SIDRA —Summer School 2024

Data-Driven Control Design course — Homework assignments

Assignment #1 (Two-cart and spring system)

Consider a sampled-data version of a two-cart and spring system. The dynamics of the system is given by
the difference equation

with

z(t+1) = Az(t) + Bu(t) + d(t)
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where x is the state, u is the control input, and d in an unmeasured process disturbance. The four components
of the state are position (variable x1) and velocity (z2) of the first cart, and position (z3) and velocity (x4)
of the second cart; u represent the force applied to the first cart.

Choose two of the following problems:

P1

P2

P3

State-feedback controller. Assume that the whole state of the system is available for measurements.
Perform an experiment on the system with ||u|| <1 and ||d|| < 0.1, and design a robust state-feedback
controller as discussed in Lecture 2 (see also [R1]). Implement the control system in Matlab/Simulink
and simulate the behavior of the closed-loop system. (Note: A zero-regulation problem is not realistic
here because we cannot jointly regulate x; and x3 to zero. Nonetheless, the design could be easily
extended to an arbitrary nonzero equilibrium as we discussed in Lecture 3.)

Linear quadratic regulation (LQR). Assume again that the whole state of the system is available
for measurements. Perform an experiment on the system with ||u|| < 1 and d = 0, and design the
state-feedback controller that minimizes the following cost:

J =Y (2(k)" Qux(k) +u(k) " Ru(k))
k=1

with weights @, = Iy and R = 1. The resulting controller is known as the Linear Quadratic Regulator.
We have not addressed this problem during class but the relevant material can be found in Lecture 1
and in reference [R2]. Implement the control system in Matlab/Simulink and simulate the behavior
of the closed-loop system. (Note: As before, a zero-regulation problem is not realistic here because
we cannot jointly regulate x; and x3 to zero. Nonetheless, the design could be easily extended to an
arbitrary nonzero equilibrium as we discussed in Lecture 3.)

Output-feedback control. Assume now that the only variable which is available for measurements
is y = w3 (position of the second cart). Perform an experiment on the system with |jul| <1 and d =0,
and design an output-feedback controller as we discussed in Lecture 1 (see also [R2]). Implement the
control system in Matlab/Simulink and simulate the behavior of the closed-loop system. (Note: Unlike
the previous cases, you will now obtain a dynamic controller.)
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Assignment #2 (One-link robot arm) Consider a robot arm system:
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where x1 and x3 represent the angular positions of the link and of the actuator shaft, respectively, while u
is the torque produced at the actuator axis. All the other quantities that appear in the above differential
equations are unknown parameters that take on values K. = 0.4, F5, = 0.15, J, = 0.2, N. = 2, F; = 0.1,
J1 =015, m=04,¢9g=98and v =0.1.

Reproduce both Example 1 and Example 3 in reference [R3]. The procedure discussed in Example 1 returns
a state-feedback controller, while the procedure discussed in Example 3 returns a PI controller for set-point
tracking. Implement both control systems in Matlab/Simulink and simulate the behavior of the closed-loop
system. The relevant material is also available in Lecture 5.
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