x))

(5)

with output
e = h(w, x) ,

be such that:

• the positive orbit of W ×X×Ξ is bounded, i.e. there exists a bounded subset S of Rs×Rn×Rν

such that, for any (w0, x0, ξ0) ∈ W ×X × Ξ, the integral curve (w(t), x(t), ξ(t)) of (5) passing
through (w0, x0, ξ0) at time t = 0 remains in S for all t ≥ 0.

• limt→∞ e(t) = 0, uniformly in the initial condition, i.e., for every ε > 0 there exists a time t̄,
depending only on ε and not on (w0, x0, ξ0) such that the integral curve (w(t), x(t), ξ(t)) of (5)
passing through (w0, x0, ξ0) at time t = 0 yields ‖e(t)‖ ≤ ε for all t ≥ t̄.

4 The Steady-State Behavior of a Nonlinear System

4.1 Limit Sets

The generalized tracking problem can be seen as the problem of forcing in the plant, by means of
an appropriate control input u(t), a response x(t) that asymptotically compensates the effect, on
the regulated variable e(t), of the exogenous input w(t). The classical way in which the problem is
addressed for linear, time-invariant systems, when the exosystem is a neutrally stable linear system, is
to seek a controller forcing in the associated closed-loop system (5) a (stable) “steady state” behavior
entirely contained in the kernel of the map defining the tracking error e. Thus, it is natural to expect
that a similar tool should also be effective in the more general setting considered here. It appears,
though, that a rigorous investigation of the concept of “steady state”, beyond the classical domain of
linear system theory, had never been fully pursued.

Motivated by the current practice in linear system theory, the “steady state” behavior of a dy-
namical system can be viewed as a kind limit behavior, approached either as the actual time t tends
to +∞ or, alternatively, as the initial time t0 tends to −∞. Relevant, in this regard, are certain con-
cepts introduced by G.D.Birkhoff in his classical 1927 essay, where he asserts that “with an arbitrary
dynamical system . . . there is associated always a closed set of ‘central motions’ which do possess
this property of regional recurrence, towards which all other motions of the system in general tend
asymptotically” [2, page 190]. In particular, a fundamental role is played by the concept of ω-limit set
of a given point, which is defined as follows. Consider an autonomous ordinary differential equation

ẋ = f(x) (6)

with x ∈ Rn, t ∈ R. It is well known that, if f : Rn → Rn is locally Lipschitz, for any x0 ∈ Rn, the
solution of (6) with initial condition x(0) = x0, denoted by x(t, x0), exists on some open interval of
the point t = 0 and is unique.
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Assume, in particular, that x(t, x0) is defined for all t ≥ 0. A point x is said to be an ω-limit point
of the motion x(t, x0) if there exists a sequence of times {tk}, with limk→∞ tk = ∞, such that

lim
k→∞

x(tk, x0) = x .

The ω-limit set of a point x0, denoted ω(x0), is the union of all ω-limit points of the motion x(t, x0).
It is obvious from this definition that an ω-limit point is not necessarily a limit of x(t, x0) as

t → ∞, as the solution in question may not admit any limit as t → ∞. It happens though, that if
the motion x(t, x0) is bounded, then x(t, x0) asymptotically approaches the set ω(x0). This property
is precisely described in what follows [2, page 198].

Lemma 1 Suppose there is a number M such that ‖x(t, x0)‖ ≤ M for all t ≥ 0. Then, ω(x0) is a
nonempty compact connected set, invariant under (6). Moreover, the distance of x(t, x0) from ω(x0)
tends to 0 as t →∞.

One of the remarkable features of ω(x0), as indicated in this Lemma, is the fact that this set is
invariant for (6). Invariance means that for any initial condition x̄0 ∈ ω(x0) the solution x(t, x̄0) of
(6) exists for all t ∈ (−∞, +∞) and that x(t, x̄0) ∈ ω(x0) for all such t. Put in different terms, the
set ω(x0) is filled by motions of (6) which are bounded backward and forward in time. The other
remarkable feature is that x(t, x0) approaches ω(x0) as t → ∞, in the sense that the distance of the
point x(t, x0) (the value at time t of the solution of (6) starting in x0 at time t = 0) from the set ω(x0)
tends to 0 as t →∞.

Since any motion x(t, x0) which is bounded in positive time asymptotically approaches the ω-limit
set ω(x0) as t →∞, one may be tempted to look, for a system (6) in which all motions are bounded
in positive time, at the union of the limit sets of all points x0, i.e. at the set

Ω =
⋃

x0∈Rn

ω(x0)

and to say that the system is in steady state if its state x(t) evolves in the (invariant) set Ω. There is a
major drawback, though, in taking this as definition of “steady state” behavior of a nonlinear system:
the convergence of x(t, x0) to Ω is not guaranteed to be uniform in x0, even if the latter ranges over
a compact set (see, e.g. [7]).

One of the main motivations for looking into the concept of steady state is the aim to shape the
steady state response of a system to a given (or to a given family of) forcing inputs. But this motivation
looses much of its meaning if the time needed to get within an ε-distance from the steady state may
grow unbounded as the initial state changes (even when the latter is picked within a fixed bounded
set). In other words, uniform convergence to the steady state (which is automatically guaranteed in
the case of linear systems) is an indispensable feature to be required in a nonlinear version of this
notion. The set Ω, the union of all ω-limit points of all points in the state space does not have this
property of uniform convergence, but there is a larger set which does have this property. This larger
set, known as the ω limit set of a set, is precisely defined as follows.

Consider again system (6), let B be a subset of Rn and suppose x(t, x0) is defined for all t ≥ 0
and all x0 ∈ B. The ω-limit set of B, denoted ω(B), is the set of all points x for which there exists a
sequence of pairs {xk, tk}, with xk ∈ B and limk→∞ tk = ∞ such that

lim
k→∞

x(tk, xk) = x .

It is clear from the definition that if B consists of only one single point x0, all xk’s in the definition
above are necessarily equal to x0 and the definition in question reduces to the definition of ω-limit set
of a point, given earlier. It is also clear form this definition that, if for some x0 ∈ B the set ω(x0) is
nonempty, all points of ω(x0) are points of ω(B). In fact, all such points have the property indicated
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in the definition, if all the xk’s are taken equal to x0. Thus, in particular, if all motions with x0 ∈ B
are bounded in positive time, ⋃

x0∈B

ω(x0) ⊂ ω(B) .

However, the converse inclusion is not true in general.
The relevant properties of the ω-limit set of a set, which extend those presented earlier in Lemma

1, can be summarized as follows [14, page 8].

Lemma 2 Let B be a nonempty bounded subset of Rn and suppose there is a number M such that
‖x(t, x0)‖ ≤ M for all t ≥ 0 and all x0 ∈ B. Then ω(B) is a nonempty compact set, invariant under
(6). Moreover, the distance of x(t, x0) from ω(B) tends to 0 as t →∞, uniformly in x0 ∈ B. If B is
connected, so is ω(B).

Thus, as it is the case for the ω-limit set of a point, we see that the ω-limit set of a bounded set,
being compact and invariant, is filled with motions which exist for all t ∈ (−∞,+∞) and are bounded
backward and forward in time. But, above all, we see that the set in question is uniformly approached
by motions with initial state x0 ∈ B, a property that the set Ω does not have. Note also that the set
of all such trajectories is a “behavior”, in the sense of J.C. Willems [25].

The set ω(B), as shown in the previous Lemma, asymptotically attracts, as t → ∞, all motions
that start in B. Since the convergence to ω(B) is uniform in x0, it is also true that, whenever ω(B)
is contained in the interior of B, the set ω(B) is asymptotically stable, in the sense of Lyapunov.

4.2 The Steady State Behavior of a Nonlinear System

Consider now again system (6), with initial conditions in a closed subset X ⊂ Rn. Suppose the set X
is positively invariant, which means that for any initial condition x0 ∈ X, the solution x(t, x0) exists
for all t ≥ 0 and x(t, x0) ∈ X for all t ≥ 0. The motions of this system are said to be ultimately
bounded if there is a bounded subset B with the property that, for every compact subset X0 of X,
there is a time T > 0 such that ‖x(t, x0)‖ ∈ B for all t ≥ T and all x0 ∈ X0. In other words, if
the motions of the system are ultimately bounded, every motion eventually enters and remains in the
bounded set B.

Suppose the motions of (6) are ultimately bounded and let B′ 6= B be any other bounded subset
with the property that, for every compact subset X0 of X, there is a time T > 0 such that ‖x(t, x0)‖ ∈
B′ for all t ≥ T and all x0 ∈ X0. Then, it is easy to check that ω(B′) = ω(B). Thus, in view of the
properties described in Lemma 2 above, the following definition can be adopted (see [7]).

Definition. Suppose the motions of system (6), with initial conditions in a closed and positively
invariant set X, are ultimately bounded. A steady state motion is any motion with initial condition
in x(0) ∈ ω(B). The set ω(B) is the steady state locus of (6) and the restriction of (6) to ω(B) is the
steady state behavior of (6). /

The notion introduced in this way recaptures the classical notion of steady state for linear systems
and provides a new powerful tool to deal with similar issues in the case of nonlinear systems.

Example. In order to see how this notion includes the classical viewpoint, consider an n-dimensional,
single-input, asymptotically stable linear system

ż = Fz + Gu (7)

forced by the harmonic input u(t) = u0 sin(ωt+φ0). A simple method to determine the periodic motion
of (7) consists in viewing the forcing input u(t) as provided by an autonomous “signal generator” of
the form

ẇ = Sw u = Qw
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in which

S =
(

0 ω
−ω 0

)
Q = ( 1 0 )

and in analyzing the state state behavior of the associated “augmented” system

ẇ = Sw

ż = Fz + GQw .
(8)

As a matter of fact, let Π be the unique solution of the Sylvester equation ΠS = Fπ+GQ and observe
that the graph of the linear map

π : R2 → Rn

w 7→ Πw

is an invariant subspace for the system (8). Since all trajectories of (8) approach this subspace as
t → ∞, the limit behavior of (8) is determined by the restriction of its motion to this invariant
subspace.

Revisiting this analysis from the viewpoint of the more general notion of steady state introduce
above, let W ⊂ R2 be a set of the form

W = {w ∈ R2 : ‖w‖ ≤ c} (9)

in which c is a fixed number, and suppose the set of initial conditions for (8) is W × Rn. This is in
fact the case when the problem of evaluating the periodic response of (7) to harmonic inputs whose
amplitude does not exceed a fixed number c is addressed. The set W is compact and invariant for
the upper subsystem of (8) and, as it is easy to check, the ω-limit set of W under the motion of the
upper subsystem of (8) is the subset W itself.

The set W × Rn is closed and positively invariant for the full system (8) and, moreover, since
the lower subsystem of (8) is a linear asymptotically stable system driven by a bounded input, it
is immediate to check that the motions of system (8), with initial conditions taken in W × Rn, are
ultimately bounded. As a matter of fact, any bounded set B of the form

B = {(w, z) ∈ R2 × Rn : w ∈ W, ‖z −Πw‖ ≤ d}
in which d is any positive number, has the property indicated in the definition of ultimate boundedness.
It is easy to check that

ω(B) = {(w, z) ∈ R2 × Rn : w ∈ W, z = Πw} ,

i.e. ω(B) is the graph of the restriction of the map π to the set W . The restriction of (8) to the
invariant set ω(B) characterizes the steady state behavior of (7) under the family of all harmonic
inputs of fixed angular frequency ω, and amplitude not exceeding c. /

Example. A similar result, namely the fact that the steady state locus is the graph of a map, can be
reached if the “signal generator” is any nonlinear system, with initial conditions chosen in a compact
invariant set W . More precisely, consider an augmented system of the form

ẇ = s(w)
ż = Fz + Gq(w) ,

(10)

in which w ∈ W ⊂ Rr, x ∈ Rn, and assume that: (i) all eigenvalues of F have negative real part, (ii)
the set W is a compact set, invariant for the the upper subsystem of (10).

As in the previous example, the ω-limit set of W under the motion of the upper subsystem of
(10) is the subset W itself. Moreover, since the lower subsystem of (10) is a linear asymptotically
stable system driven by the bounded input u(t) = q(w(t, w0)), the motions of system (10), with initial
conditions taken in W × Rn, are ultimately bounded.
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It is easy to check that the steady state locus of (10) is the graph of the map

π : W → Rn

w 7→ π(w) ,

defined by

π(w) = lim
T→∞

∫ 0

−T

e−FτGq(w(τ, w))dτ . (11)

To see why this is the case, pick any initial condition (w0, z0) for (10) on the graph of π and compute
the solution z(t) of the lower equation of (10) by means of the classical variation of constants formula,
to obtain

z(t) = eFtz0 +
∫ t

0

eF (t−τ)Gq(w(τ, w0))dτ

Since by hypothesis z0 = π(w0), using (11) one obtains

z(t) = eFt

∫ 0

−∞
e−FτGq(w(τ, w0))dτ +

∫ t

0

eF (t−τ)Gq(w(τ, w0))dτ

=
∫ t

−∞
eF (t−τ)Gq(w(τ, w0))dτ =

∫ 0

−∞
e−FθGq(w(θ + t, w0))dθ

=
∫ 0

−∞
e−FθGq(w(θ, w(t, w0)))dθ = π(w(t, w0)) = π(w(t))

which proves the invariance of the graph of π for (10). It is deduced from this that that any point of
the graph of π is necessarily a point of the steady state locus of (10). To complete the proof of the
claim it remains to show that no other point of W ×Rn can be a point of the steady state locus. But
this is a straightforward consequence of the fact that F has eigenvalues with negative real part. /

There are various ways in which the result discussed in the previous example can be generalized.
For instance, it can be extended to describe the steady state response of a nonlinear system

ż = f(z, u) (12)

in the neighborhood of a locally exponentially stable equilibrium point. To this end, suppose that
f(0, 0) = 0 and that the matrix

F =
[∂f

∂z

]
(0, 0)

has all eigenvalues with negative real part. Then, it is well known (see e.g. [13, page 275]) that it is
always possible to find a compact subset Z ⊂ Rn, which contains z = 0 in its interior and a number
σ > 0 such that, if ‖z0‖ ∈ Z and ‖u(t)‖ ≤ σ for all t ≥ 0, the solution of (12) with initial condition
z(0) = z0 satisfies ‖z(t)‖ ∈ Z for all t ≥ 0. Suppose that the input u to (12) is produced, as before,
by a signal generator of the form

ẇ = s(w)
u = q(w) (13)

with initial conditions chosen in a compact invariant set W and, moreover, suppose that, ‖q(w)‖ ≤ σ
for all w ∈ W . If this is the case, the set W × Z is positively invariant for

ẇ = s(w)
ż = f(z, q(w)) ,

(14)

and the motions of the latter are ultimately bounded, with B = W × Z. The set ω(B) may have a
complicated structure but it is possible to show, by means arguments similar to those which are used
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in the proof of the Center Manifold theorem, that if Z and B are small enough the set in question can
still be expressed as the graph of a map z = π(w). In particular, the graph in question is precisely
the center manifold of (14) at (0, 0) if s(0) = 0 and the matrix

S =
[ ∂s

∂w

]
(0)

has all eigenvalues on the imaginary axis.
A common feature of the examples discussed above is the fact that the steady state locus of a

system of the form (14) can be expressed as the graph of a map z = π(w). This means that, so long
as this is the case, a system of this form has a unique well defined steady state response to the input
u(t) = q(w(t)). As a matter of fact, the response in question is precisely z(t) = π(w(t)). Of course,
this may not always be the case and multiple steady state responses to a given input may occur. In
general, the following property holds.

Lemma 3 Let W be a compact set, invariant under the flow of (13). Let Z be a closed set and
suppose that the motions of (14) with initial conditions in W × Z are ultimately bounded. Then, the
steady state locus of (14) is the graph of a set-valued map defined on the whole of W .

5 Necessary Conditions for Output Regulation

Taking advantage of the notions introduced in the previous section, we are now in a position to
highlight some general properties that any controller that solves a problem of output regulation must
necessarily have. Recall that, as defined earlier, the problem of output regulation is solved if, in the
composite system (5):

• the positive orbit of W ×X × Ξ is bounded,

• limt→∞ e(t) = 0, uniformly in the initial condition.

The notions introduced in the previous section are instrumental to prove the following, elementary
– but fundamental – result, which is a nonlinear enhancement of a Lemma of [10] on which all the
theory of output regulation for linear systems is based.

Lemma 4 Suppose the positive orbit of W ×X × Ξ is bounded. Then

lim
t→∞

e(t) = 0

if and only if
ω(W ×X × Ξ) ⊂ {(w, x, ξ) : h(w, x) = 0}. (15)

It is seen from this simple result that the problem of output regulation can be simply cast as the
problem of shaping the steady state locus of the closed loop system, in such a way that property (15)
holds.

To proceed with the analysis in a more concrete fashion, we consider from now on the special case
in which the controlled plant (4) is modelled by equations in normal form

ż = f0(w, z) + f1(w, z, e1)e1

ė1 = e2

...
ėr−1 = er

ėr = q(w, z, e1, . . . , er) + b(w, z, e1, . . . , er)u
e = e1

y = col(e1, . . . , er) ,

(16)

9
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with state (z, e1, . . . , er) ∈ Rn−r ×Rr, control input u ∈ R, regulated output e ∈ R, measured output
y ∈ Rr. The functions f0(·), f1(·), q(·), b(·), s(·) in (16) and (3) are assumed to be at least continuously
differentiable. It is also assumed that

b(w, z, e1, . . . , er) 6= 0 ∀(w, z, e1, . . . , er) .

The initial conditions of (16) range on a set Z ×E, in which Z is a fixed compact subset of Rn−r and
E = {(e1, . . . , er) ∈ Rr : |ei| ≤ c}, with c a fixed number.

Suppose that a controller of the form (4) solves the problem of output regulation. Then Lemma
2 applies and, since e = e1, we deduce that the steady state locus of the closed loop system (5) is
necessarily a subset of the set of all states in which e1 = 0. This being the case, it is seen from the
form of the equations (16) that, when the closed loop system (5) is in steady state, necessarily also

e2 = e3 = · · · = er = 0 .

As a consequence, the following conclusions hold:

• The steady state locus ω(W × Z × E × Ξ) of the closed-loop system is a subset of the set
W × Rn−r × {0} × Rν .

• The restriction of the closed-loop system to its steady state locus ω(W × Z × E × Ξ) reduces to

ẇ = s(w)
ż = f0(w, z)
ξ̇ = ϕ(ξ, 0) .

(17)

• For each (w, z, 0, . . . , 0, ξ) ∈ ω(W × Z × E × Ξ)

0 = q(w, z, 0, . . . , 0) + b(w, z, 0, . . . , 0)γ(ξ, 0) . (18)

The prior analysis implicitly assumes that the positive orbit of W under the flow of exosystem is
bounded, i.e. that the motions of the exosystem asymptotically approach the its own steady state
locus ω(W ). In principle, ω(W ) may differ from W but there is no loss of generality in assuming
from the very beginning that the two sets coincide. After all, the problem in question is a problem
concerning how the closed-loop system behaves in steady state and there is no special interest in
considering exosystems that are not “in steady state”. We make this assumption precise as follows.

Assumption (i) : the compact set W is invariant for (3). /

With this in mind we observe that, by Lemma 3, if the positive orbit of W ×Z ×E ×Ξ under the
flow of (5) is bounded, then ω(W ×Z ×E×Ξ) is the graph of a (possibly set-valued) map defined on
the whole of W . Consider now the set

Ass = {(w, z) : (w, z, 0, . . . , 0, ξ) ∈ ω(W × Z × E × Ξ), for some ξ ∈ Rν}

and define the map
uss : Ass → R

(w, z) 7→ − q(w, z, 0, . . . , 0)
b(w, z, 0, . . . , 0)

.

By construction, the set Ass is the graph of a (possibly set-valued) map defined on the whole of
W , which is invariant for the dynamics of

ẇ = s(w)
ż = f0(w, z) ,

(19)

10

Article V



that are precisely the zero dynamics of the “augmented system” (3) – (16), while the map uss(·) is the
control that forces the motion of (3) – (16) to evolve on Ass.

With this in mind, the conclusions reached above can be rephrased in the following terms. Suppose
that a controller of the form (4) solves the problem of output regulation for (16) with exosystem (3).
Then, there exists a (possibly set-valued) map defined on the whole of W whose graph Ass is invariant
for the autonomous system (19). Moreover, for each (w0, z0) ∈ Ass there is a point ξ0 ∈ Rν such that
the integral curve of (19) issued from (w0, z0) and the integral curve of

ξ̇ = ϕ(ξ, 0)

issued from ξ0 satisfy
uss(w(t), z(t)) = γ(ξ(t)) , ∀t ∈ R .

This is a nonlinear version of the celebrated internal model principle of [11].

6 Sufficient Conditions for Output Regulation

6.1 The Control Structure

On the basis of the ideas presented in the previous section we proceed now with the construction of a
controller that solves the problem of output regulation. The “steady state” features of this controller
are those identified at the end of the section, namely this controller has to be able to “generate” all
controls of the form uss(w(t), z(t)) for any “steady state” trajectory w(t), z(t) of (19). The controller
should incorporate a device that generates all such trajectories (the internal model), thus making sure
that the “appropriate” state-state behavior takes place, and a device guaranteeing that convergence
to this specific steady state behavior occurs. It is here that additional assumptions are needed.

Note that, since W is invariant for ẇ = s(w), the closed cylinder

C := W × Rn−r

is locally invariant for (19). Hence, it is natural regard (19) as a system defined on C and endow the
latter with the subset topology.

Assumption (ii) : there exists a bounded subset B of C which contains the positive orbit of the set
W × Z under the flow of (19) and the resulting omega-limit set

A := ω(W × Z)

satisfies
(w, z) ∈ C , |(w, z)|A ≤ d0 ⇒ z ∈ Z (20)

where d0 is a positive number. /

While in the analysis of the necessity we have only identified the existence of a compact set
(actually, the graph of a map defined on W ) which is invariant for (19), the new assumption (ii)
implies, in its first part, the existence of a compact set A (still the graph of a map defined on W )
which is not only invariant but also uniformly attractive of all trajectories of (19) issued from points
of W × Z. The second part of the assumption, in turn, guarantees that this set is also stable in the
sense of Lyapunov. In the next assumption we strengthen this property by also requiring the set A
is locally exponentially stable (this assumption is useful to straighten the subsequent analysis, but is
not essential).

Assumption (iii) : there exist M ≥ 1, λ > 0 such that

(w0, z0) ∈ C , |(w0, z0)|A ≤ d0 ⇒ |(w(t), z(t))|A ≤ Me−λt|(w0, z0)|A
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in which (w(t), z(t)) denotes the solution of (19) passing through (w0, z0) at time t = 0. /
To simplify the exposition, we address the special case in which the controlled system (16) has

relative degree 1, and in which the coefficient b(w, z, e1) is identically equal to 1. In other words, we
consider a system is modelled by equations of the form

ż = f0(w, z) + f1(w, z, e)e
ė = q(w, z, e) + u
y = e .

(21)

There is no loss of generality in considering a system having this simple form (21) because, as shown
for instance in [9, 22], the case of a more general system of the form (16) can be easily reduced, by
appropriate manipulations, to this one.

For convenience, rewrite the augmented system (3) – (21) as

ż = f0(z) + f1(z, e)e
ė = q0(z) + q1(z, e)e + u

(22)

having set z = (w, z). Consistently let Z := W ×Z denote the compact set where the initial condition
z(0) is supposed to range. In these notations, assumptions (i) – (ii) - (iii) express the property that,
in the autonomous system

ż = f0(z) , (23)

the set A is asymptotically and locally exponentially stable, with a domain of attraction that contains
the set Z.

Suppose now that the control u is chosen as u = −ke. The closed-loop system thus obtained, can
be regarded as a feedback interconnection of

ż = f0(z) + f1(z, e)e (24)

viewed as a system with input e and state z, and

ė = q0(z) + q1(z, e)e− ke (25)

viewed as a system with input z and state e.
By assumption, system (24) possesses, when e = 0, an invariant set A which is asymptotically and

locally exponentially stable, with a domain of attraction that contains the set Z of all admissible initial
conditions. Thus, standard arguments (see, e.g. [6]) can be invoked to claim that, if k is large enough,
all trajectories of the interconnection (24) – (25) with initial conditions in Z×E remain bounded and
the state (z, e) can be steered to an arbitrary small neighborhood of the set A× {0}. This does not
solve the problem at issue, though, because the variable e(t) is not guaranteed to converge to zero (but
only to converge to a neighborhood of zero, whose size can be made arbitrarily small by increasing
the gain coefficient k). The condition for having e(t) → 0 as t → ∞ is simply that the “coupling”
term q0(z) vanishes on the set A, but there is no reason for this to occur (see again, e.g.[6]). This is
why a more elaborate, internal-model-based, controller is needed.

System (16) being affine in the control input u, it seems natural to look for a controller having a
similar structure, namely a controller of the form

ξ̇ = ϕ(ξ) + Gv
u = γ(ξ) + v

(26)

with state ξ ∈ Rν , in which v is a residual control input, to be eventually chosen as a function of
the measured output y. Here ϕ(·), G and γ(·) are functions to be determined. we will show in what
follows that, if the triplet {ϕ(ξ), G, γ(ξ)} possesses what we will define as asymptotic internal model
property, the choice of the residual control v in (26) as

v = ke

solves the problem of output regulation, provided that the gain coefficient k is sufficiently high.
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6.2 The Internal Model

Controlling this system by means of (26) yields a closed-loop system

ż = f0(z) + f1(z, e)e
ė = q0(z) + q1(z, e)e + γ(ξ) + v

ξ̇ = ϕ(ξ) + Gv
(27)

which, regarded as a system with input v and output e, has relative degree 1 and zero dynamics given
by

ż = f0(z)
ξ̇ = ϕ(ξ)−G[γ(ξ) + q0(z)] .

(28)

System (27) can be put in normal form by means of the change of variables

x = ξ −Ge

which yields
ż = f0(z) + f1(z, e)e
ẋ = ϕ(x + Ge)−Gγ(x + Ge)−Gq0(z)−Gq1(z, e)e
ė = q0(z) + q1(z, e)e + γ(x + Ge) + v .

(29)

Setting x = (z, x), this system can be further rewritten in the form

ẋ = f(x) + `(x, e)e
ė = q(x) + r(x, e)e + v

(30)

in which

f(x) =
(

f0(z)
ϕ(x)−G[γ(x) + q0(z)]

)

q(x) = q0(z) + γ(x)

and `(x, e), r(x, e) are suitable continuous functions.
Suppose now that the residual control v is chosen as v = −ke. This yields a closed-loop sys-

tem having a structure similar to the one considered in the previous subsection, namely a feedback
interconnection of

ẋ = f(x) + `(x, e)e (31)

viewed as a system with input e and state x, and

ė = q(x) + r(x, e)e− ke (32)

viewed as a system with input x and state e. As claimed earlier, a high-gain control on e, namely a
control v = −ke with large k, would succeed in steering e(t) to zero if two conditions are fulfilled:
(P1) the dynamics (28) possesses a compact invariant set which is asymptotically (and locally ex-
ponentially) stable, with a domain of attraction that contains the set Z × Ξ of all admissible initial
conditions, and
(P2) the function q0(z) + γ(ξ) vanishes on this invariant set.

These are the properties that will be sought in what follows. Note that the fulfillment of these is
determined by properties of the autonomous system (23) and of the function

ρ = q0(z) (33)

which, in the composite system (28) can be viewed as the output of (23) driving a system of the form

ξ̇ = ϕ(ξ)−G[γ(ξ) + q0(z)] . (34)

For convenience, we will say that triplet {ϕ(ξ), G, γ(ξ)} is an asymptotic internal model of the pair
(23) – (33) if properties (P1) and (P2) are satisfied. In this terminology, we can summarize as follows
the conclusion obtained so far.
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Proposition 1 Pick compact sets Z, E and Ξ for the initial conditions of the closed-loop system (3),
(21), (26). Assume that (i)-(ii)-(iii) hold and that the triplet {ϕ(ξ), G, γ(ξ)} is an asymptotic internal
model property of (23) – (33). Then there exists k? > 0 such that for all k ≥ k? the controller (26)
with v = −ke solves the generalized tracking problem.

The notion of steady state provides a useful interpretation of the properties in question. In fact,
recall that, by Assumption A, all trajectories of system (23) with initial conditions in Z asymptotically
converge to the compact invariant set A, and the latter is also locally exponentially stable. If property
(P1) holds, all trajectories of the composite system (28) with initial conditions in Ẑ×Ξ asymptotically
converge to the limit set ω(Z× Ξ). Since (28) is a triangular system, its is readily seen, that the set
ω(Z× Ξ) is the graph of a set-valued map defined on A, i.e. that there exists a map

τ : z ∈ A 7→ τ(z) ⊂ Rν ,

such that
ω(Z× Ξ) = {(z, x) : z ∈ A, ξ ∈ τ(z)} := gr(τ) .

The set gr(τ) is the steady state locus of (28) and the restriction of the latter to this invariant set
characterizes its steady state behavior. Property (P2), on the other hand, expresses the property that
at each point of (ẑ, ξ) ∈ gr(τ)

q̂0(z) = −γ(ξ) . (35)

Thus, looking again at system (28), it is realized that gr(τ) is in fact invariant for

ż = f0(z)
ξ̇ = ϕ(ξ) .

(36)

Note that, if the map τ(z) is single-valued and C1, its invariance for (36) is expressed by the
property that

∂τ(z)
∂z

f0(z) = ϕ(τ(z)) ∀ z ∈ A , (37)

while the fact that (35) holds at each point of (z, ξ) ∈ gr(τ) is expressed by the property that

q0(z) = −γ(τ(z)) ∀ z ∈ A . (38)

6.3 The Design of an Internal Model

As we have seen in the earlier sections, the proposed controller, if the asymptotic internal model
property holds, is able to force – in the closed loop system – convergence to a steady state in which
the regulated variable is identically zero. As a consequence, the controller solves the generalized
tracking problem. It remains to be shown, therefore, how the asymptotic internal model property can
be obtained. To this end, it is convenient to observe that the properties required in (P1) and (P2)
are quite similar to properties that are usually sought in the design of state observers. As a matter of
fact it is seen from (37) and (38) that, for each z0 ∈ A, the function of time

ξ̂(t) = τ(z(t, z0))

which is defined (and bounded) for all t ∈ R satisfies

dξ̂(t)
dt

= ϕ(ξ̂(t)) (39)

and, moreover
γ(ξ̂(t)) = −q0(z(t, z0)) .
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In view of the latter, system (34) can be rewritten in the form

ξ̇ = ϕ(ξ) + G[γ(ξ̂)− γ(ξ)] (40)

and interpreted as a copy of the dynamics (39) of ξ̂ corrected by an “innovation term” [γ(ξ̂)− γ(ξ)]
weighted by an “output injection gain” G. This is the classical structure on an observer and the
requirement in (P1) expresses the property that the difference ξ(t)− ξ̂(t) (the “observation error”, in
our interpretation) should asymptotically decay to zero (with ultimate exponential decay).

This interpretation is at the basis of a number of major recent advances in the design of regulators.
In fact, in a number of recent papers, this interpretation has been pursued and, taking into consid-
eration various approaches to the design of nonlinear observers, has lead to effective design methods
(see [5],[9], [22]). Two of such design methods are highlighted in the remaining part of this section.

6.3.1 The high-gain observer as an internal model (see [5])

The construction summarized in this section relies upon the following additional hypothesis.

Assumption (iv). Suppose there exist an integer d > 0 and a locally Lipschitz function f : Rd → R
such that, for any z0 ∈ A, the solution z(t) of passing through z0 at time t = 0 is such that the
function ρ(t) := q0(z(t)) satisfies

ρ(d)(t) = f(ρ(t), ρ(1)(t), . . . , ρ(d−1)(t))

for all t ∈ R. /

Let τ : W × Rn−1Rd be the map defined as

τ(z) := col(q0(z), Lf0q0(z), . . . , Ld−1
f0

q0(z)) (41)

and let fc : Rd → R be a C1 function with compact support which agrees with f(·) on τ(A). Then,
it easy to check that the properties indicated in (37) and (38) are fulfilled by choosing

ϕ(ξ) =




ξ2

...
ξd

fc(ξ1, ξ2, . . . , ξd)


 , γ(ξ) = ξ1 . (42)

Comparing this construction with the remark after Definition we observe, in particular, that system

ż = f0(z)
ρ = q0(z)

(43)

is immersed into a system which is uniformly observable, in the sense of [12] (even though system (43)
might not have had such a property). It is precisely this that makes it possible to choose G in such a
way that also the property indicated in (P1) can be achieved.

As a matter of fact, the property in question is achieved by choosing

G = Dg




c0

...
cd−1




where Dg = diag(g, g2, · · · , gd), g is a design parameter, and the ci’s are such that the polynomial
λd + c0λ

d−1 + · · · + cd−1 = 0 is Hurwitz, as formally proved in Lemmas 1 and 2 of [5] to which the
interested reader is referred for details.
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It is worth noting that the assumption in question clearly covers the interesting (and widely
addressed in the recent past literature, see [15]) case in which the function f(·) is linear, namely the
case in which (43) is immersed into a linear observable system. In this case, although the choice
indicated above is clearly still valid, a more direct way of designing the regulator is to use f(·) instead
of fc(·) in the definition of ϕ(ξ), and simply choose G in such a way that ξ̇ = ϕ(ξ)−Gγ(ξ) is a stable
linear system.

6.3.2 The Andrieu-Praly’s observer as an internal model (see [22])

In this subsection we exploit certain results of the theory presented in [1] to weaken (and, to some
extent, suppress) the Assumption (iv) presented at the beginning of the earlier subsection.

Let (F, G) ∈ Rd×d × Rd×1 be a controllable pair and set

ϕ(ξ) = Fξ + Gγ(ξ), (44)

with γ : Rd → R a continuous function to be chosen determined later. If this is the case, the composite
system (28) becomes

ż = f0(z)
ξ̇ = Fξ −Gq0(z) .

(45)

which is precisely a system of the form (10), considered in Example 4.2. If the matrix F is Hurwitz,
and we restrict z to belong to the set A, this system has a well defined steady state behavior, which
is the graph of the map

τ(z) =
∫ 0

−∞
e−FsGq0(z(s, z))ds . (46)

As shown in Example 4.2, the graph in question is invariant for system (45), is asymptotically (and
locally exponentially) stable and with a domain of attraction that coincides with W ×Rd. Moreover,
it can also be shown that there exists a number ` > 0 such that, if the eigenvalues of F have real part
which is less `, the map (46) is C1 (see, e.g. [22]). If this is the case, to say that the graph is invariant
for (45) is equivalent to say that

∂τ

∂z
f0(z) = Fz−Gq0(z) ∀ z ∈ A (47)

This being the case, it is immediate to check that properties (P1) and (P2) will be fulfilled if a
function γ(ξ) can be found that renders (38) satisfied. As a matter of fact, bearing in mind (44),
condition (37) becomes

∂τ

∂z
f0(z) = Fz−Gγ ◦ τ(z) ∀ z ∈ A

which, if condition (38) holds, reduces to (47). This, shows that a triplet having the asymptotic
internal model property can be found if a function γ(·) exist which satisfies (38). It is here that the
dimension d of the pair (F, G) plays a role, as formalized in the next proposition whose proof can be
found in [22].

Proposition 2 Suppose
d ≥ 2(s + n− r) + 2 .

Then for almost all choices (see [22] for details) of a controllable pair (F, G), with F a Hurwitz matrix
whose eigenvalues have real part which is less `, the map (46) satisfies

τ(z1) = τ(z2) ⇒ q0(z1) = q0(z2) .

As a consequence there exist a continuous map γ : τ(A) → R fulfilling (38).
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The map τ(·) in (46) is defined only on A, but is not difficult to extend it to a C1 map defined on
the whole set W × Rn−r, as shown in [22]. Also the map γ(·) that makes (38) true can be extended
to the whole Rd, but this extension is only known to be continuous.

We have shown in this way that the existence of triplet ψ(ξ), G, γ(ξ) which has the internal model
property can always be achieved, so long as the integer d is large enough. This result shows that the
general design procedure outlined earlier in the article is always applicable (so long as the standing
hypotheses (i) – (ii) – (iii) are applicable). From the constructive viewpoint, though, is must be
observed that the result indicated in Proposition 2 is only an existence result and that the function γ(ξ)
whose existence is guaranteed in only known to be continuous. Obtaining continuous differentiability
of such γ(ξ) and a constructive procedure are likely to require further hypotheses, which should
be in any case weaker than Assumption (iv) considered earlier, whose study is subject of current
investigation.

7 Future Directions

One of the basic hypotheses of the theory described in the previous sections is that the zero dynamics
of the augmented system consisting of the controlled plant and of the exosystem possesses a compact
attractor which is also locally asymptotically stable. This assumption, with an acceptable abuse of
terminology, is usually referred to as the “minimum-phase” property. Another standing hypothesis is
that the regulated variable coincides with the measured variable. The future directions of the research
in this area research are aimed at the removal of these assumptions. There are several directions in
which the problem can be tackled. One way is the use of control structures by means of which the
controlled system (plus a part of the controller) can be interpreted with systems having a different
zero dynamics (in particular a zero dynamics possessing a compact attractor). This is the nonlinear
equivalent of certain design procedures for linear systems based on the assignment of zeros. This
technique has proven to be powerful in the stabilization of certain classes of nonlinear systems (see
[18]) and is expected to be successful, with appropriate enhancements, in the design of regulators.
The analysis of the necessary conditions for output regulation has also shown that, if the generalized
tracking problem is solvable, the inverse dynamics of the augmented system consisting of the controlled
plant and of the exosystem possesses a compact invariant set which to which all initial conditions are
asymptotically controllable (by means of the regulated variable viewed as a control). This set is not
necessarily asymptotically stable (as it would be under the “minimum-phase” hypothesis) but could
be asymptotically stabilizable (by either full-state or measurement-based feedback). Thus, another
direction in which the research will evolve, in the development of control schemes for possibly non
“minimum-phase” nonlinear systems, is based on the exploitation of the (weaker) assumption that in
the zero dynamics of the augmented system there is a compact set that can be made invariant and
asymptotically stable by means of feedback. This will yield a design procedure in which a virtual
control (either full-state or measurements-based) is designed to stabilize that compact invariant set.
The (possibly dynamic) controller obtained in this way will then be embedded into a regulator designed
according to the principles developed in [24].
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