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Learning Controllers From Data via Approximate
Nonlinearity Cancellation

Claudio De Persis , Member, IEEE, Monica Rotulo , and Pietro Tesi

Abstract—In this article, we introduce a method to deal
with the data-driven control design of nonlinear systems.
We derive conditions to design controllers via (approxi-
mate) nonlinearity cancelation. These conditions take the
compact form of data-dependent semidefinite programs.
The method returns controllers that can be certified to
stabilize the system even when data are perturbed and
disturbances affect the dynamics of the system during the
execution of the control task, in which case an estimate of
the robustly positively invariant set is provided.

Index Terms—Control design, data-driven control, learn-
ing systems, linear matrix inequalities, nonlinear control
systems, robust control.

I. INTRODUCTION

AUTOMATING the control design process is important to
cope with complex dynamical plants whose dynamics is

poorly known. Data-driven control is a notable example of such
an automated synthesis. Namely, data-driven control refers to
the procedure of designing controllers for an unknown system
starting solely from measurements collected from the plant
and some priors about the plant itself (linear versus nonlinear
parametrization, nature of the noise, etc.). In this article, we
study the problem of designing controllers for nonlinear systems
from data.

Related literature: System identification followed by control
design for the identified system is a classical way to indirectly
perform data-driven control [1]. By direct data-driven control
instead it is meant a procedure in which no intermediate step of
identifying the system model is taken, earlier examples being
the iterative feedback tuning (IFT) [2], and the virtual reference
feedback tuning (VRFT) [3]. Recent times have seen a renewed
interest in direct data-driven control, viewed as compact data-
dependent conditions which, once verified, automatically return
controllers without explicitly identifying the plant. One of the
focus points in these data-driven control results is how to deal
with perturbations and noise affecting the data and the result-
ing noise-induced uncertainty. Assuming a process noise with
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bounded �∞ norm, Dai and Sznaier [4] defined a set of system’s
matrices pairs consistent with the data and, using an extended
Farkas’ lemma, derives conditions under which stability of all
systems in the set hold. These conditions can be checked using
polynomial optimization techniques.

The papers [5], [6] highlight the relevance of a result in [7],
about representing the behavior of a linear time-invariant system
via a single input–output trajectory, and use this result to de-
velop data-enabled, rather than model-based, predictive control,
providing probabilistic guarantees on performance for systems
subject to stochastic disturbances.

The result of [7] has also been used in [8] to obtain a
data-dependent representation for linear systems based on which
linear matrix inequalities only depending on data are introduced
and used to provide solutions to problems such a state- and
output-feedback stabilization as well as the linear quadratic
regulator synthesis. The presence of deterministic noise with
bounded energy affecting the data is dealt with a matrix elimi-
nation result to get rid of the resulting noise-induced uncertainty
in the representation.

If the samples of process noise are independent identically
distributed (i.i.d.) and Gaussian, then Dean et al. [9] provided
a quantification in probability of the confidence region, which
Ferizbegovic et al. [10] exploit to give data-dependent conditions
for minimizing the worst case cost of the LQ problem over all the
system’s matrices in the confidence region. The technical tool
for this study is an extension of the S-lemma provided in [11].
A new matrix S-lemma is introduced in [12] to provide noncon-
servative conditions for designing controllers from data affected
by disturbances satisfying quadratic bounds. Other results to
deal with disturbances use a full-block S-procedure and linear
fractional representations [13], the classical S-procedure [14],
and Petersen’s lemma [15].

The majority of the available results consider linear sys-
tems. Unsurprisingly, deriving solutions for nonlinear systems
is harder. Earlier representative results of data-driven control of
nonlinear systems include the nonlinear extension of VRFT [16],
the design of controllers in the form of kernel functions tuned
using data via set-membership identification techniques [17],
and the so-called model-free control [18], [19].

A way to deal with nonlinear systems is to exploit some
structure, when it is a priori known the class to which the system
belongs. Data-driven control of second-order Volterra systems
is studied in [20] and data-dependent LMI-based stabilization of
bilinear systems in [21], the latter being motivated by Carleman
bilinearization of general nonlinear systems. A point-to-point
optimal control problem for bilinear systems is formulated in the
recent work [22]. The data-driven control design for polynomial
systems is the subject of [23], [24]. While Dai and Sznaier [23]
used Rantzer’s dual Lyapunov’s theory and moments-based
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techniques, Guo et al. [24] used the Lyapunov second method
and a particular parametrization of the Lyapunov function to
obtain SOS programs whose feasibility directly provide stabi-
lizing controllers. See Bisoffi et al. [15] for additional results
on the data-driven control design of polynomial systems based
on the Petersen’s lemma. When the system is not polynomial,
the approach in [24] returns a state-dependent matrix condition
rather than an SOS condition. If such a state-dependent matrix
condition can be solved at each time step along a trajectory of
the system, then a control sequence that steers that trajectory to
the origin is obtained. This idea is pursued in [25].

Contribution: We introduce a method to deal with the data-
driven control design of nonlinear systems building up on and
strengthening the results of [8] in several directions.

We first consider nonlinear vector fields that are expressed
as combinations of known basis functions (not necessarily
polynomials). We derive conditions to design controllers that
stabilize the closed-loop system via nonlinearity cancelations
(Section III). This approach returns formulas for controller
design which retain the same simplicity and compactness of
the formulas established in [8], namely semidefinite programs
(SDPs) only depending on data. Conceptually, however, the
approach taken here is different from the one in [8]. In fact, De
Persis and Tesi [8] considered a first-order Taylor’s expansion
and treats the nonlinearity as a remainder, thus searching for
linear control laws. Here, the idea is to learn from data what
basis functions (in the considered library) form the dynamics,
and to cancel them out through the control input. Consequently,
the control law here is inherently nonlinear. Next, we make the
crucial observation that, were exact cancelation unfeasible, we
can formulate an SDP that minimizes the norm of the matrix
by which the nonlinearities enter the dynamics (Section III-B).
This idea is suggested by a regularization procedure in which the
hard constraint of the first approach, corresponding to an exact
nonlinearity cancelation, is lifted to the cost function, which
leads to an approximate nonlinearity cancelation. (In different
contexts, this idea has been pursued in [26]– [28]). In general,
the design based on an approximate nonlinearity cancelation
does not return globally stabilizing controllers, whence the need
to explicitly characterize the region of attraction (ROA) of the
closed-loop system (Section IV).

The idea of canceling out the nonlinearities (approximately
or exactly) has points in common with the popular feedback
linearization, see [29] for basic concepts and results, and [30]
for specific results dealing with the “approximate” case. In the
latter case, the idea is to find a control law for which the closed-
loop dynamics is nearly linear in some coordinates. In contrast
with [30], our approach works in the original coordinates. This
allows us to explicitly determine ROAs and invariant sets (and
to try to maximize such sets by minimizing the remainder, which
is what we attempt to do through nonlinearity cancelation).
Connections with feedback linearization are further discussed
in Section VII.

To present the main ideas, we choose to give the results first
for data that are not perturbed. The results are then extended
to the case is which data are perturbed by process disturbances
(Section VI). We show how our approach can accommodate
the presence of process disturbances not only during the data
collection phase, but also during the execution of the control task
and provide estimates of robustly positively invariant (RPI) sets
[31] for the closed-loop system. The results are also extended
to systems with neglected nonlinearities (Section VI-B), thus
significantly enlarging the class of systems the approach can
cope with.

Outline. The framework is set in Section II. The main results
are discussed in Sections III and IV, with some extensions
in Section V. Control design in the presence of disturbances
and neglected nonlinearities is studied in Section VI. Some
additional discussion is finally provided in Section VII. Finally,
Section VIII concludes this article.

Notation. Throughout this article, � (�) and ≺ (�) denote
positive and negative (semi)definiteness, respectively; Sn×n de-
notes the set of n× n real-valued symmetric matrices; M� is
the transpose of M . We let |x| denote the 2-norm of a vector x,
and let ‖A‖ be the induced 2-norm of a matrix A.

II. FRAMEWORK

We consider a discrete-time system in the form

x+ = A�Z�(x) +Bu (1)

(x+ denotes forward shifting, i.e., x+(k) = x(k + 1), k ∈ N)
where x ∈ Rn is the state, u ∈ Rm is the control input. Both
x and u are assumed to be measured.1 Z� : Rn → RR is a
vector-valued continuous function, A� ∈ Rn×R, B ∈ Rn×m are
constant matrices. Any nonlinear system x+ = f(x) +Buwith
f continuous (but otherwise arbitrary) can be written as in (1).
In this article, A�, B are regarded unknown while the following
standing assumption is made for Z�.

Assumption 1: We know a continuous functionZ : Rn → RS

such that Z�(x) = TZ(x) for some matrix T ∈ RR×S . �
Under Assumption 1, system (1) reads equivalently as

x+ = AZ(x) +Bu (2)

with A ∈ Rn×S , and A,B unknown.
Assumption 1 means that we choose a library of functions

capable of describing the dynamics of the system (the case of
neglected nonlinearities will be discussed in Section VI). This
assumption is satisfied in many practical cases such as with
mechanical and electrical systems where information about the
dynamics can be derived from first principles, but the exact
systems parameters may be unknown. We allow Z to contain
terms not present in Z�, which may arise from an imprecise
knowledge of the system dynamics. In this article, we will
directly consider the case where Z contains both linear and
nonlinear functions, i.e.,

Z(x) =

[
x

Q(x)

]
(3)

with Q : Rn → RS−n containing only nonlinear functions. The
special case where Z(x) = x reduces the analysis to that of
linear systems, which have been the subject of numerous inves-
tigations, as reviewed in Section I. In contrast, Z(x) = Q(x)
accounts for purely nonlinear systems, and just leads to sim-
plified algorithms and results. We will exemplify this point in
connection with Theorem 1. Let

D := {x(k), u(k)}Tk=0 (4)

be a dataset collected from the system with an experiment,
meaning that we have a set of state and input samples that
satisfy x(k + 1) = AZ(x(k)) +Bu(k) for k = 0, . . . , T − 1,
T > 0. The problem of interest is to determine, using D, a control

1We will not address the case of input/output data, i.e., the case in
which we only measure a function y = h(x) of the state. This case can
be approached as in [8, Sec. VI] by considering a state-space
representation with extended state vector χ(k) := [y(k − 1)� · · · y(k −
n)� u(k − 1)� · · · u(k − n)�]�. The analysis is similar to the linear case but
there are several technical aspects that must be addressed, we will report this
analysis elsewhere.
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law u = KZ(x) that stabilizes the system around the origin
(globally or locally, both cases will be considered). Note that we
might consider a control law u = KH(x)withH different from
Z. As it will become clear soon, we focus on u = KZ(x) as our
approach is based on nonlinearity cancelation/minimization.

The framework can be modified and/or extended in several
directions:

1) continuous-time systems can be handled with similar
arguments (Section V-A);

2) the analysis extends to a more general class of nonlinear
systems (Section V-B);

3) noisy data and neglected nonlinearities are considered in
Section VI.

III. EXACT NONLINEARITY CANCELATION

We start by considering the scenario in which there exists a
controller K that linearizes the closed-loop dynamics, namely
the scenario in which there exists a controller K such that

u = KZ(x) =⇒ x+ = Mx (5)
for some matrix M (which we will also require to be Schur.)2

A. Data-Based Closed-Loop Representation and Control
Design for Exact Nonlinearity Cancelation

Consider the dataset D in (4), and define
U0 :=

[
u(0) u(1) · · · u(T − 1)

]
∈ Rm×T (6a)

X0 :=
[
x(0) x(1) · · · x(T − 1)

]
∈ Rn×T (6b)

X1 :=
[
x(1) x(2) · · · x(T )

]
∈ Rn×T (6c)

Z0 :=

[
x(0) x(1) · · · x(T − 1)

Q(x(0)) Q(x(1)) · · · Q(x(T − 1))

]
∈ RS×T .

(6d)
All the results of this article rest on the following lemma. An
analogous result was established in [32, Lemma 1] for the case
of polynomial systems.

Lemma 1: Consider any matrices K ∈ Rm×S , G ∈ RT×S

such that [
K

IS

]
=

[
U0

Z0

]
G . (7)

Let G be partitioned as G =
[
G1 G2

]
, where G1 ∈ RT×n and

G2 ∈ RT×(S−n). Then, system (1) under the control law u =
KZ(x) results in the closed-loop dynamics

x+ = Mx+NQ(x) (8)
where M := X1G1 and N := X1G2. �

Proof: The closed-loop dynamics resulting from the control
law u = KZ(x) is given by

x+ =
[
B A

] [K
IS

]
Z(x) (9a)

=
[
B A

] [U0

Z0

]
GZ(x) = X1 GZ(x) . (9b)

2A matrix M is said to be Schur if all its eigenvalues have modulus less than
one. For continuous-time systems, a matrix M is said to be Hurwitz if all its
eigenvalues have negative real part.

The second identity follows from (7) while the last one follows
because the elements of X1, Z0, and U0 satisfy the relation
x(k + 1) = AZ(x(k)) +Bu(k), k = 0, . . . , T − 1, which, in
compact form, gives X1 = AZ0 +BU0. �

Arrived at this stage, it is simple to derive a convex program
(specifically an SDP) that searches for a controller K that
cancels out the nonlinearities and renders the closed-loop system
globally asymptotically stable.

Theorem 1: Consider a nonlinear system as in (1), along with
the following SDP in the decision variables P1 ∈ Sn×n, Y1 ∈
RT×n, and G2 ∈ RT×(S−n)

Z0Y1 =

[
P1

0(S−n)×n

]
(10a)

[
P1 (X1Y1)

�

X1Y1 P1

]
� 0 (10b)

Z0G2 =

[
0n×(S−n)

IS−n

]
(10c)

X1G2 = 0n×(S−n) . (10d)

If the SDP is feasible then the control law u = KZ(x) with

K = U0

[
Y1P

−1
1 G2

]
. (11)

linearizes the closed-loop dynamics, and renders the origin a
globally asymptotically stable equilibrium. �

Proof: Suppose that (10) is feasible. Let G1 = Y1P
−1
1 and

note that the two constraints (10a) and (10c) together yield

Z0

[
G1 G2

]
= IS . (12)

This relation, combined with (11), gives[
K

IS

]
=

[
U0

Z0

] [
G1 G2

]
(13)

which is (7). By Lemma 1, we conclude that the closed-loop
dynamics satisfies x+ = Mx+NQ(x) with M = X1G1 and
N = X1G2. By (10d), N = 0. Hence, K linearizes the closed-
loop dynamics. Finally, note that (10b) is equivalent to P1 � 0
and (X1Y1)

�P−1
1 (X1Y1)− P1 ≺ 0. The latter, in turn, is equiv-

alent to (X1Y1P
−1
1 )�P−1

1 (X1Y1P
−1
1 )− P−1

1 ≺ 0. By recalling
that Y1P

−1
1 = G1 and X1G1 = M , we conclude that M is

Schur. (This also shows that V (x) = x�P−1
1 x is a Lyapunov

function for the closed-loop system.) �
In Theorem 1, the decision variable G2 represents the same

quantity that appears in Lemma 1. The decision variables Y1, P1

are instead related to G1 in Lemma 1 via Y1 = G1P1 with P1 a
positive definite matrix, that is Y1 defines a change of variable
relative to G1. As it emerges from the proof of Theorem 1,
this change of variable is instrumental to arrive at a convex
formulation of the design program.

Some remarks are in order.
Theorem 1 gives an extension to nonlinear systems of the

results in [8]. In fact, in the limit case where Z(x) = x we
have S = n and (10) reduces to the first two constraints (10a)
and (10b), which appeared in [8, Th. 3]. Conditions (10c) and
(10d) implement the linearization constraint, and (10a) and (10b)
ensure a stable behavior for the linear dynamics. Note in partic-
ular that (10c), together with (10a), forms a consistency relation
which makes it possible to parametrize the closed-loop dynamics
through data alone. The other extreme case occurs when Z
contains only nonlinear functions, i.e., when Z(x) = Q(x). In
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this case, (10) reduces to the two constraints (10c) and (10d).
This corresponds to a situation where the system has stable
open-loop linear dynamics and the controller is only responsible
for canceling out all the nonlinearities.

As a second remark, we observe that a necessary condition
for the SDP (10) to be feasible is that Z0 has full row rank [this
is indeed necessary to have both (10a) and (10c) fulfilled]. This
requirement can be viewed as a condition on the richness of
the data, and is the natural generalization of the condition on the
rank of X0 that appears in the linear case [8, Th. 3], [33, Th. 16].

This condition is weaker than having
[
U0

Z0

]
full row rank, which

is instead necessary to identify A,B from data, and this shows
that learning a control law is in general easier than identifying
the dynamics of the system. Note that Lemma 1 indeed gives a
data-based closed-loop representation of the system dynamics,
without any explicit estimate of the system matrices. Having[
U0

Z0

]
full row rank brings certain advantages, though. In fact, in

this case, any controller that linearizes the closed-loop dynamics
can be parametrized through the data. In particular, in this
situation, we obtain an “if and only if” result, meaning that (10)
is feasible and returns a stabilizing and linearizing controller
whenever such a controller exists. We state the result here but
discuss it in Appendix A to maintain continuity.

Theorem 2: Suppose there exists a stabilizing and linearizing
feedback controller, i.e., a controller K = [K K̂] such that

A+BK =
[
A+BK 0n×(S−n)

]
(14a)

A+BK is Schur (14b)

having partitioned A = [A Â] with A ∈ Rn×n. Let
[
U0

Z0

]
have

full row rank. Then, (10) is feasible and K can be written as in
(11) for some Y1, P1, G2 satisfying (10). �

Example 1: Consider the Euler discretization of an inverted
pendulum

x+
1 = x1 + Tsx2 (15a)

x+
2 =

Tsg

�
sinx1 +

(
1− Tsμ

m�2

)
x2 +

Ts

m�2
u (15b)

where Ts is the sampling time, m is the mass to be balanced, � is
the distance from the base to the center of mass of the balanced
body, μ is the coefficient of rotational friction, and g is the accel-
eration due to gravity. The states x1, x2 are the angular position
and velocity, respectively,u is the applied torque. The system has
an unstable equilibrium in (x, u) = (0, 0), corresponding to the
pendulum upright position, which we want to stabilize. Suppose
that the parameters are Ts = 0.1, m = 1, � = 1, g = 9.8, and
μ = 0.01.

We choose Z(x) =
[
x1 x2 sin(x1)

]�
, and regard all the

parameters Ts,m, �, g, μ as unknown (here, a correct choice
for Z(x) simply derives from physical considerations, namely
Lagrange’s equations of motion). We collect data by running
an experiment with input uniformly distributed in [−0.5, 0.5],
and with an initial state within the same interval. We collect
T = 10 samples (corresponding to the motion of the pendulum
that oscillates around the upright position). The SDP (10) is
feasible and we obtain K =

[
−23.5641 −10.3901 −9.8

]
.

The resulting control law indeed cancels out the nonlinearity
ensuring global asymptotic stability. �

Example 2. Consider the polynomial system

x+
1 = x2 + x3

1 + u (16a)

x+
2 = 0.5x1 . (16b)

Suppose that we choose

Z(x) =
[
x� x2

1 x2
2 x1x2 x3

1 x3
2 x1x

2
2 x2

1x2

]�
(17)

i.e., we capture the nonlinearity by including all the possible
monomials up to degree 3. The equilibrium of the unforced
system (u = 0) is only locally asymptotically stable (e.g., any
initial condition such that x1(0) > 1 and x2(0) ≥ 0 leads to a
divergent solution). We collect data by running an experiment
with input uniformly distributed in [−0.5, 0.5], and with an
initial state within the same interval. We collectT = 10 samples.
The SDP is feasible and returns the controller

K =⎡
⎢⎣ 0︸︷︷︸

x1

−1.0007︸ ︷︷ ︸
x2

0︸︷︷︸
x2
1

0︸︷︷︸
x2
2

0︸︷︷︸
x1x2

−1︸︷︷︸
x3
1

0︸︷︷︸
x3
2

0︸︷︷︸
x1x2

2

0︸︷︷︸
x2
1x2

⎤
⎥⎦ .

(18)

The SDP correctly assigns the value −1 to the sixth entry of
K, and automatically discovers that no other nonlinearities are
present. The resulting control law is u = −1.0007x2 − x3

1 and
ensures global asymptotic stability. �

The examples show that even a few samples may suffice to
learn a stabilizing control policy. In fact, in terms of number
of data points, the only necessary condition in (10) comes from
having Z0 full row rank, and this condition can be met even with
T = S samples. The situation may be different with noisy data
as we discuss in Section VI. As a second remark, note that this
approach differs from the approach in [8], which considers linear
control laws. This new approach considers nonlinear control
laws; this is indeed essential to achieve nonlinearity cancelation
(or nonlinearity minimization, if cancelation is impossible, as
we discuss in Section IV).

B. Nonlinearity Cancelation as a Minimization Problem

A variant of (10) consists in approaching the design problem
as a minimization problem, namely as the problem of finding a
controller that minimizes the nonlinearity in closed loop with
respect to a chosen norm. We state the result using the induced
2-norm ‖ · ‖ but we can consider other norms.

Theorem 3: Consider a nonlinear system as in (1) along with
the following SDP in the decision variables P1 ∈ Sn×n, Y1 ∈
RT×n, and G2 ∈ RT×(S−n):

minimizeP1,Y1,G2
‖X1G2‖ (19a)

subject to Z0Y1 =

[
P1

0(S−n)×n

]
(19b)

[
P1 (X1Y1)

�

X1Y1 P1

]
� 0 (19c)

Z0G2 =

[
0n×(S−n)

IS−n

]
. (19d)

If this SDP is feasible and the solution achieves zero cost (i.e.,
‖X1G2‖ = 0) then the control lawu = KZ(x)withK given by
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(11) linearizes the closed-loop dynamics, and renders the origin
a globally asymptotically stable equilibrium. �

Proof: The proof is analogous to that of Theorem 1. �
Example 3: We consider again system (16) under the same

setting as before. The SDP (19) is feasible and we obtain

K =
[
0.0001 −1.0007 0 0 0 −1 0 0 0

]
. (20)

As before, the program correctly assigns the value−1 to the sixth
entry of K. Note that when nonlinearity cancelation is possible,
(10) and (19) are equivalent in the sense that their feasible sets
coincide. This controller differs from the one in (18) since there
are infinitely many stabilizing and linearizing controllers and
neither (10) nor (19) involve constraints other than stability and
linearization. �

IV. APPROXIMATE NONLINEARITY CANCELATION

A. Control Design for Approximate Nonlinearity
Cancelation

There is a simple yet important difference between (10) and
its lifted version (19). The difference is that the latter is always
feasible when the former is feasible and this implies that we
can always use (19) in place of (10) when exact nonlinearity
cancelation is possible. However, (19) can be used even when
exact cancelation is impossible. The following result addresses
this scenario. It shows in particular that, in this case, we can still
have stability guarantees using (19).

Theorem 4: Consider a nonlinear system as in (1), along with
the SDP (19). Assume that

lim
|x|→0

|Q(x)|
|x| = 0 . (21)

If the SDP is feasible then u = KZ(x), with K as in (11),
renders the origin an asymptotically stable equilibrium. �

Proof: Suppose that (19) is feasible. Let G1 = Y1P
−1
1 , and

note that the two constraints (19b) and (19d) together yield
Z0

[
G1 G2

]
= IS . This identity, along with (11), gives (7).

By Lemma 1, we have that the closed-loop dynamics satisfies
x+ = Mx+NQ(x), where M = X1G1 and N = X1G2. Al-
though N can be different from zero, (19c) ensures that M is
Schur. Asymptotic stability thus follows from (21). �

Condition (21) ensures that the linear dynamics dominates the
nonlinear dynamics around the origin. In turn, as shown in the
following section, this ensures that we can obtain an estimate of
the ROA. This condition is satisfied for many systems of practical
relevance, for instance, is satisfied by any polynomial system.
Condition (21) can be replaced by asking that Q is differentiable
at x = 0 and satisfies Q(0) = 0. In fact, in this case Q admits a
Taylor’s expansion at x = 0, namely we have

Q(x) =

[
∂Q

∂x

]
x=0︸ ︷︷ ︸

=:F

x+ r(x) (22a)

with r : Rn → RS−n a differentiable function of the state such
that lim|x|→0

|r(x)|
|x| = 0. Thus, system (1) can be equivalently

represented as

x+ = Ax+ ÂQ(x) +Bu (23a)

= (A+ ÂF )x+ Âr(x) +Bu (23b)

where we have partitioned A as A = [A Â] with A ∈ Rn×n.
Hence, Theorem 4 becomes applicable with Q replaced by r,

where r can be determined from Q. As an example, for the
inverted pendulum where Q(x) = sin(x1) this reasoning leads
to r(x) = sin(x1)− x1, which gives lim|x|→0

|r(x)|
|x| = 0 (for the

inverted pendulum Theorem 4 reduces in any case to Theorem
3 since exact cancelation is possible).

We point out that there exists a counterpart of Theorem 2,
which provides conditions under which we can parametrize all
feedback controllers that ensure local stability through a stable
linear dynamics. We state the result here but prove it in Appendix
B to maintain continuity.

Theorem 5: Suppose that there exists a feedback controller,
K =

[
K K̂

]
such that A+BK is Schur, having partitioned

A = [A Â]withA ∈ Rn×n. Let
[
U0

Z0

]
have full row rank. Then,

(19) is feasible and K can be written as in (11) for some
P1, Y1, G2 satisfying (19). �

B. Estimating the ROA

Definition 1: A set S is called positively invariant (PI) for
the system x+ = f(x) if for every x(0) ∈ S the solution is
such that x(t) ∈ S for t > 0. Let x be an asymptotically stable
equilibrium point for the system x+ = f(x). A set R defines an
ROA for the system relative to x if for every x(0) ∈ R we have
limt→∞ x(t) = x. �

Building on Theorem 4, we can give estimates of the ROA
for the closed-loop system relative to the equilibrium x = 0.
Consider the same conditions as in Theorem 4 and note that
V (x) := x�P−1

1 x is a Lyapunov function for the linear part of
the dynamics. In particular

V (x+)− V (x)

= (Mx+NQ(x))�P−1
1 (Mx+NQ(x))− x�P−1

1 x︸ ︷︷ ︸
=:h(x)

(24)

where the matrices M,N , and P1 are all computable from data.
We immediately obtain the following result.

Proposition 1: Consider the same setting as in Theorem 4.
Let V := {x : h(x) < 0} with h(x) as in (24), and consider the
Lyapunov function V (x) = x�P−1

1 x. Then, any sublevel set
Rγ := {x : V (x) ≤ γ} of V contained in V ∪ {0} is a PI set
for the closed-loop system and defines an estimate of the ROA
relative to x = 0. �

We exemplify Theorem 4 and Proposition 1.
Example 4: Consider the nonlinear system

x+
1 = x2 + x3

1 + u (25a)

x+
2 = 0.5x1 + 0.2x2

2 (25b)

under the same experimental setting as before, in particular
let Z(x) be as in (17). Exact nonlinearity cancelation is now
impossible. Nonetheless, the SDP (19) is feasible and returns the
controller K in (26) shown at the bottom of the next page. For
this controller, we numerically determine V = {x : h(x) < 0}
over which the Lyapunov function V (x) = x�P−1

1 x decreases
and the largest sublevel setRγ ofV contained inV ∪ {0}, which
gives an estimate of the ROA. These two sets are displayed in
Fig. 1 (Left). We note that the SDP (19) almost assigns the
value −1 to the sixth entry of K, thus reducing the effect of the
nonlinearity on the first state component. Specifically, we obtain
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M and N reported in (27), shown at the bottom of this page. and
N has minimum norm ‖N‖ = 0.2 (this value cannot be further
reduced since the term 0.2x2

2 cannot be canceled out).
The approach that we just described for estimating the ROA

is fully automatic and is generically applicable. Note, however,
that once we compute a controller K then we can pursue any
approach (data- or model-based) to estimate the ROA. In fact,
the SPD (19) returns the exact description of the closed-loop
dynamics: x+ =

[
M N

]
Z(x) (we stress that this expression

does not correspond to identifying open-loop dynamics of the
system). From this description, we can then indeed apply any
technique to find Lyapunov functions and estimate the ROA,
see, for instance, [34, Sec. 8.2]. To illustrate this point, suppose
that (19) returns

K =

⎡
⎢⎣ 0︸︷︷︸

x1

−1︸︷︷︸
x2

0︸︷︷︸
x2
1

0︸︷︷︸
x2
2

0︸︷︷︸
x1x2

−1︸︷︷︸
x3
1

0︸︷︷︸
x2
2

0︸︷︷︸
x1x2

2

0︸︷︷︸
x2
1x2

⎤
⎥⎦

(28)

[this is indeed what we obtain with a variant of (19), see

next (30)], from which we have M =
[

0 0
0.5 0

]
and N =[

0 0 01×5

0 0.2 01×5

]
, or, equivalently

x+
1 = 0 (29a)

x+
2 = 0.5x1 + 0.2x2

2 . (29b)

From the closed-loop dynamics, we conclude that the exact ROA
is given by the set R := {x : |0.5x1 + 0.2x2

2| < 5}. In fact, the
solution to system (29) is given by x1(t) = 0 for t ≥ 1 e x2(t) =

b−1(b(ax1(0) + bx2(0)
2))2

t−1
for t ≥ 2, with a = 0.5 and b =

0.2. Hence, the solution converges asymptotically if and only if
|b(ax1(0) + bx2(0)

2)| < 1, from which one infers the ROA R
specified above. This is a situation where it is simple to exactly
compute by inspection the ROA, which gives a better result with
respect to the automatic procedure, cf. Fig. 1 (Middle, Right).
The automatic procedure, however, is applicable even when an
exact description of the closed-loop dynamics is not available,
as it is the case when noisy data are being measured, a case
examined in Section VI. �

We conclude this section with a few remarks.
As a first comment, note that the SDP (19) can also be used

to infer the stability properties of any controller K for which a
solution to (7) exists. This can be done by regarding (11) as an
additional constraint to (19), i.e., by adding the constraint

U0

[
Y1 G2

]
= K

[
P1 0n×(S−n)

0(S−n)×n IS−n

]
which is convex. This can be useful whenever a controller is
inferred based on physical intuition and we want to determine
closed-loop stability properties before inserting the controller

into the loop. For the same reason, by adding the constraint
U0

[
Y1 G2

]
= 0 we infer the ROA for the open-loop system.

As a final observation, we mention a particularly effective
variant of (19)

minimizeP1,Y1,G2,X,V trace(X) + trace(V ) (30a)

subject to (19b)− (19d) (30b)[
X X1G2

(X1G2)
� V

]
� 0 . (30c)

This SDP uses the trace as a convex envelope of the rank [35],
hence, it searches for solutions yielding a sparse nonlinear term
N = X1G2, which can be useful to analyze properties of the
closed-loop system, including the ROA.

Applied to Example 4 the SDP (30) indeed systematically
returns a controller with third-to-ninth entries as in (28). If we
further regularize (30) by enforcing a sparsity term forX1Y1, the
SDP exactly returns (28) (systematically for different datasets).
In a sense, the cost function in (30) is analogous to regularization
terms used in regression algorithms to penalize complex mod-
els [36]. The difference is that (30) promotes low-complexity
(sparse) closed-loop systems (the term X1G2), and this favours
low-complexity (sparse) control laws.

V. EXTENSIONS

A. Continuous-Time Systems

Continuous-time systems can be treated in a similar way to the
discrete-time case, we will report the main differences. Suppose
that we have a continuous-time system

ẋ = AZ(x) +Bu (31)

and that we make an experiment on it. Sampling the observed
trajectory with sampling time Ts > 0 we collect data matrices
U0, X0, Z0, X1 with U0, X0 and Z0 as in (6a), (6b), and (6d),
respectively, and with X1 := [ẋ(0) ẋ(Ts) · · · ẋ((T − 1)Ts)].
It is readily seen that these data matrices satisfy the relation
X1 = AZ0 +BU0. As a consequence, the same analysis carried
out in Sections III and IV carries over to the present case. The
only modification occurs in the Lyapunov stability condition,
which reads X1Y1 + (X1Y1)

� ≺ 0 instead of (19c) [or (10b)].
In fact, recalling that the matrix M that dictates the linear
dynamics in closed loop is given by M = X1Y1P

−1
1 , the above-

mentioned Lyapunov inequality gives P−1
1 M +M�P−1

1 ≺ 0,
and this implies that M is Hurwitz (with Lyapunov function
V (x) = x�P−1

1 x). Hence, (19) [(10) is analogous] becomes

minimizeP1,Y1,G2
‖X1G2‖ (32a)

subject to (19b), (19d) (32b)

X1Y1 + (X1Y1)
� ≺ 0 (32c)

K =

[
−0.0113︸ ︷︷ ︸

x1

−1.0862︸ ︷︷ ︸
x2

0.0005︸ ︷︷ ︸
x2
1

0︸︷︷︸
x2
2

0.0039︸ ︷︷ ︸
x1x2

−1.0010︸ ︷︷ ︸
x3
1

−0.0130︸ ︷︷ ︸
x3
2

0.0119︸ ︷︷ ︸
x1x2

2

−0.0010︸ ︷︷ ︸
x2
1x2

]
(26)

M =

[
−0.0113 −0.0862

0.5000 0

]
, N =

[
0.0005 0 0.0039 −0.0010 −0.0130 0.0119 −0.0010

0 0.2000 0 0 0 0 0

]
(27)
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Fig. 1. Results for Example 4. Left: Sets V and Rγ in grey and black color, respectively, for the controller K in (26) (we recall that Rγ is a valid
estimate for the ROA); Middle: Sets V and Rγ in grey and black color, respectively, for the controller K in (28); Right: Sets V , Rγ and R (exact
ROA) for the controller K in (28). The set R is displayed in red color.

and the (continuous-time) control law is given by u = KZ(x)
with K as in (11). For estimating the ROA we can proceed as in
Section IV-B, we omit the details.

Continuous-time controllers can be directly implemented
via analog devices. Alternatively, they can be discretized and
digitally implemented [37]. As for the latter, in the context
of data-driven control, continuous-time controller redesign for
digital implementation (usually known as emulation approach)
has been recently studied in [38], [39], [40], albeit the analysis
there is restricted to linear dynamics. Extending the ideas of [40]
to nonlinear systems is currently under study.

B. More General Class of Nonlinear Systems

We now turn our attention to the case of systems

x+ = A�Z�(ξ) (33)

where ξ :=
[
x
u

]
, A� ∈ Rn×R is an unknown constant matrix and

where Z� : Rn+m → RR is a continuous function of the state
and the input. System (33) is more general than (1) as it allows
both the statex and the inputu to enter the dynamics nonlinearly.
We rephrase Assumption 1 as follows.

Assumption 2: We know a continuous function Z : Rn+m →
RS such that Z�(ξ) = T Z(ξ) for some matrix T ∈ RR×S . �

Under this assumption, (33) can be equivalently written as
x+ = AZ(ξ) with A ∈ Rn×S an unknown matrix. As before,
we allow Z(ξ) to contain both ξ and the nonlinear function
Q : Rn+m → RS−n−m, namely we consider

Z(ξ) =

[
ξ

Q(ξ)

]
. (34)

The presence of Q(ξ) makes it difficult to adopt a similar design
as in the previous sections, unless one regards the control input
u as a state variable and extends the dynamics to include the
controller dynamics. This “adding one integrator” tool, which
has been widely used in control theory, reduces the design of the
controller for (33) to the case with constant input vector fields
previously studied, as we detail as follows.

Let us add the controller dynamics in the form u+ = v, with
v ∈ Rm a new control input. This extension leads to

ξ+ = AZ(ξ) + Bv (35)

where

A :=

[
A Â

0m×(n+m) 0m×(S−n−m)

]
, B :=

[
0n×m

Im

]
(36)

having partitioned A as A =
[
A Â

]
with A ∈ Rn×(n+m).

We, therefore, arrived at a representation, which allows us to
proceed as in the previous sections. We collect the dataset
{x(k), u(k), v(k)}Tk=0 from the system and define the data
matrices

V0 :=
[
v(0) v(1) . . . v(T − 1)

]
∈ Rm×T

Ξ0 :=
[
ξ(0) ξ(1) . . . ξ(T − 1)

]
∈ R(n+m)×T

Ξ1 :=
[
ξ(1) ξ(2) . . . ξ(T )

]
∈ R(n+m)×T

Z0 :=

[
ξ(0) ξ(1) . . . ξ(T − 1)

Q(ξ(0)) Q(ξ(1)) . . . Q(ξ(T − 1)),

]
∈ RS×T

which satisfy the identity Ξ1 = AZ0 + BV0.
The next result parallels Theorem 4, we omit the proof.
Corollary 1: Consider a nonlinear system as in (33), and

assume that

lim
|ξ|→0

|Q(ξ)|
|ξ| = 0. (37)

Consider the following SDP in the decision variables Y1 ∈
RT×(n+m), G2 ∈ RT×(S−n−m), P1 ∈ S(n+m)×(n+m)

minimizeP1,Y1,G2
‖Ξ1G2‖ (38a)

subject to Z0Y1 =

[
P1

0(S−n−m)×(n+m)

]
(38b)

[
P1 (Ξ1Y1)

�

Ξ1Y1 P1

]
� 0 (38c)

Z0G2 =

[
0(n+m)×(S−n−m)

IS−n−m

]
. (38d)

If this SDP is feasible then the dynamical controller

u+ =
[
K K̂

] [ ξ
Q(ξ)

]
with

[
K K̂

]
= V0

[
Y1P

−1
1 G2

]
(39)

renders the origin of the closed-loop system an asymptotically
stable equilibrium. �

As before, we can replace (37) with Q(ξ) differentiable at
ξ = 0 andQ(0) = 0, so thatQ(ξ) = [∂Q/∂ξ]ξ=0ξ + r(ξ), with
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Fig. 2. Results for Example 5. The grey set represents the
set V where V (ξ+)− V (ξ) is negative. Here, Z(ξ) =

[
ξ�

sin ξ1 − ξ1 (cos ξ1 − 1) ξ3
]�

and V (ξ) = ξ�P−1
1 ξ, with P−1

1 =[
0.2159 0.0689 0.0123
0.0689 0.0240 0.0039
0.0123 0.0039 0.0009

]
. The black set is a Lyapunov sublevel set

Rγ contained in V , hence, it provides an estimate of the ROA for the
system, and γ = 0.076. Both sets V and Rγ are projected onto the
plane {ξ : ξ3 = 0}.

r(ξ) differentiable and such that lim|ξ|→0 |r(ξ)|/|ξ| = 0. In this

way, we can chooseZ(ξ) =
[

ξ
r(ξ)

]
instead of (34). Furthermore,

we can use the Lyapunov function V (ξ) = ξ�P−1
1 ξ to estimate

the ROA of the closed-loop system (33), (39), similarly to what
has been done in Proposition 1.

Example 5: Consider the Euler discretization of an inverted
pendulum

x+
1 = x1 + Tsx2 (40a)

x+
2 =

Tsg

�
sinx1 +

(
1− Tsμ

m�2

)
x2 +

Ts

m�
cosx1 u (40b)

where now the force is applied at the base, and this results
in a state-dependent input vector field

[
0 Ts

m� cosx1

] �. The
parameters Ts,m, �, μ, g and the states x1, x2 are the same as in
Example 1. The problem is again that of stabilizing the unstable
equilibrium in (x, u) = (0, 0).

The vector Q(ξ) suggested by physical considerations is
[sin ξ1 cos ξ1 ξ3]�, which is zero at ξ = 0 and differentiable.
Hence, the function r(ξ) = [sin ξ1 − ξ1 (cos ξ1 − 1) ξ3]�

satisfies lim|ξ|→0
|r(ξ)|
|ξ| = 0. Here, r(ξ) is a preferred choice

over Q(ξ) because it yields a controllable linear part, which
is necessary for the feasibility of the SDP. We collect data
by running an experiment with input uniformly distributed
in [−0.5, 0.5], and with an initial state within the same
interval. We collect T = 10 samples corresponding to
the motion of the pendulum that oscillates around the
upright position. The SDP (38) is feasible and we obtain
K =

[
−17.6197 −5.6815 −0.3012 0 0

]
. The controller

locally asymptotically stabilizes the closed-loop system
around the origin. For this controller, we numerically
determine the set V = {ξ : V (ξ+)− V (ξ) = H(ξ) < 0}, with
H(ξ) := (Ξ1G1ξ + Ξ1G2Q(ξ))�P−1

1 (Ξ1G1ξ + Ξ1G2Q(ξ))
− ξ�P−1

1 ξ, over which the Lyapunov function V (ξ) = ξ�P−1
1 ξ

decreases. Any sublevel set Rγ of V contained in V ∪ {0}
gives an estimate of the ROA for the closed-loop system. The
set V and a sublevel set of V are displayed in Fig. 2. The 0
values taken on by the last two entries of K (which correspond

to the subvector K̂ in (39)) is a byproduct of the minimization
of ‖Ξ1G2‖, which in turn imposes a small value of ‖V0G2‖, in
view of the addition of the integrator. �

Corollary 1 is a direct extension of Theorem 4 and allows
the designer to deal with a more general class of nonlinear
systems, including systems with state-dependent input vector
fields. Nevertheless, if it is known that the input vector field is
state-independent, it is preferable to use the design proposed by
Theorem 4, which might guarantee a global stabilization result
by a static feedback in case the solution attains a zero cost, as
formalized in Theorem 3.

VI. ROBUSTNESS TO DISTURBANCES AND NEGLECTED

NONLINEARITIES

In this section, we discuss robustness to disturbances and/or
neglected nonlinearities. Consider a system in the form

x+ = AZ(x) +Bu+ Ed (41)
where d ∈ Rs is an unknown signal that accounts for process
disturbances and/or neglected nonlinearities (when Z does not
include all the nonlinearities present in the system), whereas
E ∈ Rn×s is a known matrix that specifies which channel the
signal d enters. If such information is not available then we
simply let E = In. Because of d, the previous tools must be
modified to maintain stability guarantees. While the tools we
use to study process disturbances and neglected nonlinearities
are similar, we will tackle the two cases separately.

A. Process Disturbances: Noisy Data and Robust
Invariance

We start with the case where d is a process disturbance. The
presence of d affects the analysis in two different directions.
First, it affects controller design since it corrupts the data.3

Second, it leads to notions other than Lyapunov stability and
ROA. We will address both the questions.

Similarly to the disturbance-free case, suppose we perform
an experiment on the system, and we collect state and input
samples satisfying x(k + 1) = AZ(x(k)) +Bu(k) + Ed(k),
k = 0, . . . , T − 1. These samples are then grouped into the data
matrices U0, X0, X1, Z0 as in (14). Furthermore, let

D0 :=
[
d(0) d(1) · · · d(T − 1)

]
(42)

be the (unknown) data matrix that collects the samples of d. Our
first step is to establish an analogue of Lemma 1.

Lemma 2: Consider any matrices K ∈ Rm×S , G ∈ RT×S

satisfying (7). Let G be partitioned as G =
[
G1 G2

]
, where

G1 ∈ RT×n. System (41) under the control law u = KZ(x)
results in the closed-loop dynamics

x+ = Ψx+ ΞQ(x) + Ed (43)
where Ψ := (X1 − ED0)G1 and Ξ := (X1 − ED0)G2. �

Proof: Similarly to (9), we have

x+ =
[
B A

] [K
IS

]
Z(x) + Ed (44a)

=
[
B A

] [U0

Z0

]
GZ(x) + Ed (44b)

3By following [8, Sec. V-A], the analysis can be further extended to the case
of measurement noise, namely when we measure y = x+w instead of x, w
being a noise signal. We omit the details due to space limitations.
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= (X1 − ED0)GZ(x) + Ed . (44c)
The last identity follows as X1, U0, Z0, D0 satisfy the relation
X1 = AZ0 +BU0 + ED0. �

The closed-loop dynamics now depends on D0, and (19) no
longer gives stability guarantees. In fact, the constraint (19c)
ensures that M = X1G1 is Schur. However, by Lemma 2, the
matrix of interest is now Ψ = (X1 − ED0)G1, and stability of
M does not ensure that also Ψ is stable. To have stability, we
need to modify (19c) accounting for the uncertainty induced by
D0. A simple and effective way to achieve this is to ensure that
(X1 − ED)G1 is stable for all the matrices D in a given set D
to which D0 is deemed to belong. We will consider the set

D := {D ∈ Rs×T : DD� � ΔΔ�} (45)
with Δ a design parameter, and enforce, in place of (19c)

Y �
1 (X1 − ED)�P−1

1 (X1 − ED)Y1 − P1 +Ω ≺ 0 ∀D ∈ D
(46)

where Y1 and P1 � 0 are decision variables which satisfy the
identity Y1P

−1
1 = G1, while Ω � 0 is a free design parameter

we will comment on shortly. By enforcing (46), we guarantee
that (X1 − ED)G1 is stable for all D ∈ D, hence, we ensure
stability of (X1 − ED0)G1 if D0 ∈ D. The choice of the set
D clearly reflects our prior information or guess about d. For
instance, if we know that |d| ≤ δ for some δ > 0 then we let
Δ := δ

√
TIs. Stochastic disturbances can also be accounted for

(possibly, with other choices ofΔ), see Section VI-C. In general,
large setsDmake conditionD0 ∈ D easier to hold but make (46)
more difficult to satisfy. We proceed by making the assumption
D0 ∈ D explicit.

Assumption 3: D0 ∈ D. �
A final comment regards Ω. The condition Ω � 0 en-

sures thatY �
1 (X1 − ED)�P−1

1 (X1 − ED)Y1 − P1 is bounded
away from singularity, as we vary D, by a known quantity, and
this is key to have an explicit expression for the ROA. There is
no loss of generality in considering (46) instead of

Y �
1 (X1 − ED)�P−1

1 (X1 − ED)Y1 − P1 ≺ 0 ∀D ∈ D.
(47)

Indeed, for any Ω � 0 there exist Y1, P1 � 0 that satisfy (46) if
and only if there exist Y1, P1 � 0 that satisfy (47).

Condition (46) cannot be implemented directly as it involves
infinitely many constraints. The next result provide a tractable
(and convex) condition for (46). Following [41, Lemma A.4],4

we could actually establish the equivalence between the next
(48) and (46). Here, we will only show that (48) implies (46),
which is enough for our purposes.

Lemma 3: Suppose that there exist Y1 ∈ RT×n, P1 ∈ Sn×n,
and a scalar ε > 0 such that⎡

⎢⎣ P1 − Ω (X1Y1)
� Y �

1

X1Y1 P1 − εEΔΔ�E� 0n×T

Y1 0T×n εIT

⎤
⎥⎦ � 0 (48)

with Ω � 0 and Δ given. Then, (46) holds. �
Proof: See Appendix C. �
Theorem 6: Consider a nonlinear system as in (41) with Z

satisfying condition (21) and with d a process disturbance. For a

4Lemma A.4 in [41], also known as the Petersen’s lemma, permits to study
matrix inequalities which involve uncertainty, like (46), and gives conditions
under which such inequalities can be equivalently assessed considering only the
“boundary” of the uncertainty, like (48) does. We refer the reader to [15] for a
recent discussion on the use of Petersen’s lemma in data-driven control of linear
and polynomial systems.

given Ω � 0 and Δ, suppose that the following SDP [this is just
(19) with (19c) replaced by (48) to account for robust stability]:

minimizeP1,Y1,G2
‖X1G2‖ (49a)

subject to (19b), (50), (19d) (49b)

is feasible. If Assumption 3 holds then the control law u =
KZ(x) with K in (11) renders the origin an asymptotically
stable equilibrium for the closed-loop system. �

Proof: Suppose that (49) is feasible. Let G1 = Y1P
−1
1 and

note that the two constraints (19b) and (19d) together yield
Z0

[
G1 G2

]
= IS . This relation, combined with (11), gives

(7). In view of Lemma 2, the closed-loop dynamics satisfies
x+ = Ψx+ ΞQ(x) + Ed, with Ψ = (X1 − ED0)G1. Next,
we prove that Ψ is Schur. By Lemma 3 and since D0 ∈ D
by hypothesis, (46) holds for D = D0. We have in partic-
ular P−1

1 Y �
1 (X1 − ED0)

�P−1
1 (X1 − ED0)Y1P

−1
1 − P−1

1 ≺
0. By recalling that Y1P

−1
1 = G1, we conclude that Ψ is Schur.

The result follows from (21). �
Building on Theorem 6, it is possible to characterize regions

of attractions as well as robust invariant sets [31]. We start with
the ROA as a preliminary step for robust invariance. Consider the
closed-loop dynamics x+ = Ψx+ ΞQ(x) where we set d ≡ 0
since we consider the ROA, and let V (x) := x�P−1

1 x. We have

V (x+)− V (x)

= (Ψx+ ΞQ(x))�P−1
1 (Ψx+ ΞQ(x))− x�P−1

1 x︸ ︷︷ ︸
=:s(x)

(50)

with Ψ = (X1 − ED0)G1, Ξ = (X1 − ED0)G2. Although Ψ
andΞ are unknown, we can upper bound s(x)with a quantity that
is computable from data alone. First consider x�ΦxwhereΦ :=
P−1
1 −Ψ�P−1

1 Ψ. By Theorem 6, (46) holds for D = D0, i.e.,
P1ΦP1 − Ω � 0. Premultiplying this inequality left and right
by P−1

1 gives Φ− P−1
1 ΩP−1

1 � 0, thus, x�Φx ≥ x�Φx for all
x, where Φ := P−1

1 ΩP−1
1 . Accordingly,

V (x+)− V (x) ≤ −x�Φx+ (2Ψx+ ΞQ(x))�P−1
1 ΞQ(x).

Bearing in mind the expressions of Ψ and Ξ, and the fact that
‖D0‖ ≤ ‖Δ‖, we can write

V (x+)− V (x)

≤ −x�Φx+ �1(x) + �2(x) + �3(x) + �4(x)︸ ︷︷ ︸
=:�(x)

(51)

having set

�1(x) := (2X1G1x+X1G2Q(x))�P−1
1 X1G2Q(x)

�2(x) := ‖Δ‖|(2X1G1x+X1G2Q(x))�P−1
1 E||G2Q(x)|

�3(x) := ‖Δ‖|2G1x+G2Q(x)||E�P−1
1 X1G2Q(x)|

�4(x) := ‖Δ‖2‖E�P−1
1 E‖|2G1x+G2Q(x)||G2Q(x)|

which are all computable from data alone.
Proposition 2: Consider the same setting as in Theorem 6.

Let L := {x : �(x) < 0}, with �(x) as in (51), and consider the
Lyapunov function V (x) = x�P−1

1 x. Then, any sublevel set
Rγ := {x : V (x) ≤ γ} of V contained in L ∪ {0} is a PI set
for the closed-loop system with d ≡ 0 and defines an estimate
of the ROA relative to x = 0. �
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We now consider robust invariance [31, Definition 2.2].
Definition 2: A set S is called RPI for the system x+ =

f(x, d) if for every x(0) ∈ S and all d(t) ∈ I, with I a compact
set, the solution is such that x(t) ∈ S for t > 0. �

Unlike local stability and invariance, which pose conditions
on the disturbance only relatively to the data collection phase
robust invariance constrains d for all times t ≥ 0. This calls for
strengthening Assumption 3 in the sense of Definition 2.5

Assumption 4: |d| ≤ δ for some known δ > 0. �
Assumption 4 is indeed stronger than Assumption 3 in the

sense that it implies Assumption 3 once we set Δ := δ
√
TIs.

We can now proceed with the analysis of robust invariance. Con-
sider the closed-loop system x+ = Ψx+ ΞQ(x) + Ed with d
satisfying Assumption 4, and let V (x) := x�P−1

1 x. It is simple
to verify that we now have

V (x+)− V (x) ≤ �(x) + g(x, δ) (52)
where �(x) is as in (51), and where

g(x, δ) := r1(x)δ + r2(x)δ + r3δ
2 (53a)

r1(x) := 2|(X1G1x+X1G2Q(x))�P−1
1 E| (53b)

r2(x) := 2‖Δ‖‖E�P−1
1 E‖|G1x+G2Q(x)| (53c)

r3 := ‖E�P−1
1 E‖. (53d)

Let
X := {x : �(x) + g(x, δ) ≤ 0} (54)

and let X c be its complement.
Theorem 7: Consider a nonlinear system as in (41) with Z

satisfying (21) and with d a process disturbance for which
Assumption 4 holds. For a given Ω � 0, suppose that (49)
is feasible with Δ := δ

√
TIs, and consider the control law

u = KZ(x) where K is as in (11). Let V (x) := x�P−1
1 x,

and define Rγ := {x : V (x) ≤ γ}, with γ > 0 arbitrary. Let
Z := Rγ ∩ X c (Z is the subset of Rγ for which the Lyapunov
difference V (x+)− V (x) can be positive; it is nonempty for
any choice of γ > 0). If

V (x) + �(x) + g(x, δ) ≤ γ ∀x ∈ Z (55)
then Rγ is an RPI set for the closed-loop system. �

Proof: As shown in Theorem 6, feasibility of (49), along with
D0 ∈ D, ensures that V (x) = x�P−1

1 x is a Lyapunov function
for the linear part of the dynamics, and (21) ensures that L =
{x : �(x) < 0}, with �(x) as in (51), is nonempty [if L is empty
then (55) never holds]. Then, assume that (55) holds and let x ∈
Rγ . We divide the analysis in two cases. First assume that x /∈
Z . Since x ∈ Rγ then x /∈ X c. Then, x ∈ X , so that V (x+)−
V (x) ≤ �(x) + g(x, δ) ≤ 0, and this implies x+ ∈ Rγ . Next,
assume that x ∈ Z . In view of (55) we have V (x+) ≤ γ, thus,
x+ ∈ Rγ . �

Equations (51) and (53) suggest that from a practical point of
view it might be convenient to regularize the objective function
in (49) so as to mitigate the effect of the disturbance. As shown
in the subsequent numerical examples, a convenient choice is
the following one:

minimize
P1,Y1,G2

‖X1G2‖+ λ1‖P1‖+ λ2‖G2‖ (56a)

subject to (19b), (48), (19d) (56b)

5As an example, a Gaussian disturbance may satisfy the condition D0 ∈ D
but is not bounded in the sense of Definition 2. Set invariance for unbounded
disturbances is studied in [42]. We will not pursue this problem here.

Fig. 3. Results for Example 6. We take Z(x) = [x1 x2 sin(x1)−
x1]

� and solve (56) with λ1 = λ2 = 0.1, Ω = I2, and Δ = δ
√
T , with

T = 30 and δ = 0.01. Left: the grey set represents the set X in (54),
while the blue set is the RPI set Rγ ; here, P−1

1 =
[
0.1901 0.0664
0.0664 0.0475

]
and γ = 0.4440. The black set wrapping Rγ is the ROA, which is
larger than the RPI set. The red set around the origin is Z; here,
maxx∈Z V (x) + �(x) + g(x, δ) = 0.001. States originating in Z do not
exit Rγ . In particular, any sublevel set Rγ = {x : V (x) ≤ γ} with γ ∈
[0.0010, 0.4440] is an RPI set for the closed-loop system. Right: zoom
showing Rγ close to the border of X .

where λ1, λ2 ≥ 0 are weighting parameters. Penalizing ‖P1‖
increases the smallest eigenvalue of Φ, while penalizing ‖G2‖
decreases the various terms �i and ri in (51) and (53). Notice
that penalizing ‖P1‖ might increase the terms �i and ri, but
while these quantities depend on P−1

1 , Φ depends on P−2
1 , so

penalizing ‖P1‖ can still be advantageous.
Since (56) has the same feasible set as (49), it is understood

that all the results of this section as well as those to follow remain
true if (49) is replaced with (56).

Example 6: We consider again the inverted pendulum of
Example 1, this time assuming that a disturbance d acts on

the control channel, namely we have E =

[
0
1

]
and the second

equation is modified as

x+
2 =

Tsg

�
sinx1 +

(
1− Tsμ

m�2

)
x2 +

Ts

m�2
u+ d.

We collect data by running an experiment with input uniformly
distributed in [−0.5, 0.5], and with an initial state within the
same interval. We consider a disturbance uniformly distributed
in [−δ, δ]. We collect T = 30 samples and solve (56) with λ1 =

λ2 = 0.1, Ω = I2 and Δ = δ
√
T . Fig. 3 reports results for δ =

0.01. We observe the following:
1) equation (56) remains feasible up to δ ≈ 0.1 but for such

large values we get empty estimates of ROA/RPI;
2) the regularization is in fact needed to get nonempty es-

timates of ROA/RPI, and even small values for λ1, λ2

suffice. This permits to preserve the baseline strategy of
nonlinearity minimization. In fact, the controller we ob-

tain is K =
[
−23.9436 −11.4581 −9.8564

]
, which

generates the term −9.8564 sin(x1) that approximately
cancels out the nonlinearity;

3) Compared with the disturbance-free case, here we need
a larger number of samples to get nonempty estimates of
ROA/RPI, although (56) remains feasible even for T =
10.

Intuitively, collecting more samples can indeed help to get
more information on the system’s dynamics; we will elaborate
on this point in Section VI-C. �



6092 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 10, OCTOBER 2023

B. Neglected Nonlinearities

A similar analysis can be carried out in case of neglected
nonlinearities. The difference is that now d will be a function
of the state x, say d = d(x). The combination of neglected
nonlinearities and genuine disturbances is also possible, but we
omit the details for brevity. Thus, the analysis which follows
only considers invariance instead of robust invariance.

In order to handle the case of neglected nonlinearities, we
assume some knowledge on the strength of such nonlinearities
(Assumption 5 is essentially the counterpart of Assumption 4).

Assumption 5: We know a set Q ⊆ Rn and a scalar δ > 0
such that |d(x)| ≤ δ for all x ∈ Q. �

Theorem 8: Consider a nonlinear system as in (41) with Z
satisfying (21) and with d = d(x) a nonlinear function of the
state for which Assumption 5 holds. Consider an experiment
on the system such that x(k) ∈ Q for k = 0, . . . , T − 1. For a
given Ω � 0, suppose that (49) is feasible with Δ = δ

√
TIs.

Let V (x) := x�P−1
1 x and Rγ := {x : V (x) ≤ γ} with γ > 0

arbitrary. Finally, let X be as in (54) and Z := Rγ ∩ X c. If
Rγ ⊆ Q and

V (x) + �(x) + g(x, δ) ≤ γ ∀x ∈ Z (57)

then Rγ is a PI set for the closed-loop system. �
Proof: Under the stated conditions, we have D0 ∈ D. Thus,

the feasibility of (49) guarantees that V (x) = x�P−1
1 x is a

Lyapunov function for the linear part of the dynamics, and
(21) ensures that L = {x : �(x) < 0}, with �(x) as in (51), is
nonempty [otherwise (57) would never hold]. Then, assume
that (57) holds and let x ∈ Rγ . Since x ∈ Rγ then x ∈ Q,
and therefore, |d(x)| ≤ δ. Hence, exactly as in (53), we have
V (x+)− V (x) ≤ �(x) + g(x, δ) where g(x, δ) is as in (53).
The rest of the proof is analogous to that of Theorem 7. As-
sume that x /∈ Z . Since x ∈ Rγ then x /∈ X c. Thus, x ∈ X ,
and hence, V (x+)− V (x) ≤ �(x) + g(x, δ) ≤ 0, which im-
plies x+ ∈ Rγ . Next, assume that x ∈ Z . In view of (57), we
have V (x+) ≤ γ, thus, x+ ∈ Rγ . �

We can also have asymptotic stability under a strengthened
Assumption 5. Here, we report a prototypical result.

Theorem 9: Consider the same setting as in Theorem 8, and
suppose that |d(x)| ≤ δ(x) for all x, where δ(x) : Rn → R+ is
a known continuous function such that lim|x|→0

δ(x)
|x| = 0. Let

�(x) be as in (51) and g(x, δ(x)) as in (53) with δ replaced by
δ(x). Finally, define W := {x : �(x) + g(x, δ(x)) < 0}. Then,
the origin is an asymptotically stable equilibrium for the closed-
loop system, and any set Rγ := {x : V (x) ≤ γ} contained in
W ∪ {0} is a PI set and defines an estimate of the ROA relative
to x = 0. �

Proof: Analogously to (53), the Lyapunov function satisfies
V (x+)− V (x) ≤ �(x) + g(x, δ(x)) for all x. Then the result
follows immediately. �

Example 7: Consider the previous example, but this time
assume that we purposely neglect the nonlinearity and design
a linear control law. Specifically, the dynamics of the inverted
pendulum can be written as

x+
1 = x1 + Tsx2

x+
2 =

Tsg

�
x1 +

(
1− Tsμ

m�2

)
x2 +

Ts

m�2
u+ d

d =
Tsg

�
(sinx1 − x1).

Fig. 4. Results for Example 7 in which we consider a linear control
law. The grey set represents the set W , while the black set represents
the set Rγ which defines the ROA; here, P−1

1 =
[
0.2116 0.1291
0.1291 0.1351

]
and

γ = 0.0473.

In this case, the type of dynamics is known, hence, we focus on
Theorem 9. We consider δ(x) = 2| sinx1 − x1|, thus, |d(x)| ≤
δ(x) for all x (we overapproximate d by more than 100%).
We run an experiment with input and initial state uniformly
distributed in [−0.1, 0.1]. This ensures that up toT = 10 the state
x1 remains close to the equilibrium, so that d remains small. In
particular, with this choice, x1 never exceeds ±0.06 (≈ ±3.5◦),
and δ(x) ≤ 3 · 10−5 =: c. Thus, we take T = 10, set Ω = I2,
Δ = c

√
T and solve (56).

Note that (56) now involves only the variables P1, Y1, thus,
only the two constraints (19b) and (48) are present. We get K =[
−19.0204 −10.7947

]
and the ROA in Fig. 4. As expected,

the outcome is worse than the one obtained when we exploit
the knowledge of the nonlinearities and we consider a nonlinear
control law. Another shortcoming is that we now need to run
the experiment close to the equilibrium point in order to keep d
small, which is not needed when we take the nonlinearity into
account. �

C. Results in Probability

All previous results rest on the assumption that D0 ∈ D.
Clearly, once the experiment is performed and the data are
collected, whether D0 ∈ D or not is a deterministic property
(yes or no). Yet, certifying that D0 actually belongs to D can
be a difficult task. It turns out that we can establish results that
relate closed-loop stability with the probability thatD0 ∈ D. We
focus on the case of process disturbances, in particular, we give
a probabilistic version of Theorem 6.

Theorem 10: Consider a nonlinear system as in (41) with Z
satisfying (21) and with d a process disturbance. For a given
Ω � 0 and Δ, suppose that (49) is feasible. If D0 ∈ D with
probability at least p then the control law u = KZ(x), with K
as in (11), renders the origin an asymptotically stable equilibrium
with probability at least p. �

Proof: The result is a direct consequence of the law of
total probability [43, Th. 3, pp. 28]. Given two events
E1 and E2, let P (E1) and P (E1|E2) denote the probabil-
ity of E1 and the conditional probability of E1 given E2.
Let E1 denote the event that K is stabilizing and E2 de-
note the event D0 ∈ D. We have P (E1) = P (E1|E2)P (E2) +
P (E1|Ec

2)P (Ec
2), with Ec the complement of E . Then, P (E1) ≥

P (E1|E2)P (E2) and the result follows becauseP (E1|E2) = 1 by
Theorem 6. �
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Theorem 10 allows us to extend our range of application
to cases where bounds on d are known only with a limited
accuracy, as exemplified in the following Proposition 3. The-
orem 10 has another interesting use. For disturbances obeying
the law of large numbers [43, Sec. 5], we can repeat the same
experiment multiple times and average the data so as to filter out
noise. Specifically, suppose we make N experiments on system
(41), each of length T , and let (U (r)

0 , D
(r)
0 , Z

(r)
0 , X

(r)
1 ), with

r = 1, . . . , N , be the dataset resulting from the rth experi-
ment. Given N matrices S(r), with r = 1, . . . , N , let S :=
1
N

∑N
r=1 S

(r) denote their average. Since each dataset satisfies

the relation X
(r)
1 = AZ

(r)
0 +BU

(r)
0 + ED

(r)
0 , if we average N

datasets we obtain the relation
X1 = AZ0 +BU0 + ED0 . (58)

Because the dynamics are nonlinear, (58) does not represent
a valid trajectory of the system in the sense that it cannot
result from a single experiment on (41). Yet, and this is the
crucial point, the dataset (U0, D0, Z0, X1) gives a data-based
parametrization of the closed loop in the sense of Lemma 2.
Specifically, for any K,G satisfying[

K

IS

]
=

[
U0

Z0

]
G (59)

we have [cf. (9)]
A+BK = (X1 − ED0)G. (60)

Hence, Lemma 2, and consequently Theorems 6 and 10, apply
to (U0, D0, Z0, X1) with no modifications, with the advantage
that D0 will have a reduced norm in expectation thanks to the
law of large numbers. While the law of large numbers gives an
asymptotic result, recent results in nonasymptotic statistics per-
mit us, for relevant classes of disturbance, to get high-confidence
bounds on ‖D0‖ even with a finite number of experiments. As
an example, we give the following result.6

Proposition 3: Consider N experiments, each of length T ,
on system (41), and assume that the disturbances d(k) ∈ Rs are
i.i.d. zero-mean random vectors with covariance matrix Σ such
that |d(k)| ≤ δ almost surely (i.e., with probability 1). Then, for
all μ > 0

‖D0‖ ≤
√

T

(
‖Σ‖
N

+ μ

)
(61)

with probability at least 1− 2s exp
(
− TNμ2

2δ2(‖Σ‖+Nμ)

)
.

Let instead the disturbances d(k) be i.i.d. random vectors
drawn from N (0,Σ). Then, for all μ > 0

‖D0‖ ≤
√

T

N

(
λmax(Σ

1/2)(1 + μ) +

√
trace(Σ)

T

)
(62)

with probability at least 1− exp(−Tμ2/2). where λmax denotes
the maximum eigenvalue. �

Proof: Since the disturbances d(k) are independent then the
vectors, which form the columns of D0 are also independent.
This can be easily verified, for instance, through the so-called
characteristic function, e.g., see [43, Th. 28, pp. 131]. It is also
easy to verify that these vectors have zero mean and covariance

6The notation used in the sequel is standard, e.g., see [43]. Independent and
identically distributed random vectors are abbreviated as i.i.d.. We will denote
by N (μ,Σ) the multivariate normal (Gaussian) distribution with mean μ and
covariance matrix Σ.

Fig. 5. Simulation results for the pendulum in case of repeated exper-
iments. See the caption of Fig. 3 for a description of the various sets.

matrix Σ/N . The bounds (61) and (62) follow from Corollary
6.20 and Theorem 6.1 in [44], respectively. �

Under the assumption on the disturbances stated in Propo-
sition 3, we can choose Δ = ηIs with η equal to the right-
hand side of (61) or (62), and control η via T, μ, and N .
This may lead us to satisfy, with a certain probability, the
condition ‖D0‖ ≤ η (thus D0 ∈ D) with η small. As a re-
sult, we may render (49) easier to satisfy and have stability
guarantees (in probability). Specifically, by applying Theo-
rem 10, if (49), with X1, Z0 replaced by X1, Z0, is feasi-
ble then the control law u = KZ(x), where K is given by
(11) with U0 replaced by U0, will asymptotically stabilize
the origin with the same probability as condition ‖D0‖ ≤ η is
satisfied.

A second advantage of having ‖D0‖ ≤ η with η small is that,
by virtue of (51) and (53), we may have (in probability) less
conservative estimates for the ROA and RPI sets compared to
the ones obtained with deterministic (worst-case) bounds for the
disturbance.

Example 8: We consider again Example 6 under the same
experimental setup for the disturbance, but now we repeat the
experiment N = 100 times, each time using the same input
pattern. For the uniform distribution it holds that Σ = δ2/3.
Withμ = 4× 10−5, Proposition 3 implies ‖D0‖ ≤ 0.0348with
probability at least 99.48%. The bound is much tighter compared
to the worst-case bound ‖D0‖ ≤ δ

√
T = 0.0548 obtained by

only exploiting the property |d| ≤ δ.
We solve (56) [recall that (56) has the same feasible set as

(49)] using the same parameters as in Example 6 but now with
the average matrices U0, Z0, X1, and Δ = 0.0348. We obtain
K =

[
−20.9897 −11.1369 −9.8222

]
. Theorem 10 implies

thatK is stabilizing with probability at least 99.48% (K is indeed
stabilizing as ‖D0‖ = 0.0050 < Δ). The RPI set obtained with
Δ = 0.0348 is much larger than the one obtained in Example
6 with the worst-case value Δ = δ

√
T ; compare the new Fig. 5

with Fig. 3. �
Example 9: We conclude the section with some simulation

results for the polynomial system of Example 4. The system has
“more unstable” dynamics than the pendulum system, and we
obtain non-negligible RPI sets only for |d| ≤ 0.001. For the same
setting as in Example 4 and a disturbance uniformly distributed
the SDP (56) returns the RPI set in Fig. 6 (Left). With averaging,
we already improve the estimate for N = 10, see Fig. 6 (Right).
With averaging, we also systematically obtain non-negligible
RPI sets up to |d| ≤ 0.01. �
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Fig. 6. Simulation results for the polynomial system of Example 4 with
a disturbance uniformly distributed in [−0.001, 0.001]2, which gives the
bound δ = 0.0014. We consider trajectories of length T = 50 and solve
(56) with λ1 = λ2 = 0.1. Left: results without averaging. The grey set
represents the set X in (54), while the blue set is the RPI set. Right:
results with averaging (N = 10). We took μ = 5 · 10−7 which gives Δ =
0.0052I2 and certifies stability with 98.86% probability.

VII. DISCUSSION

A. Approximate Nonlinearity Cancelation and ROA Size

Exact nonlinearity cancelation leads to global asymptotic sta-
bility in the case no noise is affecting the data used in the design
(Theorem 1). When an exact cancelation of the nonlinearities
is not possible, an approximate one should be considered, as
studied in Theorem 4. In general this result returns a local
asymptotic stabilizer. Here, we would like to stress that this does
not imply that it does not exist a global stabilizer attaining the
same cost as the feasible solutions of the SDP (19) appearing in
Theorem 4. We illustrate this point by revisiting system (25) in
Example 4, which was used to demonstrate Theorem 4 and its
follow-up, Proposition 1.

We observe that, were the model of the system known,
one could design a global asymptotic stabilizer given by u =
−x2 − 0.1x2

1 − x3
1 − 0.08x1x

2
2 − 0.016x4

2. This controller re-
turns a closed-loop system whose linear part M is Schur and
whose nonlinear part N has norm equal to 0.2, the optimal value
attained by the SDP (19). Hence, if one would include quartic
monomials in Z(x), it could be numerically verified whether or
not the global asymptotic stabilizer is a feasible solution to the
SDP (19). However, there is no analytic guarantee that the SDP
will return exactly the global stabilizer, and in general it will not.

B. Nonlinearity Cancelation and Coordinate
Transformations

In model-based design, the possibility of canceling the non-
linearity is eased by the existence of a normal form revealed by a
suitable coordinate transformation. In this section, we comment
on how the techniques investigated so far lend themselves to be
used along with such coordinate transformations obtainable for
systems having a uniform relative degree equal to the dimension
of the state space.

Consider the discrete time nonlinear system with output

x+ = f(x, u) (63a)

y = h(x) (63b)

where u, y ∈ R for the sake of simplicity. We assume that both
the state x and the output y are available for measurements. A
prior information about the system is that it satisfies

∂h ◦ f i
0 ◦ f(x, u)
∂u

= 0 ∀(x, u) ∈ Rn+1, 0 ≤ i ≤ n− 2

∂h ◦ fn−1
0 ◦ f(x, u)
∂u

�= 0 ∀(x, u) ∈ Rn+1 (64)

where f0(x) = f(x, 0), fd
0 = f0 ◦ f0 ◦ . . . ◦ f0︸ ︷︷ ︸

d times⎡
⎢⎢⎢⎣

h(x)

h ◦ f0(x)
...

h ◦ fn−1
0 (x)

⎤
⎥⎥⎥⎦ =: Φ0(x) (65)

is a global coordinate transformation [29], [45]. The transfor-
mation Φ0 depends on the system’s dynamics, which is not
available; nevertheless it can be implemented bearing in mind
the interpretation of its entries as the value of the output at a
given time and at future time instants, namely, at any time k, we
have that

w(k) :=

⎡
⎢⎢⎢⎣

y(k)

y(k + 1)
...

y(k + n− 1)

⎤
⎥⎥⎥⎦ = Φ0(x(k))

so that in the coordinatesw the system’s dynamics can be written
as

w(k + 1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

w2(k)

w3(k)
...

wn(k)

h ◦ fn−1
0 ◦ f(x(k), u(k))

⎤
⎥⎥⎥⎥⎥⎥⎦, y(k) = w1(k).

(66)
Note that the last entry of the vector field on the right-hand

side has been deliberately left to depend on the original state
x rather on the new one z, which turns out to be useful to
obtain a causal control policy. The point of this transformation
is that, were the system’s dynamics known, one could design
a static feedback controller that stabilizes the system via exact
nonlinearity cancelation. When the dynamics are unknown, one
can still achieve exact nonlinearity cancelation by modifying
the techniques proposed in Section III-A, provided that the
following assumption holds.

Assumption 6: A vector-valued function Q : Rn → RS−n is
known for which h ◦ fn−1

0 ◦ f(x, u) = a�Q(x) + bu for some
(unknown) quantities a ∈ RS−n, b ∈ R \ {0}.

Asking for h ◦ fn−1
0 ◦ f(x, u) to take this specific form is

clearly demanding, but one can in principle collect the dis-
crepancy between h ◦ fn−1

0 ◦ f(x, u) and a�Q(x) + bu into a
mismatch function and treat it as a disturbance, analogously to
what has been discussed in Section VI-B.

Under the assumption above, a controller can be designed fol-
lowing the construction in the previous subsection with suitable
modifications. We start defining the matrix of input samples U0

as in (6a), and

W0 :=
[
w(0) w(1) · · · w(T − 1)

]
∈ Rn×T

W1 :=
[
w(1) w(2) · · · w(T )

]
∈ Rn×T

Q0 :=
[
Q(x(0)) Q(x(1)) · · · Q(x(T−1))

]
∈ R(S−n)×T

Z0 :=
[
W�

0 Q�
0

]� ∈ RS×T (67a)
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which satisfy the identity W1 = AcW0 +Bc(a
�Q0 + bU0),

where the pair (Ac, Bc) is in the Brunovsky canonical form [46].
Note that since both the statex and the output y are assumed to be
available for measurements, the matrices of dataW0,W1, Q0 are
known. In particular, the matrixW0 (similarly forW1) comprises
output samples

W0 =

⎡
⎢⎢⎢⎣

y(0) y(1) . . . y(T − 1)

y(1) y(2) . . . y(T )
...

...
. . .

...
y(n− 1) y(n) . . . y(n+ T − 2)

⎤
⎥⎥⎥⎦ .

We have the following result.
Corollary 2: Consider the nonlinear system with output (63).

Assume that the conditions (64) hold and that Φ0 in (65) is
a global coordinate transformation. Let Assumption 6 hold. If
there exist decision variables G1 ∈ RT×n, k1 ∈ R, and G2 ∈
RT×(S−n) such that

Z0G1 =

[
In

0(S−n)×n

]
(68a)

W1G1 = Ac +Bc

[
k1 0 · · · 0︸ ︷︷ ︸

n−1 times

]
(68b)

k1 ∈ (−1, 1) (68c)

Z0G2 =

[
0n×(S−n)

IS−n

]
(68d)

W1G2 = 0n×(S−n) (68e)

then u = K
[

w
Q(x)

]
, with K = U0 G, linearizes the closed-loop

system and renders the origin a globally asymptotically stable
equilibrium. �

Proof: Conditions (68a), (68d) along with the definition of
the controller gain K, show that the identity (7) holds. Thus, the
closed-loop system is of the form

w+ = Acw +Bc(a
�Q(x) + bu) (69a)

= Acw +Bc

(
a�Q(x) + bU0 G

[
w

Q(x)

])
(69b)

= W1 G

[
w

Q(x)

]
= W1G1w (69c)

where the third equality follows from the identities BcbU0 G =
W1 G−AcW0 G−Bca

�Q0 G, (68a) and (68d), and the last

one from (68e). Hence, the controller u = K
[

w
Q(x)

]
linearizes

the closed-loop system. Finally, by (68b), the closed-loop system
coincides with w+ =

(
Ac +Bc

[
k1 0 · · · 0

])
w, where

the matrix Ac +Bc

[
k1 0 · · · 0

]
is Schur since all its

eigenvalues are given by the solutions of the equation λn = k1
and |k1| < 1. �

The control law only uses the variables y, x and as such it is
implementable. In fact, bearing in mind (68a) and (68d), the
identity W1G = AcW0 G+Bc(a

�Q0 G+ bU0 G) is equiva-
lent to[

Ac +Bc [k1 0 · · · 0] 0n×(S−n)

]
=
[
Ac 0n×(S−n)

]
+Bc

[
0n×n a�

]
+Bc bU0G

from which we deduce that U0 G = b−1[[k1 0 · · · 0]] − a�,
that is U0G1 w only depends on the first component of w, which
is the output y.

The method discussed in this section is essentially a feedback
linearization method, cf. [29]. The advantage with respect to the
main approach of Sections III-A and IV-A is the possibility to
linearize exactly the dynamics in coordinates different from the
original ones, in which case global asymptotic stability follows
at once. A main disadvantage is Assumption 6. Moreover, the
main approach is directly applicable when exact linearization is
impossible. In contrast, to estimate ROA and RPI sets with the
method discussed in this section we should also know the map
Φ0 in (65), which is needed to characterize invariant sets in the
original x-coordinates.

Example 10: Consider the polynomial system

x+
1 = x2

2 + x3
1 + u (70a)

x+
2 = 0.5x1 + 0.2x2

2 (70b)

y = x2. (70c)

Exact cancelation based on Theorem 1 is not possible for this
system. On the other hand, the conditions of Corollary 2 hold.

In particular, notice that

h ◦ fn−1
0 ◦ f(x, u) = 1

20
x2
1 +

1

2
x2
2 +

1

2
x3
1

+
1

25
x1x

2
2 +

1

125
x4
2 +

1

2
u.

Hence, if we choose

Q(x) =
[
x2
1 x2

2 x1x2 x3
1 x3

2 x1x
2
2 x2

1x2 x4
1 x4

2 x1x
3
2

x2
1x

2
2 x3

1x2

]
then Assumption 6 is satisfied. The choice of such aQ(x) can be
guided by some prior knowledge, namely that the nonlinearity
in the last equation of the system in the new coordinates is a
polynomial of degree no larger than 4. On the other hand, using
Q(x) instead of [ x

Q(x)] is motivated by the fact that, if this were
not the case, then the matrix Z0 would be rank deficient (this
is a test that can be carried out from the collected data). This
is because each column i of W0 is equal to [y(i− 1) y(i)]� =
[x2(i− 1) 0.5x1(i− 1) + 0.2x2(i− 1)2]� and it would be ex-
pressible as a linear combination of the entries of column i of
Q0 if the latter would include x.

Applying Corollary 2, we find that the SDP (68) is feasible
and returns the solution k1 = 0.372 and

K = [0.7423 0 − 0.1 − 1 0 − 1 0 − 0.08 0 0
− 0.016 0 0 0]

which linearizes the closed-loop system in the coordinates w,
and renders the origin a globally asymptotically stable equilib-
rium. �

VIII. CONCLUSION

We have introduced a method to design Lyapunov-based
stabilizing controllers for nonlinear systems from data, which
reduces the design to the solution of data-dependent SDP. The
method is certified to provide a solution in the presence of
perturbed data as well as estimates of the ROA of the closed-loop
system. Both deterministic and stochastic perturbations on the
data are studied. We also extended the results to deal with the
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presence of neglected nonlinearities. Possible future research
should focus on output feedback control design, the inclusion
of criteria to maximize the ROA and the design of more general
(nonquadratic) Lyapunov functions.

APPENDIX

A. Parametrization of All Stabilizing and Linearizing
Feedback Controllers

Suppose that
[
U0

Z0

]
has full row rank. In this case, we can

prove that any stabilizing and linearizing feedback controller
can be parametrized as in (11) for some Y1, P1, G2 satisfying
(10). Note in particular that this implies that the SDP is feasible.
This result is as a generalization of [8, Th. 3] where an analogous
result for linear system is provided under the condition that [U0

X0
]

has full row rank. In the linear case, the latter condition reduces
to a design condition for controllable dynamics, see [7, Th. 1],
[47, Th. 1]. We are not aware of analogous results for nonlinear
systems.

Proof of Theorem 2: Consider any stabilizing and linearizing
feedback controller K. We have

A+BK = X1G (71)

for some G ∈ RT×S satisfying (7). Note that G exists as
[
U0

Z0

]
has full row rank by hypothesis. By partitioning K = [K K̂]

with K ∈ Rm×n and G = [G1 G2] with G1 ∈ RT×n, we have

X1G1 = A+BK and X1G2 = Â+BK̂ = 0, where the ma-
trix X1G1 is Schur and X1G2 = 0 by the assumption that
K is stabilizing and linearizing. Hence, there exists a matrix
P1 � 0 such that (X1G1)

�P−1
1 X1G1 − P−1

1 ≺ 0. This implies
(X1Y1)

�P−1
1 X1Y1 − P1 ≺ 0 with Y1 = G1P1, which is the

constraint (10b). Since Z0G = IS and Y1 = G1P1 we have

Z0

[
Y1 G2

]
=

[
P1 0n×(S−n)

0(S−n)×n IS−n

]
(72)

which matches the constraints (10a) and (10c). Thus, all the
constraints in (10) are satisfied, hence the program is feasible.

As for the form of the controller, by (7) we have K = U0 G
which in terms of Y1, G2 reads as (11). �

B. Parametrisation of All (locally) Stabilizing Feedback
Controllers

Proof of Theorem 5: The identity (71) is still valid because
independent of the properties of K. Furthermore, we can still
write X1G1 = A+BK and X1G2 = Â+BK̂. (The only dif-
ference with respect to Theorem 2 is that now X1G2 might
be different from zero.) Observe now that, by assumption,
X1G1 is Schur. Thus, there exists a matrix P1 � 0 such that
(X1G1)

�P−1
1 X1G1 − P−1

1 ≺ 0. By defining Y1 = G1P1, this
is equivalent to (19c). Recalling that Z0G = IS we have again
the identity (72). Thus, all the constraints in (19) are satisfied
and the program is feasible.

As for the form of the controller, by (7) we have K = U0 G
which in terms of Y1, G2 reads as (11). �

C. Proof of Lemma 3

Lemma 3 is a direct consequence of the following result.
Lemma 4: Let B ∈ Rn×p, C ∈ Rq×n be given matrices, and

let D := {D ∈ Rq×p : DD� � ΔΔ�}. Then, for arbitrary ε >
0 it holds that

BD�C + C�DB� � ε−1BB� + εC�ΔΔ�C ∀D ∈ D.

Proof: A completion of squares(√
ε−1B −

√
εC�D

)(√
ε−1B −

√
εC�D

)�
� 0

gives the result. �
Proof of Lemma 3: Let (48) hold. By a Schur complement,

this is equivalent to[
P1 − Ω (X1Y1)

�

X1Y1 P1

]
− ε−1

[
Y �
1

0n×T

]
︸ ︷︷ ︸

:=B

[
Y1 0T×n

]

− ε

[
0n×s

E

]
︸ ︷︷ ︸

:=C�

ΔΔ� [0s×n E�] � 0.

An application of Lemma 4 gives[
P1 − Ω Y �

1 (X1 − ED)�

(X1 − ED)Y1 P1

]
� 0 ∀D ∈ D. (73)

This is equivalent to (46) after another Schur complement,
and this gives the result. �
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[46] P. Brunovskỳ, “A classification of linear controllable systems,” Kyber-
netika, vol. 6, no. 3, pp. 173–188, 1970.

[47] H. J. van Waarde, C. De Persis, M. K. Camlibel, and P. Tesi, “Willems’
fundamental lemma for state-space systems and its extension to multiple
datasets,” IEEE Contr. Syst. Lett., vol. 4, no. 3, pp. 602–607, Jul. 2020.

Claudio De Persis (Member, IEEE) received
the Laurea and Ph.D. degrees in engineering
from the University of Rome “La Sapienza,”
Rome, Italy, in 1996 and 2000, respectively.

He has been a Professor with the Engineering
and Technology Institute, University of Gronin-
gen, Groningen, The Netherlands, since 2011.
He held Postdoctoral Positions with Washing-
ton University in St. Louis, St. Louis, MO, USA,
(2000–2001) and Yale University, New Haven,
CT, USA, (2001–2002), and faculty positions

with the University of Rome “La Sapienza” (2002–2009) and Twente
University, Enschede, The Netherlands (2009–2011). His main research
interest is in automatic control and its applications.

Monica Rotulo received the B.Sc. degree in
computer engineering and the M.Sc. degree in
systems and control engineering from the Uni-
versity of Pavia, Pavia, Italy, in 2013 and 2015,
respectively. She is currently working toward
the Ph.D. degree in systems and control with
the University of Groningen, Groningen, The
Netherlands.

Her current research interests include data-
driven control and optimization.

Pietro Tesi received the Ph.D. degree in com-
puter and control engineering from the Univer-
sity of Florence, Florence, Italy, in 2010.

He is currently an Associate Professor with
the University of Florence. Prior to that, he has
been an Assistant Professor with the Univer-
sity of Florence, and the University Groningen,
Groningen, The Netherlands. His main research
interests include adaptive and learning systems,
data-driven control, and network systems.

Dr. Tesi serves in the Editorial Board for the
International Journal of Robust and Nonlinear Control, and is a Senior
Editor for the IEEE CONTROL SYSTEMS LETTERS. He is also a member of
the IFAC Technical Committee on Networked Systems. He is a recipient
of the 2021 IEEE Control Systems Letters Outstanding Paper Award.

Open Access provided by ‘Università degli Studi di Firenze’ within the CRUI CARE Agreement

https://dx.doi.org/10.1109/TAC.2022.3148374
https://dx.doi.org/10.1109/TIE.2022.3194657


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


