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Program
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Monday July 8th 2024 Tuesday July 9th 2024 Wednesday July 10th 2024

9:00 – 10:30 Introduction to the course 
and to nonlinear phenomena

9:00 – 
10:30

 Relative degree, feedback 
linearization and zero 
dynamics

9:00 – 
10:30

Steady state for nonlinear 
systems and output 
regulation

11:00 – 12:30
Stability notions for 
nonlinear systems. 
Lyapunov criteria

11:00 – 
12:30

 Global, semiglobal and 
practical stabilizability by  
state and output feedback

11:00 – 
12:30

Principles of internal model-
based control

14:30 – 16:00
Nonlinear systems with 
input – Input-to-State 
Stability - small gain

14:30 – 
16:00

 Global, semiglobal and 
practical stabilizability by  
state and output feedback

16:30 – 18:00
Nonlinear systems with 
input – Input-to-State 
Stability - small gain

16:30 – 
18:00

Nonlinear observers and 
nonlinear separation principle
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State-space representation
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We shall adopt state-space representations to describe the dynamic system by means of Ordinary Differential 
Equations (ODEs) for continuous-time systems

ẋ(t) = f(x(t), u(t), t) x 2 Rn, u 2 Rm

y(t) = h(x(t), u(t), t) y 2 Rp

•Stationary systems if the vector fields  and  do not depend on t (  without loss of generality)  f( ⋅ ) h( ⋅ ) t0 = 0

•Linear systems if the vector fields  and  are linearf( ⋅ ) h( ⋅ )
•Autonomous systems if the vector fields  and  do not depend on independent variables ( )f( ⋅ ) h( ⋅ ) u(t), t

x(t0) ∈ ℝ Typically assigned 

Continuous-time systems (  )t ∈ ℝ
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Only ODEs?
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ODEs could be not the appropriate math description tool to model certain physical systems: 

Partial Differential Equations (PDEs)

Differential-Algebraic Equations (Descriptor systems)Hybrid Automata

Hybrid systems (differential and difference equations) 

Non treated in the course!

{
·x = F(x, u) (x, u) ∈ ℱ

x+ = J(x, u) (x, u) ∈ 𝒥

·x = f1(x, u) ·x = f2(x, u)

·x = f3(x, u) (x, u) ∈ 𝒮2

(x, u) ∈ 𝒮′ 3

(x, u) ∈ 𝒮1

∂T(t, x)
∂x

= c
∂2T(t, x)

∂x2

{
·x = F(x, u)
0 = C(x, u)

Example: heat transport dynamics

Example: bouncing ball

Example: 
constrained 
mechanical systems

Example: drone airborne 
and in physical contact

x(t+ 1) = f(x(t), u(t), t) x 2 Rn, u 2 Rm

y(t) = h(x(t), u(t), t) y 2 Rp

Discrete-time systems (  )t ∈ ℤ
(difference equations) 
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References  (topics not treated in the course)
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Partial Differential Equations (PDEs)

Hybrid systems  
(differential and difference equations) 

Time-varying systems
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Where the system “lives”?
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However, often the physics of the system implies that the state  does not evolve on an Euclidean space but 
rather on a “manifold” (topological space that locally resembles a an Euclidean space)

x(t)

Example: Pendulum
F = ma

x1 := θ, x2 := ·θ

θ

·θ

θ

s

m = 1 −π π

θ
·θ

0

 is not evolving on a euclidean space 
(distance between  and 

 is not  !) 

θ
θ1 = π − ϵ

θ2 = − π + ϵ 2(π − ϵ) The “supporting space” of 

the pendulum is the 
“cylinder”  manifold  S1 × ℝ

ℓ

k ·s
·x1 = x2

·x2 = −
g
ℓ

sin x1 − kℓx2mg

Tangential force (gravity and friction)

Tangential acceleration ( )ℓ··θ

In the course we shall treat only systems whose state evolves on Euclidean spaces (distance -> Euclidean norm)
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Where the system “lives”?
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Example: aircraft 

p1

p2

Tangent Euclidean space Euclidean distance (unfeasible trajectory)

Sphere manifold 

Sphere distance (feasible trajectory)

 (2-D sphere)S2

In the course we shall treat only 
systems whose state evolves 
on Euclidean spaces (possibly 
local study)



Trajectories

8



Lorenzo Marconi - Scuola SIDRA 2024

Lagrange Formula (linear systems)

The state and output trajectory ( ) depends on the initial state  and on the specific input applied to 
the system in the time interval . For linear systems  the trajectory can be given an explicit form in 
which the effect of the initial state and of the input are decoupled. 

x(t), y(t) x(t0)
[t0, t] (A, B, C, D)

x(t) = eA(t−t0) x(t0) + ∫
t

t0

eA(t−s) B u(s) ds y(t) = CeA(t−t0) x(t0) + ∫
t

t0

CeA(t−s) B u(s) ds + Du(t)

eM := I + M +
1
2!

M2 + … +
1
k!

Mk… k → ∞

Free state evolution Forced state evolution Free output evolution Forced output evolution

Continuous-time ( )t ∈ ℝ
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Lagrange Formula (linear systems)

Nice properties of linear (stationary) systems immediately visible from the Lagrange formula:


• Effects of (sum of) initial state(s) and (sum of) input(s) add up (Additivity)  

• “Large”/“small” experiments differ only by scaling factors (Homogeneity)

• The effects of a stimulus (initial state/input) applied at different times are the same, simply shifted in time 

(shift-invariance)  


• Properties of the  affects the free state evolution, properties of   affects the state forced evolution


•  plays a role in the output free and forced evolution 
A (A, B)

C

Principle of superimposition 

Principle of superimposition: property of linear systems (not necessarily stationary)  

Shift-invariance: property of stationary systems
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What about nonlinear systems?

Unfortunately, Lagrange-type formulas do not exist, in general, for nonlinear systems. The effect of the initial state 
and of the input are not “decoupled” but “mix-up”.   

Let’s consider autonomous systems of the form  (continuous-time without too much loss of generality).  
Formally, we say that  is a solution for this ODE (trajectory for the system) with initial state  at  if


·x = f(x)
x(t) x0 t0 = 0

x(0) = x0 and ·x(t) = f(x(t)) for all t > 0

For general nonlinear systems trajectories could be “pathological”:


• Finite Escape time. Example:   

• Uniqueness. Example:   

·x = x2 x(0) = 1

·x = 2 x x(0) = 0

x(t) =
1

1 − t
The trajectory does not 

exist for t ≥ 1

x(t) =

⇢
0 if 0  t  a

(t� a)2 if t > a

 anya ≥ 0

The trajectory is not unique
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What about nonlinear systems?

Existence (for all ) and uniqueness are guaranteed if certain regularity properties on the vector field  are 
assumed. 

t f( ⋅ )

Property: The function  is said to be Locally Lipschitz at  if there exist an  and  such that 
  for all .

f( ⋅ ) x̄ rx̄ > 0 cx̄ > 0
∥f(x) − f(y)∥ ≤ cx̄∥x − y∥ (x, y) ∈ ℬrx̄

(x̄) := { x ∈ ℝn : ∥x − x̄∥ < rx̄ }

Property: The function  is said to be Locally Lipschitz on  (open set of )  if  it is locally Lipschitz at each 
.

f( ⋅ ) 𝒟 ℝn

x̄ ∈ 𝒟

Property: The function  is said to be Lipschitz on   if  it is locally Lipschitz on  with the same Lipschitz 
constant (  not dependent on ).

f( ⋅ ) 𝒟 𝒟
c x̄

Property: The function  is said to be Globally Lipschitz if  it is Lipschitz on .f( ⋅ ) ℝn

Remark:  locally Lipschitz on a open set  implies Lipschitz on any compact subset of  .𝒟 𝒟
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What about nonlinear systems?

Result:  if  is continuous on   then  is locally Lipschitz on .df(x)/dx 𝒟 f( ⋅ ) 𝒟

Result:  if   is continuous on    then  is globally  Lipschitz if the Jacobian   is uniformly 
bounded (there exists an   such that  for all  ).

df(x)/dx ℝn f( ⋅ ) ∂f(x)/∂x
L > 0 ∂f(x)/∂x ≤ L x ∈ ℝn

Continuous differentiability

Continuity       Lipschitz  property    Continuous differentiability  ⇐ ⇐
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What about nonlinear systems?

Theorem: If the function  is  Locally Lipschitz at  then there exist an  such that the solution of the 
system  with initial condition  exists and it is unique over .

f( ⋅ ) x0 δ > 0
·x = f(x) x0 [0,δ]

Lipschitz  property    Existence and Uniqueness⇒

Remark: The property   locally Lipschtz on  is not sufficient for the existence of the solution for all f( ⋅ ) ℝn t ≥ 0
Example:       ·x = − x2 x(0) = − 1

Continuity of the right-hand side of an ODE is enough for existence of solutions, but not enough for their uniqueness (see [Khalil, p. 88] for a reference).

Theorem: If the function  is  Locally Lipschitz at  then there exist an  (maximal interval of definition) 
such that the solution of the system  with initial condition  exists and it is unique over .

f( ⋅ ) x0 T > 0
·x = f(x) x0 [0,T)
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Theorem: If the function  is s Globally Lipschitz then the system  with initial condition  has a 
unique solution  that exists for all .

f( ⋅ ) ·x = f(x) x0 ∈ ℝn

x(t) t ≥ 0

Theorem: Let  be  Locally Lipschitz on  (open set of ). Let  be compact set and suppose that it 
is known that every solution originating from  is such that  for all . Then  exists and is 
unique for all .

f( ⋅ ) 𝒟 ℝn W ⊂ 𝒟
x0 x(t, x0) ∈ W t ≥ 0 x(t, x0)

t ≥ 0

What about nonlinear systems?

Lemma. Let  locally Lipschitz for some domani . Let  be a solution of  on a maximal open 
interval  with . Let  be any compact subset of . Then there is some  with .

f(x) 𝒟 ⊆ ℝn x(t) ·x = f(x)
[0,T) T < ∞ W 𝒟 t ∈ (0, T) x(t) ∉ W
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What about nonlinear systems?

From now  and others real-valued functions that will be used in the analysis are assumed to be continuously 
differentiable (existence and uniqueness of the solutions are guaranteed).   But not necessary…. 

f(x)

Note: extremely rich and elegant 
literature  on nonsmooth analysis

Dini Derivatives

D+V(t) = lim
h→0+

sup
1
h

[V(t + h) − V(t)]

If  is locally LipschitzV : ℝ → ℝ

If  is locally Lipschitz and evaluated 
along 

V : ℝn → ℝ
x(t, x0)

D+V(x0) = lim
h→0+

sup
1
h

[V(x(h, x0) − V(x0)]
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Continuity wrt the initial conditions and parameters

Let  solution of  a set of parameters,  with initial condition . Is  
continuous with respect to  and  ?

x(t, μ, x0) ·x = fμ(x), μ ∈ ℝn x(0) = x0 x(t, μ, x0)
x0 μ

Let   be Lipschitz on an open connected set  with Lipschitz constant  and let  solution 
of   with initial condition .  Let   be such that  for some  
and for all  and let  be the solution of   with initial condition . Assume 
that  and  for all  for some .  Then


f(x) 𝒟 ⊂ ℝn L x(t, x0)
·x = f(x) x(0) = x0 g( ⋅ ) : ℝn → ℝn ∥g(y)∥ ≤ μ μ > 0

y ∈ 𝒟 y(t, y0) ·y = f(y) + g(y) y(0) = y0
x(t, x0) ∈ 𝒟 y(t, y0) ∈ 𝒟 t ∈ [0,t̄ ] t̄

∥x(t, x0) − y(t, y0)∥ ≤ ∥x0 − y0∥eL t +
μ
L (eL t − 1) ∀t ∈ [0,t̄ ]

Closeness of solutions

Continuity comes as a corollary
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What about nonlinear systems?

The effect of the input in nonlinear systems could be catastrophic. Systems with “nice” properties when  
could have “deteriorated” behaviour when an input is applied.  A clear distinction between free and forced 
evolution doesn’t exist in general.   

u = 0

·x = − x + xu

·x = − x + (1 + x)xu

 when        (exponential convergence to zero without input) ·x = − x u = 0

 when              (exponential explosion with (sufficiently large) input) ·x = x u = 2

 when          (exponential convergence to zero without input) ·x = − x u = 0

 when          (finite escape time with bounded input)·x = x2 u = 1

·x = − x + (x2 + 1)u
 when         (exponential convergence to zero without input) ·x = − x u = 0

 and   leads to     (explosion with vanishing input)u(t) = 1/ 2t + 2 x(0) = 2 x(t) = 2t + 2

Superimposition properties are far to  be true
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Qualitative Behaviour of Trajectories

For dynamics of dimension , a qualitative behaviour of the trajectory can be obtained by plotting 
the “vector field” and the associated “phase portrait” (“phase plane” method)

2, 3 (n = 2, 3)

For continuous-time systems, at each    is a vector of , which is tangent to the trajectory (flow) 
passing through . The geometry of the vector yields local information about the direction of the trajectory. The 
amplitude about the local “speed”  is the velocity vector at .   

x ∈ ℝn f(x) ℝn

x
f(x) x

x1

f(x1)

x2

f(x2)
A vector field is easy to plot. Covering 

 with vectors yield qualitative 
insight about the whole set of 
trajectories originating from different 
initial conditions. Up to  the tool 
is valuable.  

ℝ2

n = 3

A phase portrait is a geometric representation of the trajectories of a dynamical system in the phase plane. Each set 
of initial conditions is represented by a different curve, or point

A vector field is an assignment of a vector (which is ) to each point  in the space/manifold f(x) x

Let u = 0

https://en.wikipedia.org/wiki/Vector_(geometry)
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Qualitative Behaviour of Trajectories
n = 2

ẋ1 = x2

ẋ2 = µ(1� x2
1)x2 � x1

Van der Pol oscillator 
·x1 = x2
·x2 = −x3

2 − 2x3
1 − x2

1 x2 − 2x2
2 x1 + x1 + x2
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Qualitative Behaviour of Trajectories

Fixed Points (Equilibrium Points): points  such that   x⋆ ∈ ℝn f(x⋆) = 0

= 0

x⋆
2 = 0, x⋆

1 = 0, x⋆
1 = ± 1

2

Nonlinear systems could have isolated equilibrium points 

Linear systems have a single equilibrium or a subspace 
of equilibria ( ){x⋆ : x⋆ ∈ KerA}

·x1 = x2
·x2 = −x3

2 − 2x3
1 − x2

1 x2 − 2x2
2 x1 + x1 + x2

Three isolated 
equilibria

Isoclines: locus where ,   f1(x) = 0 f2(x) = 0
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Qualitative Behaviour of Trajectories

Equilibrium points can be attractive (all nearby trajectories converge to the point as ), repulsive (all 
nearby trajectories converge to the point as ), “saddles” (points with some directions attractive and 
others repulsive),  they can be “anchor points” of “complex” orbits, such as homoclinic orbits  (a trajectory 
hanged at the equilibrium), heteroclinic orbits  (a trajectory connecting two isolated equilibria), or “centers” 
around which closed curves take place….  

t → ∞
t → − ∞

Attractive Repulsive Homoclinic

Heteroclinic

Rich geometry!

center of closed curvesSaddle

Locally around the equilibrium point the “behaviour” of the trajectory  
can be studied by using the linearised dynamics 
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Qualitative Behaviour of Trajectories

stable node Unstable node stable focusSaddle

·x = f(x) A =
∂f
∂x

x⋆

X X X X XX

X

X

X

X

unstable focus
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Qualitative Behaviour of Trajectories

Limit cycle:  isolated closed trajectory having the property that at least one other trajectory spirals into it either 
as time approaches infinity or as time approaches negative infinity   

A limit cycle is a  locus of periodic trajectories of the system

x(t) = x(t + T) ∀t ≥ 0

All neighbourhood 
trajectories converge to 
the limit cycle as  t → ∞

All neighbourhood 
trajectories converge to 
the limit cycle as  t → − ∞

Convergence form one 
side, repulsive from the 
other 

Period orbit with period : T

attractive  
limite cycle

repulsive  
limite cycle

semi-stable  
limite cycle

Limit cycles can be categorised according to their attractive/
repulsive properties:  

https://en.wikipedia.org/wiki/Trajectory
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Example: Van der Pol oscillator

25

Balthasar van der Pol 
(27 January 1889 – 6 October 1959) 

ẋ1 = x2

ẋ2 = �x1

ẋ1 = x2

ẋ2 = µ(1� x2
1)x2 � x1

Linear oscillator ( )μ = 0

Van der Pol oscillator ( )μ > 0, κ > 0

Basic model for oscillatory processes in physics, 
electronics, biology, neurology, sociology and economics

Self-sustained 
oscillations whose 
amplitude is not  
dependent on initial 
conditions  
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Qualitative Behaviour of Trajectories

ẋ1 = x2

ẋ2 = µ(1� x2
1)x2 � x1

= 0
x1 = x2 = 0

Van der Pol oscillator 

The origin is the only equilibrium point, which is 
repulsive. There exists a limit cycle that is 
attractive  

Homework: plot how the geometry of the limit cycle and the features of the periodic trajectory change when  change(μ, κ)

Homework: plot how the phase portrait changes when  (linear oscillator)μ = 0
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Qualitative Behaviour of Trajectories

Pendulum

·x1 = x2

·x2 = −
g
ℓ

sin x1

θ

·θ

Heteroclinic orbit

Closed curves locus of periodic 
trajectories (they are not limit cycles)

Phase portrait on the 
cylinder manifold

Equilibria

·x1 = x2

·x2 = −
g
ℓ

sin x1 − kℓx2

θ

s

m = 1

ℓ

k ·s

No friction

With friction

No friction

With friction

attractive 
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Example: Tunnel-Diode

28

Vd

Id

C ·x1 = x2 − h(x1)
L ·x2 = −x1 − Rx2 + u

Id = h(x1)

u = E

x1 := Vd

x2 := I

Negative resistance

The "negative" differential 
resistance makes tunnel 
diodes key elements in 
circuits like oscillators and 
switching circuits.

Vd

Id

ū1

ū2

ū3

Switching circuit
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Qualitative Behaviour of Trajectories

Tunnel Diode example

C ·x1 = x2 − h(x1)
L ·x2 = −x1 − Rx2 + u

Vd

Id

ū1

ū2

ū3
repulsive

ū1

attractiveattractive

Homework: plot the phase portrait in 
the other two cases of  ū2, ū3

u

isoclines

stable node stable nodeunstable node
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Example: Predator-Pray 

30

·x = α x − β x y
·y = δ x y − γ y

Lotka–Volterra equations (1910)

 is the number of preyx

 is the number of predatory

1845 1935

Hares

Lynx

Source:  Canadian Rockies
Experimental data

In non-equilibrium situations, predators 
thrive when there is abundance of prey but, 
in the long run, there’s not enough food 
and they die out. As the predator 
population decreases the prey population 
increases again; this dynamic continues in 
a cycle of growth and decline.

• Equilibria:


- 


- 


•  ?


•  ?


•   ?

(x̄, ȳ) = (0,0)

(x̄, ȳ) = (
γ
δ

,
α
β

)

x(0) = 0, y(0) ≠ 0

x(0) ≠ 0, y(0) = 0

x(0) ≠ 0, y(0) ≠ 0

Simulation

Prey
Predator

Amplitude of oscillations 
depends on the initial state 
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Qualitative Behaviour of Trajectories

Predator-Prey system

·x = α x − β x y
·y = δ x y − γ y

Prey
Predator

Dense periodic trajectories

(they are not limit cycles)  
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Example: Predator-Prey 

32

·x = r x (1 −
x
k

) −
ax y
c + x

·y = b
ax y
c + x

− d y

More sophisticated/realistic models consider  as function of  according to the following rules:  α, β, δ x

     namely, the prey growth rate decreases (possibly negative) when  increases ( ) α(x) = r (1 −
x
k

) x r, k > 0

     namely, the predation rate decreases when  increases (effect of a population dominating 

on the other regardless the mutual strength)  ( ) 

β(x) =
a

c + x
x

a, c > 0

     similarly as above  ( ) δ(x) = b β(x) b > 0

a = 3.2, b = 0.6, c = 50, d = 0.56, k = 125, r = 1.6

Amplitude of oscillations 
does not depend on the 
initial state 
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Qualitative Behaviour of Trajectories

Predator-Prey system

·x = r x (1 −
x
k

) −
ax y
c + x

·y = b
ax y
c + x

− d y

repulsive

attractive limit cycle 
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Qualitative Behaviour of Trajectories

Example of a system with homoclinic orbit

·x =
x2(y − x) + y5

(x2 + y2)(1 + (x2 + y2)2)

·y =
y2(y − 2x)

(x2 + y2)(1 + (x2 + y2)2)

The origin is the only equilibrium point. It is “globally attractive”. From an engineering perspective such an 
equilibrium point is not “nice” (small perturbations of the initial state  from the equilibrium lead to transients 
whose amplitude is not related to the amplitude of the perturbation) 

The Vinograd’s example (1957) 
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Example: FitzHugh-Nagumo circuit

35

CV̇ = V � V 3

3
� I + u

Lİ = �I +RV

Prototype of relaxation oscillator (when the activation input  exceeds a certain threshold the state variables 
exhibit a characteristic oscillatory behaviours). The circuit is a relevant benchmark able to capture typical spike 
behaviours observed in neurons after stimulation by an external input current

u

u = 0.1

u = 0.33

u = 0.337

u = 0.34

u

Tunnel diode

Homework: plot the phase portrait for the different values of u
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Example: Susceptible-Infected-Resolved Model (COVID’19)

36

A simple model for epidemics spread (SIR): 

·S = − β S I
·I = β S I − γ I
·R = γ I

S(0) + I(0) + R(0) = 1

where:

•  = percentage of susceptible individuals (not infected but that 

can be infected)

• = percentage of infected individuals	   	 	 


•  = percentage of resolved individuals (dead or recovered)


S

I
R

and:

•  = average number of contacts per person per time  infection 

probability per contact

•  = recovery rate (e.g., = (average duration of infection) )

β ×

γ γ −1

• from  we conclude that   is the average percentage of susceptible individuals that become 
infected at each unit of time (taken from  and added to )


• from  we conclude that  is the average percentage of infected that heal or die per unit of 
time (taken from  and added to )

dS = − (βSI)dt βSI
S I

dI = (βSI)dt − γIdt γI
I R

Epidemic indicators 

Basic reproductive number:                     Effective reproductive number:   R0 ≐
β
γ

Reff(t) ≐ R0S(t) =
β
γ

S(t)
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Let us neglect the  dynamics (it is only an accumulator, does not affect   or )  R S I

·S = − β S I
·I = β S I − γ I

S(0) + I(0) = 1 [
·S(t)
·I(t)] = [−βI(t) 0

0 βS(t) − γ]
A(t)

[S(t)
I(t)]

• The term in the first dynamics , , is always negative (the susceptible population always decreases)


• The second is positive if  ;  At the beginning of the infection ( ), 

     the disease spreads if , otherwise it dies out! (in the early COVID case )


−βS(t)I(t)

Reff(t) > 1 S(0) ≈ 1, I(0) ≈ 0, R(0) = 0
Reff(0) ≈ R0 → R0 > 1 R0 ∈ [1.5, 4]

Example: Susceptible-Infected Model (COVID’19)
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I(0) = 0.05, S(0) = 0.95 R0 = {1.5, 2, 3, 4} The equilibrium point reached 
depends on  but  always R0 Ieq = 0

Example: Susceptible-Infected Model (COVID’19)
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I(0) = {0.1, 0.05, 0.01, 0.001}
R0 = 3

The equilibrium point reached does 
not depend on I(0)
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S(0) = 1 − I(0)
Smaller  only delay the peak 
but its amplitude remains the same

I(0)
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I(0)=10.0%
I(0)=5.0%
I(0)=1.0%
I(0)=0.1%

Example: Susceptible-Infected Model (COVID’19)
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A more realistic model (Reinfections and Variable Rate ) 

·S = β(t) S I+δR
·I = β(t) S I − γ I
·R = γ I−δR

S(0) + I(0) + R(0) = 1

• We assume all infected heal ( ) and, with rate , become susceptible again ( )


•  is periodic to model different infection rates in different periods of the year


•

I → R δ R → S
β(t)

·z1 = z2
·z2 = − ω2z1

β(t) = β− +
1 + z1(t)

2
β+

with z1(0) = 1, z2(0) = 0, β+, β− > 0, ω ≐
2π
365

Example: Susceptible-Infected Model (COVID’19)

System of order 5
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Example: Susceptible-Infected Model (COVID’19)

Simulations with 
γ =
1
7

, δ =
1

20
, β− =

1
2

γ, β+ = 3γ

0 100 200 300 400 500 600 700 800 900 1000
days

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S(t)
I(t)



Lorenzo Marconi - Scuola SIDRA 2024

Homework: plot and interpret the phase portrait of the SI model 

Example: Susceptible-Infected Model (COVID’19)

·S = − β S I
·I = β S I − γ I

·S = β S I+δR
·I = β S I − γ I
·R = γ I−δR

Homework: plot and interpret the 3D phase portrait of the SI model with reinfections (and constant rate ) β
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Qualitative Behaviour of Trajectories

Finding limit cycles, in general, is a very difficult problem. There exist a many theoretical results predicting  the 
existence or the absence of limit cycles of two-dimensional nonlinear dynamical systems.  Examples:

If on a simply connected region   (i.e.  has no holes in it) the function 


 


is not identically zero and does not change sign, then the system has no closed 
orbits lying entirely in .

𝒟 ⊂ ℝ2 𝒟

∇f(x) :=
∂f1(x1, x2)

∂x1
+

∂f2(x1, x2)
∂x2

𝒟

Every closed trajectory 
contains within its interior at 
least an equilibrium.

·x1 = f1(x1, x2)
·x2 = f2(x1, x2)

Bendixson’s criterion

Result

Example

Homework. For the linear system find conditions on  so that the system has 
not periodic solutions by using the Bendixson’s criterion

·x1 = a11x1 + a12x2, ·x2 = a21x1 + a22x2, aij

·x1 = x2 + x1x2
2

·x2 = − x1 + x2
1 x2

∇f(x) = x2
1 + x2

2 No closed orbits Divergence of  the vector field
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Qualitative Behaviour of Trajectories

Interpretation of divergence of a vector field at a point: the extent to which the vector field flux behaves 
like a source locally around that point (local measure of its “outgoingness”).

∂f1
∂x1

> 0

∂f2
∂x2

> 0

∇f > 0

∂f1
∂x1

< 0

∂f2
∂x2

< 0

∇f < 0

∂f1
∂x1

= 0

∂f2
∂x2

= 0

∇f = 0

Source Sink
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Qualitative Behaviour of Trajectories: Bifurcations

Qualitative behaviour determined by the pattern of its equilibirum points and periodic orbits and their 
stability properties 

The system maintains its qualitative behavior under infinitesimally small perturbations? 


If yes —> Structural stability . If not —> Bifurcations 

Bifurcation is change in the equilibrium points or periodic orbits, or in their 
stability properties, as a parameter is varied
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Qualitative Behaviour of Trajectories: Bifurcations

Example

·x1 = μ − x2
1

·x2 = − x2

:  Bifurcation parameter μ

Bifurcation diagram

“Dangerous” 
bifurcation 

μ > 0 μ = 0 μ < 0
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Qualitative Behaviour of Trajectories: Bifurcations

·x1 = μx1 − x2
1

·x2 = − x2

(0,0)(μ,0)

stable node 

μ < 0

saddle 

(0,0) (μ,0)

stable node 

μ > 0

saddle “Safe”  
bifurcation 

·x1 = μx1 − x3
1

·x2 = − x2

(0,0)

stable node 

μ < 0

(0,0) ( μ,0)

stable node 

μ > 0

saddle 

(− μ,0)

stable node 
“Safe” 

 bifurcation 
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Qualitative Behaviour of Trajectories: Bifurcations

·x1 = μx1 + x3
1

·x2 = − x2

(0,0)

μ < 0(0,0) ( μ,0)

μ > 0

saddle 

(− μ,0)

stable node saddle 

saddle 
“Dangerous” 
bifurcation 

·x1 = x1(μ − x2
1 − x2

2) − x2
·x2 = x2(μ − x2

1 − x2
2) + x1

μ < 0 μ > 0

“Safe” 
 bifurcation 
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Qualitative Behaviour of Trajectories: Bifurcations

“Dangerous” 
bifurcation 

·x1 = x1[μ + (x2
1 + x2

2) − (x2
1 + x2

2)2] − x2
·x2 = x1[μ + (x2

1 + x2
2) − (x2

1 + x2
2)2] + x1

? Homework… 

Extremely rich area!


