
THE ZERO DYNAMICS OF A NONLINEAR SYSTEM

1 Relative degree and local normal forms

The purpose of this Section is to show how single-input single-output nonlinear systems can
be locally given, by means of a suitable change of coordinates in the state space, a “normal
form” of special interest, on which several important properties can be elucidated.

The point of departure of the whole analysis is the notion of relative degree of the system,
which is formally described in the following way. The single-input single-output nonlinear
system

ẋ = f(x) + g(x)u

y = h(x)
(1)

is said to have relative degree r at a point x◦ if 1 (i) LgL
k
fh(x) = 0 for all x in a neighborhood

of x◦ and all k < r − 1

(ii) LgL
r−1
f h(x◦) 6= 0 .

Note that there may be points where a relative degree cannot be defined. This occurs, in
fact, when the first function of the sequence

Lgh(x), LgLfh(x), . . . , LgL
k
fh(x), . . .

which is not identically zero (in a neighborhood of x◦) has a zero exactly at the point x = x◦.
However, the set of points where a relative degree can be defined is clearly an open and dense
subset of the set U where the system (1) is defined.

Remark. In order to compare the notion thus introduced with a familiar concept, let us
calculate the relative degree of a linear system

ẋ = Ax+Bu

y = Cx .

In this case, since f(x) = Ax, g(x) = B, h(x) = Cx, it easily seen that

Lkfh(x) = CAkx

and therefore
LgL

k
fh(x) = CAkB .

Thus, the integer r is characterized by the conditions

CAkB = 0 for all k < r − 1

CAr−1B 6= 0 .

1Let λ be real-valued function and f an n-vector-valued vector, both defined on a subset U of Rn. The
function Lfλ is the real-valued function defined as

Lfλ(x) =

n∑
i=1

∂λ

∂xi
fi(x) :=

∂λ

∂x
f(x) .

This function is sometimes called derivative of λ along f .
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It is well-known that the integer satisfying these conditions is exactly equal to the differ-
ence between the degree of the denominator polynomial and the degree of the numerator
polynomial of the transfer function

T (s) = C(sI −A)−1B

of the system. /

We illustrate now a simple interpretation of the notion of relative degree, which is not
restricted to the assumption of linearity considered in the previous Remark. Assume the
system at some time t◦ is in the state x(t◦) = x◦ and suppose we wish to calculate the value
of the output y(t) and of its derivatives with respect to time y(k)(t), for k = 1, 2, . . ., at t = t◦.
We obtain

y(t◦) = h(x(t◦)) = h(x◦)

y(1)(t) =
∂h

∂x

dx

dt
=
∂h

∂x
(f(x(t)) + g(x(t))u(t))

= Lfh(x(t)) + Lgh(x(t))u(t) .

If the relative degree r is larger than 1, for all t such that x(t) is near x◦, i.e. for all t near
t◦, we have Lgh(x(t)) = 0 and therefore

y(1)(t) = Lfh(x(t)) .

This yields

y(2)(t) =
∂Lfh

∂x

dx

dt
=

∂Lfh

∂x
(f(x(t)) + g(x(t))u(t))

= L2
fh(x(t)) + LgLfh(x(t))u(t) .

Again, if the relative degree is larger than 2, for all t near t◦ we have LgLfh(x(t)) = 0 and

y(2)(t) = L2
fh(x(t)) .

Continuing in this way, we get

y(k)(t) = Lkfh(x(t)) for all k < r and all t near t◦

y(r)(t◦) = Lrfh(x◦) + LgL
r−1
f h(x◦)u(t◦) .

Thus, the relative degree r is exactly equal to the number of times one has to differentiate the
output y(t) at time t = t◦ in order to have the value u(t◦) of the input explicitly appearing.

Note also that if

LgL
k
fh(x) = 0 for all x in a neighborhood of x◦ and all k ≥ 0

(in which case no relative degree can be defined at any point around x◦) then the output
of the system is not affected by the input, for all t near t◦. As a matter of fact, if this is
the case, the previous calculations show that the Taylor series expansion of y(t) at the point
t = t◦ has the form

y(t) =
∞∑
k=0

Lkfh(x◦)
(t− t◦)k

k!
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i.e. that y(t) is a function depending only on the initial state and not on the input.
These calculations suggest that the functions h(x), Lfh(x), . . . , Lr−1f h(x) must have a

special importance. As a matter of fact, it is possible to show that they can be used in order
to define, at least partially, a local coordinates transformation around x◦(recall that x◦ is a
point where LgL

r−1
f h(x◦) 6= 0). This fact is based on the following property.

Lemma 1 The row vectors 2

dh(x◦), dLfh(x◦), . . . , dLr−1f h(x◦)

are linearly independent.

Lemma 1 shows that necessarily r ≤ n and that the r functions h(x), Lfh(x), . . . , Lr−1f h(x)
qualify as a partial set of new coordinate functions around the point x◦. As we shall see in
a moment, the choice of these new coordinates entails a particularly simple structure for the
equations describing the system. However, before doing this, it is convenient to summarize
the results discussed so far in a formal statement, that also illustrates a way in which the set
of new coordinates can be completed in case the relative degree r is strictly less than n.

Proposition 1 Suppose the system has relative degree r at x◦. Then r ≤ n. If r is strictly
less than n, it is always possible to find n − r more functions ψ1(x), . . . , ψr−r(x) such that
the mapping

Φ(x) =



ψ1(x)
. . .

ψn−r(x)
h(x)
Lfh(x)
. . .

Lr−1f h(x)


has a jacobian matrix which is nonsingular at x◦ and therefore qualifies as a local coordinates
transformation in a neighborhood of x◦. The value at x◦ of these additional functions can be
fixed arbitrarily. Moreover, it is always possible to choose ψ1(x), . . . , ψn−r(x) in such a way
that

Lgψi(x) = 0 for all 1 ≤ i ≤ n− r and all x around x◦.

The description of the system in the new coordinates is found very easily. Set

z =


ψ1(x)
ψ2(x)
· · ·

ψn−r(x)

 , ξ =


h(x)
Lfh(x)
· · ·

Lr−1f h(x)


2Let λ be a real-valued function defined on a subset U of Rn. Its differential, denote dλ(x) is the row vector

dλ(x) =
( ∂λ

∂x1

∂λ

∂x2
· · · ∂λ

∂xn

)
:=

∂λ

∂x
.
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and
x̃ = (z, ξ) .

Looking at the calculations already carried out at the beginning, we obtain for ξ1, . . . , ξr

dξ1
dt

=
∂h

∂x

dx

dt
= Lfh(x(t)) = ξ2(t)

· · ·
dξr−1
dt

=
∂(Lr−2f h)

∂x

dx

dt
= Lr−1f h(x(t)) = ξr(t) .

For ξr we obtain
dξr
dt

= Lrfh(x(t)) + LgL
r−1
f h(x(t))u(t).

On the right-hand side of this equation we must now replace x(t) with its expression as a
function of x̃(t), which will be written as x(t) = Φ−1(z(t), ξ(t)). Thus, setting

q(z, ξ) = Lrfh(Φ−1(z, ξ))

b(z, ξ) = LgL
r−1
f h(Φ−1(z, ξ))

the equation in question can be rewritten as

dξr
dt

= q(z(t), ξ(t)) + b(z(t), ξ(t))u(t) .

Note that at the point (z◦, ξ◦) = Φ(x◦), b(z◦, ξ◦) 6= 0 by definition. Thus, the coefficient
a(z, ξ) is nonzero for all (z, ξ) in a neighborhood of (z◦, ξ◦).

As far as the other new coordinates are concerned, we cannot expect any special structure
for the corresponding equations, if nothing else has been specified. However, if ψ1(x), . . . , ψn−r(x)
have been chosen in such a way that Lgψi(x) = 0, then

dzi
dt

=
∂ψi
∂x

(f(x(t)) + g(x(t))u(t)) = Lfψi(x(t)) + Lgψi(x(t))u(t) = Lfψi(x(t)).

Setting

f0(z, ξ) =

 Lfψ1(Φ
−1(z, ξ))
· · ·

Lfψn−r(Φ
−1(z, ξ))


the latter can be rewritten as

dz

dt
= f0(z(t), ξ(t)) .

Thus, in summary, the state-space description of the system in the new coordinates will
be as follows

ż = f0(z, ξ)

ξ̇1 = ξ2

ξ̇2 = ξ3

· · ·
ξ̇r−1 = ξr

ξ̇r = q(z, ξ) + b(z, ξ)u .

(2)
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In addition to these equations one has to specify how the output of the system is related
to the new state variables. But, being y = h(x), it is immediately seen that

y = ξ1 . (3)

The equations thus defined are said to be in normal form. They are useful in understand-
ing how certain control problems can be solved.

2 The Zero Dynamics

In this section we introduce and discuss an important concept, that in many instances plays a
role exactly similar to that of the “zeros” of the transfer function in a linear system. We have
already seen that the relative degree r of a linear system can be interpreted as the difference
between the number of poles and the number of zeros in the transfer function. In particular,
any linear system in which r is strictly less than n has zeros in its transfer function. On the
contrary, if r = n the transfer function has no zeros; thus, a nonlinear system having relative
degree r = n in some sense analogue to a linear systems without zeros. We shall see in this
section that this kind of analogy can be pushed much further.

Consider a nonlinear system with r strictly less than n and look at its normal form. Recall
that, if x◦ is such that f(x◦) = 0 and h(x◦) = 0, then necessarily the set ξ of the last r new
coordinates is 0 at x◦. Note also that it is always possible to choose arbitrarily the value at
x◦ of the first n−r new coordinates, thus in particular being 0 at x◦. Therefore, without loss
of generality, one can assume that ξ = 0 and z = 0 at x◦. Thus, if x◦ was an equilibrium for
the system in the original coordinates, its corresponding point (z, ξ) = (0, 0) is an equilibrium
for the system in the new coordinates and from this we deduce that

q(0, 0) = 0

f0(0, 0) = 0 .

Suppose now we want to analyze the following problem, called the Problem of Zeroing
the Output. Find, if any, pairs consisting of an initial state x◦ and of an input function u◦(·),
defined for all t in a neighborhood of t = 0, such that the corresponding output y(t) of the
system is identically zero for all t in a neighborhood of t = 0. Of course, we are interested in
finding all such pairs (x◦, u◦) and not simply in the trivial pair x◦ = 0, u◦ = 0 (corresponding
to the situation in which the system is initially at rest and no input is applied). We perform
this analysis on the normal form of the system.

Recalling that in the normal form

y(t) = ξ1(t) ,

we see that the constraint y(t) = 0 for all t implies

ξ1(t) = ξ2(t) = . . . = ξr(t) = 0 ,

that is ξ(t) = 0 for all t.
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Thus, we see that when the output of the system is identically zero its state is constrained
to evolve in such a way that also ξ(t) is identically zero. In addition, the input u(t) must
necessarily be the unique solution of the equation

0 = q(z(t), 0) + b(z(t), 0)u(t)

(recall that b(z(t), 0) 6= 0 if z(t) is close to 0). As far as the variable z(t) is concerned, it is
clear that, being ξ(t) identically zero, its behavior is governed by the differential equation

ż(t) = f0(z(t), 0) . (4)

From this analysis we deduce the following facts. If the output y(t) has to be zero, then
necessarily the initial state of the system must be set to a value such that ξ(0) = 0, whereas
z(0) = z◦ can be chosen arbitrarily. According to the value of z◦, the input must be set as

u(t) = −q(z(t), 0)

b(z(t), 0)

where z(t) denotes the solution of the differential equation

ż(t) = f0(z(t), 0) with initial condition z(0) = z◦.

Note also that for each set of initial data ξ = 0 and z = z◦ the input thus defined is the
unique input capable to keep y(t) identically zero for all times.

The dynamics of (4) correspond to the dynamics describing the “internal” behavior of
the system when input and initial conditions have been chosen in such a way as to constrain
the output to remain identically zero. These dynamics, which are rather important in many
of our developments, are called the zero dynamics of the system.

Remark. In order to understand why we used the terminology “zero” dynamics in dealing
with the dynamical system (4), it is convenient to examine how these dynamics are related
to the zeros of the transfer function in a linear system. Let

T (s) = K
b0 + b1s+ · · ·+ bn−r−1s

n−r−1 + sn−r

a0 + a1s+ · · ·+ an−1sn−1 + sn

denote the transfer function of a linear system (where r characterizes, as expected, the rela-
tive degree). Suppose the numerator and denominator polynomials are relatively prime and
consider a minimal realization of T (s)

ẋ = Ax+Bu

y = Cx

with

A =


0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · ·
0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1

 B =


0
0
· · ·
0
K


C = ( b0 b1 · · · bn−r−1 1 0 · · · 0 ) .
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Let us now calculate its normal form. For the last r new coordinates we know we have
to take

ξ1 = Cx = b0x1 + b1x2 + · · ·+ bn−r−1xn−r + xn−r+1

ξ2 = CAx = b0x2 + b1x3 + · · ·+ bn−r−1xn−r+1 + xn−r+2

· · ·
ξr = CAr−1x = b0xr + b1xr+1 + · · ·+ bn−r−1xn−1 + xn.

For the first n − r new coordinates we have some freedom of choice (provided that the
conditions stated in Proposition 1 are satisfied), but the simplest one is

z1 = x1

z2 = x2

· · ·
zn−r = xn−r .

This is indeed an admissible choice because the corresponding coordinates transformation
x̃ = Φ(x) has a jacobian matrix with the following structure

∂Φ

∂x
=




1 0 · · · 0
0 1 · · · 0
· · · · · ·
0 0 · · · 1




0 0 · · · 0
0 0 · · · 0
· · · · · ·
0 0 · · · 0


( · · · )


1 0 · · · 0
? 1 · · · 0
· · · · · ·
? ? · · · 1




and therefore nonsingular.

In the new coordinates we obtain equations in normal form, which, because of the linearity
of the system, have the following structure

ż = Fz +Gξ

ξ̇1 = ξ2

ξ̇2 = ξ3

· · ·
ξ̇r−1 = ξr

ξ̇r = Hz +Kξ + bu

where H and K are row vectors and F and G matrices, of suitable dimensions. The zero
dynamics of this system, according to our previous definition, are those of

ż = Fz .

The particular choice of the first n − r new coordinates (i.e. of the elements of z) entails a
particularly simple structure for the matrices F and G. As a matter of fact, is easily checked
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that

dz1
dt

=
dx1
dt

= x2(t) = z2(t)

· · ·
dzn−r−1
dt

=
dxn−r−1

dt
= xn−r(t) = zn−r(t)

dzn−r
dt

=
dxn−r
dt

= xn−r+1(t) = −b0x1(t)− · · · − bn−r−1xn−r(t) + ξ1(t)

= −b0z1(t)− · · · − bn−r−1zn−r(t) + ξ1(t)

from which we deduce that

F =


0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · ·
0 0 0 · · · 1
−b0 −b1 −b2 · · · −bn−r−1

 , G =


0 0 0 · · · 0
0 0 0 · · · 0
· · · · · · ·
0 0 0 · · · 0
1 0 0 · · · 0

 .

From the particular form of this matrix, it is clear that the eigenvalues of F coincide with
the zeros of the numerator polynomial of T (s), i.e. with the zeros of the transfer function.
Thus it is concluded that in a linear system the zero dynamics are linear dynamics with
eigenvalues coinciding with the zeros of the transfer function of the system. /

3 Global Normal Forms

We address, in this section, the problem of deriving the global version of the coordinates
transformation and normal form introduced in section 1. Consider a single-input single-
output system described by equations of the form

ẋ = f(x) + g(x)u

y = h(x)
(5)

in which f(x) and g(x) are smooth vector fields, and h(x) is a smooth function, defined on
Rn. Assume, as usual, that f(0) = 0 and h(0) = 0. This system is said to have uniform
relative degree r if it has relative degree r at each x◦ ∈ Rn.

If system (5) has uniform relative degree r, the r differentials

dh(x), dLfh(x), . . . , dLr−1f h(x)

are linearly independent at each x ∈ Rn and therefore the set

Z∗ = {x ∈ Rn : h(x) = Lfh(x) = . . . = Lr−1f h(x) = 0}

(which is nonempty in view of the hypothesis that f(0) = 0 and h(0) = 0) is a smooth
embedded submanifold of Rn, of dimension n− r. In particular, each connected component
of Z∗ is a maximal integral manifold of the (nonsingular and involutive) distribution

∆∗ = (span{dh, dLfh, . . . , dLr−1f h})⊥ .

The submanifold Z∗ is the point of departure for the construction a globally defined
version of the coordinates transformation considered in section 1.
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Proposition 2 Suppose (5) has uniform relative degree r. Set

α(x) =
−Lrfh(x)

LgL
r−1
f h(x)

β(x) =
1

LgL
r−1
f h(x)

and consider the (globally defined) vector fields

f̃(x) = f(x) + g(x)α(x), g̃(x) = g(x)β(x) .

Suppose the vector fields

τi = (−1)i−1adi−1
f̃
g̃(x), 1 ≤ i ≤ r (6)

are complete.
Then Z∗ is connected. Moreover, the smooth mapping

Φ : Z∗ × Rr → Rn

(z, (ξ1, . . . , ξr)) 7→ Φτ1
ξr
◦ Φτ2

ξr−1
◦ · · · ◦ Φτr

ξ1
(z) ,

(7)

in which – as usual – Φτ
t (x) denotes the flow of the vector field τ , has a globally defined

smooth inverse
(z, (ξ1, . . . , ξr)) = Φ−1(x) (8)

in which
z = Φτr

−h(x) ◦ · · · ◦ Φτ2
−Lr−2

f̃
h(x)
◦ Φτ1
−Lr−1

f̃
h(x)

(x)

ξi = Li−1
f̃
h(x) 1 ≤ i ≤ r .

The globally defined diffeomorphism (8) changes system (5) into a system described by
equations of the form

ż = f0(z, ξ1, . . . , ξr)

ξ̇1 = ξ2

· · ·
ξ̇r−1 = ξr

ξ̇r = q(z, ξ1, . . . , ξr) + b(z, ξ1, . . . , ξr)u

y = ξ1

(9)

where
q(z, ξ1, . . . , ξr) = Lrfh ◦ Φ(z, (ξ1, . . . , ξr))

b(z, ξ1, . . . , ξr) = LgL
r−1
f h ◦ Φ(z, (ξ1, . . . , ξr)) .

If, and only if, the vector fields (6) are such that 3

[τi, τj ] = 0 for all 1 ≤ i, j ≤ r ,
3Let f and g be vector fields on Rn. Their Lie bracket, denoted [f, g], is the vector field of Rn defined as

[f, g](x) =
∂g

∂x
f(x) − ∂f

∂x
g(x) .
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then the globally defined diffeomorphism (8) changes system (5) into a system described by
equations of the form

ż = f0(z, ξ1)

ξ̇1 = ξ2

· · ·
ξ̇r−1 = ξr

ξ̇r = q(z, ξ1, . . . , ξr) + b(z, ξ1, . . . , ξr)u

y = ξ1 .

(10)

Note also that, if r < n, the submanifold Z∗ is the largest (with respect to inclusion)
smooth submanifold of h−1(0) with the property that, at each x ∈ Z∗, there is u∗(x) such
that f∗(x) = f(x) + g(x)u∗(x) is tangent to Z∗. Actually, for each x ∈ Z∗ there is only one
u∗(x) rendering this condition satisfied, namely,

u∗(x) =
−Lrfh(x)

LgL
r−1
f h(x)

.

The submanifold Z∗ is an invariant manifold of the (autonomous) system

ẋ = f∗(x) (11)

and the restriction of this system to Z∗, which can be identified with (n − r)-dimensional
system

ż = f0(z, 0, . . . , 0)

of Z∗, is the system which characterizes the zero dynamics of (5).

4 Robust stabilization via partial-state feedback

An typical setting in which normal forms are useful is a systematic method for stabilization
in the large of certain classes of nonlinear system, even in the presence of parameter uncer-
tainties. We discuss first the case of systems having relative degree 1, i.e. we consider systems
modelled by equations of the form

ż = f0(z, ξ)

ξ̇ = q(z, ξ) + b(z, ξ)u

y = ξ1

(12)

in which z ∈ Rn−1 and ξ ∈ R. All functions are smooth functions of their arguments.
About this system we assume the following. The coefficient b(z, ξ) satisfies

b(z, ξ) ≥ b0 > 0

for some b0. Moreover, there is a positive definite and proper smooth real-valued function
V (z) that satisfies

∂V

∂z
f0(z, 0) ≤ −α(|z|) ∀z ∈ Rn−1
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in which α(|z|) is a class K∞ function. This is equivalent to assume that the equilibrium
z = 0 of

ż = f0(z, 0)

is globally asymptotically stable.
Consider now for (12) a control law

u = −ky

in which k > 0, which yields the closed loop system

ż = f0(z, ξ)

ξ̇ = q(z, ξ)− b(z, ξ)kξ .
(13)

For convenience, we set

x =

(
z
ξ

)
and rewrite the latter as

ẋ = Fk(x) (14)

in which

Fk(x) =

(
f0(z, ξ)

q(z, ξ)− b(z, ξ)kξ

)
.

Consider, for this system, the candidate Lyapunov function

W (x) = V (z) +
1

2
ξ2

which is positive definite and proper. For any real number a ≥ 0, let

Ωa = {x ∈ Rn : W (x) ≤ a}

denote the sublevel set consisting of all points of Rn at which the value of W (x) is less than
or equal to a and let

Ba = {x ∈ Rn : |x| ≤ a}

denotes the closed ball consisting of all points of Rn whose norm does not exceed a. Since
W (x) is proper, the set Ωa is a compact set for any a. Pick any arbitrarily large number
R, any arbitrarily small number r. Since W (x) is positive definite and proper, there exist
numbers numbers 0 < d < c such that

Ωd ⊂ Br ⊂ BR ⊂ Ωc .

Consider also the compact “annular” region

Scd = {x ∈ Rn : d ≤ V (x) ≤ c} .

Our goal is to show that – if the gain coefficient k is large enough – the function

Ẇ (x) :=
∂W

∂x
Fk(x)
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is negative at each point of Scd. Observe, in this respect, that

Ẇ (x) =
∂V

∂x
f0(z, ξ) + ξq(z, ξ)− b(z, ξ)kξ2 .

To this end, we proceed as follows. Consider the compact set

Z = Scd
⋂
{x ∈ Rn : ξ = 0} .

At each point of Z

Ẇ (x) =
∂V

∂x
f0(z, 0) ≤ −α(|z|)

Since z 6= 0 at each point of Z, there is a number a > 0 such that

Ẇ (x) ≤ −a ∀x ∈ Z .

Hence, by continuity, there is an open set Zε containing Z such

Ẇ (x) ≤ −a/2 ∀x ∈ Zε . (15)

Consider now the set
S̃ = {x ∈ Scd : x 6∈ Zε} .

which is a compact set, let

M = max
x∈S̃
{∂V
∂x

f0(z, ξ) + ξq(z, ξ)}

m = min
x∈S̃
{b(z, ξ)ξ2}

and observe that m > 0 because b(z, ξ) ≥ b0 > 0 and ξ cannot vanish at any point of S̃.
Thus, since k > 0, we obtain

Ẇ (x) ≤M − km ∀x ∈ S̃ .

Let k1 be such that M − k1m = −a/2. Then, if k ≥ k1,

Ẇ (x) ≤ −a/2 ∀x ∈ S̃ . (16)

This, together with (15) shows that

k ≥ k1 ⇒ Ẇ (x) ≤ −a/2 ∀x ∈ Scd ,

as requested. This being the case, we see that for any trajectory with initial condition in Scd,
so long as z(t) ∈ Scd we have

W (x(t)) ≤W (x(0))− (a/2)t .

As a consequence, the trajectory in finite time enters the set Ωd, and remains there (because
Ẇ (x) is negative on the boundary of this set). We summarize the result as follows.
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Proposition 3 Consider system (12). Suppose that b(z, ξ) ≥ b0 > 0 for some b0 and suppose
that the equilibrium z = 0 of ż = f0(z, 0) is globally asymptotically stable. Then, for every
choice of two positive numbers R, r, with R� r, there is a number k1 such that, for all k ≥ k1
there is a finite time T such that all trajectories of (13) with initial condition |x(0)| ≤ R
remain bounded and satisfy |x(t)| ≤ r for all t ≥ T .

This property is commonly known as property of semi-global practical stabilizability, of
the equilibrium (z, ξ) = (0, 0) of (12).

To obtain asymptotic stability, an extra assumption is required. The simplest case in
which this can be achieved is when the equilibrium z = 0 of ż = f0(z, 0) is not just asymp-
totically, but also locally exponentially, stable, i.e. when the eigenvalues of the matrix

F0 :=
∂f0
∂z

(0, 0) (17)

have negative real part. Linear arguments can be invoked to prove the existence of a number
k2 such that, if k ≥ k2, the equilibrium x = 0 of (12) is locally asymptotically stable. It is
also possible to show that there is a number r ′ such that, for all k ≥ k2, the closed ball Br ′

is always contained in the domain of attraction of x = 0. To check that this is the case, let
P be the positive definite solution of

PF0 + FT
0 P = −2I ,

which exists because all eigenvalues of F0 have negative real part and consider, for the system
the candidate quadratic Lyapunov function

U(x) = zTP̃ z +
1

2
ξ2

yielding
U̇(x) = 2zTPf0(z, ξ) + ξq(z, ξ)− b(z, ξ)kξ2 .

Expand f0(z, ξ) as
f0(z, ξ) = F0z + g(z) + [f0(z, ξ)− f0(z, 0)]

in which

lim
z→0

|g(z)|
|z|

= 0 .

Then, there is a number δ such that,

|z| ≤ δ ⇒ |g(z)| ≤ 1

2|P |
|z|

and this yields

2zTP [F0z + g(z)] = −2|z|2 + 2zTPg(z) ≤ −|z|2 ∀z ∈ Bδ .

Since the function [f0(z, ξ)− f0(z, 0)] is a continuously differentiable function that vanish at
ξ = 0, there is a number M1 such that

|2zTP [f0(z, ξ)− f0(z, 0)]| ≤M1|z||ξ| for all (z, ξ) such that z ∈ Bδ and |ξ| ≤ δ .
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Likewise, since q(z, ξ) is a continuously differentiable function that vanish at (z, ξ) = (0, 0),
there are numbers N1 and N2 such that

|ξq(z, ξ)| ≤ N1|z||ξ|+N2|ξ|2 for all (z, ξ) such that z ∈ Bδ and |ξ| ≤ δ .

Finally, since b(z, ξ) is positive and nowhere zero, there is a number b0 such that (recall that
k > 0)

−kb(z, ξ) ≤ −kb0 for all (z, ξ) such that z ∈ Bδ and |ξ| ≤ δ .
Putting all these inequalities together, one finds that, for all for all (z, ξ) such that z ∈ Bδ
and |ξ| ≤ δ

U̇(x) ≤ −|z|2 + (M1 +N1)|z||ξ| − (kb0 −N2)|ξ|2 .
It is easy to check that if k is such that

(2kb0 − 2N2 − 1) ≥ (M1 +N1)
2 ,

U̇(x) ≤ −1

2
|x|2 .

This shows that there is a number k2 such that, if k ≥ k2, the function U̇(x) is negative
definite for all x satisfying z ∈ Bδ and |ξ| ≤ δ. Pick now any (nontrivial) sublevel set Ω̃c

of U(x) entirely contained in the set of all x satisfying z ∈ Bδ and |ξ| ≤ δ and let r ′ be
such that Br ′ ⊂ Ω̃c. Then, the argument above shows that, for all k ≥ k2, the equilibrium
x = 0 is asymptotically stable with a domain of attraction that contains Br ′ , which is a set
independent of the choice of k.

Pick now r ≤ r ′, pick any R > 0 and use the result of the Proposition above. There is
a number k1 such that, if k ≥ k1 all trajectories with initial condition in BR in finite time
enter the region Br, and hence enter the region of attraction of x = 0. It can be concluded,
setting k∗ = max{k1, k2}, that for all k ≥ k∗ the equilibrium x = 0 of (13) is asymptotically
stable, with a domain of attraction that contains BR.

The case of higher relative degree

ż = f0(z, ξ1)

ξ̇1 = ξ2

· · ·
ξ̇r−1 = ξr

ξ̇r = q(z, ξ1, . . . , ξr) + b(z, ξ1, . . . , ξr)u

can be reduced to the case already studied. To this end, it suffices to consider the “dummy”
output variable

θ = ξr + gr−1a0ξ1 + gr−2a1ξ2 + · · · gar−2ξr−1
with a0, . . . , ar−2 such that the polynomial

d(λ) = λr−1 + ar−2λ
r−1 + · · ·+ a1λ+ a0

is Hurwitz. The system thus obtained has relative degree 1 and a “normal form”

˙̃z = f̃0(z̃, θ)

θ̇ = q̃(z̃, θ) + b̃(z̃, θ)u
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in which
z̃ = col(z, ξ1, . . . , ξr−1)

f̃0(z̃, θ) =


f0(z, ξ1)

ξ2
· · ·
ξr−2

−[gr−1a0ξ1 + gr−2a1ξ2 + · · · gar−2ξr−1] + θ


and q̃(z̃, θ), b̃(z̃, θ) suitable functions.

The zero dynamics of this system are characterized by

ż = f0(z, ξ1)

ξ̇1 = ξ2

· · ·
ξ̇r−1 = −[gr−1a0ξ1 + gr−2a1ξ2 + · · · gar−2ξr−1]

Changing variables as

ζi =
1

gi−1
ξi, i = 1, 2, . . . , i− 1 ,

yields a system of the form
ż = f0(z, ζ1)

ζ̇ = gAζ

in which

A =


0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · ·
0 0 0 · 1
−a0 −a1 −a2 · −ar−2


is a Hurwitz matrix.

Arguments similar to those used above can be invoked to show that – if the equilibrium z =
0 of ż = f0(z, 0) is globally asymptotically and locally exponentially stable – the equilibrium
z̃ = 0 of

˙̃z = f̃0(z̃, 0) (18)

is locally exponentially stable, with a domain of attraction that can be made arbitrarily large
by increasing the design parameter g. In fact, letting Q to be the positive definite solution of

QA+ATQ = −I

and considering the candidate Lyapunov function

W (z̃) = V (z) + ζTQζ

one proves, in exactly the same way, that for every choice of two positive numbers R, r, with
R � r, there is a number g1 such that, for all g ≥ g1 there is a finite time T such that all
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trajectories of (18) with initial condition |z̃(0)| ≤ R remain bounded and satisfy |̃(t)| ≤ r for
all t ≥ T .

Similarly, using instead the Lyapunov function

U(z̃) = zTPz + ζTQζ ,

one proves, in exactly the same way, that there exists a number g2 and a number r ′ such
that, for all g ≥ g2, the equilibrium z̃ = 0 of (18) is locally asymptotically stable, with a
domain of attraction that contains Br ′ .

In this way, the problem is reduced to the problem considered at the beginning, namely
the problem of controlling a system having relative degree 1. Thus a feedback law of the form

u = −kθ ,

with large k, yields asymptotic stability of the equilibrium (z̃, θ) = (0, 0), with a domain of
attraction which include a ball of arbitrarily fixed radius R.

Remark. Note that, in the construction thus described, it is essential that f0(zξ1) only
depends on ξ1 and not on the other components ξ2, . . . , ξr. /

In the actual coordinates, the feedback law thus found is a linear law in the ξi’s, namely

u = −k[ξr + gr−1a0ξ1 + gr−2a1ξ2 + · · · gar−2ξr−1 .

This sometimes called a partial–state feedback.
Finally we observe that the result discussed so far can be extended to the case in which

the functions characterizing the system also depend, in a smooth fashion, on a vector µ of
uncertain parameters, so long as the latter ranges on a compact set. The proof proceeds
essentially in the same way.
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